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1. Ttis a well-known result of V. L. Klee(2) that if a convex body K in E" has all its
k-dimensional sections as polytopes (k > 2) then K is a polytope.

In (6,7) E. Schneider has asked if any properties of a polytope are retained by K if
the above assumptions are weakened to hold only for almost all k-dimensional sections
of K. In particular, for 2-dimensional sections in £ he asked whether ext K is countable,
or, if not, is the 1-dimensional Hausdorff measure.of ext K zero?

Here we shall give an example (Theorem 1) of a convex body K in E3, almost all of
whose 2-gsections are polygons but ext K has Hausdorff dimension 1. Our example does
not, however, yield a convex body K with ext K of positive 1-dimensional Hausdorff
measure although we believe that such a body exists.

Using deep measure-theoretic results of J.M.Marstrand(3), as extended by
P. Mattila(s), we shall prove a very general result (Theorem 2) showing that a convex
body K in E* has ext (K n L) of dimension at most s for almost all of its k-dimensional
sections L, if, and only if, the dimension of the (n — k)-skeleton of K isat most n—k +s.

THEOREM 1. There exists, in E3, an example of a convex body K almost all of whose
2-sections are polygons but ext K has Hausdorff dimension 1.

TrEOREM 2. K i3 a convex body in E™ with ext (K n L) of dimension at most 8 for almost
all of its k-dimensional sections L if, and only if, the dimension of the (n — k)-skeleton of K
18 at most n—k+s.

Definitions and notations. Let L,_, be the set of (n — k)-dimensional subspaces of E»
and for each Le L,,_, let L* denote the k-dimensional subspace perpendicular to L. Let
A be a measurable subset of E* and, for each Le L,,_,, let A(L) be the orthogonal pro-
jection of 4 into L. Let G be a family of k-flats which meet 4 and, for each Le L,,_, let
A(L, G) denote the set of points z€ A(L) with z+ L*eG. Then we may ascribe a
measure v, to G by

(@) = [H**A(L, @) dp,,_1(L),
where p,,_, is the ordinary Haar measure on the Grassmanian L,_, and H® is the
s-dimensional Hausdorff measure. To say that a property P holds for almost all
k-sections of A is to mean, if G denotes those k-sections for which P does not hold,

v (G) = 0.
2. The construction of a convex body K in E® which satisfies Theorem 1.
Let 8 be the intersection of the unit sphere with the positive octant of E3, i.e.
8 ={(z,y,2)e B3 2*+y*+22=1,2> 0,y > 0,z > 0}
and let S* be the intersection of § with the plane z = 0.
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If re S let 6(r) denote the angle made by the orthogonal projection of r into the
plane z = 0 with the positive direction of the z-axis. If r, t€ S we shall say that r lies
to the left of t, and t lies to the right of r, if 6(r) < 6(t). »

Divide 8* into four equal arcs 89(s,),7, = 1, 2, 3, 4, say. In the plane z = } = z,,say,
choose points

(i) = (3 cos6/2, /3sin0/2,%), 6O = 3m(24,—1)/2(4!)

of 8, i, =1, 2, 3, 4. Let T®(¢,) be the spherical isosceles triangle with base 8¥(¢,) and
their vertex a®(i,), 7, = 1, 2, 3, 4.

Next divide each of the arcs §%(i,) into five equal arcs S®(i,,3;), 15 = 1,2, 3,4, 5.
Take 8®(z,, 1) as base for an isosceles spherical triangle 7'®(z,, 1) with the third vertex
ab(i,, 1) of T¥)(4,, 1) lying on the left hand edge of 7¥(3,), 7, = 1, 2, 3. On each of the
arcs 8®(iy, i5) (i, = 1,2, 3; 45 = 1,2, 3,4, 5) we construct an isosceles spherical triangle
T'®)i,,15) congruent to T®)(iy, 1). Each of these triangles has a third vertex a®(i,, ;)
lying in the same plane z = z; say; z; > 0. We also choose the points a®®(4, 1), a®(4, 5)
on the edges of 7¥(4) and on the plane z = z;, with /®(4, 1) lying to the left of «®(4, 5).

