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ABSTRACT

In this paper, generalizing the notion of a path we define a k-area to be the set
D = {g(t): t€J} on the k-skeleton of a convex compact set X in a Hilbert
space, where g is a continuous injection map from the k-dimensional convex
compact set J to the k-skeleton of K. We also define an E*-area on K, where E*
is a k-dimensional subspace, to be a k-area with the property n(g(¢)) =1,
t En(K), where = is the orthogonal projection on E*. This definition genera-
lizes the notion of an increasing path on the 1-skeleton of K. The existence of
such sets is studied when K is a subset of a Euclidean space or of a Hilbert
space. Finally some conjectures are quoted for the number of such sets in
some special cases.

1. Introduction

Let K be a convex compact set in a Hilbert space # and let E* be a
k-dimensional subspace of #. Then the orthogonal complement of E* is a
subspace

(E9)* = {h(x) = b(x) = - - - = [(x) = 0},

where /|, I, . . ., [, are linearly independent continuous linear functionals. Let
n be the orthogonal projection on E* parallel to (E¥)'. We quote now the
following definitions.

DEFINITION 1.1. A subset D of K is defined to be a k-area on K, k =
1, 2,... iff there exists a k-dimensional compact convex subset J of # and a
continuous injection map g : J — skel, K with D = g(J).
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DEFINITION 1.2. A subset D of K is defined to be an E*-area of Kif Dis a
k-area of K and n(g(t)) = t, t En(K).

Note that for k = 1 a k-area on K is a path on the skel, K and an E*-area is an
l,-strictly increasing path on the skel, K.

The existence and the number of /;-increasing paths on skel, K in a Euclidean
space E¢ was studied in [8], [4] and [5], while the same problem in a normed
space E of infinite dimension was studied in [7], [1] and [2].

If K is a convex body in E¢ then it is an E¢-area.

In this paper we study the existence of a k-area and of E*-area in Euclidean
and Hilbert spaces as well as several related problems.

2. Existence of a k-area of K in E¢

In this section we study the existence of a k-area of a convex body K in the
Euclidean space E¢ and the “measure” of the k-dimensional subspaces of E¢
for which there exist E*-areas of K.

THEOREM 2.1. Let K be a convex body in E¢ and let E* be a k-dimensional
subspace of E4, 2=k =d — 1. Then for every ¢ > 0 there exists a projection
w: E*—E* and a k-area D = g(w(K)) on K such that w(g(t)) =t, t Ew(K)
and for every t, ' €Ew(K), || gt)—g) || =z —-¢e)||t—t"].

PROOF. We consider first the case kK =d — 1. From Theorem 1 in [3] we
have that for every e > 0 there exists a unit vector p, €EE?, p, € E¥ = E*~' such
that cos & (p,, €;) = 1 — e and there are no line segments on the boundary of K
in the direction p,.

Let proj,, be the projection map on E“~! in the direction p,. Now for
t €proj,,(K) we define A, : = proj,,' (t) N K. Then

A={(t, \)EE:tEE" o, = A =B}

with a, < B, if t Erelint(proj ,,(K)) and «, = B, if ¢t Erelbd(proj,(K)). We define
&(t): =, ), &A1) : = (t, B)), t Eproj,(K).

Because of the convexity of K, g, and g, are continuous on relint(proj,, (K)).
From the choice of p, one can easily see that g, and g, are continuous on
relbd(proj,,(K)). Therefore g, and g, are continuous on proj, (K). Also, if
D, : = g((proj,(K)) and D, : = g5(proj,,(K)), then D,, D, C skel, K with

g (relint(proj,,(K))) N gxrelint(proj,(K)) = .

