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1. It is a well-known result of V. L. Klee (2) that if a convex body K in En has all its
fc-dimensional sections as polytopes (k > 2) then K is a polytope.

In (6,7) E. Schneider has asked if any properties of a polytope are retained by K if
the above assumptions are weakened to hold only for almost all ^-dimensional sections
of K. In particular, for 2-dimensional sections in E3 he asked whether ext K is countable,
or, if not, is the 1-dimensional Hausdorff measure of ext K zero?

Here we shall give an example (Theorem 1) of a convex body K in E3, almost all of
whose 2-sections are polygons but ext K has Hausdorff dimension 1. Our example does
not, however, yield a convex body K with ext K of positive 1-dimensional Hausdorff
measure although we believe that such a body exists.

Using deep measure-theoretic results of J. M. MarstrandO), as extended by
P. Mattila(5), we shall prove a very general result (Theorem 2) showing that a convex
body K in En has ext (K n L) of dimension at most s for almost all of its ^-dimensional
sections L, if, and only if, the dimension of the (n — &)-skeleton of K is at most n — k + s.

THEOREM 1. There exists, in E3, an example of a convex body K almost all of whose
2-sections are polygons but ext K has Hausdorff dimension 1.

THEOREM 2.Kisa convex body in En with ext (K n L) of dimension at most sfor almost
all of its k-dimensional sections L if, and only if, the dimension of the (n — k)-skeleton ofK
is at most n — k + s.

Definitions and notations. Let Ln_k be the set of (« — k)-dimensional subspaces of En

and for each L e Ln_k let Lx denote the ^-dimensional subspace perpendicular to L. Let
A be a measurable subset of En and, for each L e Ln_k, let A (L) be the orthogonal pro-
jection of A into L. Let G be a family of A-flats which meet A and, for each LeLn_k let
A(L,G) denote the set of points xeA(L) with x + L^eG. Then we may ascribe a
measure vk to G by

vk(G) = JH-"(A(L,G))d/in_k(L),

where fin_k is the ordinary Haar measure on the Grassmanian Ln_k and H" is the
3-dimensional Hausdorff measure. To say that a property P holds for almost all
fc-sections of A is to mean, if G denotes those ^-sections for which P does not hold,

vk(G) = 0.

2. The construction of a convex body K in E3 which satisfies Theorem 1.

Let 8 be the intersection of the unit sphere with the positive octant of E3, i.e.

S = { ( x , y , z ) e E 3 , x * + y2 + z * = l , x > 0 , y > 0 , z > 0 }

and let S* be the intersection of 8 with the plane 2 = 0.
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If r G S let d(r) denote the angle made by the orthogonal projection of r into the
plane 2 = 0 with the positive direction of the x-axis. If r, t e S we shall say that r lies
to the left of t, and t lies to the right of r, if 0(r) < 0(t).

Divide S* into four equal arcs S^fa), i4 = 1,2,3,4, say. In the plane z = £ = z4, say,
choose points

«<4>(i4) = (^3cos0/2, V3si

of *S, i4 = 1, 2, 3, 4. Let y(4)(*4) be the spherical isosceles triangle with base #(4)(i4) and
their vertex a<4>(t4), i4 = 1, 2, 3,4.

Next divide each of the arcs $(4)(i4) into five equal arcs #(5)(t4, i8), i5 = 1,2, 3,4, 5.
Take <S(5)(i4,1) as base for an isosceles spherical triangle y(5)(t4,1) with the third vertex
a5(i4,1) of T<5>(i4,1) lying on the left hand edge of T<4>(i4), i4 = 1,2, 3. On each of the
arcs #(5)(»4, i&) (i4 = 1, 2, 3; i5 = 1, 2, 3,4, 5) we construct an isosceles spherical triangle
T(5)(i4, i6) congruent to T(5)(i4,1). Each of these triangles has a third vertex a(5)(i4, i5)
lying in the same plane z = z6 say; z5 > 0. We also choose the points a(5)(4,1), a<s)(4, 5)
on the edges of T(i\4) and on the plane z = z5, with a(5)(4,1) lying to the left of a(5)(4,5).

