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ABSTRACT 

In this paper, generalizing the notion of a path we define a k-area to be the set 
D = {g(t) : t ~J} on the k-skeleton of a convex compact set K in a Hilbert 
space, where g is a continuous injection map from the k-dimensional convex 
compact set Jto the k-skeleton of K. We also define an E~-area on K, where E k 
is a k-dimensional subspace, to be a k-area with the property n(g(t)) = t, 
t ~n(K), where n is the orthogonal projection on E k. This definition genera- 
lizes the notion of an increasing path on the 1-skeleton of K. The existence of 
such sets is studied when K is a subset of a Euclidean space or of a Hilbert 
space. Finally some conjectures are quoted for the number of such sets in 
some special cases. 

1. Introduction 

Let K be a convex  c o m p a c t  set in  a H i lbe r t  space ~¢f a n d  let E k be  a 

k - d i m e n s i o n a l  subspace  o f  ~?~. T h e n  the  o r thogona l  c o m p l e m e n t  of  E k is a 

subspace  

(Ek )  ± = ( l l (X)  = 12(x) . . . . .  lk(X) = 0}, 

where  Ii, 12 . . . . .  lk are l inear ly  i n d e p e n d e n t  c o n t i n u o u s  l i nea r  func t iona l s .  Let 

rt be  the o r thogona l  p ro j ec t i on  on  E k para l le l  to ( E k )  I.  We quo t e  n o w  the 

fo l lowing def in i t ions .  

DEFINITION 1.1. A subse t  D o f  K is def ined  to be a k - a r e a  on  K ,  k = 

1, 2 , . . .  iff there  exists a k - d i m e n s i o n a l  c o m p a c t  convex  subse t  J o f  ~ a n d  a 

c o n t i n u o u s  i n j ec t i on  m a p  g : J ~ skelkK wi th  D = g ( J ) .  
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DEFINITION 1.2. A subset D of  K is defined to be an Ek-area o f K  i f fD is a 

k-area o f K a n d  r t (g ( t ) )=  t, t Ere(K).  

Note  that for k = 1 a k-area on Kis  a path on the skellK and an Ek-area is an 

/l-strictly increasing path on the skel~K. 

The existence and the number  of  l l - i n c r e a s i n g  paths on skellK in a Euclidean 

space E d was studied in [8], [4] and [5], while the same problem in a normed 

space E of  infinite dimension was studied in [7], [1] and [2]. 

I f  K is a convex body  in E d then it is an Ed-area. 

In this paper we study the existence of  a k-area and of  Ek-area in Euclidean 

and Hilbert  spaces as well as several related problems. 

2. Existence of a k-area of K in E d 

In this section we study the existence of  a k-area of  a convex body  K in the 

Euclidean space E d and the "measure"  of  the k-dimensional  subspaces of  E d 

for which there exist Ek-areas of  K. 

THEOREM 2. I. Let  K be a convex body in E d and  let E ~ be a k-d imensional  

subspace o f  E d, 2 < k <-_ d - 1. Then for  every e > 0 there exists a projection 

og : E d ~ E  k and a k-area D = g(o)(K))  on K such that co(g( t ) )=  t, t Eoo(K)  

and  for  every t, t 'Eco (K) ,  II g( t )  - g( t ' )  II >= (1 - e)II t -- t ' I I .  

PROOF. We consider first the case k = d - 1. From Theorem 1 in [3] we 

have that for every e > 0 there exists a unit vector  pa E E  d, Pd ~ Ek = E d -  l such 

that cos ~ (Pd, ed) >---- 1 -- e and there are no line segments on the boundary  of  K 

in the direction Pd. 
Let projp, be the projection map  o n  E d- 1 in the direction Pal. NOW for 

t E projp,(K) we define At : = proj~l  (t) A K. Then 

A t = { ( t , , ~ ) ~ E d :  t ~ E d - l ,  at <--_2 ~-~flt) 

with at < fit if  t E relint(projp,(K)) and at = f ,  if  t E relbd(projo,(K)). We define 

gt(t) : = (t, at), g2(t) : = (t, fit), t E projp,(K). 
Because of  the convexity of  K, gl and g2 are cont inuous on relint(projp,(K)). 

