ON A CLASS OF SOME SPECIAL SETS ON THE k-SKELETON OF A CONVEX COMPACT SET

BY
LEONI DALLA
Department of Mathematics, University of Athens, 15781 Athens, Greece

Abstract

In this paper, generalizing the notion of a path we define a k-area to be the set $D=\{g(t): t \in J\}$ on the k-skeleton of a convex compact set K in a Hilbert space, where g is a continuous injection map from the k-dimensional convex compact set J to the k-skeleton of K. We also define an E^{k}-area on K, where E^{k} is a k-dimensional subspace, to be a k-area with the property $\pi(g(t))=t$, $t \in \pi(K)$, where π is the orthogonal projection on E^{k}. This definition generalizes the notion of an increasing path on the 1 -skeleton of K. The existence of such sets is studied when K is a subset of a Euclidean space or of a Hilbert space. Finally some conjectures are quoted for the number of such sets in some special cases.

1. Introduction

Let K be a convex compact set in a Hilbert space \mathscr{H} and let E^{k} be a k-dimensional subspace of \mathscr{H}. Then the orthogonal complement of E^{k} is a subspace

$$
\left(E^{k}\right)^{\perp}=\left\{l_{1}(x)=l_{2}(x)=\cdots=l_{k}(x)=0\right\},
$$

where $l_{1}, l_{2}, \ldots, l_{k}$ are linearly independent continuous linear functionals. Let π be the orthogonal projection on E^{k} parallel to $\left(E^{k}\right)^{\perp}$. We quote now the following definitions.

Definition 1.1. A subset D of K is defined to be a k-area on $K, k=$ $1,2, \ldots$ iff there exists a k-dimensional compact convex subset J of \mathscr{H} and a continuous injection map $g: J \rightarrow$ skel $_{k} K$ with $D=g(J)$.

Definition 1.2. A subset D of K is defined to be an E^{k}-area of K iff D is a k-area of K and $\pi(g(t))=t, t \in \pi(K)$.

Note that for $k=1$ a k-area on K is a path on the skel $_{1} K$ and an E^{k}-area is an l_{1}-strictly increasing path on the skel ${ }_{1} K$.
The existence and the number of l_{1}-increasing paths on skel ${ }_{1} K$ in a Euclidean space E^{d} was studied in [8], [4] and [5], while the same problem in a normed space E of infinite dimension was studied in [7], [1] and [2].

If K is a convex body in E^{d} then it is an E^{d}-area.
In this paper we study the existence of a k-area and of E^{k}-area in Euclidean and Hilbert spaces as well as several related problems.

2. Existence of a k-area of K in E^{d}

In this section we study the existence of a k-area of a convex body K in the Euclidean space E^{d} and the "measure" of the k-dimensional subspaces of E^{d} for which there exist E^{k}-areas of K.

Theorem 2.1. Let K be a convex body in E^{d} and let E^{k} be a k-dimensional subspace of $E^{d}, 2 \leqq k \leqq d-1$. Then for every $\varepsilon>0$ there exists a projection $\omega: E^{d} \rightarrow E^{k}$ and a k-area $D=g(\omega(K))$ on K such that $\omega(g(t))=t, t \in \omega(K)$ and for every $t, t^{\prime} \in \omega(K),\left\|g(t)-g\left(t^{\prime}\right)\right\| \geqq(1-\varepsilon)\left\|t-t^{\prime}\right\|$.

Proof. We consider first the case $k=d-1$. From Theorem 1 in [3] we have that for every $\varepsilon>0$ there exists a unit vector $p_{d} \in E^{d}, p_{d} \notin E^{k}=E^{d-1}$ such that $\cos \measuredangle\left(p_{d}, e_{d}\right) \geqq 1-\varepsilon$ and there are no line segments on the boundary of K in the direction p_{d}.
Let $\operatorname{proj}_{p_{d}}$ be the projection map on E^{d-1} in the direction p_{d}. Now for $t \in \operatorname{proj}_{p_{d}}(K)$ we define $\Lambda_{t}:=\operatorname{proj}_{p_{d}}^{-1}(t) \cap K$. Then

$$
\Lambda_{t}=\left\{(t, \lambda) \in E^{d}: t \in E^{d-1}, \alpha_{t} \leqq \lambda \leqq \beta_{t}\right\}
$$

with $\alpha_{t}<\beta_{t}$ if $t \in \operatorname{relint}\left(\operatorname{proj}_{p_{d}}(K)\right)$ and $\alpha_{t}=\beta_{t}$ if $t \in \operatorname{relbd}\left(\operatorname{proj}_{p_{d}}(K)\right)$. We define $g_{1}(t):=\left(t, \alpha_{t}\right), g_{2}(t):=\left(t, \beta_{t}\right), t \in \operatorname{proj}_{p_{d}}(K)$.

Because of the convexity of K, g_{1} and g_{2} are continuous on relint($\left.\operatorname{proj}_{p_{d}}(K)\right)$. From the choice of p_{d} one can easily see that g_{1} and g_{2} are continuous on $\operatorname{relbd}\left(\operatorname{proj}_{p_{d}}(K)\right.$). Therefore g_{1} and g_{2} are continuous on $\operatorname{proj}_{p_{d}}(K)$. Also, if $D_{1}:=g_{1}\left(\operatorname{proj}_{p_{d}}(K)\right)$ and $D_{2}:=g_{2}\left(\operatorname{proj}_{p_{d}}(K)\right)$, then $D_{1}, D_{2} \subseteq \operatorname{skel}_{k} K$ with

$$
g_{1}\left(\operatorname{relint}\left(\operatorname{proj}_{p_{d}}(K)\right)\right) \cap g_{2}\left(\operatorname{relint}\left(\operatorname{proj}_{p_{d}}(K)\right)=\varnothing\right.
$$

Now taking $\omega:=\operatorname{proj}_{p_{d}}$ and $g=g_{1}\left(\right.$ or $\left.g_{2}\right)$ the result follows.

