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Abstract

For any two compact convex sets in a Euclidean space, the relation between the volume of the sum of
the two sets and the volume of each of them is given by the Brunn-Minkowski inequality. In this note
we prove an analogous relation for the one-dimensional Hausdorff measure of the one-skeleton of the
above sets. Also, some counterexamples are given which show that the above results are the best
possible in some special cases.

1980 Mathematics subject classification (Amer. Math. Soc.): 52 A 20.

1. Introduction

When K is a convex compact subset of a Euclidean space Ed, then for
v = 0 ,1 , . . . , d, the v-skeleton skel, K of K consists of those points of K which
are not centres of {v + l)-dimensional balls contained in K.

It is well known (see Larman and Rogers [4]) that the r-skeleton of a compact
convex set in Ed is a measurable set with respect to the r-dimensional Hausdorff
measure, denoted by 3f "(•)• We define ny(K) = Jff"(skelyK). If Ko and Kx are
compact convex subsets of Ed, then it is known that the dth root of nd(-) is a
concave function, i.e. for any 0 < t < 1, if K, = (1 - t)K0 + tKv then

(nd(Kt))
1/d> (1 - t)(nd(K0))

1/d + tinAKjf'"

for any Ko, Kv This inequality is known as the Brunn-Minkowski inequality.
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In this note we prove that «x( •) is a concave function, i.e.

n1(Kt)>(l-t)n1(K0) + tn1(K1)

for any compact convex sets Ko, Kx of Ed.
In the course of the proof of the above property, we establish an inequality

between J f *(ext Kt) and 3V*(ext K,), i = 0,1, for any s > 0, where ext K de-
notes the set of extreme points of K.

We also prove, constructing appropriate counterexamples in E3, that the two
inequalities cannot be reversed.

2. The results

We quote first a lemma which is to be used in the proofs that follow.

LEMMA 2.1. Let Kx, K2 be convex, compact subsets of Ed and let K = XK1 +
fiK2, X,/i > 0, be a Minkowski linear combination of Kx and K2, where X,fi are
fixed but arbitrary. Then the following hold.

(i) For any point e belonging to the set ext K of the extreme points of K, there
exist uniquely defined points ex, e2, where e{ G extKt, i = 1,2, such that e = Xex

+ ixe2.
(ii) For any point ex G ext Kv there exists a point e2 G ext K2 such that

(Xex + pe2) G ext K. A similar property holds for the extreme points of K2.

PROOF. If either X = 0 or /x = 0, the results are obvious. Suppose now that X,
p # 0. We consider part (i). Let e e ext K, with e — \ex + ne2 for some et e Kt,
i = 1,2. If ex & ext Kx, then ex = (xx + yx)/2 for some xx, yx G KX with xx =£ yv

and s o e = (Xxx + /xe2)/2 + (Xyx + jue2)/2. But Xxx + p.e2 and Xyx + [ie2 are
distinct points of K, which is a contradiction, as e G ext K. Hence ex G ext Kv

In a similar way e2 e ext AT2.
Suppose now that there exist another pair e[, e'2, where e\ G ext Kit = 1,2,

such that e = Xex + fie2 = Xe[ + fie'2. Then e = X(ex + e{)/2 + n(e2 + e'2)/2,
which implies that (e, + e,')/2 G ext Kt, i = 1,2. This, in turn, implies that
e, = e't, i = 1,2, which proves part (i).

For part (ii), consider ex G ext Kv If u is a unit vector, let K^ denote the
intersection of Kx with its support hyperplane with outer normal u. If U =
( « 1 ; . . . , uk) is a /c-frame of orthogonal unit vectors, then K^ is defined
recursively by *$,. . . ,„,) = (AT(lli Bt i ) ) l V

Now for 1;he point ex there exists a A:-frame U = (ux,..., uk), 1 < k < rf, such
that {^x} = -K$'. If A^̂ 2), Â t/ are the corresponding sets for K2 and K, then
KU = XK$) + nK™ (see Eggleston [3, Theorem 38]). Hence Ku = X{e1} +

ff\ and from part (i) we have

ext Kv c X{ ex} +
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Consider z e ext Kv c ext K. Then z = Xe1 + jue2 for some e2 e ext Kffi c
ext K2. Therefore, for ex e ext Kv there exists e2 G ext K2 with Xe1 + pe2 e
ext K. This concludes the proof of (ii).

Now we quote and prove the following propositions

PROPOSITION 2.1. L<?r Kv K2 and K be defined as in Lemma 2.1. Then
J?s(extK) > max{ XS3V*(ext A^), /*^J(ext AT2)} /or any non-negative number s.