Proceeding inductively, suppose now that we have constructed, for n ^ 5, equal
arcs S(n)(i4, ...,in), 1 «S ifc < & - 1, 1 < fc < n - 1 and 1 < im ^ », on <S*.

Divide each arc *S(7l)(i4, . . . , im), I < i f c < & - 1 , l ^ i ^ w into n + 1 equal arcs
S(-n+1\ii,...,in+1). Take /S(n+1)(l,..., 1) as base for an isosceles spherical triangle
T^+1\l,..., 1). The third vertex <*<»+«( 1,..., l)o{T^n+1\l,..., 1) lies on the left hand edge
of !T(fc)(l,.... 1), k = 4, ...,n. On each of the arcs S<"+1>(t4, . . . , i n + 1 ) , 1 < ik ^ )fc- 1,

1 < k <: n, 1 ^ in+1 < w+ 1 we construct a copy 7<n+1>(i4, ...,*n+i) o f ^(n + 1)( l , •••,!)
with third vertex a(7l+1)(i4, . . . , i n + 1 ) . The points a<n+1>(i4,...,in+1) lie in the plane
2 = zn+i > °» 1 <ik^k-l, 1 ^k ^n, 1 < i n + 1 < n+1.

Also we define points a(TC+1)(t4, i5, . . . , iv_v v,l), a<n+1>(i4, is,..., iv^, v, n + 1), 4 ^ v ^ n,
1 ^ ik ^ k—1, 1 ^ k < v - 1 on the edges of ^ ( i ^ t g , ...,»„_!, v), 4 ^ v ^ wand lying in
the plane z = zn+1; we suppose that a(7l+1)(f4 i,,^, v, 1) lies to the left of

We may write down the above points explicitly:

where

, 37T / / . „ 3n „ . „ n\i
and z_ = sin ——— /1 sin11 ——— + 3 sin1' — In 2 (w!) /V 2(TO!) 1 6 /

f o r 1 ^ ifc < & — 1, 1 ^ & < n — 1, l < t n ^

A I o n Ti"̂ T* ^. ^L 71 ^r /M .^^ • l < i *c fa ^_ l 1 ^r KA ^r it
x l l i ^ U j XV/i. TI ^^ %f ^ f& ~"~ X j X ^ (IJL ^ ft/ ^^ ± j X ^ ft/ ^ V

w e h a v e a< n ) ( i 4 , ...,iv_x, v, 1) = ((1 —s

w h e r e 0 , = ( i 4 —1) — + . . . + ( J> -1 )—T--
4! v!
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and ^ . . . . U M ) = ((l-4)4cos0n,(l-z2)*sin0n>zn),

,. .,3n 377 3n

where 6n = (»4- ! ) _ + ... + „ _ - _ .

We now suppose that the points a(n)(t4, .--.in) have been constructed inductively
for w = 4,5,. . . ; and, for fixed n, En denotes the set of all points a(n)(i4,..., ,in) con-
structed above.

For a set F in E3 let con!*1 denote its convex hull and con F its closed convex hull-
Let

Km = c^n"{(0,0,0) U (0,0, zj U \J En} (] {z < zm) n A+ n £ + ,

where 4 = con {(0,0, 0), (1,0,0), a<*>}, B = con{(0,0, 0), (0,1,0), a4
(4)} and A+, B+ are

the closed half spaces determined by A and B respectively which contain the point
(1,1,0).

The set of extreme points of Km in the plane z = 0 is

where C = |cos ( £ ^ p ) , sin ( £ ^ - r j , Oj , 0 ^ ur ^ r - 2!

and D is the set of all points of the form (cos d, sin 8, 0)

where 8= Y. —r1 + (k — 1)-;-?, 0 s£ u. < r — 2, fc = 4 , 5 , . . .

or ^ = S ^ r + * S , 0 < « r ^ r - 2 , ft = 4,5,....

The set C is a Cantor-like set with Hausdorff dimension 1 but of zero 1-dimensional
Hausdorff measure.