Consider now the case $2 \leqq k<d-1$. Let $\left(E^{k}\right)^{\perp}=E^{d-k}:=$ [$e_{k+1}, e_{k+2}, \ldots, e_{d}$] where $e_{i}, k+1 \leqq i \leqq d$ is a set of orthonormal vectors, $M^{d-i}:=E^{k} \oplus\left[e_{k+1}, e_{k+2}, \ldots, e_{d-i}\right], i=0,1,2, \ldots, d-k-1$ and $M^{k}=E^{k}$. As before we may choose unit vectors $p_{d}, p_{d-1}, \ldots, p_{k+2}$ in $M^{d}=E^{d}$, M^{d-1}, \ldots, M^{k+1} respectively with $p_{i} \notin M^{i-1}, i=k+2, k+3, \ldots, d$, arbitrarily close to $e_{d}, e_{d-1}, \ldots, e_{k+2}$ and there is no line segment on $\operatorname{bd}(K)$ in the direction p_{d} and also there is no line segment on $\operatorname{relbd}\left(\operatorname{proj}_{p_{i+1}} \circ \operatorname{proj}_{p_{i+2}} \circ \cdots \circ \operatorname{proj}_{p_{d}}(K)\right)$ in the direction $p_{i}, i=k+2, k+$ $3, \ldots, d$ - 1 . Let

$$
\omega_{1}:=\operatorname{proj}_{p_{k+2}} \circ \operatorname{proj}_{p_{k+3}} \circ \cdots \circ \operatorname{proj}_{p_{d}} \text { where } \operatorname{proj}_{p_{i}}: M^{i} \rightarrow M^{i-1},
$$

$i=k+2, \ldots, d$ is the projection map in the direction p_{i} and $\mu>0$ such that $\left\|\omega_{1}(x)\right\| \leqq \mu\|x\|, x \in E^{d}$. Then $\omega_{1}(K)$ is a convex body in M^{k+1} and so we may find $p_{k+1} \in M^{k+1}$ and a k-area $B=\left\{h(t): t \in \operatorname{proj}_{p_{k+1}}\left(\omega_{1}(K)\right)\right\}$ with $\operatorname{proj}_{p_{k+1}}(h(t))=t, t \in \operatorname{proj}_{p_{k+1}}\left(\omega_{1}(K)\right)$, by case $k=d-1$. Let $\omega=\operatorname{proj}_{p_{k+1}} \circ \omega_{1}$ and $g(t)=\omega_{1}^{-1}(h(t)), t \in \omega(K)$. By the selection of $p_{i}, i=k+2, k+3, \ldots, d$ the map g is well defined, one to one, $g(t) \in \operatorname{skel}_{k}(K)$ and $\omega(g(t))=t, t \in \omega(K)$.
In order to prove that $D=g(\omega(K))$ is a k-area of K it remains to prove that g is continuous on $\omega(K)$. Let $t \in \omega(K)$ and let $\left\{t_{n}\right\}_{n=1}^{\infty}$ be a sequence in $\omega(K)$ with $\lim _{n \rightarrow \infty} t_{n}=t$. As K is compact we suppose $\lim _{n \rightarrow \infty} g\left(t_{n}\right)=x_{0} \in K$. Then from the definition of ω_{1} and g we have

$$
\begin{aligned}
&\left\|\omega_{1}(g(t))-\omega_{1}\left(x_{0}\right)\right\| \leqq \| \omega_{1}(g(t))-\omega_{1}\left(g\left(t_{n}\right)\|+\| \omega_{1}\left(g\left(t_{n}\right)\right)-\omega_{1}\left(x_{0}\right) \|\right. \\
& \leqq\left\|h_{1}(t)-h\left(t_{n}\right)\right\|+\mu\left\|g\left(t_{n}\right)-x_{0}\right\| .
\end{aligned}
$$

The continuity of h on $\omega(K)$ implies that $\omega_{1}(g(t))=\omega_{1}\left(x_{0}\right)$ and from the definition of $g, g(t)=x_{0}=\lim _{n \rightarrow \infty} g\left(t_{n}\right)$. Therefore g is continuous on $\omega(K)$. Also as $p_{d}, p_{d-1}, \ldots, p_{k+1}$ can be chosen as close as we please to e_{d}, e_{d-1}, \ldots, e_{k+1} respectively, we can construct g so that $\left\|g(t)-g\left(t^{\prime}\right)\right\| \geqq$ $(1-\varepsilon)\left\|t-t^{\prime}\right\|$ with $t, t^{\prime} \in \omega(K)$. This concludes the proof of the theorem.

From the above theorem we have the following corollaries, where the proof of the first one is obvious.

Corollary 2.1. Let K be a convex body in E^{d} and $E^{d-1} a$ (d-1)-dimensional subspace of E^{d}. If there are no line segments on $\mathrm{bd}(K)$ perpendicular to E^{d-1} then there exist two E^{d-1}-areas on $K, D_{i}=$ $\left\{g_{i}(t): t \in \pi(K)\right\}, i=1,2$, such that $\mathrm{g}_{1}($ relint $\pi(K)) \cap g_{2}($ relint $\pi(K))=\varnothing$.

Corollary 2.2. Let K be a convex body in E^{d} and E^{k} is a k-dimensional
subspace $2 \leqq k<d-1$. If the directions of line segments on $\mathrm{bd}(K)$ perpendicular to E^{k} form a subset of $(d-k-1)$-dimensional Hausdorff measure zero on the boundary of the unit ball of $\left(E^{k}\right)^{\perp}=E^{d-k}$, then there exists an E^{k}-area on K.

Proof. We may select the vectors $p_{d}, p_{d-1}, \ldots, p_{k+1}$ of Theorem 2.1 to be orthonormal and lying in E^{d-k}. This selection entails ω to be the orthogonal projection on E^{k}.

Corollary 2.3. Let K be a convex body in E^{d} and E^{k} is a k-dimensional subspace, $2 \leqq k \leqq d-1$. Let π be the orthogonal projection on E^{k} and $\pi(K)=$ $f\left(I^{k}\right)$ where $I=[0,1]$ and f is a continuous one to one map. Then there exists a sequence $D_{r}=\left\{h_{r}(t): t \in I^{k}\right\}, r=1,2, \ldots$ of k-areas on K with $\left\{\pi \circ h_{r}\right\}_{r=1}^{\infty}$ converging uniformly to fon I^{k}.