From the choice of  Pd one can easily see that g~ and g2 are cont inuous on 

relbd(projp,(K)). Therefore g~ and g2 are cont inuous on projp,(K). Also, if 

DI : = g~(projp,(K)) and D2 ." --- g2(projp,(K)), then DI, D2 C_C_ skelkK with 

gl(relint(projp,(K))) (1 g2(relint(projp,(K)) = ~ .  

Now taking co : = proju , and g = gl (or g2) the result follows. 
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Consider now the case 2 < k < d -  1. Let (Ek)  x =-E a-k" =- 

[ ek+ l ,  e k + 2 , -  • • , ed] where e~, k + l _-< i _-< d is a set of  or thonormal  vectors, 

M d - i "  = E k ~) [ek+l, ek+2 . . . . .  e d _ i ]  , i = 0, 1, 2 . . . .  , d - k - 1 and M k ---- E k. 

As before we may choose unit vectors Pd, Pd -1 , . . . ,Pk+2  in M a = - E  d, 

M d-I  . . . . .  M k+l respectively with p, ~ M  r- ' ,  i = k + 2, k + 3 . . . . .  d, 

arbitrarily close to ea, ed-i . . . . .  ek+2 and there is no line segment on 

bd(K) in the direction Pd and also there is no line segment on 

relbd(projp,+, o projp,+ 2 o . . . .  projp,(K)) in the direction Pi, i = k + 2, k + 

3 . . . . .  d - I. Let 

cot " =  projp~ +2 ° projpk+, ° "" " ° projp~ where projp, : M i ~ M i-  l, 

i = k + 2 , . . . ,  d is the projection map in the direction Pi and/z > 0 such that 

][ oh(x ) ]1 _-</z 1] x 1], x ~ E  d. Then col(K) is a convex body in M k+i and so we 

may find p k + l E M  k+t and a k-area B=(h( t ) ' tEprojp~+,(col (K))}  with 

projp~+,(h(t)) = t, t Eprojp~+,(col(K)), by case k = d - 1. Let co = projp~+, o col 

and g(t)  = coF ~(h(t)), t E co(K). By the selection of  p,, i = k + 2, k + 3 . . . . .  d 

the map g is well defined, one to one, g(t)  ~ skelk(K) and co(g(t)) = t, t E co(K). 

In order to prove that D = g(co(K)) is a k-area of  K i t  remains to prove that g 

t is continuous on co(K). Let t E w ( K )  and let { n } ~ l  be a sequence in co(K) 

with lim~_~ tn = t. As K is compact  we suppose lim~_~ g(t~) = x o ~ K .  Then 

from the definition of  co~ and g we have 

11 co~(g(t)) - co~(Xo)11 =_< 11 col(g(t)) - col(g(t~)11 + l[ cot(g(t~)) - oh(Xo)11 

< II hi(t) - h(t~) II + II g(t~) - Xo II. 

The continuity o f  h on co(K) implies that co,(g(t))= col(x0) and from the 

definition of  g, g(t)  = x0 = lim~_~ g(t~). Therefore g is continuous on co(K). 

Also as Pd, P d - l , . . . ,  Pk+l can be chosen as close as we please to ed, 

e d - I , . . . ,  ek+i respectively, we can construct g so that 11 g ( t ) - g ( t ' ) 1 1  >-_ 

(1 - e) [I t - t '  l[ with t, t '~co(K) .  This concludes the proof  of  the theorem. 

From the above theorem we have the following corollaries, where the proof  

of  the first one is obvious. 