Now taking w : = proj,, and g = g, (or g;) the result follows.
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Consider now the «case 2=k<d-1. Let (EN‘t=E'*.=
[€+1> €cs2s--.,€q] Where €, k+ 1 =i =d is a set of orthonormal vectors,
Mi i =E*®lecrr, €hsnr.-r€_ili=0,1,2,...,d —k—1and M* = E*.
As before we may choose unit vectors p;, Pi_1,..., Dxsr in M9 =E9,
M4, MY respectively with p @MY i=k+2, k+3,...,d,
arbitrarily close to e,, ¢,_1,..., €, and there is no line segment on
bd(K) in the direction p, and also there is no line segment on
relbd(proj,,,, ° proj,,,,° - + » °proj,(K)) in the direction p;, i=k+2, k+
3,...,d—1.Let

@, : = Proj,, ,,° Proj,,,,° « - - ° proj,, where proj, : M — M~

i=k+2,...,dis the projection map in the direction p; and x > 0 such that
| o (x) || Su x| ,xEE Then w,(K) is a convex body in M**' and so we
may find p,,,EM**' and a k-area B = {h(?):tEproj, (w(K))} with
proj,,, (h(t)) =t, t Eproj,,, (w(K)), by case k =d — 1. Let w = proj,,, > w,
and g(t) = w;'(h(1)), t Ew(K). By the selectionof p,, i =k +2,k+3,...,d
the map g is well defined, one to one, g(¢) € skel,(K) and w(g(?)) = ¢, t Ew(K).

In order to prove that D = g(w(K)) is a k-area of K it remains to prove that g
is continuous on w(K). Let t Ew(K) and let {¢,},°., be a sequence in w(K)
with lim,_ _ t, = . As K is compact we suppose lim, ., g(f,) = x,€EK. Then
from the definition of w, and g we have

| 0i(g(t)) — wx) [| = || 0(g(1)) — wilg(t) | + || @i(8(2:)) — wi(xo) ||
= @) —h@) | +208@) =Xl -

The continuity of 2 on w(K) implies that w,(g(¢)) = w{x;) and from the
definition of g, g(t) = x, = lim, ., g(¢,). Therefore g is continuous on w(K).
Also as p;, Py—1,-.., Dy can be chosen as close as we please to ey,
€;_y, ..., 6 respectively, we can construct g so that | g(t)—g()| =
(1—¢)||t — ¢ || witht, ¢’ €Ew(K). This concludes the proof of the theorem.

From the above theorem we have the following corollaries, where the proof
of the first one is obvious.

COROLLARY 2.1. Let K be a convex body in E° and E°"' a
(d — 1)-dimensional subspace of E°. If there are no line segments on bd(K)
perpendicular to E‘~' then there exist two E? ‘-areas on K, D, =
{g:(t) : tEn(K)}, i = 1, 2, such that g (relint 7(K)) N gy(relint n(K)) = &.

COROLLARY 2.2. Let K be a convex body in E¢ and E* is a k-dimensional
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subspace 2 = k <d — 1. If the directions of line segments on bd(K) perpendicu-
lar to E* form a subset of (d — k — 1)-dimensional Hausdorff measure zero on
the boundary of the unit ball of (E¥)* = E®~* then there exists an E*-areaon K.

Proor. We may select the vectors p;, p;_1, - . . , Pry; Of Theorem 2.1 to be
orthonormal and lying in E?~*. This selection entails w to be the orthogonal
projection on E*,

COROLLARY 2.3. Let K be a convex body in E¢ and E* is a k-dimensional
subspace, 2 < k <d — 1. Let n be the orthogonal projection on E* and n(K) =
SfU¥) where I = [0, 1] and fis a continuous one to one map. Then there exists a
sequence D, = {h,(t):tEI*}, r=1,2,... of k-areas on K with {m<h}~,
converging uniformly to fon I*.

ProOF. Let (E¥)*=E?*=[e.,,, €+ -..,€;]. We may select vectors
Y, p8y, ..., pfh, with lim,_, p? =e¢,i=k+1,k+2,...,d and using
W, = Proj,m, ©+ -+ °projp, r=1,2,... we construct, as in the proof of
Theorem 2.1, k-areas, D, = {g,(¢): t€Ew(K)} on K with w,(g.(1))=t, tE
w,(K), for r=1,2,... . The sequence of projections {w,}2, converges
uniformly to 7 on the compact body K. Therefore, we may take w,(K) = {f,(¢),
t EI¥) where f, is a continuous injection map on I* for r = 1,2, ... and such
that { f,}=, converges uniformly to fon I*. Then, taking &, = g, « f, we have
that D, = {h,(¢), t €I*} and w,(h,(1)) = f,(¢), tET*forr=1,2,... .