Proof. Let $\left(E^{k}\right)^{\perp}=E^{d-k}=\left[e_{k+1}, e_{k+2}, \ldots, e_{d}\right]$. We may select vectors $p_{d}^{(r)}, p_{d-1}^{(r)}, \ldots, p_{k+1}^{(r)}$ with $\lim _{r \rightarrow \infty} p_{i}^{(r)}=e_{i}, i=k+1, k+2, \ldots, d$ and using $\omega_{r}=\operatorname{proj}_{p_{r(1)}^{\prime \prime}} \circ \cdots \circ \operatorname{proj}_{p^{p^{\prime \prime}}}, r=1,2, \ldots$ we construct, as in the proof of Theorem 2.1, k-areas, $D_{r}=\left\{g_{r}(t): t \in \omega_{r}(K)\right\}$ on K with $\omega_{r}\left(g_{r}(t)\right)=t, t \in$ $\omega_{r}(K)$, for $r=1,2, \ldots$. The sequence of projections $\left\{\omega_{r}\right\}_{r=1}^{\infty}$ converges uniformly to π on the compact body K. Therefore, we may take $\omega_{r}(K)=\left\{f_{r}(t)\right.$, $\left.t \in I^{k}\right\}$ where f_{r} is a continuous injection map on I^{k} for $r=1,2, \ldots$ and such that $\left\{f_{r}\right\}_{r=1}^{\infty}$ converges uniformly to f on I^{k}. Then, taking $h_{r}=g_{r} \circ f_{r}$ we have that $D_{r}=\left\{h_{r}(t), t \in I^{k}\right\}$ and $\omega_{r}\left(h_{r}(t)\right)=f_{r}(t), t \in I^{k}$ for $r=1,2, \ldots$.
As I^{k} is compact, in order to prove the uniform convergence of $\left\{\pi \circ h_{r}\right\}_{r=1}^{\infty}$ to f on I^{k}, it suffices to prove $\lim _{r \rightarrow \infty} \pi\left(h_{r}\left(t_{r}\right)\right)=f\left(t_{0}\right)$ for any sequence $\left\{t_{r}\right\}_{r=1}^{\infty}$ of points of I^{k} whose limit is $t_{0} \in I^{k}$. As K is compact we may suppose that $\lim _{r \rightarrow \infty} h_{r}\left(t_{r}\right)=x_{0} \in K$. Then the uniform convergence of the sequences $\left\{f_{r}\right\}_{r=1}^{\infty}$ and $\left\{\omega_{r}\right\}_{r=1}^{\infty}$ implies that

$$
f\left(t_{0}\right)=\lim _{r \rightarrow \infty} f_{r}\left(t_{r}\right)=\lim _{r \rightarrow \infty} \omega_{r}\left(h_{r}\left(t_{r}\right)\right)=\pi\left(x_{0}\right)=\lim _{r \rightarrow \infty} \pi\left(h_{r}\left(t_{r}\right)\right) .
$$

Therefore the proof is complete.
We may remark that from the proof of Theorem 2.1 for any convex body K in E^{d}, there exists always a k-area D that is not necessarily an E^{k}-area for a fixed subspace $E^{k}, 2 \leqq k \leqq d-1$. For a further support of this assertion we give a simple example of a convex body in E^{3} that has not an E^{2}-area for a fixed subspace E^{2}. Define the following set:

$$
K=\operatorname{conv}\left(\left\{(x, y, 0):(x-1)^{2}+y^{2} \leqq 1\right\} \cup\{(0,0,1),(0,0,-1)\}\right)
$$

and let E^{2} be the plane $z=0$. Then it is easy to see that there does not exist an E^{2}-area on K.
From the above remark the following question arises: For a convex body in E^{d} "how many" k-dimensional subspaces $E^{k}, 2 \leqq k \leqq d-1$ are there, such that no E^{k}-area exists on K ? Of course the expression "how many" must be defined properly. To this end, for each E^{k} in E^{d} there is associated a point pair $\pm G\left(E^{k}\right)$ in $E^{(t)}$ (see [8]). The Grassmanian I_{k}^{d} will be taken to be the collection of all these pairs corresponding to the different k-dimensional subspaces E^{k} of E^{d}. The set I_{k}^{d} is an algebraic manifold in $E^{(t)}$ of real dimension $k(d-k)$, of positive $k(d-k)$-dimensional Hausdorff measure in $E^{(d)}$ and certainly of non- σ-finite $(k(d-k)-1)$-dimensional Hausdorff measure. With the above notation we have the following theorem.

Theorem 2.2. Let K be a convex body in E^{d} and let

$$
A=\left\{ \pm G\left(E^{k}\right) \text { such that there is no } E^{k} \text {-area on } K\right\} .
$$

Then A forms a set in I_{k}^{d} of σ-finite $(k(d-k)-1)$-dimensional Hausdorff measure.

Proof. Let E^{k} be a subspace with its orthogonal complement E^{d-k} of non-singular direction, i.e., there are no line segments on the $\operatorname{bd}(K)$ parallel to E^{d-k}. Then from Corollaries 2.1 and 2.2 there exists an E^{k}-area on K. Hence for any E^{k} with E^{d-k} non-singular, $\pm G\left(E^{k}\right) \notin A$ so $A \subseteq\left\{ \pm G\left(E^{k}\right): E^{d-k}\right.$ singular $\}$. The set $\left\{ \pm G\left(E^{d-k}\right): E^{d-k}\right.$ singular) in $E^{(d-k)}=E^{(d)}$ is a set of σ-finite ($k(d-k)-1$)-dimensional Hausdorff measure (see [9] Theorem A). As the map $G\left(E^{k}\right) \rightarrow G\left(E^{d-k}\right)$ is an isometry (see [8]) the set $\left\{ \pm G\left(E^{k}\right): E^{d-k}\right.$ singular\} is of σ-finite $(k(d-k)-1)$-dimensional Hausdorff measure. Therefore, by the above inclusion, A has the same property. This ends the proof.

