Convex bodies with almost all \boldsymbol{k}-dimensional sections polytopes

By LEONI DALLA and D. G. LARMAN
University College, London

(Received 12 September 1979)

1. It is a well-known result of V.L. Klee(2) that if a convex body K in E^{n} has all its k-dimensional sections as polytopes ($k \geqslant 2$) then K is a polytope.

In $(6,7)$ E. Schneider has asked if any properties of a polytope are retained by K if the above assumptions are weakened to hold only for almost all k-dimensional sections of K. In particular, for 2 -dimensional sections in E^{3} he asked whether ext K is countable, or, if not, is the 1-dimensional Hausdorff measure of ext K zero?

Here we shall give an example (Theorem 1) of a convex body K in E^{3}, almost all of whose 2 -sections are polygons but ext K has Hausdorff dimension 1. Our example does not, however, yield a convex body K with ext K of positive 1 -dimensional Hausdorff measure although we believe that such a body exists.

Using deep measure-theoretic results of J.M.Marstrand(3), as extended by P. Mattila(5), we shall prove a very general result (Theorem 2) showing that a convex body K in E^{n} has ext ($K \cap L$) of dimension at most s for almost all of its k-dimensional sections L, if, and only if, the dimension of the ($n-k$) -skeleton of K is at most $n-k+s$.

Theorem 1. There exists, in E^{3}, an example of a convex body K almost all of whose 2-sections are polygons but ext K has Hausdorff dimension 1.

Theorem 2. K is a convex body in E^{n} with $\operatorname{ext}(K \cap L)$ of dimension at most sfor almost all of its k-dimensional sections L if, and only if, the dimension of the $(n-k)$-skeleton of K is at most $n-k+s$.

Definitions and notations. Let L_{n-k} be the set of $(n-k)$-dimensional subspaces of E^{n} and for each $L \in L_{n-k}$ let L^{\perp} denote the k-dimensional subspace perpendicular to L. Let A be a measurable subset of E^{n} and, for each $L \in L_{n-k}$, let $A(L)$ be the orthogonal projection of A into L. Let G be a family of k-flats which meet A and, for each $L \in L_{n-k}$ let $A(L, G)$ denote the set of points $x \in A(L)$ with $x+L^{\perp} \in G$. Then we may ascribe a measure ν_{k} to G by

$$
\nu_{k}(G)=\int H^{n-k}(A(L, G)) d \mu_{n-k}(L)
$$

where μ_{n-k} is the ordinary Haar measure on the Grassmanian L_{n-k} and H^{s} is the s-dimensional Hausdorff measure. To say that a property P holds for almost all k-sections of A is to mean, if G denotes those k-sections for which P does not hold,

$$
\nu_{k}(G)=0
$$

2. The construction of a convex body K in E^{3} which satisfies Theorem 1.

Let S be the intersection of the unit sphere with the positive octant of E^{3}, i.e.

$$
S=\left\{(x, y, z) \in E^{3}, x^{2}+y^{2}+z^{2}=1, x \geqslant 0, y \geqslant 0, z \geqslant 0\right\}
$$

and let S^{*} be the intersection of S with the plane $z=0$.

If $\mathbf{r} \in S$ let $\theta(\mathbf{r})$ denote the angle made by the orthogonal projection of \mathbf{r} into the plane $z=0$ with the positive direction of the x-axis. If $\mathbf{r}, \mathbf{t} \in S$ we shall say that \mathbf{r} lies to the left of t, and t lies to the right of \mathbf{r}, if $\theta(\mathbf{r})<\theta(\mathbf{t})$.

Divide S^{*} into four equal $\operatorname{arcs} S^{(4)}\left(i_{4}\right), i_{4}=1,2,3,4$, say. In the plane $z=\frac{1}{2}=z_{4}$, say, choose points

$$
\alpha^{(4)}\left(i_{4}\right)=\left(\sqrt{ } 3 \cos \theta / 2, \sqrt{ } 3 \sin \theta / 2, \frac{1}{2}\right), \quad \theta=3 \pi\left(2 i_{4}-1\right) / 2(4!)
$$

of $S, i_{4}=1,2,3,4$. Let $T^{(4)}\left(i_{4}\right)$ be the spherical isosceles triangle with base $S^{(4)}\left(i_{4}\right)$ and their vertex $\alpha^{(4)}\left(i_{4}\right), i_{4}=1,2,3,4$.