00

The set of extreme points Am of Km is Am = Ex U U K U (0, 0, 0) U {xm, ym, zj where

the point (xm, ym,zm) is the intersection of the planes A, B and z = zm.
Since U"=m ^ n is countable, dim^m = dimC = 1 and H^A^ = 0, where dim A

denotes the Hausdorff dimension of A.
We shall now describe the 2-faces of Km.
There will of course be the four faces Fx = A n Km, Fz = B n ^ m , F3 = {z = 0} n £"m,

^4 = {z = U n Km.
For a set 4̂ in E3 let aff̂ 4 denote the affine hull of A. For n = 4, 5,..., let

nr = aff{«({£...«,a^U..)).<:Z<n.
n2" = aff {«{#...,in), a((f4)...,
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We claim that the 2-faces of Km other than Fv F2, F3, Ft are of the form Km n Uf,
i = 1, 2, 3, 4, 5, TO sufficiently large. To show this, we need only show that there exists
m0 such that, for TO > TO0 and n ^ TO, U "does not lie below any member of Epj > n + 2.

This is certainly true for Flf, i = 2,3, 4, 5, since the spherical triangle or spherical
rectangle determined by the corresponding vertices a(n)(i4,..., in) of Yl? n Km can be
extended to S* without containing any further vertex of Km in its interior.

We shall show that this is also true of Ilf, n ^ TO ̂  TO0, by showing that II™ does not
meet the quarter circle,

Sn+2 = S n {z = zn+2}, n sufficiently large.

Consider the plane Fa<n defined by a(n+1)(l,..., l,cr), a(w+1)(l,..., 1, <r+ 1) and a', where
a' is the point on the plane z — zn which makes the three points into an isosceles
spherical triangle with a(7l+1)(l,..., 1, cr), a(n+1)(l,..., 1, <r+ 1) as base. Let F+m denote
that closed half-space determined by Fam which does not contain (0,0,0). Then it is
enough to show that F+<m does not meet Sn+2, n sufficiently large; since IT™ meets Sn+2

in a subset of F£m.
Let (x0, y0, zn+2) be the point lying in z = zn+2 and on the line through a! and

(a<m+»(l,..., l,cr) + a(re+1>(l,..., l,cr+ l))/2. Then F+>n does not meet Sn+2 if

(a«+ »?)*> (1-4+2)*- (1)
Now

1>(l,..., l,tr+ l))/2

307T 37T „ , . 3CT7T 377- \

^ ^ c o s ^ ^ , , ( l - z 2 n + 1 )*s in^ T i y i cos^ T T r ! ) zn+1j

and ^ j

Consequently

r te?) «'-*•]

For (1) to be satisfied we must have

For n large,
^ w h e r e ^ =

So, using the approximation

( l - 4 ) * ~ l-£4> »large,

we establish (2) and hence (1) for n ^ TO0 by seeing that the first-order terms cancel but
that the dominating second-order term is — zn+lz

i
n/2 occurring in the right-hand side

of (2).
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So, if K* = iJTmo> the 2-faces of K*, other than Flt F2, F5, Fit are of the form K* n II?,
i = 1, 2, 3, 4, 5, n ^ TO0. In particular, for any e > 0, there are only finitely many edges
of K which meet the half space z ^ e.

Consider K* n {z = 0}. This is a convex 2-dimensional set whose boundary consists
of the line segments

i \ = [(o, o,o), (i, o, o)], r2 = [(o, o,o, (o, I, o)];

the points of Em and line segments joining points of D. Let

F = bd[K* n {z = 0}] - [ I \ U T2] and [x, y(x)]

be a line segment in F where x and y(x) belong to D. Then

x = (cos<?, sin#, 0), y(x) = (cos0, s in^, 0)

where, for suitable choice of k,ut,...,uk_lt 0 ^ u, < j — %,j = 4 , . . . ,k — 1,

,r 3TT

r = 4 r! (fc-1)!

i.e. x,y(x) are the base vertices of the triangle jP(fc)(%,...,%_!, i) . The Une segment
[x, y(x)] is a 1-face of K* and it is the limit of 1-faces denned by the points

aw(«i, • • •, «fc> 1), a^ 'K. • • •, «fc, A)
as A -> oo.

We define the plane IIA.(x) which passes through [x,y(x)] and which contains a
translate of the z axis. Let Il^(x), 11^(x) denote the closed half spaces determined by
Ilfc(x), (0,0, 0) e IIJ(x). Then the extreme points of K* lying in 11 (̂x) are of the form
aW)(w4,..., uk_1, k,l), a(A)(%4 U/e-v >̂ ^) f° r ^ sufficiently large. Also the diameter of
K* n Ilfc (x) tends to zero as k -> oo.