3. Existence of k-areas in Hilbert space

In this section we investigate the existence of k-areas on a convex compact set of infinite dimension in a Hilbert space.
The main result is included in the following theorem.
Theorem 3.1. Let C be a convex compact set in a Hilbert space \mathscr{H} and let $E^{k}, k \geqq 2$ be a k-dimensional subspace of \mathscr{H}. Suppose that $\pi(C)=g\left(I^{k}\right)$ where g is a continuous injection map and $\operatorname{dim} \pi(C)=k$. Then there exists a sequence $D_{r}=\left\{h_{r}(t): t \in I^{k}\right\}, r=1,2, \ldots$ of k-areas on C where $\left\{\pi \circ h_{r}\right\}_{r-1}^{\infty}$ converges uniformly to g on I^{k}.

Before proceeding in the proof of Theorem 3.1 we quote and prove some auxiliary lemmas.

Lemma 3.1. Let C be a convex compact set in a Hilbert space \mathscr{H} and let π be the orthogonal projection on the k-dimensional subspace E^{k}. Then given $\eta>0$, there exists a d-dimensional subspace E^{d} containing E^{k} and a projection σ_{1} such that the orthogonal projection π_{1} on E^{d} satisfies the conditions (i) $\pi=\pi_{1} \circ \sigma_{1}$, (ii) diam $C \cap \pi_{1}^{-1}\left(\pi_{1}(x)\right)<\eta$ for each x in C and (iii) there exists $\delta=\delta(\eta)>0$ such that $\operatorname{diam}\left(C \cap \pi_{1}^{-1}(D)\right)<\eta$ where D is a subset of $\pi_{1}(C)$ with $\operatorname{diam} D<\delta$.

Proof. See Lemma 1 in [7]

Lemma 3.2. Let E^{d-1} be a hyperplane of E^{d} and let $\left\{K_{n}\right\}_{n=0}^{\infty}$ be a sequence of convex bodies of E^{d} that converges in the Hausdorff metric to K_{0}. Suppose that $\left\{p_{n}\right\}_{n=0}^{\infty}$ is a sequence of unit vectors of E^{d}, not lying in E^{d-1}, with $\lim _{n \rightarrow \infty} p_{n}=$ p_{0} and $D^{(n)}=\left\{f_{n}(t): t \in I^{k}\right\}$ is a k-area of the convex body, $\operatorname{proj}_{p_{n}}\left(K_{n}\right) n=$ $0,1, \ldots$ with $\left\{f_{n}\right\}_{n=0}^{\infty}$ converging uniformly to f_{0} on I^{k}. If we can construct (as in Theorem 2.1) a k-area on $K_{n},\left\{h_{n}(t): t \in I^{k}\right\}$ with $\operatorname{proj}_{p_{n}} h_{n}(t)=f_{n}(t), t \in I^{k}$, $n=0,1, \ldots$ then the sequence $\left\{h_{n}\right\}_{n=0}^{\infty}$ converges uniformly to h_{0} on I^{k}.

Proof. Let $\left\{t_{n}\right\}_{n=1}^{\infty}$ be a sequence in I^{k} with $\lim _{n \rightarrow \infty} t_{n}=t_{0} \in I^{k}$ and let S be a closed ball of E^{d} with $K_{n} \subseteq S, n=0,1, \ldots$.
As $\lim _{n \rightarrow \infty} K_{n}=K_{0}$ we may suppose that $\lim _{n \rightarrow \infty} h_{n}\left(t_{n}\right)=x_{0}$ with $x_{0} \in K_{0}$. We also have

$$
\begin{aligned}
& \left\|\operatorname{proj}_{p_{0}} x_{0}-\operatorname{proj}_{p_{0}} h_{0}\left(t_{0}\right)\right\| \\
& \quad \leqq\left\|\operatorname{proj}_{p_{n}} h_{n}\left(t_{n}\right)-\operatorname{proj}_{p_{0}} h_{0}\left(t_{0}\right)\right\|+\left\|\operatorname{proj}_{p_{n}} h_{0}\left(t_{n}\right)-\operatorname{proj}_{p_{0}} x_{0}\right\| \\
& \quad=\left\|f_{n}\left(t_{n}\right)-f_{0}\left(t_{0}\right)\right\|+\left\|\operatorname{proj}_{p_{n}} h_{n}\left(t_{n}\right)-\operatorname{proj}_{p_{0}} x_{0}\right\| .
\end{aligned}
$$

As $\lim _{n \rightarrow \infty} p_{n}=p_{0}$ the sequence $\left\{\operatorname{proj}_{p_{n}}\right\}_{n=0}^{\infty}$ converges uniformly to $\operatorname{proj}_{p_{0}}$ on S. Using this and the assumption that $\left\{f_{n}\right\}_{n=0}^{\infty}$ converges uniformly in the above relations we find that $\operatorname{proj}_{p_{0}} x_{0}=\operatorname{proj}_{p_{0}} h_{0}\left(t_{0}\right)$. Therefore the construction of h_{0} entails $h_{0}\left(t_{0}\right)=x_{0}=\lim _{n \rightarrow \infty} h_{n}\left(t_{n}\right)$.