COROLLARY 2.1. Let  K be a convex body in E d a n d  E d-1 a 

(d - 1)-dimensional subspace o f  E d. I f  there are no line segments on bd(K) 

perpendicular to E d-~ then there exist two Ed-i-areas on K, Dr = 

{g,(t) : t E n(K)}, i = 1, 2, such that  g~(relint n(K)) ~ g2(relint n(K)) = ~ .  

COROLLARY 2.2. Let  K be a convex body in E d and E k is a k-dimensional 
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subspace 2 < k < d - 1. I f  the directions o f  line segments on bd(K) perpendicu- 

lar to Ek form a subset o f  (d - k - 1)-dimensional Hausdorff  measure zero on 

the boundary o f  the unit ball of(Ek) ± = E d-k, then there exists an Ek-area on K.  

PROOF. We may select the vectors Pd, Pal- 1 . . . . .  Pk + ~ of  Theorem 2.1 to be 
or thonormal  and lying in E d- k. This selection entails oJ to be the orthogonal 

projection on E k. 

COROLLARY 2.3. Let  K be a convex body in E d and E k is a k-dimensional 

subspace, 2 <-_ k <= d - 1. Let  zt be the orthogonal projection on E k and 7t(K) = 

f ( I  k) where I = [0, 1] and f is a continuous one to one map. Then there exists a 

sequence Dr = { h r ( t ) : t E I k } ,  r = 1, 2 . . . .  o f  k-areas on K with {zr o hr}Y-1 

converging uniformly to f on I k. 

PROOF. Let (Ek) ± ---- E d - k  = [ e k + l ,  e k + 2  . . . . .  ed] .  We m a y  select vectors  

p~r), p~r) ~ . . . . .  p~r)+ I with l imr-~ p!r) = ei, i = k + l, k + 2 . . . . .  d and using 

oJr=proj~,+,, . . . .  oprojp),,, r =  1 , 2 , . . .  we construct, as in the proof  of  

Theorem 2.1, k-areas, Dr = {gr(t): tEO~r(K)} on K with OJr(gr(t))=t, t E  

OJr(K), for r = l, 2 , . . . .  The sequence of  projections {tn~}r~=~ converges 

uniformly to ~z on the compact  body  K. Therefore, we may take o~r(K) = {f ( t ) ,  

t E 1  k } where f is a continuous injection map on I k for r -- 1, 2 . . . .  and such 

that { f }r~_~ converges uniformly to f o n  I k. Then, taking hr = gr ° f we have 
that Dr = {h~(t), t E Ik  } and oJ~(hr(t)) = f ( t ) ,  t E1  k for r = l, 2 . . . . .  

AS I k is compact,  in order to prove the uniform convergence of  { zt o h, }y= ~ to 

f o n  I k, it suffices to prove limr_~ ~z(hr(tr)) = f(to) for any sequence {t~}Y-i of  
points o f  I k whose limit is toEI  k. As K is compact  we may suppose that 

limr_o~ h~(tr) = Xo E K. Then the uniform convergence of  the sequences { f }r°°_ ~ 

and {o~}r~_I implies that 

f(to) = lim f ( t r )  = lim a~r(hr(tr)) = it(x0) = lim zt(h~(G)). 
r ~  r ~  r ~  

Therefore the p roof  is complete. 

We may remark that from the p roof  of  Theorem 2.1 for any convex body K 

in E d, there exists always a k-area D that is not necessarily an Ek-area for a 

fixed subspace E k, 2 _-< k _-< d - 1. For a further support  o f  this assertion we 

give a simple example of  a convex body in E 3 that has not an E2-area for a fixed 

subspace  E 2. Define the following set: 

K = c o n v ( { ( x , y , O ) : ( x -  1)2 + y 2 _ -  < l} U ((0, 0, l), (0, 0, -- 1))) 
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and let E 2 be the plane z = 0. Then it is easy to see that there does not exist an 

ELarea on K. 

