INCREASING PATHS LEADING TO A FACE OF A CONVEX COMPACT SET IN A HILBERT SPACE

LEONI DALLA (Athens)

1. Introduction

Let C be a convex compact set in a normed space E. A point c of C is an extreme point of C if it is not contained in the relative interior of a line segment lying in C. The exposed points are extreme points that can be expressed as the sole intersection of C with one of its support hyperplanes. The r-skeleton of C for r a non-negative integer will be defined to be the set of all points of C that do not belong to the relative interior of an $(r+1)$-dimensional convex subset of C. The set of extreme points of C coincides with the 0 -skeleton of C. Let l be a continuous functional on E non-constant on C. In [1], D. G. Larman proved the existence of an l-strictly increasing path on the one-skeleton of C. In a recent paper [2] it is proved that if the face $F=\left\{x \in C: l(x)=\max _{y \in C} l(y)\right\}$ is of infinite dimension then for every $n=1,2, \ldots$ there are $n l$-strictly increasing paths on the one-skeleton of C mutually disjoint that lead in F (Corollary 2.1 in [2]). In this paper it is proved that if the dimension of F is k then there are $k+1$ such paths with the above mentioned property for every $k=1,2, \ldots$. Furthermore, we give an example showing that this result is the best possible in a Hilbert space.

2. The results

We quote the following propositions:
Proposition 2.1. Let C be a compact convex set in a normed space E and let l be a continuous linear functional on E, non-constant on C whose maximum on C is taken on a face F of C with $\operatorname{dim} F=k(k \geqq 1)$. Then there are $k+1$ mutually disjoint paths on the one-skeleton of C, leading to F, along each of which the functional l strictly increases.

Proposition 2.2. Let \mathscr{H} be a Hilbert space of infinite dimension, la non-constant continuous linear functional and k an arbitrary positive integer. Then there exists a convex compact set Σ, which is of infinite dimension and on which l is nonconstant, such that the face $F=\left\{x \in \Sigma: l(x)=\max _{y \in \Sigma} l(y)\right\}$ is of dimension k and Σ has the property that on its one-skeleton, it is impossible to find $k+2$ l-strictly increasing paths, mutually disjoint that lead to F.

Proof of Proposition 2.1. We assume that $\operatorname{dim} F=k$. Then there exist $k+1$ $e_{1}, e_{2}, \ldots, e_{k+1}$ linearly independent vectors in E and $k+1$ linear functionals $l_{1}=l, l_{2}, \ldots, l_{k+1}$ for which the following hold:
(i) $l_{i}\left(e_{j}\right)=\delta_{i j}, i, j=1,2, \ldots, k+1$ where $\delta_{i j}$ is the Kronecker delta and
(ii) $\operatorname{dim} \pi_{0}(F)=k$, where π_{0} is the projection

$$
\pi_{0}(x)=l_{1}(x) e_{1}+l_{2}(x) e_{2}+\ldots+l_{k+1}(x) e_{k+1}, \quad x \in E
$$

From now on, the steps required to find the appropriate $k+1$ paths on the one-skeleton of C are similar to those in the proof of Theorem 2.1 in [2], so we omit them. This concludes the proof of the proposition.

Before we proceed to the proof of Proposition (2.2) we introduce some appropriate notation: Let \mathscr{H}_{0} be a separable Hilbert space of infinite dimension and let l be a continuous linear functional on \mathscr{H}_{0} of norm 1 . Then there exists a unit vector u_{1} such that $l(x)=\left\langle x, u_{1}\right\rangle$ for every $x \in \mathscr{H}_{0}$. Let $\left\{u_{n}\right\}_{n=1}^{\infty}$ be a complete orthonormal system in \mathscr{H}_{0}. We denote by Q the convex compact set

$$
\left\{x \in \mathscr{H}_{0}: x=\sum_{n=1}^{\infty} c_{n} u_{n}, 0 \leqq c_{n} \leqq \frac{1}{n}, n=1,2, \ldots\right\} .
$$

Also, let $H^{-}(a)=\left\{x \in \mathscr{H}_{0}: l(x) \leqq a\right\}$ be the closed half space, where a is a real number and let $H(a)$ be the boundary of $H^{-}(a)$. Next we quote and prove the following lemma which is essential in the proof of Proposition 2.2.