Lemma 3.3. Let K be a convex body in E^{d}, E^{d-1} be a hyperplane and let τ be the orthogonal projection on E^{d-1}. Suppose that $B=g\left(I^{k}\right)$ is a k-area on $\tau(K)$ (constructed as in Theorem 2.1). Then there exists a sequence $D_{r}=$ $\left\{h^{(r)}(t): t \in I^{k}\right\}, r=1,2, \ldots$ of k-areas on K with $\left\{\tau \circ h_{r}\right\}_{r=1}^{\infty}$ converging uniformly to g on I^{k}. Also, for any $\varepsilon>0$ there exists an integer r_{0} such that

$$
\left\|h_{r}(t)-h_{r}\left(t^{\prime}\right)\right\| \geqq(1-\varepsilon)\left\|g(t)-g\left(t^{\prime}\right)\right\|
$$

for any $r \geqq r_{0}$ and every $t, t^{\prime} \in I^{k}$.
Proof. For $k=d-1$ the result is contained in Corollary 2.3. Assume now $k \leqq d-2$. Let $E^{k}=\left[e_{1}, e_{2}, \ldots, e_{k}\right], \quad \operatorname{proj}_{e_{d}}=\tau \quad$ and let $p_{k+1}, p_{k+2}, \ldots, p_{d-1}$ be the vectors used in the construction of the k-area B on $\tau(K)$. We may choose a unit vector p_{d}^{\prime} as close as we please to e_{d} in such a way that there are no line segments on bd K in the direction p_{d}^{\prime} where $p_{d}^{\prime} \notin$ $\left[e_{1}, e_{2}, \ldots, e_{k}, p_{k+1}, p_{k+2}, \ldots, p_{d-1}\right]$.

In a similar way we may choose unit vectors $p_{d-1}^{\prime}, p_{d-2}^{\prime}, \ldots, p_{k+1}^{\prime}$ as close as we please to $p_{d-1}, p_{d-2}, \ldots, p_{k+1}$ respectively and in such a way that

$$
\begin{gathered}
{\left[e_{1}, e_{2}, \ldots, e_{k}, p_{k+1}^{\prime}, p_{k+2}^{\prime}, \ldots, p_{d-1}^{\prime}\right]=E^{d-1},} \\
p_{i} \in\left[e_{1}, e_{2}, \ldots, e_{k}, p_{k+1}, p_{k+2}, \ldots, p_{i}\right], \\
p_{i} \notin\left[e_{1}, e_{2}, \ldots, e_{k}, p_{k+1}, p_{k+2}, \ldots, p_{i-1}\right], \quad i=k+1, k+2, \ldots, d-1
\end{gathered}
$$

with $p_{k}=e_{k}$ and such that there are no line segments on the boundary of $\operatorname{proj}_{p_{i+1}^{\prime}} \circ \operatorname{proj}_{p_{i+2}^{\prime}} \circ \cdots \circ \operatorname{proj}_{p_{d}^{\prime}}(K)$ in the direction p_{i}^{\prime}. Then using p_{k+1}^{\prime}, $p_{k+2}^{\prime}, \ldots, p_{d}^{\prime}$ we construct a k-area $D=\left\{h\left(I^{k}\right)\right\}$ on K.

For each $r \in \mathbf{N}$ we may choose a system of unit vectors $\left\{p_{k+1}^{(r)}, p_{k+2}^{(r)}, \ldots, p_{d}^{(r)}\right\}$ satisfying the additional conditions $\lim _{r \rightarrow x} p_{d}^{(r)}=e^{d}$ and $\lim _{r \rightarrow x} p_{i}^{(r)}=p_{i}$ for $i=k+1, k+2, \ldots, d-1$. Then the sequence of projections $\omega^{(r)}=\operatorname{proj}_{p_{k+1}^{(r)}} \circ \cdots \circ \operatorname{proj}_{p_{d}^{(r)}}, r=1,2, \ldots$ converges uniformly to $\operatorname{proj}_{p_{k+1}} \circ \cdots \circ \operatorname{proj}_{p_{d-1}} \circ \operatorname{proj}_{e_{d}}=\omega \circ \tau$ on K and so we take the k-dimensional sets on $E^{k} \omega^{(r)}(K)=f_{r}\left(I^{k}\right),(\omega \circ \tau)(K)=f\left(I^{k}\right)$ with $\left\{f_{r}\right\}_{r=1}^{x}$ converging uniformly to f on I^{k}. Because of the condition for the sequences $\left\{p_{d}^{(r)}\right\}_{r=1}^{\infty}$ and $\left\{p_{i}^{(r)}\right\}_{r=1}^{\infty}$, the sequence of sets $\left\{\operatorname{proj}_{p_{i}^{(r)}} \circ \cdots \circ \operatorname{proj}_{p_{d}^{(r)}}(K)\right\}_{r=1}^{\infty}$ converges in the Hausdorff metric to the sets $\operatorname{proj}_{p_{i}} \circ \ldots \circ \operatorname{proj}_{p_{d}}(K), i=k+1$, $k+2, \ldots, d-1$. Now from Lemma 3.3 we deduce that the sequence of functions $\left\{g_{r}\right\}_{r=1}^{\infty}$, related respectively to the k-areas $A^{(r)}=g_{r}\left(I^{k}\right)$ on $\operatorname{proj}_{p d}(K)$, $r=1,2, \ldots$, converges uniformly to g on I^{k}. Let $D^{r}=h_{r}\left(I^{k}\right)$ be k-areas on K. For these k-areas we have that $\operatorname{proj}_{p_{d}} h_{r}(t)=g_{r}(t), t \in I^{k}$. Then this property and the above-mentioned convergence imply that $\left\{\tau \circ h_{r}\right\}_{r=1}^{\infty}$ converges uniformly to g on I^{k}. Also as τ is the orthogonal projection and $\lim _{r \rightarrow x} \tau \circ h_{r}(t)=g(t), t \in I^{k}$, then there exists an r_{0} such that

$$
\begin{aligned}
\left\|h_{r}(t)-h_{r}\left(t^{\prime}\right)\right\| & \geqq\left\|\tau\left(h_{r}(t)\right)-\tau\left(h_{r}\left(t^{\prime}\right)\right)\right\| \\
& \geqq(1-\varepsilon)\left\|g(t)-g\left(t^{\prime}\right)\right\|
\end{aligned}
$$

for $r \geqq r_{0}$ and any $t, t^{\prime} \in I^{k}$.
Lemma 3.4. Let K be a convex body in E^{d} and let $D=\left\{h(t): t \in I^{k}\right\}$ be a k-area on K constructed using the projection ω on E^{k}. Then for any $\delta>0$ there exists an $\varepsilon=\varepsilon(\delta)>0$ such that whenever $\left\|h(t)-\frac{1}{2}(\mu+v)\right\|<\varepsilon$ for some $t \in I^{k}$ and $\mu, v \in K$ with $\omega(\mu)=\omega(v)$ then $\|\mu-v\|<\delta$.