From the above remark the following question arises: For a convex body in 
E d "how many" k-dimensional subspaces E k, 2 < k < d - 1 are there, such 

that no Ek-area exists on K? Of course the expression "how many" must be 

defined properly. To this end, for each E k in E d there is associated a point pair 

+ G(E k) in Eft ) (see [8]). The Grassmanian I g will be taken to be the collection 

of all these pairs corresponding to the different k-dimensional subspaces E k of 

E d. The set I d is an algebraic manifold in Eta ) of real dimension k(d  - k), of 

positive k ( d -  k)-dimensional Hausdorff measure in E(g ) and certainly of 

non-a-finite (k(d - k ) -  1)-dimensional Hausdorff measure. With the above 

notation we have the following theorem. 

THEOREM 2.2. Let K be a convex body in E d and let 

A = { + G(E k) such that there is no Ek-area on K}. 

Then A forms a set in I~ o f  a-finite ( k ( d -  k ) -  1)-dimensional Hausdorff  

measure. 

PROOF. Let E k be a subspace with its orthogonal complement E d-k of 

non-singular direction, i.e., there are no line segments on the bd(K) parallel to 
E d-k. Then from Corollaries 2.1 and 2.2 there exists an Ek-area on K. Hence 
for any E k with E d-k non-singular, _+ G(Ek)q~A so A C_ { _+ G(E k) : E d-k 

singular}. The set (+__ G ( E d - k ) : E  d-k singular) in Etl-~ ) = E~g ) is a set of  

a-finite (k(d - k) - 1)-dimensional Hausdorff measure (see [9] Theorem A). 
As the map  G(E k) --* G(E d-k) is an isometry (see [8]) the set { __ G(E k) : E d-k 

singular} is of a-finite (k(d - k) - 1)-dimensional Hausdorff measure. There- 

fore, by the above inclusion, A has the same property. This ends the proof. 

3. Existence of k-areas in Hilbert space 

In this section we investigate the existence of k-areas on a convex compact 
set of  infinite dimension in a Hilbert space. 

The main result is included in the following theorem. 

THEOREM 3.1. Let C be a convex compact set in a Hilbert space o,ug and let 

E k, k >= 2 bea k-dimensionalsubspaceof~.  Supposethat n(C)  = g(I  k) whereg 

is a continuous injection map and dim n( C) = k. Then there exists a sequence 

Dr -- {hr(t) : t Elk} ,  r = 1, 2 , . . .  o f  k-areas on C where {~ o hr}~=j converges 

uniformly to g on I k. 
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Before proceeding in the p roof  of  Theorem 3.1 we quote  and prove some 

auxiliary lemmas. 

LEMMA 3.1. Let C be a convex compact set in a Hilbert space ~ and let rr 
be the orthogonal projection on the k-dimensional subspace E k. Then given 

r / >  0, there exists a d-dimensional subspace E d con ta in ing  E k and a projection 

al such that the orthogonal projection ~ on E d satisfies the conditions 
(i) ~r = rrl o al, (ii) d iam C N rt~-I(n~(x)) < rlfor each x in C and (iii) there exists 

= ~(~) > 0 such that diam(C A 7r/I(D)) < r/where D is a subset o f  Tq(C) with 
d i a m D  < t~. 

PROOF. See Lemma 1 in [7] 

LEMMA 3.2. Let E d- 1 be a hyperplane o r E  d and let {K. }~-0 be a sequence 

o f  convex bodies o fF  d that converges in the Hausdorff metric to Ko. Suppose that 
{P. }~-0 is a sequence o f  unit vectors o f f  d, not lying in E d-  1, with l im._~ p. = 

Po and D c")= { f . ( t ) :  t ~ I  k} is a k-area o f  the convex body, projp.(K.) n = 

0, 1 . . . .  with { f~ }~=0 converging uniformly to fo on I k. I f  we  can construct (as in 
Theorem 2.1) a k-area on K., {h.(t): t ~ I  k} with projph.( t)=f~(t) ,  t ~ I  k, 

n = 0, 1 . . . .  then the sequence (h. }~=o converges uniformly to ho on I k. 

t o~ PROOF. Let { .} .=l  be a sequence in Ikwith  l im._~ t. = t o n i  k and let S b e  

a closed ball o f  E d with K. _ S, n -- 0, 1 . . . . .  

