INCREASING PATHS ON THE ONE-SKELETON OF A CONVEX COMPACT SET IN A NORMED SPACE

LEONI DALLA

Let C be a convex compact set in a normed space E and let $\operatorname{skel}_1 C$ be the subset of C that contains those boundary points of C which are not centres of 2-dimensional balls in C. When l is a continuous functional on E, we say that the path $P = g([\alpha, \beta])$ is *l*-strictly increasing if $l(g(t_1)) < l(g(t_2))$ for every t_1, t_2 such that $\alpha \le t_1 < t_2 \le \beta$. D. G. Larman proved the existence of an *l*-strictly increasing path on the one skeleton of C with $l(g(\alpha)) = \min_{x \in C} l(x)$ and $l(g(\beta)) = \max_{x \in C} l(x)$.

In this paper we prove a theorem concerning the number of l-strictly increasing paths on the one-skeleton of C, that are mutually disjoint and along each of which l assumes values in a range arbitrarily close to its range on C.

1. The results. We quote and prove the following theorem

THEOREM 1. Let C be a compact convex set of infinite dimension in a normed space E and l be a continuous linear functional on E, which is non constant on C. Let $\varepsilon > 0$ be given, $M = \max_{x \in C} l(x)$ and $m = \min_{x \in C} l(x)$. Then, for every n = 1, 2, 3, ... there exist n l-strictly increasing paths, $P_k = g_k([\alpha, \beta]), k = 1, 2, ..., n$ on the one-skeleton of C, such that relint $P_i \cap$ relint $P_j = \emptyset$ with $i \neq j$, $l(g_k(\alpha)) = m + \varepsilon$ and $l(g_k(\beta))$ $= M - \varepsilon$ for k = 1, 2, ..., n.

Proof. Consider the sets $K_0 = \{x \in C: l(x) = M - \varepsilon\}$ and $K_1 = \{x \in C: l(x) = m - \varepsilon\}$. These sets are of infinite dimension and lie on two parallel hyperplanes. We define

 $A = C \cap \{x \in E \colon l(x) \ge m + \varepsilon\} \cap \{x \in E \colon l(x) \le M - \varepsilon\}$

Then we may select *n* linearly independent vectors e_1, e_2, \ldots, e_n and *n* linear functionals $l_1 = l, l_2, \ldots, l_n$ on *E* such that the following properties hold:

(i) $l_1(e_1) = 1$, $l_i(e_i) \neq 0$ for i = 2, 3, ..., n and $l_i(e_i) = 0$ for $i \neq j$

(ii) Let $E_n = [e_1, e_2, ..., e_n]$ be the *n*-dimensional subspace of E spanned by $e_1, e_2, ..., e_n$ and π_0 be the projection map on E, defined by $\pi_0(x) = l_1(x)e_1 + \cdots + l_n(x)e_n$. Then dim $\pi_0(K_0) = \dim \pi_0(K_1) = n - 1$.

LEONI DALLA

From the previous, it follows that $C_n = \pi_0(A)$ is a convex body in E_n , $\pi_0(K_0) = \{x \in C_n: l(x) = M - \epsilon\}$ and $\pi_0(K_1) = \{x \in C_n: l(x) = m + \epsilon\}$.

Let $u \in E_n$ be a unit vector perpendicular to e_1 . Then according to the results proved in [3] we may choose a unit vector $u' \in E_n$ orthogonal to e_1 , as close as we please to u and such that there are no line segments in the direction u' on the boundary of C_n – relint $\pi_0(K_0)$ – relint $\pi_0(K_1)$. Then the projection σ_{n-1} of E_n onto the hyperplane E_{n-1} perpendicular to u' has an inverse function from bd $\sigma_{n-1}(C_n)$ – relint $\sigma_{n-1}(\pi_0(K_0))$ – relint $\sigma_{n-1}(\pi_0(K_1))$ back to C_n .