PROOF. AS ^fJ(ext(XA:i)) = A^^ext A",), to prove the inequality, it is suffi-
cient to prove it for X = ju = 1. If e e ext AT, then the cap-neighbourhoods of e
form a basis for the neighborhoods of e (see G. Choquet [2], page 107). Therefore
J>f J(ext K) = supe>0 inf{E?=1 d'(Cn) :Cn, n = 1, 2 , . . . , are caps; ext K c

Let Cn, w = 1,2,..., be a sequence of caps of K covering ext AT, where
Cn = {x e A":an - tn < x • «„ < an}, where aM = sup^g^x • «„, and where x •
un denotes the inner-product of x with a unit vector un. We define Cn

<;) = {x G
* , : # ' > - /„ < x • un < &<••>}, i = 1,2, where 6<'> = su P ; c e J C x • «„, i = 1,2. Then

an = feU) + feW. We shall prove that ext Kt c U*=1Q<0, / =' 1,2. Let ex e ext Kv

Then by part (ii) of Lemma 2.1 there exists e2 e ext K2 such that (ex + e2) e
ext A;. Let ex + e2 e Cn for some n e iV. Then e; e Cn

(0, / = 1,2. For, if not,
t h e n ex € C^\ say . T h e n e x u n < b™ - tn, s o (e, + e2) • un < (b^ - tn) + b™

= an — tn. This is impossible since ex + e2 e Cn. Hence, for any ex e ext Klt

there exists a cap Cn
(1) such that ex e Cn

(1), and so ext Kr Ql)™=xCn. We also
have d(C^) < ^(CJ, / = 1,2, « e IU Indeed, for j82 G K2 with j82 • «„ = Z>̂ 2),
we have Cn

(1> + j82 c Cn, and so </(Cn
(1)) = J(Cn

(1) + /?2) < d(Cn). Then
^ { L ? . ! d(Sn): ext AT, c U~=1 Sm, d(Sn) < e} < inf{E~_! rf'(C,,): ext K c
U^LxC ,̂ J(Cn) < e, Cn cap, n e N} for any e > 0. Therefore Jfs(ext K,) <
^ ^ e x t AT), / = 1,2. This concludes the proof of the proposition.

We note that in general no kind of reverse inequality holds.
More precisely, we show, by constructing a counterexample, that there does not

exist a positive constant M such that the inequality

Jf^extK) < M(max{^(extATj, jP\esiK2)})

holds for any compact convex sets Klt K2 in £3. Indeed, take Kx = {(x, 0, z) e
R 3 : x > 0 , z > 0, (x2 + z2)1/2 < 1} and AT2 = {(0, y, z) G R 3 : J > 0, z > 0,
(>-2 + z2)1 / 2 < 1}. Then JTx(ext Kx) = Jf?\extK2) = IT/2 < + oo. The sum of
ATj and AT2 is the set K = {(x, y, z) e R3:0 < x < 1, 0 < J < 1 , 0 < z <
(1 - x2)1/2 + (1 - j 2 ) 1 / 2 } , and ext A" = {(x, ^ z ) £ R ' : 0 < u l , 0 ^ < l ,
z = (1 - x2)1/2 + (1 - j 2 ) 1 / 2 } U {(0,0,0)} U {(1,0,0)} U {(0,1,0)}. Therefore
J(?2(extK) > 0. But then ^(extAT) = +oo, and in fact ext AT is not a-finite
with respect to Jt?1.
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PROPOSITION 2.2. Let Kx, K2 and K be as in Lemma 2.1. Then ^ ( ske l j K)
K{) + /aJf Hskelj K2).

PROOF. AS in Proposition 2.1, it is sufficient to prove the inequality for
X = ft = 1. Then K = Kx + K2. If J^\skelx K)= + oo, we have nothing to
prove.

Assume now that Jf 1(skel1 ^T) < oo. It is known, (see Burton [4, Theorems 1
and 3]), that skelx K is the union of ext K with countably many exposed edges Fn

(n = 1,2,...), and that Jf x(ext K) = 0. Hence ^"Hskelj K) = I^=13^\Fn) and,
by Proposition 2.1, J(f\ext Kt) = 0, ii = 1,2.