As lim._oo K. = K0 we may suppose that l im._~  h.(t.) = Xo with xoEKo. We 
also have 

II projpoxo - projpoho(to)II 

II projph,(t,) - prOjpoho(to) II ÷ II projp ho(t,) - projpoXo II 

= II f . ( t . )  - fo(to) II + II p r o j p h . ( t . )  - prOjpoXo tl. 

As lim,~® p,  = P0 the sequence {projp. }~=o converges uniformly to projp o on 

S. Using this and the assumption that {f~}~°= 0 converges uniformly in the 

above relations we find that projpox o = prOjpoho(to). Therefore the construction 

o f  ho enta i l s  ho(to) = Xo = l im._o~ h.(t.). 

LEMMA 3.3. Let K be a convex body in E d, E d- 1 be a hyperplane and let z be 
the orthogonal projection on E d- 1. Suppose that B = g(I k) is a k-area on z(K) 
(constructed as in Theorem 2.1). Then there exists a sequence D, = 
{h(r)(t): t~Ik},  r =  1,2 . . . .  of  k-areas on K with {zohr}~=l converging 

uniformly to g on I k. Also, for any e > 0 there exists an integer ro such that 
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II hr(t) - hr(t ')  I[ >-- (1 - e) I[ g( t )  - g ( t ' )  ]1 

fo r  any  r > ro and  every t, t' E I k. 

PROOF. For  k = d -  1 the result is contained in Corollary 2.3. Assume 

now k _-< d - 2. Let E k - [el, ez, •. •, ek], prOje~ = r and let 

Pk + 1, Pk +2 . . . . .  Pd-~ be the vectors used in the construct ion o f  the k-area B on 

z(K). We may choose a unit  vector  pk as close as we please to ed in such a way 

that there are no line segments on bd K in the direct ion p~ where p~ 

[el, e2 . . . . .  ek, Pk+l, P ~ + 2 , . . . ,  Pa-1]. 
In a similar way we may choose unit  vectors pk_ 1, Pk-  2 . . . . .  p f, + ~ as close as 

we please to Pal- ~, Pal- 2 . . . . .  Pk + 1 respectively and in such a way that 

[el, e 2 , . . . ,  e~, p~+~, N + 2 , . . . ,  P~-~] = E  d-~, 

p iE[e t ,  e 2 , . . . ,  ek, Pk+l, P k + z , . . . ,  Pi], 

Piqi[el,  e 2 , . . . , e k ,  Pk+l, Pk+: . . . . .  Pi-l] ,  i = k  + l , k  + 2 , . . . , d - 1  

with Pk = ek and such that  there are no line segments on the boundary  o f  

projp,+ oprojp;+2o . . . .  projp~(K) in the direct ion p/. Then  using p/,+l, 

P~,+2 . . . . .  p )  we construct  a k-area D = {h ( Ik ) )  on K. 

For  each r E N  we may choose a system of  unit  vectors 

{P~')+ l, Pg)+~ . . . . .  pa (~) } satisfying the addit ional  condi t ions l i m r ~  p~'~ = e d 

and l im,_~ p}') = pg for i = k + 1, k + 2 . . . .  , d - 1. Then  the sequence of  

projections wt') = proj~q, o • • • o projpp, r = 1, 2 , . . .  converges uniformly to 

projp~+, o • • • o projp,_, o proje, = oJ o z on K and so we take the k-dimensional  

sets on E k OJ~ ' ) (K)=f ( Ik ) ,  ( o j o z ) ( K ) = f ( I  k) with ( f )~=~ converging 

uniformly to f o n  P .  Because of  the condi t ion for the sequences {p(ar)}~=~ 

and (p}')};L~, the sequence o f  sets (projpt,, . . . . .  projp~,,(K)}~=, converges in 

the Hausdorf f  metr ic  to the sets projp, o . . . .  projp,(K), i = k +  1, 

k + 2 . . . . .  d -  1. Now from L e m m a  3.3 we deduce that the sequence o f  

functions {g~}~= 1, related respectively to the k-areas A ¢~) = gr(I k) on projpp(K), 

r -- 1, 2 , . . . ,  converges uni formly  to g on I ~. Let D ~ = h , ( I  k) be k-areas on K. 