If $\{e_1, u_2, \ldots, u_{n-1}, u\}$ is an orthogonal system in E_n then we can choose, using induction, unit vectors u'_{n-1}, \ldots, u'_3 orthogonal to e_1 and as close as we please in direction to the projections of the vectors u_{n-1}, \ldots, u_3 onto the subspaces $E_{n-1} \subseteq [u']^{\perp}$, $E_{n-2} \subseteq [u', u'_{n-1}]^{\perp}, \ldots, E_3 \subseteq [u', u'_{n-1}, \ldots, u'_4]^{\perp}$ and in such a way the projections σ_k : $E_k \to E_{k-1}, k = n-2, \ldots, 3$ have unique inverses from

bd
$$\sigma_k \circ \sigma_{k+1} \circ \cdots \circ \sigma_{n-1}(C_n)$$
 - rel int $\sigma_k \circ \sigma_{k+1} \circ \cdots \circ \sigma_{n-1}(\pi_0(K_0))$
- rel int $\sigma_k \circ \sigma_{k+1} \circ \cdots \circ \sigma_{n-1}(\pi_0(K_1))$

back to $\sigma_{k+1} \circ \cdots \circ \sigma_{n-1}(C_n)$. We complete the orthonormal system $u', u'_{n-1}, \ldots, u'_2, u'_1$ by taking $u'_1 = e_1$ and u'_2 to be the unit vector perpendicular to $u', u'_{n-1}, \ldots, u'_3, u'_1 = e_1$ and closest to u_2 .

Write now $\omega_{u'} = \sigma_2 \circ \cdots \circ \sigma_{n-1}$ for the projection of E_n on the two dimensional subspace E_2 . For each t such that $m + \varepsilon \leq t \leq M - \varepsilon$, we define by $\xi_0(t)$ the point on the line segment $\{x \in \omega_{u'}(C_n): l_1(x) = t\}$ whose second coordinate attains its maximum value. On the other hand we may suppose, by making appropriate transformation of C, that there exists a cylinder B in the convex body C_n of E_n such that $B = \overline{\operatorname{con}(S_0 \cup S_1)}$, where S_0 and S_1 are (n - 1)-dimensional balls of diameter δ with the property $S_i \subseteq \operatorname{rel int} \pi_0(K_i)$, i = 0, 1 and the axis of B in the direction of e_1 .

Let ε_0 be such that $0 < \varepsilon_0 < \min\{d(\operatorname{bd} \pi_0(K_0), S_0), d(\operatorname{bd} \pi_0(K_1), S_1)\}\)$ where *d* is the usual distance between two sets. The convexity of C_n implies $d(\operatorname{bd} C_n - \pi_0(K_0) - \pi_0(K_1), B) > \varepsilon_0$. Then there exist a linear functional $l_{u'}$ on E_n such that $l_{u'}(u') = 0$, $l_{u'}(u'_2) = 1$ and $l_{u'}(\xi_0(t)) > \varepsilon_0$ $+ \delta/2 > 0$.

Now let $\xi'_0(t)$ be the point on the line segment $\{x \in \omega_{u'}(C_n): l_1(x) = t\}$ whose second coordinate attains its minimum value, then $l_{u'}(\xi'_0(t)) < -(\varepsilon_0 + \delta/2) < 0$. Because of the choice of $u', u'_{n-1}, \ldots, u'_3$ the inverse function $\omega_{u'}^{-1}$ is uniquely defined from the curves $\xi_0(t)$ and $\xi'_0(t)$

back to the one-skeleton of C_n . Consider now $x_0(t) = \omega_{u'}^{-1}(\xi_0(t))$ and $x'_0(t) = \omega_{u'}^{-1}(\xi'_0(t))$ where $m + \varepsilon \le t \le M - \varepsilon$. Then $x_0(t)$ and $x'_0(t)$ where $m + \varepsilon \le t \le M - \varepsilon$ are paths on the one-skeleton of C_n . By construction $l_1(x_0(t)) = t$, $l_1(x'_0(t)) = t$,

(1)
$$l_{u'}(x_0(t)) > \varepsilon_0 + \frac{\delta}{2}, \quad l_{u'}(x_0'(t)) < -\left(\varepsilon_0 + \frac{\delta}{2}\right)$$

for $m + \varepsilon \leq t \leq M - \varepsilon$.