Proceeding inductively, suppose now that we have constructed for n > 5, equal
arcs 8™(i,, ...,%,), 1 < i, < k—1,1< Ic n—1and 1 €4, <n,onS*

Divide each arc S®™(i,,...,%,), 1 <k-1, 1 k < n into n+1 equal arcs
Setl(g, ..., 1,,.4). Take S®+D(1, ., 1) as base for an isosceles spherical triangle
T®+0(1, ..., 1). The third vertex a®+1(1, ..., 1) of T®+1(1, ..., 1) lieson theleft hand edge
of T%1,...,1), k=4,...,n. On each of the arcs S®+V(i,...,7,.,), 1 < i, < k-1,

<kgn, 1 €ty SN+ 1 we construct a copy T@®+0(4,, ...,4, ) of T(»+1)(1,..., 1)
Wlth third vertex a®+V(iy,...,4,,,). The points a®+V(s,,...,7,.,) lie in the plane
2=2,1>0,1<4,<k-1,1<k<n 1<, <n+l.

Also we define pomts a5, 8, .yt _g, ¥, 1), ™0 G 0, v, m+1),4 < ¥ < m,
1<y <k-1,1<k<sv-1 ontheedgesofT(”’(z4,z5,..., t,_1,7), 4 < v < nand lying in
the plane z = z,,,;; we suppose that a+3(z,,...,4,_;,v, 1) lies to the left of

a® (g, ... 5, v,n+1)
We may write down the above points explicitly:

™ iy, ..., 5) = ((1-23)E cos @, (1 —2%)¥sin @, 2,)

where ¢ =(i4—’1)%+(i5—1)35—7!’+...+(in_l—1)m—3_ﬂl—)!+(2in—1)§(§%
m\?
and 2 —-sm |)/( 5 ')+3sm 16)
for 1<, <k—-1, 1€kgs<n-1, 1<, <n
Also, for 4<rvn—1, 1<, <k-1, 1<k<gv-1,
we have (g, ..nyd,_q, v, 1) = (1 —2%) cos 0,, (1 —22)}sin b, 2,,),
3m 3w

. 3
where 01=(%4—1)717'*‘---+(V_1)“,,T+2(n1)’
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and M (iy, ..., 5,1, v,m) = (1 —23)}cosd,, (1—22)tsinb,, 2,),
. 3m 3m  3m
where 0n=(’&4—1)-4—!+...+llﬁ—-2—(nT.).

We now suppose that the points a®(i,, ...,%,) have been constructed inductively
for n = 4,5, ...; and, for fixed n, E, denotes the set of all points a™(¢,, ..., ,3,) con-
structed above.

For a set F in E3 let con F denote its convex hull and con F its closed convex hull-
Let

K,, = 5on{(0,0,0) U (0,0,z,) U U B} n{z < 2.} n 4% n BY,
n=m

where 4 = con {(0, 0, 0), (1,0,0),a%}, B = con{(0,0,0), (0,1,0), x,*} and A+, B+ are
the closed half spaces determined by 4 and B respectively which contain the point
(1,1,0).

The set of extreme points of K,, in the planez = 0 is

E.=CuD
@ «©
where C = cos( 3y , 8in E37ru, ,0),0<u, <r—2
rog T! r=g 7!
and D is the set of all points of the form (cos 8, sin 6, 0)
k-1
where 0="5 3% e—1)3T 0w, <r=2 k=45,..
r=4 r! ’C'
k-1
or S kT 0<u <r—2, k=4,5,....

‘ r=4 ! kU’
The set C is a Cantor-like set WIth Hausdorff dimension 1 but of zero 1-dimensional
Hausdorff measure.
The set of extreme points 4,, of K,,is 4,, = E, U U E, U (0, 0, 0)U (2, Y, 2,,) Where

n=m

the point (2,,, ¥, 2,,) 18 the intersection of the planes 4, B and z = z,,.

Since y®_,, E, is countable, dim4,, = dimC = 1 and HY(4,,) = 0, where dim 4
denotes the Hausdorff dimension of 4.

We shall now describe the 2-faces of K,,,.

There will of course be the four faces F;, = A n K,,, F, = Bn K,,, F; = {z =0} n K,,,
F,={z=2,}nK,.

For a set 4 in E3 let aff A denote the affine hull of 4. Forn = 4, 5, ..., let

07 = aff{o) i @ o) @i o o0} 1S 0O <,

g = &ﬁ{“fﬁ) in,“fﬁ) s An 1 “(z. ),i,, n+1) “Et., )t,.+1 1)}

H:'; = aﬁ{“(z. ..... ip_1, 1) “%z. » yina1, T, 1)? “Etﬁ ) in_x.n,n+1)}

g = aﬁ{“(n). P “fu), idpo1+1, D 05&,, )t" 17, D3 “i.,....t,, +1,1,0)

(. n+1
= aff {a(h i1, v, D a(ia). ooty v, n)s “ﬁi., ), fy—1,v,10 a%i., ), v_1, n+1)}'
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We claim that the 2-faces of K,, other than F,, F,, F,, F, are of the form K, n II7,
1 =1, 2,3, 4, 5, m sufficiently large. To show this, we need only show that there exists
mg such that, for m > m, and n > m, I17 does notliebelowany memberof E;, j > n + 2.