For  these k-areas we have that projp, h~( t )=  gr(t),  t E 1  k. Then  this proper ty  

and the above-ment ioned  convergence imply that {r oh ~ , jr = 1 converges 

uni formly to g on I ~. Also as r is the onhogona l  project ion and 

lim~_~ r o hr(t) = g( t ) ,  t E 1  k, then there exists an r0 such that 

]} h~(t) - hr(t ')  II ->-- I] z(h~(t)) - r(hr(tr))]1 

> (1 - e) II g ( t )  - g ( t ' )  }] 
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for r >= r0 and any t, t ' ~ I  k. 

LEMMA 3.4. Le t  K be a convex  body  in E d a n d  let D = {h ( t )  : t G I  g } be a 

k-area on K constructed us ing  the project ion co on E k. Then  f o r  any  6 > 0 there 

exis ts  an e = e(6) > 0 such that  whenever  1[ h( t )  - ½~ + v) U < e f o r  s o m e  

t E I k  a n d g ,  v E K  with c o ~ )  -- co(v) then II g - v II < 6. 

PROOF. Suppose on the contrary that for each n E N there exists t, E I k and 

gn, v~ E K w i t h  the proper ty  that  II h ( t ~ ) -  ½(u, +v~)]1 < l / n ,  co(/t~) -- co(vn) 

and 1[ g~ - v, II >= 6. Let 

co = projp,., o . .  • o projv , = projp,+, o col and co(K) = f ( I  k) 

where f i s  a cont inuous one to one map on I k and 09 o h = f .  As I k and K are 

compact  we may suppose that 

l i m t ~ = t o ~ I  k, l i m p ~ = g  and l i m v n = v  with g,  v E K .  
n ~ o L  n ~ o ~  n ~  

These imply II g - v II = 6, co( ) = co(v) and h(to) = ½(g + v). As c o ~ )  = 

co(v) we have col(g) = g l e l  + " ' "  +gkek '~-gk+lPk+l and c o l ( v ) = g e l  + . . .  + 

gkek + Vk + t Pk + t. Therefore  

col(h(to)) = g l e l  + " " " + gkek + ½~k+l + Vk+OPk+l. 

By the construct ion o f  the k-area the point  co~ (h (to)) has the m i n i m u m  value o f  

the pk÷l-coordinate on the line segment p ro j~ , (co(h( t0 ) )n  col(K)). Hence 

gk+l = Vk+l and this entails col~) = col(v) = col(h(to)). As col is one to one f rom 

col(D) to K we have g = v and this contradicts  II g - v II >--- 6. 

Now we give the p roo f  of  Theorem 3.1. 

PROOV OF THEOREM 3.1. Let e > 0 ,  E 0 = E  k, n = r t o  and g = g o .  By 

Le mm a  3.2 for rfi = ½ we choose 61 > 0 and nl an orthogonal  project ion on 

with finite dimensional  range El and a cont inuous project ion crl with cr 1 ort I = 

n0 and d iam(C N ~ l - t ( D ) ) <  r h whenever  D is a subset o f  Ki = hi(C) with 

d iam(D) < 61. Next,  we choose a coordinate  system (xl, x 2 , . . . ,  xn,~) for El 

which extends the coordinate  system (Xl, x2 . . . .  , Xk) in E0 = E k so that 

a~(xl, x2, . . . , x,~l~) = (xl,  x2, . . . , Xk, 0 . . . .  , 0 ) .  