Next divide each of the $\operatorname{arcs} S^{(4)}\left(i_{4}\right)$ into five equal $\operatorname{arcs} S^{(5)}\left(i_{4}, i_{5}\right), i_{5}=1,2,3,4,5$. Take $S^{(5)}\left(i_{4}, 1\right)$ as base for an isosceles spherical triangle $T^{(5)}\left(i_{4}, 1\right)$ with the third vertex $\alpha^{5}\left(i_{4}, 1\right)$ of $T^{(5)}\left(i_{4}, 1\right)$ lying on the left hand edge of $T^{(4)}\left(i_{4}\right), i_{4}=1,2,3$. On each of the $\operatorname{arcs} S^{(5)}\left(i_{4}, i_{5}\right)\left(i_{4}=1,2,3 ; i_{5}=1,2,3,4,5\right)$ we construct an isosceles spherical triangle $T^{(5)}\left(i_{4}, i_{5}\right)$ congruent to $T^{(5)}\left(i_{4}, 1\right)$. Each of these triangles has a third vertex $\alpha^{(5)}\left(i_{4}, i_{5}\right)$ lying in the same plane $z=z_{5}$ say; $z_{5}>0$. We also choose the points $\alpha^{(5)}(4,1), \alpha^{(5)}(4,5)$ on the edges of $T^{(4)}(4)$ and on the plane $z=z_{5}$, with $\alpha^{(5)}(4,1)$ lying to the left of $\alpha^{(5)}(4,5)$.

Proceeding inductively, suppose now that we have constructed, for $n \geqslant 5$, equal $\operatorname{arcs} S^{(n)}\left(i_{4}, \ldots, i_{n}\right), 1 \leqslant i_{k} \leqslant k-1,1 \leqslant k \leqslant n-1$ and $1 \leqslant i_{n} \leqslant n$, on S^{*}.

Divide each arc $S^{(n)}\left(i_{4}, \ldots, i_{n}\right), 1 \leqslant i_{k} \leqslant k-1,1 \leqslant k \leqslant n$ into $n+1$ equal arcs $S^{(n+1)}\left(i_{4}, \ldots, i_{n+1}\right)$. Take $S^{(n+1)}(1, \ldots, 1)$ as base for an isosceles spherical triangle $T^{(n+1)}(1, \ldots, 1)$. The third vertex $\alpha^{(n+1)}(1, \ldots, 1)$ of $T^{(n+1)}(1, \ldots, 1)$ lies on the left hand edge of $T^{(k)}(1, \ldots, 1), k=4, \ldots, n$. On each of the $\operatorname{arcs} S^{(n+1)}\left(i_{4}, \ldots, i_{n+1}\right), 1 \leqslant i_{k} \leqslant k-1$, $1 \leqslant k \leqslant n, 1 \leqslant i_{n+1} \leqslant n+1$ we construct a copy $T^{(n+1)}\left(i_{4}, \ldots, i_{n+1}\right)$ of $\left.T{ }^{n+1}\right)(1, \ldots, 1)$ with third vertex $\alpha^{(n+1)}\left(i_{4}, \ldots, i_{n+1}\right)$. The points $\alpha^{(n+1)}\left(i_{4}, \ldots, i_{n+1}\right)$ lie in the plane $z=z_{n+1}>0,1 \leqslant i_{k} \leqslant k-1,1 \leqslant k \leqslant n, 1 \leqslant i_{n+1} \leqslant n+1$.