We say then that $\{x_0(t), m + \varepsilon \le t \le M - \varepsilon\}$ and $\{x'_0(t), m + \varepsilon \le t \le M - \varepsilon\}$ are paths on the one-skeleton of C_n "in the direction near u". Following the methods developed in Theorem 1 in [2] we construct two *l*-strictly increasing paths $z_0(t)$ and $z'_0(t)$, $m + \varepsilon \le t \le M - \varepsilon$ on the one-skeleton of A such that

(2)
$$l_1(z_0(t)) = t, \quad l_1(z'_0(t)) = t \text{ and}$$

 $\|\pi_0(z_0(t)) - x_0(t)\| < \frac{\varepsilon_0}{3}, \quad \|\pi_0(z'_0(t)) - x'_0(t)\| < \frac{\varepsilon_0}{3}$

where $m + \varepsilon \leq t \leq M - \varepsilon$.

From relations (1) and (2) it follows that

$$(3) \quad l_{u'}(\pi_0(z_0(t))) > \frac{2}{3}\varepsilon_0 + \frac{\delta}{2}, \quad l_{u'}(\pi_0(z'_0(t))) < -\left(\frac{2}{3}\varepsilon_0 + \frac{\delta}{2}\right)$$

and
$$\frac{\pi_0\{z_0(t): m + \varepsilon \le t \le M - \varepsilon\} \cap B = \emptyset,}{\pi_0\{z'_0(t): m + \varepsilon \le t \le M - \varepsilon\} \cap B = \emptyset.}$$

As (2) holds we may say that $z_0(t)$, $z'_0(t)$ are paths on the one-skeleton of A in the direction near u and we write $z_0 = z_u$ and $z'_0 = z'_u$.

Let S be the unit ball in E^n , lying on the hyperplane $l_1(x) = 0$ and let θ be a positive number such that $0 < \theta < (1/2d)(\delta/2 + \varepsilon_0/3)$ where $d = \operatorname{diam} C_n$. The compactness of S implies the existence of unit vectors u_1, u_2, \ldots, u_m such that for every unit vector u in S, there exists $i_0 \in$ $\{1, 2, \ldots, m\}$ with $||u - u_{i_0}|| < \theta$. Let $Z_{u_i}\{z_{u_i}(t), m + \varepsilon \le t \le M - \varepsilon\}$ and $Z_{u_{m+i}} = \{z'_{u_i}(t), m + \varepsilon \le t \le M - \varepsilon\}$ where $i = 1, 2, \ldots, m$ be paths on the one-skeleton of A in the direction near u_i . Let $j(Z_{u_1}, Z_{u_2}, \ldots, Z_{u_i})$ be the junction set of the paths $Z_{u_1}, Z_{u_2}, \ldots, Z_{u_i}$. Suppose now that card $j(Z_{u_1}, Z_{u_2}, \ldots, Z_{u_{\lambda-1}}) < +\infty$ and card $j(Z_{u_1}, Z_{u_2}, \ldots, Z_{u_{\lambda}}) = +\infty$ for some λ such that $1 \le \lambda \le 2m$. Renaming, if necessary, the paths $Z_{u_1}, Z_{u_2}, \ldots, Z_{u_{\lambda}}$ we consider the greatest integer k such that $1 \le k \le \lambda -$ 1, card $j(Z_{u_i}, Z_{u_{\lambda}}) < \infty$ for $i = 1, 2, \ldots, k - 1$ and card $j(Z_{u_i}, Z_{u_{\lambda}}) =$ $+\infty$ for $i = k, k + 1, \ldots, \lambda - 1$. Let

$$\alpha = \inf \{ t: t \in [m + \varepsilon, M - \varepsilon] \text{ and } z_{u_k}(t) \in j(Z_{u_k}, Z_{u_\lambda}) \}$$

and

$$\beta = \sup \{ t : t \in [m + \varepsilon, M - \varepsilon] \text{ and } z_{u_k}(t) \in j(Z_{u_k}, Z_{u_\lambda}) \}.$$