Proof. Suppose on the contrary that for each $n \in \mathbf{N}$ there exists $t_{n} \in I^{k}$ and $\mu_{n}, v_{n} \in K$ with the property that $\left\|h\left(t_{n}\right)-\frac{1}{2}\left(\mu_{n}+v_{n}\right)\right\|<1 / n, \omega\left(\mu_{n}\right)=\omega\left(v_{n}\right)$ and $\left\|\mu_{n}-v_{n}\right\| \geqq \delta$. Let

$$
\omega=\operatorname{proj}_{p_{k+1}} \circ \cdots \circ \operatorname{proj}_{p_{d}}=\operatorname{proj}_{p_{k+1}} \circ \omega_{1} \text { and } \omega(K)=f\left(I^{k}\right)
$$

where f is a continuous one to one map on I^{k} and $\omega \circ h=f$. As I^{k} and K are compact we may suppose that

$$
\lim _{n \rightarrow \infty} t_{n}=t_{0} \in I^{k}, \quad \lim _{n \rightarrow \infty} \mu_{n}=\mu \text { and } \lim _{n \rightarrow \infty} v_{n}=v \text { with } \mu, v \in K .
$$

These imply $\|\mu-v\| \geqq \delta, \omega(\mu)=\omega(v)$ and $h\left(t_{0}\right)=\frac{1}{2}(\mu+v)$. As $\omega(\mu)=$ $\omega(v)$ we have $\omega_{1}(\mu)=\mu_{1} e_{1}+\cdots+\mu_{k} e_{k}+\mu_{k+1} p_{k+1}$ and $\omega_{1}(v)=\mu e_{1}+\cdots+$ $\mu_{k} e_{k}+v_{k+1} p_{k+1}$. Therefore

$$
\omega_{1}\left(h\left(t_{0}\right)\right)=\mu_{1} e_{1}+\cdots+\mu_{k} e_{k}+\frac{1}{2}\left(\mu_{k+1}+v_{k+1}\right) p_{k+1}
$$

By the construction of the k-area the point $\omega_{1}\left(h\left(t_{0}\right)\right)$ has the minimum value of the p_{k+1}-coordinate on the line segment $\operatorname{proj}_{p_{k+1}}^{-1}\left(\omega\left(h\left(t_{0}\right)\right) \cap \omega_{1}(K)\right)$. Hence $\mu_{k+1}=v_{k+1}$ and this entails $\omega_{1}(\mu)=\omega_{1}(v)=\omega_{1}\left(h\left(t_{0}\right)\right)$. As ω_{1} is one to one from $\omega_{1}(D)$ to K we have $\mu=v$ and this contradicts $\|\mu-v\| \geqq \delta$.

Now we give the proof of Theorem 3.1.
Proof of Theorem 3.1. Let $\varepsilon>0, E_{0}=E^{k}, \pi=\pi_{0}$ and $g=g_{0}$. By Lemma 3.2 for $\eta_{1}=\frac{1}{2}$ we choose $\delta_{1}>0$ and π_{1} an orthogonal projection on \mathscr{H} with finite dimensional range E_{1} and a continuous projection σ_{1} with $\sigma_{1} \circ \pi_{1}=$ π_{0} and $\operatorname{diam}\left(C \cap \pi_{1}^{-1}(D)\right)<\eta_{1}$ whenever D is a subset of $K_{1}=\pi_{1}(C)$ with $\operatorname{diam}(D)<\delta_{1}$. Next, we choose a coordinate system $\left(x_{1}, x_{2}, \ldots, x_{n(1)}\right)$ for E_{1} which extends the coordinate system ($x_{1}, x_{2}, \ldots, x_{k}$) in $E_{0}=E^{k}$ so that

$$
\sigma_{1}\left(x_{1}, x_{2}, \ldots, x_{n(1)}\right)=\left(x_{1}, x_{2}, \ldots, x_{k}, 0, \ldots, 0\right)
$$

Because of Lemma 3.3 we may find, with the aid of a projection ω_{1}, a k-area $A_{1}=g_{1}\left(I^{k}\right)$ on K_{1} such that $\left\|\sigma_{1}\left(g_{1}(t)\right)-g_{0}(t)\right\|<\varepsilon / 6$ and

$$
\left\|g_{1}(t)-g_{1}\left(t^{\prime}\right)\right\| \geqq\left(1-\frac{1}{4}\right)\left\|g_{0}(t)-g_{0}(t)\right\| \quad \text { for any } t, t^{\prime} \in I^{k}
$$

Now applying Lemma 3.4 for the convex body $K_{1}=\pi_{1}(C)$, the projection ω_{1} and the number δ_{1}, we may find a positive number $e_{1}<\min \left\{\varepsilon, \delta_{1}\right\}$ with the property that there do not exist points μ, v in K_{1} and $t \in I^{k}$ such that $\omega_{1}(\mu)=\omega_{1}(v),\|\mu-v\| \geqq \delta_{1}$ and $\left\|g_{\mathrm{I}}(t)-\frac{1}{2}(\mu+v)\right\|<\varepsilon_{1}$.
So far we have been through the initial step of an inductive process of choosing the following: a sequence of positive numbers $\eta_{1}=\frac{1}{2}, \eta_{2}=1 / 2^{2}, \ldots$, a sequence of finite dimensional linear spaces E_{0}, E_{1}, \ldots, three sequences of projection maps $\pi_{0}, \pi_{1}, \ldots, \sigma_{1}, \sigma_{2}, \ldots$ and $\omega_{1}, \omega_{2}, \ldots$, a sequence of k-area A_{0}, A_{1}, \ldots with $A_{i}=g_{i}\left(I^{k}\right), i=0,1, \ldots$ and finally two sequences of real numbers $\delta_{1}, \delta_{2}, \ldots$ and $\varepsilon>\varepsilon_{1}>\varepsilon_{2} \cdots$.
First, let $\eta_{r+1}=1 / 2^{r+1}$. By Lemma 3.1 there exists an orthogonal projection π_{r+1} defined on \mathscr{H} with a finite dimensional range E_{r+1} containing E_{r} and a second projection σ_{r+1} with $\sigma_{r+1} \circ \pi_{r+1}=\pi_{r}$ and there will be a $\delta_{r+1}>0$ such that $\operatorname{diam}\left(C \cap \pi_{r+1}^{-1}(D)\right)<\eta_{r+1}$ whenever $D \subseteq \pi_{r+1}(C)$ with $\operatorname{diam} D>\delta_{r+1}$. Then by Lemma 3.3 for the projection σ_{r+1} and the k-area $A_{r}=g_{r}\left(I^{k}\right)$ on $\pi_{r}(C)$ we may find using a projection ω_{r+1} a k-area $A_{r+1}=g_{r+1}\left(I^{k}\right)$ on $\pi_{r+1}(C)$ with the properties