Also we define points $\alpha^{(n+1)}\left(i_{4}, i_{5}, \ldots, i_{\nu-1}, \nu, 1\right), \alpha^{(n+1)}\left(i_{4}, i_{5}, \ldots, i_{\nu-1}, \nu, n+1\right), 4 \leqslant \nu \leqslant n$, $1 \leqslant i_{k} \leqslant k-1,1 \leqslant k \leqslant \nu-1$ on the edges of $T^{(\nu)}\left(i_{4}, i_{5}, \ldots, i_{\nu-1}, \nu\right), 4 \leqslant \nu \leqslant n$ and lying in the plane $z=z_{n+1}$; we suppose that $\alpha^{(n+1)}\left(i_{4}, \ldots, i_{\nu-1}, \nu, 1\right)$ lies to the left of

$$
\alpha^{(n+1)}\left(i_{4}, \ldots, i_{\nu-1}, v, n+1\right)
$$

We may write down the above points explicitly:

$$
\alpha^{(n)}\left(i_{4}, \ldots, i_{n}\right)=\left(\left(1-z_{n}^{2}\right)^{\frac{1}{2}} \cos \phi,\left(1-z^{2}\right)^{\frac{1}{2}} \sin \phi, z_{n}\right)
$$

where

$$
\phi=\left(i_{4}-1\right) \frac{3 \pi}{4!}+\left(i_{5}-1\right) \frac{3 \pi}{5!}+\ldots+\left(i_{n-1}-1\right) \frac{3 \pi}{(n-1)!}+\left(2 i_{n}-1\right) \frac{3 \pi}{2(n!)}
$$

and

$$
z_{n}=\sin \frac{3 \pi}{2(n!)} /\left(\sin ^{2} \frac{3 \pi}{2(n!)}+3 \sin ^{2} \frac{\pi}{16}\right)^{\frac{1}{2}}
$$

for

$$
1 \leqslant i_{k} \leqslant k-1, \quad 1 \leqslant k \leqslant n-1, \quad 1 \leqslant i_{n} \leqslant n
$$

Also, for

$$
4 \leqslant \nu \leqslant n-1, \quad 1 \leqslant i_{k} \leqslant k-1, \quad 1 \leqslant k \leqslant \nu-1,
$$

we have

$$
\alpha^{(n)}\left(i_{4}, \ldots, i_{v-1}, \nu, 1\right)=\left(\left(1-z^{2}\right)^{\frac{1}{2}} \cos \theta_{1},\left(1-z^{2}\right)^{\frac{1}{2}} \sin \theta_{1}, z_{n}\right)
$$

where

$$
\theta_{1}=\left(i_{4}-1\right) \frac{3 \pi}{4!}+\ldots+(\nu-1) \frac{3 \pi}{\nu!}+\frac{3 \pi}{2(n!)}
$$

and

$$
\alpha^{(n)}\left(i_{4}, \ldots, i_{\nu-1}, v, n\right)=\left(\left(1-z_{n}^{2}\right)^{\frac{1}{2}} \cos \theta_{n},\left(1-z^{2}\right)^{\frac{1}{2}} \sin \theta_{n}, z_{n}\right),
$$

where

$$
\theta_{n}=\left(i_{4}-1\right) \frac{3 \pi}{4!}+\ldots+\nu \frac{3 \pi}{\nu!}-\frac{3 \pi}{2(n!)}
$$

We now suppose that the points $\alpha^{(n)}\left(i_{4}, \ldots, i_{n}\right)$ have been constructed inductively for $n=4,5, \ldots$; and, for fixed n, E_{n} denotes the set of all points $\alpha^{(n)}\left(i_{4}, \ldots, i_{n}\right)$ constructed above.

For a set F in E^{3} let con F denote its convex hull and $\overline{\operatorname{con}} F$ its closed convex hull. Let

$$
K_{m}=\overline{\operatorname{con}}\left\{(0,0,0) \cup\left(0,0, z_{m}\right) \cup \bigcup_{n=m}^{\infty} E_{n}\right\} \cap\left\{z \leqslant z_{m}\right\} \cap A^{+} \cap B^{+},
$$

where $A=\operatorname{con}\left\{(0,0,0),(1,0,0), \alpha_{1}^{(4)}\right\}, B=\operatorname{con}\left\{(0,0,0),(0,1,0), \alpha_{4}{ }^{(4)}\right\}$ and A^{+}, B^{+}are the closed half spaces determined by A and B respectively which contain the point ($1,1,0$).