As z_{u_k} and z_{u_λ} are continuous functions, there is a finite number of closed subintervals $[a_i, b_i]$, $i = 1, 2, ..., \nu$, of $[m + \varepsilon, M - \varepsilon]$ with the following properties:

(i)
$$z_{u_k}(a_i) = z_{u_\lambda}(a_i), z_{u_k}(b_i) = z_{u_\lambda}(b_i)$$

(ii) $z_{u_k}(t) \neq z_{u_\lambda}(t), \alpha_i < t < b_i$
(iii) $\max_{a_i < t < b_i} ||z_{u_k}(t) - z_{u_\lambda}(t)|| > \varepsilon_0/3$ for $i = 1, 2, ..., \nu$.

Then

$$z_{u_{\lambda}}(m+\epsilon,a) \cup z_{k}(a,a_{1}) \cup \bigcup_{i=1}^{\nu} z_{u_{\lambda}}(a_{i},b_{i})$$
$$\cup \bigcup_{i=1}^{\nu-1} z_{u_{k}}(b_{i},a_{i+1}) \cup z_{u_{k}}(b_{\nu},b) \cup z_{u_{\lambda}}(b,M-\epsilon)$$

is an *l*-increasing path, $Z_{u_{\lambda}}^{*}$ say, on the one-skeleton of C that is different from $Z_{u_{\lambda}}$ on the set

$$\Gamma = z_{u_k}(a, a_1) \cup \bigcup_{i=1}^{\nu-1} z_{u_k}(b_i, a_{i+1}) \cup z_{u_k}(b_{\nu}, b).$$

By construction the set Γ is within distance $\varepsilon_0/3$ from Z_{μ_0} , hence we have

(4)
$$||z_{u_{\lambda}}(t) - z_{u_{\lambda}}^{*}(t)|| < \varepsilon_{0}/3$$
 for every $t \in [m + \varepsilon, M - \varepsilon]$

As card $j(Z_{u_1}, Z_{u_{\lambda}}^*) < +\infty$ for i = 1, 2, ..., k, we can replace $Z_{u_{\lambda}}$ by $Z_{u_{\lambda}}^*$ for every $\lambda = 1, 2, ..., 2m$ with card $j(Z_{u_1}, ..., Z_{u_{\lambda-1}}) < +\infty$ and card $j(Z_{u_1}, ..., Z_{u_{\lambda}}) = +\infty$. Then card $j(Z_{u_1}^*, ..., Z_{u_{2m}}^*) < +\infty$ and using (3) and (4) we get $|l_{u'}(\pi_0(z_{u_{\lambda}}^*(t)))| > \delta/2 + \varepsilon_0/3$ where $u' \in S$, $||u' - u_{\lambda}|| < \theta$.

Now we can define the graph G with vertex set $V = \{K_0\} \cup \{K_1\} \cup j(Z_{u_1}^*, \ldots, Z_{u_{2m}}^*)$, where an ordered pair of these nodes is said to form a directed subgraph of G if they are joined by an *l*-increasing arc from $\bigcup_{i=1}^{2m} Z_{u_i}^*$, which contains no other node of G. The required result now follows from Menger-Whitney theorem for the finite graph G, if we are able to show that the removal of (n-1) vertices from $j(Z_{u_1}^*, \ldots, Z_{u_{2m}}^*)$ still allows an *l*-increasing path running from K_0 to K_1 .