As I*is compact, in order to prove the uniform convergence of {7 ° 4, }, to
fon I*, it suffices to prove lim, ., 7(k,(¢,)) = f{(t,) for any sequence {¢,}%, of
points of I* whose limit is {,E€I*. As K is compact we may suppose that
lim, ., 4,(¢,) = x,€K. Then the uniform convergence of the sequences { f;},2,
and {w,}~, implies that

f(to) = ll_.m f;(tr) = ILm wr(hr(tr)) = ”(Xo) = le ﬂ(h,(t,)).

Therefore the proof is complete.

We may remark that from the proof of Theorem 2.1 for any convex body K
in E9, there exists always a k-area D that is not necessarily an E*-area for a
fixed subspace E¥, 2 <k =d — 1. For a further support of this assertion we
give a simple example of a convex body in E* that has not an E?-area for a fixed
subspace E2. Define the following set:

K =conv({(x,y,0): (x — 1)2+y* =1} U {(0,0, 1), (0,0, — 1)})
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and let E? be the plane z = 0. Then it is easy to see that there does not exist an
E-areaon K.

From the above remark the following question arises: For a convex body in
E“ “how many” k-dimensional subspaces EX¥, 2 <k =<d — 1 are there, such
that no E*-area exists on K? Of course the expression “how many” must be
defined properly. To this end, for each E* in E“ there is associated a point pair
+ G(E¥) in EY (see [8]). The Grassmanian I{ will be taken to be the collection
of all these pairs corresponding to the different k-dimensional subspaces E* of
E“. The set I{ is an algebraic manifold in E%® of real dimension k(d — k), of
positive k(d — k)-dimensional Hausdorff measure in E% and certainly of
non-g-finite (k(d — k) — 1)-dimensional Hausdorff measure. With the above
notation we have the following theorem.

THEOREM 2.2. Let K be a convex body in E? and let
A = { £ G(E*) such that there is no E*-area on K}.

Then A forms a set in I of o-finite (k(d — k) — 1)-dimensional Hausdorff
measure.

Proor. Let E* be a subspace with its orthogonal complement E~* of
non-singular direction, i.e., there are no line segments on the bd(K) parallel to
E?~*_Then from Corollaries 2.1 and 2.2 there exists an E*-area on K. Hence
for any E* with E“~* non-singular, * G(E¥)&A4 so 4 C { * G(E*): E4 %
singular}. The set { + G(E?"*): E?~* singular) in EY-¥ =E% is a set of
o-finite (k(d — k) — 1)-dimensional Hausdorff measure (see [9] Theorem A).
As the map G(E¥)— G(E?¥) is an isometry (see [8]) the set { £ G(E¥): E4~*
singular} is of g-finite (k(d — k) — 1)-dimensional Hausdorff measure. There-
fore, by the above inclusion, A4 has the same property. This ends the proof.

3. Existence of k-areas in Hilbert space

In this section we investigate the existence of k-areas on a convex compact
set of infinite dimension in a Hilbert space.
The main result is included in the following theorem.

THEOREM 3.1. Let C be a convex compact set in a Hilbert space # and let
E*, k = 2 be a k-dimensional subspace of # . Suppose that n(C) = g(I*) where g
is a continuous injection map and dim n(C) = k. Then there exists a sequence
D,={h(t):1EI*}, r=1,2,... of k-areas on C where {m < h,} 2., converges
uniformly to g on I*.
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Before proceeding in the proof of Theorem 3.1 we quote and prove some
auxiliary lemmas.

LEMMA 3.1. Let C be a convex compact set in a Hilbert space # and let n
be the orthogonal projection on the k-dimensional subspace E*. Then given
n > 0, there exists a d-dimensional subspace E° containing E* and a projection
g, such that the orthogonal projection m, on E? satisfies the conditions
(i) ® = m, 0 gy, (ii) diam C Nz (m,(x)) < n for each x in C and (iii) there exists
6 = d(n) > 0 such that diam(C N n; (D)) < n where D is a subset of n,(C) with
diamD < 4.

ProoOF. See Lemma 1 in [7]

LEMMA 3.2. Let E?~! be a hyperplane of E* and let {K, } -, be a sequence
of convex bodies of E* that converges in the Hausdor{f metric to K. Suppose that
{Pa )20 is a sequence of unit vectors of E%, not lying in E*~', withlim, ., p, =
Do and D™ = { f,(t): tEI*} is a k-area of the convex body, proj, (K,) n =
0, 1,...with{ f,}2_ converging uniformly to f, on I*. If we can construct (as in
Theorem 2.1) a k-area on K,, {h,(t):tEI*} with proj,h,(t) = f,(t), tEI*,
n=0,1,... then the sequence { h,}2., converges uniformly to hy on I*.