The set of extreme points of K_{m} in the plane $z=0$ is

$$
E_{\infty}=C \cup D
$$

where

$$
\left.C=\left\{\cos \left(\sum_{r=4}^{\infty} \frac{3 \pi u_{r}}{r!}\right), \sin \left(\sum_{r=4}^{\infty} \frac{3 \pi u_{r}}{r!}\right), 0\right), 0 \leqslant u_{r} \leqslant r-2\right\}
$$

and D is the set of all points of the form $(\cos \theta, \sin \theta, 0)$
where

$$
\theta=\sum_{r=4}^{k-1} \frac{3 \pi u_{r}}{r!}+(k-1) \frac{3 \pi}{k!}, \quad 0 \leqslant u_{r} \leqslant r-2, \quad k=4,5, \ldots
$$

or

$$
\theta=\sum_{r=4}^{k-1} \frac{3 \pi u_{r}}{r!}+k \frac{3 \pi}{k!}, \quad 0 \leqslant u_{r} \leqslant r-2, \quad k=4,5, \ldots
$$

The set C is a Cantor-like set with Hausdorff dimension 1 but of zero 1-dimensional Hausdorff measure.

The set of extreme points A_{m} of K_{m} is $A_{m}=E_{\infty} \cup \bigcup_{n=m}^{\infty} E_{n} \cup(0,0,0) \cup\left(x_{m}, y_{m}, z_{m}\right)$ where the point $\left(x_{m}, y_{m}, z_{m}\right)$ is the intersection of the planes A, B and $z=z_{m}$.

Since $\cup_{n=m}^{\infty} E_{n}$ is countable, $\operatorname{dim} A_{m}=\operatorname{dim} C=1$ and $H^{1}\left(A_{m}\right)=0$, where $\operatorname{dim} A$ denotes the Hausdorff dimension of A.

We shall now describe the 2 -faces of K_{m}.
There will of course be the four faces $F_{1}=A \cap K_{m}, F_{2}=B \cap K_{m}, F_{3}=\{z=0\} \cap K_{m}$, $F_{4}=\left\{z=z_{m}\right\} \cap K_{m}$.

For a set A in E^{3} let aff A denote the affine hull of A. For $n=4,5, \ldots$, let

$$
\begin{aligned}
& \left.\Pi_{1}^{n}=\operatorname{aff}\left\{\alpha_{\left(i_{4}, \ldots i_{n}\right)}^{(n)}, \alpha_{\left(i_{4}, \ldots, i_{n}, \sigma\right)}^{(n+1)}\right), \alpha_{\left(i_{4}, \ldots, i_{n}, \sigma+1\right)}^{(n+1)}\right\}, \quad 1 \leqslant \sigma \leqslant n, \\
& \Pi_{2}^{n}=\operatorname{aff}\left\{\alpha_{\left(i_{4}, \ldots, i_{n}\right)}^{(n)}, \alpha_{\left(i_{4}, \ldots, i_{n}+1\right)}^{(n)}, \alpha_{\left(i_{4}, \ldots, i_{n}, n+1\right)}^{(n+1)}, \alpha_{\left(i_{4}, \ldots, i_{n}+1,1\right)}^{(n+1)}\right\}, \\
& \Pi_{3}^{n}=\operatorname{aff}\left\{\alpha_{\left(i_{4}, \ldots, i_{n-1}, n\right)}^{(n)}, \alpha_{\left(i_{4}, \ldots, i_{n-1}, n, 1\right)}^{(n+1)}, \alpha_{\left(i_{4}, \ldots, i_{n-1}, n, n+1\right.}^{(n+1)}\right\} \text {, } \\
& \Pi_{4}^{n}=\operatorname{aff}\left\{\alpha_{\left.i_{4}, \ldots, i_{n-1}, n\right)}^{(n)}, \alpha_{\left(i_{4}, \ldots, i_{n-1}+1,1\right.}^{(n)}, \alpha_{\left(i_{4}, \ldots, i_{n-1}, n, n+1\right.}^{(n+1)}, \alpha_{i_{4}, \ldots, i_{n-1}+1,1,1}^{(n+1)}\right\}, \\
& \Pi_{5}^{n}=\operatorname{aff}\left\{\alpha_{\left(i_{4}, \ldots, i_{v-1}, v, 1\right.}^{(n)}, \alpha_{\left(i_{4}, \ldots, i_{v-1}, \nu, n\right.}^{(n)}, \alpha_{\left(i_{4}, \ldots, i_{v-1}, v, 1\right.}^{(n+1)}, \alpha_{\left(i_{\iota}, \ldots, i v-1, n+1\right)}^{(n+1)}\right\} .
\end{aligned}
$$