Lemma. Let l be a non-constant continuous linear functional on a separable Hilbert space $\mathscr{H}_{0}, k \geqq 1$ be an integer and $\mu<(k+1)^{-1}$ a positive real number. Then there is a sequence of convex compact sets $\left(\Sigma_{i}\right)_{i=1}^{\infty}$ with $\Sigma_{i} \subseteq Q$ such that

1) If $\alpha^{(i)}=\max _{x \in \Sigma_{i}} l(x)$, then the sequence $\left\{\alpha^{(i)}\right\} i=1$,
2) $\Sigma_{i+1} \cap H^{-}\left(\alpha^{(i)}\right)=\Sigma_{i}, \quad i=1,2, \ldots$.
3) The sets $\Delta^{(0)}=\Sigma_{1} \cap H(0)=\overline{\operatorname{con}}\left\{\bigcup_{n=1}^{\infty} x_{n}^{(0)}\right\}$ and $\Delta^{(i)}=\Sigma_{i} \cap H\left(\alpha^{(i)}\right)=\overline{\operatorname{con}}\left\{\bigcup_{n=1}^{\infty} x_{n}^{(i)}\right\}$, $i=1,2, \ldots$ are convex compact sets of co-dimension 1 .
4) $F^{(i)}=\operatorname{con}\left\{x_{1}^{(i)}, \ldots, x_{k+1}^{(i)}\right\}$ is a k-dimensional face of $4^{(i)}$ with

$$
\min _{1 \leqq j<n \leqq k+1}\left\|x_{j}^{(i)}-x_{n}^{(i)}\right\|>\mu \quad i=0,1,2, \ldots
$$

5) $\max _{1 \leqq j \leqq k+1}\left\|x_{j}^{(i)}-x_{j}^{(i+1)}\right\|<\mu^{k+i}, \quad i=0,1,2, \ldots$.
6) The point $x_{j}^{(i)}$ is joined to the point $x_{j}^{(i+1)}$ by a single edge of the convex compact set $\Sigma_{i+1}, 1 \leqq j \leqq k+1, i=0,1,2, \ldots$.
7) $\lim _{j \rightarrow \infty}\left\|x_{j}^{(i)}-x_{\lambda(i)}^{(i)}\right\|=0, \lambda(i)= \begin{cases}1 & \text { for } \quad i=2 n \text { where } n=0,1,2, \ldots \\ 2 & \text { for } i=2 n+1\end{cases}$
and

$$
0<\left\|x_{j}^{(i)}-x_{\lambda}^{(i)}(i)\right\|<\mu^{k+i}, \quad j=k+2, \ldots, \quad i=0,1, \ldots
$$

8) If $k+2$ disjoint l-strictly increasing paths in the one-skeleton of Σ^{i+1} lead from $\Delta^{(i)}$ to $\Delta^{(i+1)}$ then one must contain a line segment of length exceeding $\mu-3 \mu^{k+i}$, $i=0,1,2, \ldots$.

Proof. Let $x_{1}^{(0)}=0, x_{2}^{(0)}=u_{2} / 2, \ldots, x_{k+1}^{(0)}=u_{k+1} /(k+1) \quad$ and $\quad x_{k+j}^{(0)}=\mu^{k+j} u_{k+j}$, $j \geqq 2$. Then $\lim _{n \rightarrow \infty} x_{n}^{(0)}=x_{1}^{(0)}$, hence $\Delta^{0}=\overline{\operatorname{con}}\left(\bigcup_{n=1}^{\infty} x_{n}^{(0)}\right)$ is a compact convex subset of Q with $\operatorname{ext} \Delta^{(0)}=\exp \Delta^{(0)}=\bigcup_{n=1}^{\infty} x_{n}^{(0)}$, where ext $\Delta^{(0)}$ and $\exp \Delta^{(0)}$ are the set of extreme and exposed points of $\Delta^{n=1}$, respectively.

Conditions 4) and 7) are satisfied for the points $\left\{x_{n}^{(0)}\right\}_{n=1}^{\infty}$. Let $u_{1} \in Q$ and $P^{\prime}=\overline{\operatorname{con}}\left\{\left\{\bigcup_{n=1}^{\infty} x_{n}^{(0)}\right\} \cup\left\{u_{1}\right\}\right\}=\operatorname{con}\left(\Delta^{(0)} \cup\left\{u_{1}\right\}\right)$. We can choose $0<\alpha^{(1)}<1$ sufficiently small, so that with $x_{j}^{(1)}=\operatorname{con}\left(x_{j}^{(0)}, u_{1}\right) \cap H\left(\alpha^{(1)}\right)$, the inequalities of conditions 4) and 5) are satisfied for $1 \leqq j \leqq k+1$. Let $y_{j}^{(1)}=\operatorname{con}\left(x_{j}^{(0)}, u_{1}\right) \cap H\left(\alpha^{(1)}\right), j \geqq k+2$. Then