Let
# = n ( * • n nfc+(x)).

XED

Then
(i) for any e > 0, only finitely many edges of K meet the closed half space z ^ e.
(ii) An edge [x, y{x)] of If, as defined above, is contained in the 2- face K n ITfc(x).

We show that if satisfies the conditions of Theorem 1.
Let L be a 2-plane meeting K. If L fails to meet F then L is a polygon by (i). If L

meets .F but L does not meet C [) D then £ n .K" is a polygon by (i) and (ii). So it is only
if L meets C U Dth&tL n K is (perhaps) a non-polygon. As H\C u D) = 0, this happens
in a set of measure zero. Hence Theorem 1 is proved.

3. The following result is due to P. Mattila (5).
LEMMA. Let Abe a subset of En which is measurable with respect to the s-dimensional

Hausdorff measure Hs with 0 < HS(A) < oo. Then, for k a positive integer, k < n,
(i) Ifn — k < 8 the Hausdorff measure Hn~k(A(L)) is positive for almost all orthogonal

projections A(L) of A into an (n — k)-subspace L of Ln_k.
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(ii) Ifn — k < s then at Hs almost all points x of A the following is true: for almost all
k-flats L through x,Hs~(n~k\A n L) < oo and the Hausdorffdimension of A n L is equal to
s — (n — k).

Proof of Theorem 2. We suppose that the (n — k) -skeleton of K has dimension greater
than t, where t > n — k + s. Then there is an r, 0 ^ r < n — k, such that the union of the
r-faces of K has dimension greater than t.

Let Ln_k denote the Grassmanian of (n — &)-dimensional subspaces of En and /in_k

denote the usual Haar measure on Ln_k. Since r < n — k, the orthogonal projection of
an r-face of K into a (n — &)-subspace L is almost always, with respect to /in_k, an
r-dimensional compact convex set. So we may pick a compact subfamily C%~T of the
r-dimensional faces of K and a compact subfamily 3F of Ln_k such that

K*=

has dimension greater than t; the orthogonal projection of any member of Jfr into any
member of ̂ "is an r-dimensional compact convex set and /in-k(^) > 0. So, if M is a
yfc-flat meeting K? and M is perpendicular to some member of & then M n Kf is con-
tained within the extreme points of K n M.

By using the results of A. S. Besicovitch(l) we may select a compact subset Kr of
J^wi th

0 < H*(Kr) < oo.
By the lemma:

(i) Hn~k(Kr(L)) is positive for almost all orthogonal projections Kr(L) of Kr into an
(n — &)-subspace L of Ln_k.

(ii) For W almost all points x of Kr the following is true: for almost all &-flats L
through x, Ht~^n~k) (Kr n L) < oo and the HausdorfF dimension of Kr n L is equal to
t — (n — k). So, in particular, the Hausdorff dimension of Kr n L is greater than s.

Now let O denote those &-flats arising in (ii) above and which are orthogonal to an
{n — &)-subspace in $P. Then

vk{G)= H-*(Kr(L,G)dpn_k{L).

As fin-ki-F') > 0 and Hn-k(Kr(L,G)) > 0 for almost all LeLn_k we conclude that
vk(Q) > 0.

However, i£EeG,E ft Kr has dimension greater than s and is a subset of the extreme
points of E n K. So this contradicts the hypothesis that the extreme points of almost
all i-sections of K have dimension of at most s.

So the (n — &)-skeleton of K has dimension of at most n — k + s.
Now suppose that the dimension of the (n — &)-skeleton of K is at most n — k + s, but

that the dimension of ext (K n L) has dimension greater than s for a set of A-flats G of
positive vk measure. So we may pick LeLn_k, say L = En~k such that, if K* is the
(n — k) -skeleton of K,

Hn-"(K*(En-k, G)) > 0.
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As each EeG,E perpendicular to En~k, has ext (E n K) of dimension greater than s,
it follows, using results of Marstrand(4),

dim (./£*) > n — k + s;
contradiction.
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