Because o f  Lemma 3.3 we may find, with the aid o f  a project ion col, a k-area 

Al = g~(I k) on Kl such that [[ az(gl(t)) - go(t) 1[ < e/6 and 

II gl( t )  - gl( t ' )  [[ >_- (1 - ¼) II go(t) - go(t) [[ for any t, t ' ~ I  k. 
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Now applying Lemma 3.4 for the convex body Kl = hi(C), the projection 0)1 

and the number  61, we may find a positive number  el < min{e, 6~} with the 

property that there do not exist points /t, v in K~ and t ~ I  ~ such that 

0)~Cu) = 0)~(v), II ~ - v II >-- 6, and II gt(t) - ½(P + v) [I < el. 
So far we have been through the initial step of  an inductive process of  

choosing the following: a sequence of  positive numbers rh = ½, r/2 = 1/22 . . . . .  a 

sequence of  finite dimensional  linear spaces E0, El . . . .  , three sequences of  

projection maps zr0, z q , . . . ,  a,, a 2 , . . ,  and 0)l, 0)2 . . . .  , a sequence of  k-area 

A0 ,Al , . . .  with A~ = g,(Ik), i = O, 1 . . . .  and finally two sequences of  real 

numbers 61, 62 . . . .  and e > el > e2. • •. 

First, let r/r+~ = 1/2 '+ 1. By Lemma 3.1 there exists an orthogonal projection 

nr ÷~ defined on ~ with a finite dimensional  range Er +1 containing E~ and a 

second projection a~+l with at+, o zrr+l = nr and there will be a 6r+~ > 0 such 

that d iam(C t3 ~rF+I~(D))< r/,÷~ whenever D ___ zrr+~(C) with d iamD > 6r+~. 

Then by Lemma 3.3 for the projection ar +l and the k-area Ar = gr(I k) on Irr(C) 

we may find using a projection 0)r÷l a k-area At÷, = g~+l(I k) on zrr+~(C) with 

the properties 

~y 
II Gr+, ogr+,(t)-g~(t)II < t ~Ik 

6(r + 1) 2' 

and 

Ilg~+,(t)-gr+l(t')[[ > 1 4 ~+' [[gr ( t ) -gAt ' ) l  I fora l l t ,  t ' E I  k. 

Applying Lemma 3.4 to the projection cor÷l and the number  6r+l we may find a 

positive number  er+j < min{e,, fir+ 1} and with the property that there are no 

It, vEnr+~(C) and t ~ I  k such that 0)r+~(p)=0)r+l(V), ][/~--V ]] >----6r+l and 

[[ gr+l ( t ) -  ½(P + v)[[ _-< er+l. This completes the inductive step of  the con- 
struction. 

For each r = 0, 1 . . . .  we select z , ( t ) ~ C  with the property nrzr(t)= g,(t), 
t e l  k. We shall prove that for any t e l  k, (zr(t)}:=l is a Cauchy sequence. 

Indeed, for r >_- s we have 

1lTt~z,(t)-zr,zr(t)ll = I I g , ( t ) - a , + ,  . . . .  o~rrgAt) ll < e , / 3 ,  s = 0 , 1  . . . . .  

As es <6s ,  the choice of  6s implies 11 zs(t) - Zr(t) II < ~ = 1/2~ for t E I  k. 
The compactness of  C and the fact that {zr(t)}~_0 is Cauchy allow us to 

define for each t E1  k the point h(t) = limr_o~ zr(t) belonging to C. We shall 
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prove that D = (h(t)  : t E 1  k } is a k-area of  C. For this purpose we prove the 

following: 

(i) h( I  k) is a subset o f  the k-skeleton o f  C. 

Suppose, on the contrary, that there exists to E I  k such that h(to)q~ skelkC. 