$$
\left\|\sigma_{r+1} \circ g_{r+1}(t)-g_{r}(t)\right\|<\frac{\varepsilon_{r}}{6(r+1)^{2}}, \quad t \in I^{k}
$$

and

$$
\left\|g_{r+1}(t)-g_{r+1}\left(t^{\prime}\right)\right\| \geqq\left(1-\frac{1}{4^{r+1}}\right)\left\|g_{r}(t)-g_{r}\left(t^{\prime}\right)\right\| \quad \text { for all } t, t^{\prime} \in I^{k}
$$

Applying Lemma 3.4 to the projection ω_{r+1} and the number δ_{r+1} we may find a positive number $\varepsilon_{r+1}<\min \left\{\varepsilon_{r}, \delta_{r+1}\right\}$ and with the property that there are no $\mu, v \in \pi_{r+1}(C)$ and $t \in I^{k}$ such that $\omega_{r+1}(\mu)=\omega_{r+1}(v),\|\mu-v\| \geqq \delta_{r+1}$ and $\left\|g_{r+1}(t)-\frac{1}{2}(\mu+v)\right\| \leqq \varepsilon_{r+1}$. This completes the inductive step of the construction.

For each $r=0,1, \ldots$ we select $z_{r}(t) \in C$ with the property $\pi_{r} z_{r}(t)=g_{r}(t)$, $t \in I^{k}$. We shall prove that for any $t \in I^{k},\left\{z_{r}(t)\right\}_{r=1}^{\infty}$ is a Cauchy sequence. Indeed, for $r \geqq s$ we have

$$
\left\|\pi_{s} z_{s}(t)-\pi_{s} z_{r}(t)\right\|=\left\|g_{s}(t)-\sigma_{s+1} \circ \cdots \circ \sigma_{r} g_{r}(t)\right\|<\varepsilon_{s} / 3, \quad s=0,1, \ldots
$$

As $\varepsilon_{s}<\delta_{s}$, the choice of δ_{s} implies $\left\|z_{s}(t)-z_{r}(t)\right\|<\eta_{s}=1 / 2^{s}$ for $t \in I^{k}$.
The compactness of C and the fact that $\left\{z_{r}(t)\right\}_{r=0}^{\infty}$ is Cauchy allow us to define for each $t \in I^{k}$ the point $h(t)=\lim _{r \rightarrow \infty} z_{r}(t)$ belonging to C. We shall
prove that $D=\left\{h(t): t \in I^{k}\right\}$ is a k-area of C. For this purpose we prove the following:
(i) $h\left(I^{k}\right)$ is a subset of the k-skeleton of C.

Suppose, on the contrary, that there exists $t_{0} \in I^{k}$ such that $h\left(t_{0}\right) \notin$ skel $_{k} C$. Then there exists a $(k+1)$-dimensional ball B with centre the point $h\left(t_{0}\right)$ and radius $\gamma>0$ such that $B \subseteq C$. Let $s \in \mathbf{N}$ such that $1 / 2^{s}<\gamma$ and let $\pi_{s}: \mathscr{H} \rightarrow E_{s}$ be the corresponding projection and $B_{0}=\pi_{s}(B)$. We have that

$$
\operatorname{diam}\left(B \cap \pi_{s}^{-1}\left(\pi_{s}\left(h\left(t_{0}\right)\right)\right)<\eta_{s}\right.
$$

and as $\eta_{s}<\gamma$ we get $B \cap \pi_{s}^{-1}\left(\pi_{s}\left(h\left(t_{0}\right)\right)\right)=\left\{h\left(t_{0}\right)\right\}$. If $\operatorname{dim} B_{0}=n$, the point $\pi_{s}\left(h\left(t_{0}\right)\right)$ has co-dimension n relative to B_{0} therefore the set $B \cap \pi_{s}^{-1}\left(\pi_{s}\left(h\left(t_{0}\right)\right)\right)$ has also co-dimension n relative to B. This implies

$$
0=\operatorname{dim}\left(B \cap \pi_{s}^{-1}\left(\pi_{s}\left(h\left(t_{0}\right)\right)\right)=(k+1)-n,\right.
$$

i.e., $\operatorname{dim} B_{0}=n=k+1$. Hence there exist points $\mu, v \in B_{0}, \mu=v$, such that $\omega_{s}(\mu)=$ $\omega_{s}(\nu)$ and $\pi_{s}\left(h\left(t_{0}\right)\right)=(\mu+\nu) / 2$. For the corresponding k-area $\left\{g_{s}(t): t \in I^{k}\right\}$ on $\pi_{s}(C),\left\|g_{s}\left(t_{0}\right)-\pi_{s}\left(h\left(t_{0}\right)\right)\right\| \leqq \varepsilon_{s} / 3$ holds, so $\left\|g_{s}\left(t_{0}\right)-\frac{1}{2}(\mu+v)\right\| \leqq \varepsilon_{s} / 3$ and the choice of ε_{s} implies $\|\mu-v\|<\delta_{s}$. Then

$$
2 \gamma=\operatorname{diam}\left(\pi_{s}^{-1}[\mu, v] \cap B\right)<\eta_{s}=1 / 2^{s}<\gamma .
$$

This contradiction proves the assertion.
(ii) h is continuous on I^{k}.