$$
T=P^{\prime} \cap H\left(\alpha^{(1)}\right)=\overline{\operatorname{con}}\left(\bigcup_{j=1}^{k+1}\left\{x_{j}^{(1)}\right\} \cup \bigcup_{j=k+2}^{\infty}\left\{y_{j}^{(1)}\right\}\right)
$$

is a compact convex subset of Q.
We choose $x_{j}^{(1)} \in \operatorname{con}\left(y_{j}^{(1)}, x_{2}^{(1)}\right), j \geqq k+2$ such that $0<\left\|x_{j}^{(1)}-x_{2}^{(1)}\right\|<\mu^{k+1}$ and $\lim _{j \rightarrow \infty} x_{j}^{(1)}=x_{2}^{(1)}$ and so that $\Delta^{(1)}=\overline{\operatorname{con}}\left(\bigcup_{j=1}^{\infty} x_{j}^{(1)}\right)$ is a convex compact set with codimension 1. Then we define

$$
\Sigma_{1}=\overline{\operatorname{con}}\left(\Delta^{(0)} \cup \Delta^{(1)}\right)=\overline{\operatorname{con}}\left(\bigcup_{n=1}^{\infty}\left\{x_{n}^{(0)}\right\} \cup \bigcup_{n=1}^{\infty}\left\{x_{n}^{(1)}\right\}\right)
$$

Then Σ_{1} is a compact convex subset of Q, which satisfies conditions 3) to 8).
Assume now that we have constructed a finite sequence of m ($m \geqq 1$) compact convex subsets of Q, having properties 1)-8). It will be shown that a compact convex set Σ_{m+1} can be constructed so that the enlarged sequence also satisfies the required conditions. Let $d \in Q$ be a point with $\alpha^{(m)}<l(d)<1$ and $\overline{\text { con }}\left(d \cup \Sigma_{m}\right)=$ $=\Sigma_{m} \cup \operatorname{con}\left(d \cup \Delta^{(m)}\right) \subseteq Q$. Let $\alpha^{(m+1)}$ be chosen greater than $\alpha^{(m)}$, so that with $x_{j}^{(m+1)}$ defined for, $1 \leqq j \leqq \hat{k}+1$ by $x_{j}^{(m+1)}=\operatorname{con}\left(x_{j}^{(m)}, d\right) \cap H\left(\alpha^{(m+1)}\right)$ the inequalities of Conditions 4) and 5) are satisfied. Let now

$$
T=\overline{\operatorname{con}}\left(\Sigma_{m} \cup d\right) \cap H\left(\alpha^{(m+1)}\right)=\overline{\operatorname{con}}\left(\bigcup_{j=1}^{k+1} x_{j}^{(m+1)} \cup \bigcup_{j=k+2}^{\infty} y_{j}^{(m+1)}\right)
$$

where $y_{j}^{(m+1)}, j \cong k+2$ is joined to $x_{j}^{(m)}$ by a single edge of the compact convex set $\overline{\operatorname{con}}\left(\Sigma_{m} \cup d\right) \cap H^{-}\left(\alpha^{(m+1)}\right)$. Let $x_{j}^{(m+1)}, j \geqq k+2$ be a point of the edge $\operatorname{con}\left(y_{j}^{(m+1)}, x_{2}^{(m+1)}\right)(\lambda=1$ or 2 iff $m+1$ is even or odd) of T chosen so that
$0<\left\|x_{j}^{(m+1)}-x_{i}^{(m+1)}\right\|<\mu^{k+(m+1)}, \lim _{j \rightarrow \infty} x_{j}^{(m+1)}=x_{\lambda}^{(m+1)}$ and $\Delta^{(m+1)}=\overline{\operatorname{con}}\left(\bigcup_{n=1}^{\infty} x_{n}^{(m+1)}\right)$ is a compact convex set of co-dimension 1 . Next, we define

$$
\Sigma_{m+1}=\overline{\operatorname{con}}\left(\Sigma_{m} \cup \Delta^{(m+1)}\right)=\overline{\operatorname{con}}\left(\bigcup_{i=0}^{m+1} \bigcup_{n=1}^{\infty} x_{n}^{(i)}\right) .
$$

Then ext $\Sigma_{m+1}=\exp \Sigma_{m+1}=\bigcup_{i=0}^{m+1} \bigcup_{n=1}^{\infty} x_{n}^{(i)}$. We observe that conditions 1)-7) apply
to the sequence of convex compact sets $\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{m+1}$ by construction. But condition 8) requires proof.