ProoF. Let {¢,}2-, be a sequence in I* with lim, . , ¢, = t,EI* and let S be
aclosed ballof E¢with K, CS,n=0,1,... .

Aslim,. ., K, = K, we may suppose that lim, . _ A,(t,) = x, with x, € K. We
also have

|| Proj,xo — Proj,ho(to) ||
= || proj,ia(t,) — Projhelte) | + | proj,he(t,) — pProj,x ||
= " .f;l(tn) - fo(to) " + " pI'ijnh,,(t,,) - projpoxo " .

Aslim,_, p, = p, the sequence {proj,, },°_, converges uniformly to proj, on
S. Using this and the assumption that { f,}°-, converges uniformly in the
above relations we find that proj,x, = proj,fis(%). Therefore the construction
of hy entails hy(t,) = xo = lim, . A,(z,).

LemMA 3.3. Let K beaconvex body in E¢, E~! be a hyperplane and let T be
the orthogonal projection on E4~'. Suppose that B = g(I*) is a k-area on ©(K)
(constructed as in Theorem 2.1). Then there exists a sequence D, =
(h"t):t€I*), r=1,2,... of k-areas on K with {t°h}=, converging
uniformly to g on I*. Also, for any ¢ > 0 there exists an integer r, such that
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| ) =R ()| 2 (1 —e) | g() — &) ||
forany r = ryand every t, t' €I,

ProoF. For k =d — 1 the result is contained in Corollary 2.3. Assume
now k=d-2 Let E‘=[e,e,...,e], proj,=t and let
Di+1> Pe+a - - - » Da—, De the vectors used in the construction of the k-area B on
7(K). We may choose a unit vector pj as close as we please to e, in such a way
that there are no line segments on bd K in the direction p) where p; &
len €y .. s Pitrs Pivrs -« -5 Pa-1)-

In a similar way we may choose unit vectors pj_y, Pi_s, . .., Pi+, as close as
we please to py;_y, Dy—2, - - - » Di+1 Tespectively and in such a way that

[ela €25 0oy €,y pl/(+1’ pl’c+23 L] p:l—l] =Ed_la
Di€le, €. .. €, Pests P -+ Dibs
pi&[elaeb"-aekspk+l’pk+2,-",pi—l], l=k+ l’k+253d_1

with p, = ¢, and such that there are no line segments on the boundary of
Proj,;,, ° Proj,,,° + + - e proj,,(K) in the direction p;. Then using pi.,,

Di+ia .., Dywe construct a k-area D = {h(I*)} on K.
For each r&N we may choose a system of unit vectors
{pth1, p¥sy ..., DY) satisfying the additional conditions lim,.., pJ’ = ¢

and lim,., p"=p,fori=k-+1, k+2,...,d— 1. Then the sequence of
projections W = proj,n, o+ - - e proj,p, r =1, 2,... converges uniformly to
proj,,,, ° * + * ° proj,_, ° proj,, = w o on K and so we take the k-dimensional
sets on E¥ oK)= f£,(I*), (w°TtXK)=fI*) with {f}X<, converging
uniformly to f on I*. Because of the condition for the sequences {p{’}%,
and {p{”}~,, the sequence of sets {proj o o - - - o proj,p(K)}~, converges in
the Hausdorff metric to the sets proj, e -« °proj,(K), i=k+1,
k+2,...,d —1. Now from Lemma 3.3 we deduce that the sequence of
functions {g,}%,, related respectively to the k-areas A" = g,(I*) on proj »(K),
r=1,2,...,converges uniformly to g on 7. Let D" = h,(I*) be k-areas on K.
For these k-areas we have that proj,,/,(t) = g,(t), t EI*. Then this property
and the above-mentioned convergence imply that {t°h,}, converges
uniformly to g on I*. Also as t is the orthogonal projection and
lim,__ 1 o h,(t) = g(t), t EI*, then there exists an 7, such that

z(1—-¢&) | g()—g|
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forr =z ryand any ¢, t'EI*.