We claim that the 2 -faces of K_{m} other than $F_{1}, F_{2}, F_{3}, F_{4}$ are of the form $K_{m} \cap \Pi_{i}^{n}$, $i=1,2,3,4,5, m$ sufficiently large. To show this, we need only show that there exists m_{0} such that, for $m \geqslant m_{0}$ and $n \geqslant m, \Pi_{i}^{n}$ does not lie below any member of $E_{j}, j \geqslant n+2$.

This is certainly true for $\Pi_{i}^{n}, i=2,3,4,5$, since the spherical triangle or spherical rectangle determined by the corresponding vertices $\alpha^{(n)}\left(i_{4}, \ldots, i_{n}\right)$ of $\Pi_{i}^{n} \cap K_{m}$ can be extended to S^{*} without containing any further vertex of K_{m} in its interior.

We shall show that this is also true of $\Pi_{i}^{n}, n \geqslant m \geqslant m_{0}$, by showing that Π_{i}^{n} does not meet the quarter circle,

$$
S_{n+2}=S \cap\left\{z=z_{n+2}\right\}, \quad n \text { sufficiently large. }
$$

Consider the plane $F_{\sigma, n}$ defined by $\alpha^{(n+1)}(1, \ldots, 1, \sigma), \alpha^{(n+1)}(1, \ldots, 1, \sigma+1)$ and α^{\prime}, where α^{\prime} is the point on the plane $z=z_{n}$ which makes the three points into an isosceles spherical triangle with $\alpha^{(n+1)}(1, \ldots, 1, \sigma), \alpha^{(n+1)}(1, \ldots, 1, \sigma+1)$ as base. Let $F_{\sigma, m}^{+}$denote that closed half-space determined by $F_{\sigma, m}$ which does not contain ($0,0,0$). Then it is enough to show that $F_{\sigma, m}^{+}$does not meet S_{n+2}, n sufficiently large; since Π_{1}^{n} meets S_{n+2} in a subset of $F_{\sigma, m}^{+}$.

Let $\left(x_{0}, y_{0}, z_{n+2}\right)$ be the point lying in $z=z_{n+2}$ and on the line through α^{\prime} and $\left(\alpha^{(n+1)}(1, \ldots, 1, \sigma)+\alpha^{(n+1)}(1, \ldots, 1, \sigma+1)\right) / 2$. Then $F_{\sigma, n}^{+}$does not meet S_{n+2} if

$$
\begin{equation*}
\left(x_{0}^{2}+y_{0}^{2}\right)^{\frac{1}{2}}>\left(1-z_{n+2}^{2}\right)^{\frac{1}{2}} . \tag{1}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \left(\alpha^{(n+1)}(1, \ldots, 1, \sigma)+\alpha^{(n+1)}(1, \ldots, 1, \sigma+1)\right) / 2 \\
& \qquad=\left(\left(1-z_{n+1}^{2}\right)^{\frac{1}{2}} \cos \frac{3 \sigma \pi}{(n+1)!} \cos \frac{3 \pi}{2(n+1)!},\left(1-z_{n+1}^{2}\right)^{\left.\frac{1}{2} \frac{1}{2} \sin \frac{3 \sigma \pi}{(n+1)!} \cos \frac{3 \pi}{2(n+1)!}, z_{n+1}\right)}\right. \\
& \text { and } \quad \alpha^{\prime}=\left(\left(1-z_{n}^{2}\right)^{\frac{1}{2}} \cos \frac{3 \sigma \pi}{(n+1)!},\left(1-z_{n}^{2}\right)^{\frac{1}{2}} \sin \frac{3 \sigma \pi}{(n+1)!}, z_{n}\right) .
\end{aligned}
$$