Let $S_{m+1}=\bigcup_{i=0}^{m+1} \bigcup_{j=1}^{k+1} x_{j}^{(i)}$ be the vertices of Σ_{m+1} which satisfied conditions 4) and 5). Suppose that $P_{1}, P_{2}, \ldots, P_{k+2}$ are $k+2$ disjoint l-strictly-increasing paths in the one-skeleton of Σ_{m+1}, joining $\Delta^{(m)}$ to $\Delta^{(m+1)}$. Suppose that none of these paths contain a line segment of length exceeding $\mu-3 \mu^{k+m}$. Let $x_{j}^{(m)}, x_{i}^{(m+1)} \in \operatorname{ext} \Sigma_{m+1}-$ $-S_{m+1}$. Then using conditions 7), 5) and 4) we can see that $\left\|x_{j}^{(m)}-x_{i}^{(m+1)}\right\|>$ $>\mu-3 \mu^{k+m}$ and

$$
\left\|x_{j}^{(m)}-x_{\lambda(m)}^{(m+1)}\right\|<\mu-3 \mu^{k+m},\left\|x_{i}^{(m+1)}-x_{\lambda(m+1)}^{(m)}\right\|<\mu-3 \mu^{k+m} .
$$

Hence $x_{j}^{(m)}$ can only be joined to $x_{\lambda(m)}^{(m+1)}$ and the vertex $x_{i}^{(m+1)}$ with $x_{\lambda(m+1)}^{(m)}$. There remain k disjoint paths between $\Delta^{(m)}$ and $\Delta^{(m+1)}$ which do not pass through $x_{\lambda(m+1)}^{(m)}$ and $x_{\lambda(m)}^{(m+1)}$. If one of these paths joins two vertices $x_{j}^{(m)}, x_{i}^{(m+1)}, i \neq j$ with $x_{j}^{(m)}, x_{i}^{(m+1)} \in S_{m+1}$ then we can show that

$$
\left\|x_{j}^{(m)}-x_{i}^{(m+1)}\right\|>\mu-3 \mu^{k+m} .
$$

If one of these paths join two vertices $x_{j}^{(m)} \notin S_{m+1}, x_{i}^{(m+1)} \in S_{m+1}, x_{i}^{(m+1)} \neq x_{\lambda(m)}^{(m+1)}$ then again $\left\|x_{j}^{(m)}-x_{i}^{(m+1)}\right\|>\mu-3 \mu^{k+m}$. Similarly, if one of these paths join two vertices then $x_{j}^{(m+1)} \notin S_{m+1}, x_{i}^{(m)} \in S_{m+1}, x_{i}^{(m)} \neq x_{\lambda(m+1)}^{(m)}$. This contradiction establishes Condition 8) for the sequence of convex compact sets $\Sigma_{1}, \ldots, \Sigma_{m+1}$.

Proof of Proposition 2.2. Let l be a non-constant continuous linear functional on \mathscr{H}. We may assume without loss of generality that l is of unit norm. Then $l(x)=$ $=\left\langle x, u_{1}\right\rangle$ for some unit vector u_{1} in \mathscr{H}. We select a closed separable subspace \mathscr{H}_{0} of infinite dimension such that $u_{1} \in \mathscr{H}_{0}$. Then l is non-constant on \mathscr{H}_{0}. Define $\Sigma=\overline{\mathrm{con}}\left(\bigcup_{n=1} \Sigma_{n}\right) \subseteq Q$ where $\Sigma_{n}, n=1,2, \ldots$ and Q are as in the previous lemma. Then Σ is compact convex and the functional l assumes its maximum value on Σ over the whole of a face F_{1} with $\operatorname{dim} F_{1}=k$ by the construction of $\Sigma_{n}, n=1,2, \ldots$ and Σ. It is impossible to find $k+2$ paths in the one-skeleton of Σ which lead to F_{1}, yet which are disjoint outside F_{1}. If such paths did exist then, by condition 8) of lemma, one of the paths would contain a sequence of disjoint line-segments of length exceeding $\frac{\mu}{2}$ (taking the limit). This is impossible for a path P, since P is the continuous image of $[0,1]$ on the one-skeleton of Σ. This completes the proof of Proposition 2.2.

References

[1] D. G. Larman, On the one-skeleton of a compact convex set in a Banach space, Proc. London Math. Soc., 34 (1977), 117-144.
[2] L. Dalla, Increasing paths on the one-skeleton of a convex compact set in a normed space, Pacific J. Math. 124 (1986), 289-294.
(Received June 13, 1985; revised April 10, 1986)