292

Let $y_1, y_2, \ldots, y_{n-1}$ be (n-1) vertices from $j(Z_{u_1}^*, \ldots, Z_{u_{2m}}^*)$. For the points $\pi_0(y_1), \pi_0(y_2), \ldots, \pi_0(y_{n-1})$ of E_n , there exists a linear functional l' on E_n such that $l'(\pi_0(y_i)) \ge 0$, $i = 1, 2, \ldots, n-1$, $l'(e_1) = 0$ and l'(v) = 1 for some $v \in S$. Let now $u \in S$ be an arbitrary vector such that l'(u) = 0 and $l_1(u) = 0$. For the vector u there exists a vector $u_k \in S$ such that $||u - u_k|| \le \theta$. Let $Z_{u_{m+k}}^*$ be the path on the one-skeleton of C in the direction near u_k , with

(5)
$$l_{u_k}\left(\pi_0\left(z_{u_{m+k}}^*(t)\right)\right) < -\left(\frac{\delta}{2} + \frac{\varepsilon_0}{3}\right), \quad m+\varepsilon \le t \le M-\varepsilon$$

We can also select u in such a way that l'(u) = 0 and $l_1(u) = 0$ for which the corresponding l_{u_k} has the property $l_{u_k}(v') = 1$ for some $v' \in S$ with $||v - v'|| < \theta$.

Now, we may suppose that

(6)
$$l_{u_k}(\pi_0(y_i)) \ge 0 \quad \text{for } i = 1, 2, \dots, \mu \quad \text{and} \\ l_{u_k}(\pi_0(y_i)) < 0 \quad \text{for } i = \mu + 1, \dots, n - 1$$

Relations (5) and (6) imply that

(7)
$$\pi_0(y_i) \notin \pi_0(Z^*_{u_{m+k}})$$
 for $i = 1, 2, ..., \mu$

We have that l'(v) = 1, $l_{u_k}(v') = 1$ with $||v - v'|| < \theta$ and $l'(\pi_0(y_i)) \ge 0$, $l_{u_k}(\pi_0(y_i)) < 0$ for $i = \mu + 1, ..., n - 1$. Hence

(8)
$$l_{u_k}(\pi_0(y_i)) \geq -d\theta - \left(\frac{\delta}{2} + \frac{\varepsilon_0}{3}\right), \quad i = \mu + 1, \dots, n-1.$$

From (5) and (8) we have that $\pi_0(y_i) \notin \pi_0(Z^*_{u_{m+k}})$ for $i = \mu + 1, \ldots, n - 1$. 1. Hence, from (7) and (8) follows that $y_i \notin Z^*_{u_{m+k}}$, $i = 1, 2, \ldots, n - 1$ which completes the proof of the theorem.

From the above theorem one can deduce the following corollaries whose proofs are omitted as obvious.

COROLLARY 1. Suppose that C and l are defined as in Theorem 1, the faces

$$F_0 = \left\{ x \in C \colon l(x) = \min_{y \in C} l(y) \right\} \quad and \quad F_1 = \left\{ x \in C \colon l(x) = \max_{y \in C} l(y) \right\}$$

are such that the dimension of $F'_0 \cap F'_1$ is infinite, where F'_0 and F'_1 are the corresponding subspaces translates of F_0 and F_1 correspondingly. Then for every n = 1, 2, ... there are n l-strictly increasing paths on the one-skeleton of C mutually disjoint that join F_0 to F_1 .

LEONI DALLA

COROLLARY 2. Suppose that C a compact convex set of infinite dimension in a normed space E. Then the one-dimensional Hausdorff measure of the one-skeleton is infinite.

We may remark that the *n*-dimensional Hausdorff measure of the *n*-skeleton of a set C as in Corollary 2 is infinite for every n = 1, 2, ...For a direct proof of this result see [1].

REFERENCES

- [1] Leoni Dalla, *The n-dimensional Hausdorff measure of the n-skeleton of a convex weakly compact set*, Mathematische Nachrichten, (to appear).
- [2] D. G. Larman, On the one-skeleton of a compact convex set in a Banach space, Proc. London Math. Soc., (3) 34 (1977), 117-144.
- [3] D. G. Larman and C. A. Rogers, Increasing paths on the one-skeleton of a convex body and the directions of line segments on the boundary of a convex body, Proc. London Math. Soc., 23 (1971), 683-698.

Received March 19, 1985.

DEPARTMENT OF MATHEMATICS SECTION OF MATHEMATICAL ANALYSIS AND ITS APPLICATIONS PANEPISTEMIOPOLIS, 157 81 ATHENS GREECE