LEMMA 3.4. Let K be a convex body in E? and let D = {h(t): t EI*} be a
k-area on K constructed using the projection w on E*. Then for any é > 0 there
exists an ¢ = ¢(0) >0 such that whenever | h(t)—3u +v)| <e for some
tEI*and u,vEK with o) = w(v) then | u—v || <4.

PROOF. Suppose on the contrary that for each n €N there exists 7, €I* and
Un> v, €K with the property that || (%) — §(u, +v,) || <Vn, w,) = w(v,)
and || 4, — v, || 9. Let

@ = proj,,, © - + - °proj,, = proj,, @, and w(K)= f(I%)

where f'is a continuous one 1o one map on I*and w o h = f. As I* and K are
compact we may suppose that

limt,=1t,€l*, limu,=u and limv,=v with u, vEK.
These imply || —v| =4, w@)=ow(v) and h(t) =i +v). As o) =
w(v) we have w,(u) = e, + - - - + e + Wy Dy and oy (v) = pe, + - - - +
W€ + Viy Dy vy Therefore

wy(h(ty) = e, + + -+ + e + 3 s1 + Vis ) Pisr

By the construction of the k-area the point w,(£(¢,)) has the minimum value of
the p..,-coordinate on the line segment proj, ! (w(h(ty)) N w(K)). Hence
Uy +1 = Vi4 and this entails w,(4) = 0,(v) = w(h(t)). As w, is one to one from
w,(D) to K we have u = v and this contradicts ||u —v | Z 6.

Now we give the proof of Theorem 3.1.

PrOOF OF THEOREM 3.1. let ¢>0, E;=E*, n=mn, and g =g, By
Lemma 3.2 for n, = 4 we choose d, > 0 and #, an orthogonal projection on #
with finite dimensional range E, and a continuous projection g, with g, o 7, =
my and diam(C N =, (D)) <#, whenever D is a subset of K, = n,(C) with

diam(D) < d,. Next, we choose a coordinate system (x;, X, . . . , X)) for E,
which extends the coordinate system (x;, X,, . . ., x) in Eq = E* 5o that
al(xb x29 ceey xn(l)) = (xla x2a seey xk’ 0’ seey 0)

Because of Lemma 3.3 we may find, with the aid of a projection w,, a k-area
A, = g(I*) on K, such that | g,(g,(¢)) — &(?) || <&/6 and

e —g@) || = — D gt) —8(t)|  foranyt, ¢'EI*
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Now applying Lemma 3.4 for the convex body K, = r,(C), the projection w,
and the number J,, we may find a positive number e, < min{g, J,} with the
property that there do not exist points x#, v in K; and f€I* such that
o) = o), [#—v| Zdand | gt)—4u+v)| <.

So far we have been through the initial step of an inductive process of

choosing the following: a sequence of positive numbers 7, =4, p, =1/2%,...,a
sequence of finite dimensional linear spaces Ey, E|, ..., three sequences of
projection maps 7ig, 7, . .., 0, 03, ... and @, w,, ..., a sequence of k-area

Ag, Ay, ... with 4, =g,(I*), i=0,1,... and finally two sequences of real
numbers d;,0,,...and ¢ > & > &« - -

First, let n,,., = 1/2"*'. By Lemma 3.1 there exists an orthogonal projection
7, defined on # with a finite dimensional range E, ., containing E, and a
second projection g, with g, , o, ., = 7, and there will be a 6, ., > 0 such
that diam(C N n3(D)) <#,,, whenever D C x,,,(C) with diamD >¢,,,.
Then by Lemma 3.3 for the projection o, , and the k-area 4, = g,(I*) on n,(C)
we may find using a projection w, ,, a k-area 4, ,, = g, ,(I*) on =, ,(C) with
the properties

&,
lo:+1°8 () —gW ] < T tel*

and

g +i)—g ()] 2 (1 _

4r+l> |l &) —g@) | for all ¢, v €1*.

Applying Lemma 3.4 to the projection w, , , and the number J, ., we may find a
positive number ¢, ., <min{e,, J,,,} and with the property that there are no
U, vEm, . (C) and t EI* such that w, (u)=w,.,(v), [#—v]| 2J,,, and
|l & +:(z) — 3 +v)|| =&, This completes the inductive step of the con-
struction.