Let $\varepsilon>0, t_{0} \in I^{k}$ and $s \in \mathbf{N}$ with $1 / 2^{s}<\varepsilon$. As g_{s} is continuous for the corresponding $\varepsilon_{s}>0$ we can find a $\delta>0$ such that $\left\|g_{s}(t)-g_{s}\left(t_{0}\right)\right\|<\varepsilon_{s} / 3$ for $\left\|t-t_{0}\right\|<\delta, t \in I^{k}$. On the other hand, for $r>s$ we have $\| g_{s}(t)-$ $\pi_{s} z_{r}(t) \|<\varepsilon_{s} / 3$ so, for any $t \in I^{k},\left\|g_{s}(t)-\pi_{s} h(t)\right\| \leqq \varepsilon_{s} / 3$. Therefore, for $\left\|t-t_{0}\right\|<\delta$ we have $\left\|\pi_{s} h(t)-\pi_{s} h\left(t_{0}\right)\right\|<\varepsilon_{s}$ and by the choice of ε_{s} we find $\left\|h(t)-h\left(t_{0}\right)\right\|<n_{s}=1 / 2^{s}<\varepsilon$. This proves the continuity of h.
(iii) h is a one to one map.

As π_{r} is orthogonal we have

$$
\begin{aligned}
\left\|z_{r}(t)-z_{r}\left(t^{\prime}\right)\right\| & \geqq\left\|\pi_{r} z_{r}(t)-\pi_{r} z_{r}\left(t^{\prime}\right)\right\|=\left\|g_{r}(t)-g_{r}\left(t^{\prime}\right)\right\| \\
& \geqq\left(1-\frac{1}{4^{r}}\right)\left\|g_{r-1}(t)-g_{r-1}\left(t^{\prime}\right)\right\| \\
& \geqq\left(1-\frac{1}{4^{r}}\right)\left(1-\frac{1}{4^{r-1}}\right) \cdots\left(1-\frac{1}{4}\right)\left\|g_{0}(t)-g_{0}\left(t^{\prime}\right)\right\| \\
& \geqq\left(1-\sum_{n=1}^{r} \frac{1}{4^{n}}\right)\left\|g_{0}(t)-g_{0}\left(t^{\prime}\right)\right\|
\end{aligned}
$$

Taking limits for $r \rightarrow \infty$ we find $\left\|h(t)-h\left(t^{\prime}\right)\right\| \geqq \frac{2}{3}\left\|g_{0}(t)-g_{0}\left(t^{\prime}\right)\right\|$. As g_{0} is one to one so is h.

Finally we have $\left\|\pi_{0} z_{r}(t)-g_{0}(t)\right\|<\varepsilon / 3$ and taking the limit for $r \rightarrow \infty$ we have $\left\|\pi_{0} h(t)-g_{0}(t)\right\| \leqq \varepsilon / 3$ for any $t \in I^{k}$. Hence for every $\varepsilon>0$ we have found a k-area $A=h\left(I^{k}\right)$ on C with $\|\pi \circ h(t)-g(t)\|<\varepsilon, t \in I^{k}$ which proves the result.

4. Conjecture

Let E^{k} be a k-dimensional subspace of E^{d} and let π be the orthogonal projection on E^{k}. Next, let Σ_{d} be the set of convex bodies K in E^{d} with the property that the set of directions of line-segments on the boundary of K perpendicular to E^{k} forms a set of $(d-k-1)$-dimensional Hausdorff measure zero. For any $K \in \Sigma_{d}$ let $\gamma(K, d, k)$ be the following number: There exist $D_{i}=\left\{g_{i}(t): t \in \pi(K)\right\}, i=1,2, \ldots, \gamma(K, d, k), E^{k}$-areas on K such that

$$
\mathrm{g}_{\mathrm{i}}(\text { relint } \pi(K)) \cap g_{j}(\text { relint } \pi(K))=\varnothing, \quad i \neq j
$$

Set $\gamma(d, k)=\min \left\{\gamma(K, d, k): K \in \Sigma_{d}\right\}$. Now we observe the following:
If $k=1$ we have $\gamma(d, 1)=d$ (see [4]).
If $k=d$ we have $\gamma(d, d)=1$ (obvious).
If $k=d-1$ we have $\gamma(d, d-1)=2$ (Corollary 2.1).
If $1<k<d-1$, we conjecture that $\gamma(d, k)=d-k+1$.

References

1. Leoni Dalla, Increasing paths on the one-skeleton of a convex compact set in a normed space, Pacific J. Math. 124 (1986), 289-294.
2. Leoni Dalla, Increasing paths leading to a face of a convex compact set in a Hilbert space, Acta Math. Hung. 52 (1988), 195-198.
3. G. Ewald, D. G. Larman and C. A. Rogers, The directions of line-segments and of the r dimensional balls on the boundary of a convex body in Euclidean space, Mathematika 17 (1970), 1-20.
4. S. Gallivan, On the number of strict increasing paths in the one-skeleton of a convex body, submitted.
5. S. Gallivan, On the number of disjoint increasing paths in the one-skeleton of a convex body leading to a given exposed face, Isr. J. Math. 32 (1979), 282-288.
6. W. V. D. Hodge and D. Pedoe, Algebraic Geometry, I, Chapter 7, Cambridge University Press. 1947.
7. D. G. Larman, On the one-skeleton of a compact convex set in a Banach space, Proc. London Math. Soc. (3) 34 (1977), 117-144.
8. D. G. Larman and C. A. Rogers, Increasing paths on the one-skeleton of a convex body and the directions of line segments on the boundary of a convex body, Proc. London Math. Soc. (3) 23 (1971), 683-698.
9. V. A. Zalgaller, On the k-dimensional directions singular for a convex body in R^{n}, Zap. Nauchn. Semin. Leningrad Otdel. Matem. Inst., Akad. Nauk SSSR 27 (1972), 67-72; English translation: J. Sov. Math. 3 (1975), 437-441.