Now Fn = K C\ H = Kx Pi Hr + K2 Ci H2, where / / is the support hyperplane
of K at Fn, and where Hx, H2 are the corresponding suport hyperplanes of Klf

K2. As dim(Fn) = 1, we conclude that Fn = l1 + l2, where l1 and l2 are parallel
line segments which are edges of Kl and K2; or Fn = lx + (e2), where /x is an
edge of Kx and e2

 a n exposed point of K2; or Fn = {et} + /2, where /2 is an
edge of K2 and ex an exposed point of Kv The above expression is uniquely
determined. Suppose, for example, that Fn = /x + l2 = l[ + {e2}, where /x, /{ are
edges of Ari; where l2 is an edge of K2, and where e2 is an exposed point of K2.
Then Fn = (/x + l[)/2 + (/2 + {e?2})/2, which implies that K^i + /{) is an edge
of Kx; but since (lx + l{)/2 c conv(/1;!{), we have lx = /{. Therefore, Fn = lx +
/2 = /x + {e2}, and hence {e2} = /2. Similar arguments apply to the other
possible expressions for Fn.

Let lx be an edge of Kv We denote by pr ( ) the projection onto Ed~l which
maps in the direction of lv Then pr(K) = pr(^j) + pr(^T2), and pr(/j) is an
extreme point of pr(/sT1). Then, from Proposition 2.1, there exists an extreme
point, say, e2, of pr(AT2) such that p r ^ ) + e2 = e, where e e extpr(K). Then
pr"x(e) C\ K = lx + pr~1(e2) n AT2. From the last relation and from the fact that
e is an extreme point of pr(#), we conclude that pr'\e) O K must be an edge of
K, and that pr""x(e2) n K2 must be an extreme point or an edge of K2. Hence,
for each edge lx of Kv there exists an extreme point e2 or an edge l2 of K2 such
that either lx + l2 or lx + e2 is an edge of K. From the above we conclude that a
given edge /, of Kt could give rise to more than one edge of K. So the edges of Kx

and K2 are countable, and skelx Kt = V™-i(l'n U ext K,), i = 1,2. Hence

^ K2),
n-l n = l

as Jf1(ext Kt) = 0, i = 1,2. This conduces the proof of the proposition.
An immediate consequence of Proposition 2.2 is the following corollary, whose

proof is obvious.

COROLLARY 2.1. The function Mj(-) is a concave function.
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In the same way as in Proposition 2.1, we assert that there does not exist a
positive number M such that JfT^ske^ K) ̂  M[\J^\skel1 Kx) +
pJt?^skelj K2)\ for any compact convex sets Klt K2 in E3. To show this, we
construct two convex compact sets Ax and A2 in E3 such that ^ ( s k e ^ At) <
+ oo, i = 1,2, while ^ ( s k e l ^ ^ + A2)) = + oo. Let «1(0,2,0), w2 = (0, -2,0),
p0 = (2,2,0), y0 = (2,-2,0), a0 = (2,0,1) and 80 = (0,0,1). Define Ko to be
convex hull of these points and let / = [a0, So]. We consider a plane H1 such that
(0,0,0) e Hf, a0 e H{, and Ko n //x is an isosceles triangle 7\ =
conv(a1,)81, Yj) with |ax — /?x| = |ax — Yil, with diameter(7\) = 2"1, with ax G /,
and with the line segment [/J^Yi] parallel to [)80, Yol- Define Kx = tf^n A ô. We
now proceed inductively. Assuming that we have constructed Kn (n > 1), we
choose the plane Hn+l in such a way that (0,0,0) e ^n

++i, that an e /f~+1, and
that Kn D ^ n + 1 is an isosceles triangle Tn+l = conv(an+1,#,+1, YB +I) with |an+1

- A,+l| = K + i - Y»+il, with diameter(7;+1) = 2"("+1), with an+1 e /, and with
the line segment [&+1, Yn+i] parallel to [0O, y0]. Then Kn+1 = /fn

+
+1 n /«:„.

Now let A, = ]imn^x Kn = D«_o ^ n = * 0 n D ^ i /?n
+. Then ^x =

clconv{{Ul}U{M2}U{80}uU~.o{i8n}UU^_o{Yn}}, and ske^ Ax = [«l5 «2]
U K , «0] U [«2, 80] U [ult Po\ U [«2, Y0] U U^_0[i8n, YJ U U~_0[i8n, PH+1] U
U~-0[Yn. Y. + il U [«0, 8J, where 8X = l i m ^ ^ ^ = l i m ^ ^ Y ^ Then
JfHskdi ^ ) < j f^skdi ^o) + 2?.!JT^/S. , vj) < JT^skel! Ko) + I»= 12"" <
+ oo. On the other hand, we define A2 to be the orthogonal parallelogram with
vertices ux, u2, fi0, y0, ux + So, wx + 0O, /30 + 80 and Y0 + ^0. Obviously
J?'1(skel1 ;42) < + oo. But the sum Ax + yl2 has in its 1-skeleton countably many
edges with length greater than 4. Hence J^1(skel1(v41 + A2)) = + oo. From this
the assertion follows.
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