Consequently

$$
\begin{aligned}
& x_{0}=\left[\left(\frac{z_{n}-z_{n+2}}{z_{n}-z_{n+1}}\right)\left(1-z_{n+1}^{2}\right)^{\frac{1}{2}} \cos \frac{3 \pi}{2(n+1)!}-\left(\frac{z_{n+2}-z_{n+1}}{z_{n+1}-z_{n}}\right)\left(1-z_{n}^{2}\right)^{\frac{1}{2}}\right] \cos \frac{3 \sigma \pi}{(n+1)!} \\
& y_{0}=\left[\left(\frac{z_{n}-z_{n+2}}{z_{n}-z_{n+1}}\right)\left(1-z_{n+1}^{2}\right)^{\frac{1}{2}} \cos \frac{3 \pi}{2(n+1)!}-\left(\frac{z_{n+2}-z_{n+1}}{z_{n+1}-z_{n}}\right)\left(1-z_{n}^{2}\right)^{\frac{1}{2}}\right] \sin \frac{3 \sigma \pi}{(n+1)!}
\end{aligned}
$$

For (1) to be satisfied we must have

$$
\begin{equation*}
\left(z_{n}-z_{n+2}\right)\left(1-z_{n+1}^{2}\right)^{\frac{1}{2}} \cos \frac{3 \pi}{2(n+1)!}>\left(z_{n}-z_{n+1}\right)\left(1-z_{n+2}^{2}\right)^{\frac{1}{2}}+\left(z_{n+1}-z_{n+2}\right)\left(1-z_{n}^{2}\right)^{\frac{1}{2}} \tag{2}
\end{equation*}
$$

For n large,

$$
z_{n} \sim \beta \frac{3 \pi}{2(n!)} \quad \text { where } \quad \beta=\left(3 \sin ^{2} \frac{\pi}{16}\right)^{-\frac{1}{2}}
$$

So, using the approximation

$$
\left(1-z_{n}^{2}\right)^{\frac{1}{2}} \sim 1-\frac{1}{2} z_{n}^{2}, \quad n \text { large },
$$

we establish (2) and hence (1) for $n \geqslant m_{0}$ by seeing that the first-order terms cancel but that the dominating second-order term is $-z_{n+1} z_{n}^{2} / 2$ occurring in the right-hand side of (2).

So, if $K^{*}=K_{m_{0}}$, the 2 -faces of K^{*}, other than $F_{1}, F_{2}, F_{3}, F_{4}$, are of the form $K^{*} \cap \Pi_{i}^{n}$, $i=1,2,3,4,5, n \geqslant m_{0}$. In particular, for any $\epsilon>0$, there are only finitely many edges of K which meet the half space $z \geqslant \epsilon$.

Consider $K^{*} \cap\{z=0\}$. This is a convex 2 -dimensional set whose boundary consists of the line segments

$$
\Gamma_{1}=[(0,0,0),(1,0,0)], \quad \Gamma_{2}=[(0,0,0,(0,1,0)]
$$

the points of E_{∞} and line segments joining points of D. Let

$$
F=b d\left[K^{*} \cap\{z=0\}\right]-\left[\Gamma_{1} \cup \Gamma_{2}\right] \quad \text { and } \quad[\mathbf{x}, y(\mathbf{x})]
$$

be a line segment in F where \mathbf{x} and $y(\mathbf{x})$ belong to D. Then

$$
\mathbf{x}=(\cos \theta, \sin \theta, 0), \quad y(\mathbf{x})=(\cos \phi, \sin \phi, 0)
$$

where, for suitable choice of $k, u_{4}, \ldots, u_{k-1}, 0 \leqslant u_{j} \leqslant j-2, j=4, \ldots, k-1$,