Then there exists a (k + 1)-dimensional ball B with centre the point h(to) and 

radius ~, > 0 such that B _c C. Let s E N  such that 1/2 ~ < 7 and let rt~ : ~ - , E s  

be the corresponding projection and B0 = rt~(B). We have that 

diam(B n rtT~(zt~(h(t0))) < r/~ 

and as t/s < 7  we get B n zt~-~(rt,(h(t0))) = (h(to)}. I f  dimBo = n, the point 

n~(h(to)) has co-dimension n relative to B0 therefore the set B N 7t7 ~(rt~(h(t0))) 

has also co-dimension n relative to B. This implies 

0 = dim(B n 7t~-' (lt~(h(to))) = (k + 1) - n, 

i.e., dim B0 = n = k + 1. Hence there exist points/~, v E Bo,/t = v, such that t o ~ )  = 

tos(v) and rt~(h(to)) = (~ + v)/2. For the corresponding k-area (g~(t) : t E 1  k } on 

7t~(c), II g~(to) - rt~(h(to)) II =< e J 3  holds ,  so II g~(to) - ½Cu + v) II --< e~/3 and 

the  choice  o f  e~ implies II ~ - v II < ~ .  T h e n  

27 --- diam(rt7 ~ ~ ,  v] n B) < qs = 1/2 ~ < 7- 

This contradiction proves the assertion. 

(ii) h is continuous on I k. 

Let e > 0 ,  t o E I  k and s E N  with 1 / 2 s < e .  As gs is continuous for the 

corresponding e, > 0 we can find a ~ > 0 such that I[ g~(t) - g~(to) 1[ < es/3 for 

lit-t011 < &  t E I k .  On the other hand, for r > s  we have Ilgs(t)- 
rt~zr(t) [I < e  J 3  so, for any t E I  k, 1[ g ~ ( t ) -  rc~h(t)[I _-<es/3. Therefore, for 

1[ t - to I[ < 5 we have [[ rt~h(t) - n~h(to) 1[ < es and by the choice ofe~ we find 

II h(t )  - h(to) II < n, = 1/2 s < e. This proves the continuity o f h .  

(iii) h is a one to one map .  

As nr is orthogonal we have 
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II Zr(t) - -  Zr(l') tl ~ II ~ ,zr( t )  - -  ~rZr(t') II = II gr(t) - g~(t') II 

>--(1-+) l lg,-t(t)-g,- ,( t ' ) l '  

> ( l - l ~ ) ( 1 - 4 - ~ _ l ) . . . ( l - ~ ) l l g o ( l ) - g o ( t ' ) l l  

n ~ l  

Taking limits for r ---- oc we find II h(t) - h(t') II > ~ II g o ( t )  - g o ( t ' )  II. As go is 

one to one so is h. 

Finally we have II ~ o Z r ( t )  - g o ( t )  II < e/3 and taking the limit for r --* oc we 

have ]1 goh(t) -go(t)II _-<e/3 for any t e l  k. Hence for every e > 0  we have 

found a k-area A - - h ( I  k) on C with II ~ ° h ( t ) -  g(t)II < e ,  t ~ I  k which 

proves the result. 

4. Conjecture 

Let  E k be a k-dimensional  subspace of  E d and let rr be the orthogonal 

projection on E ~. Next, let Zd be the set of  convex bodies K in E d with the 

property that the set of  directions of  line-segments on the boundary  of  K 

perpendicular to E k forms a set o f (d  - k - 1)-dimensional Hausdorffmeasure  

zero. For any KE~. d let 7(K, d, k) be the following number: There exist 

Di = {g~(t) : t Err(K)}, i = l, 2 , . . . ,  7(K, d, k), Ek-areas on K such that 

gi(relint n(K)) M gj(relint re(K)) = ~ ,  i ~ j .  

Set 7(d, k) = min{7(K, d, k ) :  K~Xd}. Now we observe the following: 

I l k  = 1 we have 7(d, l ) =  d(see  [4]). 

I f  k = d we have 7(d, d) = 1 (obvious). 

I l k  = d - l we have 7(d, d - l) = 2 (Corollary 2.1). 

I f  1 < k < d - 1, we conjecture that 7(d, k) = d - k + 1. 
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