For each r =0, I, ... we select z,(¢)E C with the property 7,z,(t) = g,(1),
t EI*. We shall prove that for any ¢ €1, {z,(t)}2, is a Cauchy sequence.
Indeed, for r = s we have

I 2z(0) = 22 | = 1)~ Gysro -+ vag(D) | <&/3, s=0,1,....

As ¢ < d,, the choice of d; implies || z(¢) — z,(t) || <n, = 1/2*for t EI*.
The compactness of C and the fact that {z,(t)}~, is Cauchy allow us to
define for each ¢t €1* the point A(t) = lim,_. , z,(¢) belonging to C. We shall
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prove that D = {h(t): t EI*} is a k-area of C. For this purpose we prove the
following:

(1) h(I*) is a subset of the k-skeleton of C.

Suppose, on the contrary, that there exists t,EI* such that A(t,) €& skel,C.
Then there exists a (k + 1)-dimensional ball B with centre the point 4(¢,) and
radius y > 0 such that B C C. Let s €N such that 1/2° <yand let n,: # — E;
be the corresponding projection and B, = n,(B). We have that

diam(B N 7, (m,(h (%)) <1,
and as 5, <y we get B N n, ' (n,(h(t))) = {h(t)}. If dimBy = n, the point

n,(h(ty)) has co-dimension 7 relative to B, therefore the set B N n, ' (n,(h (%))
has also co-dimension 7 relative to B. This implies

0=dim(B Nz, ' (n,(h(t))) = (k + 1) —n,

i.e., dim By= n = k + 1. Hence there exist points u, vE By, u = v, such that w(u) =
w,(v) and 7, (h(t,)) = (u + v)/2. For the corresponding k-area {g,(¢) : t EI*} on
7(C), || &(t) — m(h(ty)) || = &/3 holds, so || g () — 3 +v)|| =&/3 and
the choice of ¢ implies ||z —v || <. Then

2y =diam(z; [y, v]N B)<n, = 1/2° <.
This contradiction proves the assertion.
(ii) h is continuous on I*.

Let ¢>0, t,€I* and sEN with 1/2° <eg. As g, is continuous for the
corresponding & > 0 we can find a d > 0 such that || g,(¢) — g,(%) | <e/3 for
|t —t]| <d, tEI*. On the other hand, for r>s we have | g(t)—
nz,(t) || <&/3 so, for any tEI*, || g(t) — nh(t) || <e/3. Therefore, for
| ¢ =t ]| <dwehave || mh(t) — mh(t) || <e and by the choice of ¢ we find
| A(2) — h(ty) | <n, =1/2* <e. This proves the continuity of 4.

(iii) A is a one to one map.

As 7, is orthogonal we have
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I () =z = | mz() — nz () || = [ &) — &) ||

v

<1 —4%) g -8)— g - )|

2(1-3)(1-75) - (1-3) 180 -2

ro ]
> (1 -5 E) &t — &) |

Taking limits for r — oo we find || £(¢) — A() || = 3| 8o(t) — &o(t) || - As gy is
one to one so is /4.

Finally we have || moz,(1) — go(t) || <e&/3 and taking the limit for r — o0 we
have || noh(t) — gt) || =e&/3 for any t €1*. Hence for every ¢ >0 we have
found a k-area 4 =h(I*) on C with || moh(t)—g(t)| <e, tEI* which
proves the result.

4. Conjecture

Let EX be a k-dimensional subspace of E¢ and let 7 be the orthogonal
projection on E*. Next, let T, be the set of convex bodies K in E? with the
property that the set of directions of line-segments on the boundary of K
perpendicular to E* forms a set of (d — k — 1)-dimensional Hausdorff measure
zero. For any K€X, let y(K,d, k) be the following number: There exist
D;={g):t€n(K)},i=1,2,...,7(K,d, k), E*-areas on K such that

gi(relint 7(K)) N g(relint 7(K)) = &, I#].

Set y(d, k) = min{y(K, d, k): KEZ,}. Now we observe the following:
If k =1 we have y(d, 1) = d (see [4]).
If k = d we have y(d, d) = 1 (obvious).
If k =d — 1 we have y(d, d — 1) = 2 (Corollary 2.1).
If | <k <d — 1, we conjecture that y(d, k)=d — k + 1.
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