$$
\begin{aligned}
& \theta=\sum_{r=4}^{k-1} \frac{3 \pi u_{r}}{r!}+(k-1) \frac{3 \pi}{k!}, \\
& \phi=\sum_{r=4}^{k-1} \frac{3 \pi u_{r}}{r!}+\frac{3 \pi}{(k-1)!}
\end{aligned}
$$

i.e. $\mathbf{x}, y(\mathbf{x})$ are the base vertices of the triangle $T^{(k)}\left(u_{1}, \ldots, u_{k-1}, k\right)$. The line segment [$\mathbf{x}, y(\mathbf{x})]$ is a 1 -face of K^{*} and it is the limit of 1 -faces defined by the points

$$
\alpha^{(\lambda)}\left(u_{1}, \ldots, u_{k}, 1\right), \quad \alpha^{(\lambda)}\left(u_{1}, \ldots, u_{k}, \lambda\right)
$$

as $\lambda \rightarrow \infty$.
We define the plane $\Pi_{k}(\mathbf{x})$ which passes through $[\mathrm{x}, y(\mathbf{x})]$ and which contains a translate of the z axis. Let $\Pi_{k}^{+}(\mathbf{x}), \Pi_{k}^{-}(x)$ denote the closed half spaces determined by $\Pi_{k}(\mathbf{x}),(0,0,0) \in \Pi_{k}^{+}(\mathbf{x})$. Then the extreme points of K^{*} lying in $\Pi_{k}^{-}(x)$ are of the form $\alpha^{(\lambda)}\left(u_{4}, \ldots, u_{k-1}, k, 1\right), \alpha^{(\lambda)}\left(u_{4}, \ldots, u_{k-1}, k, \lambda\right)$ for λ sufficiently large. Also the diameter of $K^{*} \cap \Pi_{k}(\mathbf{x})$ tends to zero as $k \rightarrow \infty$.
Let

$$
K=\bigcap_{\mathbf{x} \in D}\left(K^{*} \cap \Pi_{k}^{+}(\mathbf{x})\right)
$$

Then
(i) for any $\epsilon>0$, only finitely many edges of K meet the closed half space $z \geqslant \epsilon$.
(ii) An edge $[\mathbf{x}, y(\mathbf{x})]$ of K, as defined above, is contained in the 2 - face $K \cap \Pi_{k}(\mathbf{x})$. We show that K satisfies the conditions of Theorem 1.

Let L be a 2-plane meeting K. If L fails to meet F then L is a polygon by (i). If L meets F but L does not meet $C \cup D$ then $L \cap K$ is a polygon by (i) and (ii). So it is only if L meets $C \cup D$ that $L \cap K$ is (perhaps) a non-polygon. As $H^{1}(C \cup D)=0$, this happens in a set of measure zero. Hence Theorem 1 is proved.
3. The following result is due to P. Mattila (5).

Lemma. Let A be a subset of E^{n} which is measurable with respect to the s-dimensional Hausdorff measure H^{s} with $0<H^{s}(A)<\infty$. Then, for k a positive integer, $k<n$,
(i) If $n-k<s$ the Hausdorff measure $H^{n-k}(A(L))$ is positive for almost all orthogonal projections $A(L)$ of A into an $(n-k)$-subspace L of L_{n-k}.
(ii) If $n-k<s$ then at H^{s} almost all points x of A the following is true: for almost all k-flats L through $x, H^{s-(n-k)}(A \cap L)<\infty$ and the Hausdorff dimension of $A \cap L$ is equalto $s-(n-k)$.

Proof of Theorem 2. We suppose that the ($n-k$)-skeleton of K has dimension greater than t, where $t>n-k+s$. Then there is an $r, 0 \leqslant r \leqslant n-k$, such that the union of the r-faces of K has dimension greater than t.