This is certainly true for II7, ¢ = 2,3, 4, 5, since the spherical triangle or spherical
rectangle determined by the corresponding vertices a™(i,, ..., %,) of II¥ n K,, can be
extended to §* without containing any further vertex of K,, in its interior.

We shall show that this is also true of IT?, n > m > m,, by showing that I1} does not
meet the quarter circle,

S,is=8n{z=2,,} nsufficiently large.

Consider the plane F, , defined by a®+1(1, ..., 1,0), a®t)(1,...,1, o+ 1) and &', where
o’ is the point on the plane z = z, which makes the three points into an isosceles
spherical triangle with a®*9(1, ..., 1, o), a®™+1(1, ..., 1,0+ 1) as base. Let F'},, denote
that closed half-space determined by F, .. which does not contain (0, 0, 0). Then it is
enough to show that F}  does not meet S, ,,, n sufficiently large; since II7 meets S, .,
in a subset of F} .

Let (g Yo, 2442) be the point lying in z = 2,,, and on the line through «' and
(D1, ..., 1,0) +a™+(1, ..., 1,0+ 1))/2. Then F} , does not meet S, ., if

N (@ + Y9t > (1-25,2) (1)
ow
(@+D(1, ..., 1,0) +a® (1, ..., 1,0+ 1))/2
= ((1 —22 1)} cos (n3:71r)! cos 2(n3-:-71)! , (1—2%,1)¥sin (n3:71r)! cos 2(n3:1)!, zn+l)

and a' = ((1 —22)% cos (n3+7;)!’ (1—22)}sin (n3-g717)! , zn).
Consequently

o= | (25 -t oon g () - feos 22

oo = | (3250 st com - (222 st in 220

For (1) to be satisfied we must have

3
(2n—2p42) (1 — zi+1)é cos 2(n—+1_)! > 2y —2p41) (1= sz_z)i + (Zp11 = Zn) (1 — )b (2)

For n large, 37 o\
2, ~ ﬂm where f = (3 sinzﬁ)
So, using the approximation
(1-22)4 ~ 1122, nlarge,
we establish (2) and hence (1) for n > m, by seeing that the first-order terms cancel but

that the dominating second-order term is —z, 2% /2 occurring in the right-hand side
of (2).
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So, if K* = K., the 2-faces of K*, other than F,, F,, Fy, F,, areof theform K* n II7,
1 =1,2,3,4,5, n > m, In particular, for any ¢ > 0, there are only finitely many edges
of K which meet the half space z > e.

Consider K* n {z = 0}. This is a convex 2-dimensional set whose boundary consists
of the line segments

I', =[(0,0,0), (1,0,0)], T, =[(0,0,0,(0,1,0)];
the points of E, and line segments joining points of D. Let
F=0bd[K*n{z=0}]-[T,uT,] and [x,y(x)]
be a line segment in ¥ where x and y(x) belong to D. Then
X = (cosd, sinf, 0), y(x) = (cos¢, sin¢, 0)

where, for suitable choice of k, u,, ..., u;_;, 0 S u; < j—2,5=4,...,k—1,

k=1 37m 37
6= +(k—1
= ( ) k"
k— l37ru 3
¢ = ,E: N (k—l)!

i.e. X, y(X) are the base vertices of the triangle T®(u,, ..., u,_,, k). The line segment
[x, y(x)] is a 1-face of K* and it is the limit of 1-faces defined by the points

a®(uy, ..., Ugy 1), aP(uy, ... Uy, A)
ag A - o0.

We define the plane IT,(x) which passes through [x, y(x)] and which contains a
translate of the 2z axis. Let I1;(x), II;(x) denote the closed half spaces determined by
I,(x), (0,0, 0) e IT#(x). Then the extreme points of K* lying in IIj (x) are of the form
a®(uy, ..., up_q, k, 1), a®(uy, ..., u,_y, k, A) for A sufficiently large. Also the diameter of
K* n Iz (x) tends to zero as k — o0.

Let
K= ﬂD(K* n I (x)).

Then

(i) for any ¢ > 0, only finitely many edges of K meet the closed half space z > €.

(ii) An edge [x,y(x)]of K, as defined above, is contained in the 2- face K n I, (x).
We show that K satisfies the conditions of Theorem 1.

Let L be a 2-plane meeting K. If L fails to meet F then L is a polygon by (i). If L
meets F but L does not meet C U D then L n K is a polygon by (i) and (ii). So it is only
if Lmeets C U Dthat L n K is (perhaps)anon-polygon. As H{C u D) = 0, this happens
in a set of measure zero. Hence Theorem 1 is proved.

3. The following result is due to P. Mattila (5).

Lemma. Let A be a subset of E™ which is measurable with respect to the s-dimensional
Hausdorff measure H® with 0 < H*(A) < 0. Then, for k a positive integer, k < n,

(i) If n—k < sthe Hausdorff measure H"¥(A(L)) is positive for almost all orthogonal
projections A(L) of A into an (n— k)-subspace L of L,_,
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(i) If n—k < sthen at H® almost all points x of A the following is true: for almost all
k-flats L through x, H*—"~*¥(A4 n L) < oo and the Hausdorff dimension of A n L isequalto
8—(n—k).

Proof of Theorem 2. We suppose that the (n — k)-skeleton of K has dimension greater
than ¢, wheret > n—k+s. Then thereisan r, 0 < 7 < n—k, such that the union of the
r-faces of K has dimension greater than ¢.

Let L,_, denote the Grassmanian of (n — k)-dimensional subspaces of E* and x,,_,
denote the usual Haar measure on L,,_,. Since » < n —k, the orthogonal projection of
an r-face of K into a (n— k)-subspace L is almost always, with respect to x,_;, an
r-dimensional compact convex set. So we may pick a compaet subfamily ¥, of the
r-dimensional faces of K and a compact subfamily & of L,_, such that

K}y= U F
FeXy
has dimension greater than ¢; the orthogonal projection of any member of ., into any
member of Z is an r-dimensional compact convex set and g, ,(F) > 0.So, if M is a
k-flat meeting KF¥ and M is perpendicular to some member of # then M n K} is con-
tained within the extreme points of K n M.

By using the results of A.S. Besicovitch (1) we may select a compact subset K, of

K¥ with
0 < H{(K,) < c0.
By the lemma:

(i) H**(K, (L)) is positive for almost all orthogonal projections K,(L) of K, into an
(n—k)-subspace Lof L, _,.

(ii) For Ht almost all points z of K, the following is true: for almost all k-flats L
through x, Ht-—% (K, n L) < oo and the Hausdorff dimension of K, n L is equal to
t—(n—k). So, in particular, the Hausdorff dimension of K, n L is greater than s.

Now let ¢ denote those k-flats arising in (ii) above and which are orthogonal to an
(n — k)-subspace in &F. Then

nl@) = f B HE (L, 6) o (D)

As pu, (F)>0 and H* K. (L,G)) > 0 for almost all LeL,_, we conclude that
v (G) > 0.

However,if F€@, B n K, has dimension greater than s and is a subsetof the extreme
points of £ n K. So this contradicts the hypothesis that the extreme points of almost
all k-sections of K have dimension of at most s.

So the (n — k)-skeleton of K has dimension of at most n—k + s.

Now suppose that the dimension of the (n — k)-skeleton of K is at most n — k + s, but
that the dimension of ext (K n L) has dimension greater than s for a set of k-flats G of
positive v, measure. So we may pick Le L,,_,, say L = E»* such that, if K* is the
(n — k)-skeleton of K,

Hr—(K*En*, @) > 0.
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As each E €@, E perpendicular to E*»—*, has ext (E n K) of dimension greater than s,
it follows, using results of Marstrand (4),

dim (K*) > n—k+s;
contradiction.

REFERENCES

(1) BesicoviTcH, A. S. On the existence of subsets of finite measure of sets of infinite measure.
Indag. math. 14 (1954), 339-44.

(2) KiLEE, V. L. Some characterisations of convex polyhedra. Acta Math. 102 (1959), 79-107.

(3) MarsTrAND, J. M. Some fundamental geometrical properties of plane sets of fractional
dimensions. Proc. London Math. Soc. (3) 4 (1954), 257-302.

(4) MarsTRAND, J. M. The dimension of Cartesian product sets. Proc. Cambridge Philos. Soc. 50
(1954), 198--202.

(5) MatTiva, P. Hausdorff dimension, orthogonal projections and intersections with planes.
Annales Academiae Scientiarum Fennicae Series AI Mathematica 1 (1975), 227-244.

(6) ScHNEIDER, R. Boundary structure and curvature of convex bodies. Proceeding of the con-
Jerence in geometry, Siegen July 1978.

(7) ScHNEIDER, R. Problem 3, ‘Konvexe Kérper’. Oberwolfach May 1978.