Let L_{n-k} denote the Grassmanian of ($n-k$)-dimensional subspaces of E^{n} and μ_{n-k} denote the usual Haar measure on L_{n-k}. Since $r \leqslant n-k$, the orthogonal projection of an r-face of K into a ($n-k$)-subspace L is almost always, with respect to μ_{n-k}, an r-dimensional compact convex set. So we may pick a compact subfamily \mathscr{K}_{r} of the r-dimensional faces of K and a compact subfamily \mathscr{F} of L_{n-k} such that

$$
K_{r}^{*}=\bigcup_{F \in \mathscr{X}} \bigcup_{r} F
$$

has dimension greater than t; the orthogonal projection of any member of \mathscr{K}_{r} into any member of \mathscr{F} is an r-dimensional compact convex set and $\mu_{n-k}(\mathscr{F})>0$. So, if M is a k-flat meeting K_{r}^{*} and M is perpendicular to some member of \mathscr{F} then $M \cap K_{r}^{*}$ is contained within the extreme points of $K \cap M$.

By using the results of A.S. Besicovitch (1) we may select a compact subset K_{r} of K_{r}^{*} with

$$
0<H^{t}\left(K_{r}\right)<\infty .
$$

By the lemma:
(i) $H^{n-k}\left(K_{r}(L)\right)$ is positive for almost all orthogonal projections $K_{r}(L)$ of K_{r} into an ($n-k$)-subspace L of L_{n-k}.
(ii) For H^{t} almost all points x of K_{r} the following is true: for almost all k-flats L through $x, H^{t-(n-k)}\left(K_{r} \cap L\right)<\infty$ and the Hausdorff dimension of $K_{r} \cap L$ is equal to $t-(n-k)$. So, in particular, the Hausdorff dimension of $K_{r} \cap L$ is greater than s.

Now let G denote those k-flats arising in (ii) above and which are orthogonal to an $(n-k)$-subspace in \mathscr{F}. Then

$$
\nu_{k}(G)=\int_{\mathscr{F}} H^{n-k}\left(K_{r}(L, G) d \mu_{n-k}(L)\right.
$$

As $\mu_{n-k}(\mathscr{F})>0$ and $H^{n-k}\left(K_{r}(L, G)\right)>0$ for almost all $L \in L_{n-k}$ we conclude that $\nu_{k}(G)>0$.

However, if $E \in G, E \cap K_{r}$ has dimension greater than s and is a subset of the extreme points of $E \cap K$. So this contradicts the hypothesis that the extreme points of almost all k-sections of K have dimension of at most s.

So the ($n-k$)-skeleton of K has dimension of at most $n-k+s$.
Now suppose that the dimension of the ($n-k$)-skeleton of K is at most $n-k+s$, but that the dimension of ext ($K \cap L$) has dimension greater than s for a set of k-flats G of positive ν_{k} measure. So we may pick $L \in L_{n-k}$, say $L=E^{n-k}$ such that, if K^{*} is the ($n-k$)-skeleton of K,

$$
H^{n-k}\left(K^{*}\left(E^{n-k}, G\right)\right)>0
$$

As each $E \in G, E$ perpendicular to E^{n-k}, has ext $(E \cap K)$ of dimension greater than s, it follows, using results of Marstrand (4),

$$
\operatorname{dim}\left(K^{*}\right)>n-k+s ;
$$

contradiction.

REFERENCES

(1) Besicovitch, A. S. On the existence of subsets of finite measure of sets of infinite measure. Indag. math. 14 (1954), 339-44.
(2) Klee, V. L. Some characterisations of convex polyhedra. Acta Math. 102 (1959), 79-107.
(3) Marstrand, J. M. Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. London Math. Soc. (3) 4 (1954), 257-302.
(4) Marstrand, J. M. The dimension of Cartesian product sets. Proc. Cambridge Philos. Soc. 50 (1954), 198-202.
(5) Mattila, P. Hausdorff dimension, orthogonal projections and intersections with planes. Annales Academiae Scientiarum Fennicae Series AI Mathematica 1 (1975), 227-244.
(6) Schneider, R. Boundary structure and curvature of convex bodies. Proceeding of the conference in geometry, Siegen July 1978.
(7) Schneider, R. Problem 3, 'Konvexe Körper'. Oberwolfach May 1978.

