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Abstract

We compare the geometric concept of strict convexity of open subsets of K" with the analytic concept of
2-strict convexity, which is based on the defining functions of the set, and we do this by introducing the
class of 2A'-strictly convex sets. We also describe an exhaustion process of convex sets by a sequence of
2-strictly convex sets.
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1. Introduction

Let J(f(W) be the set of convex compact subsets of IR" with non-empty interior.
Then Jf(W), equipped with the Hausdorff metric, is a complete metric space. A set
in Jt'{W) is called strictly convex if its boundary does not contain any line segments.
Klee [1] proved that the subset of JV(W), which contains the sets which are not
strictly convex, is a set of first category in J(f(W). Zamfirescu [4, 3] improved this
result by proving that the above set is CJ-porous. In view of these results we can say
that the set of strictly convex sets is not only dense in J^(K"), but is a large set. On the
other hand, there is another concept of strict convexity—this is what we call 2-strict
convexity—defined in terms of a defining function of D. More precisely, if D c W
is a bounded open set with C2 boundary and p : W —>• R is a C2 function so that

D = {x e\5in : p(x) < 0}, dD = {x eW : p(x) = 0},
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and dp{x) ^ 0 for each x e 3D, then D is said to be 2-strictly convex if for every
x € 3D and every y = ( ? , , . . . , yn) e R" \ {0},

yj = 0 implies that > ——— ̂ t > 0.
dx; *—f dxjdxk

7 = 1 ' l<j.k<n '

This concept of 2-strict convexity plays an important role in complex analysis. For
example, 2-strict convexity affects the solvability of the inhomogeneous Cauchy-
Riemann equations in the domain, with Lipschitz estimates (see Range [2]). Thus, in
a sense, it is natural to ask what is the relation between the geometric and analytic
strict convexity. It is easy to show that if a set is 2-strictly convex, then it is also strictly
convex in the geometric sense. The converse does not hold however, and in order to
deal with this question we generalize 2-strict convexity and we obtain the concept of
2/V-strictly convexity. Then, using this, we state and prove Theorem 2.4. We will also
describe a process of exhausting an arbitrary convex set by 2-strictly convex sets with
smooth boundary. The main results are Theorems 2.4 and 3.5 and their corollaries,
and the various lemmas that we present, are needed in their proof. Although some of
the ideas involved in these lemmas are essentially known, we include them here for
completeness.

2. Strictly convex sets

Let us first recall the definition of defining functions. Let D c R" be a bounded
open set with C' boundary. A C 1 function p : IR" —*• R is said to be a defining function
of D if D = {x € R" : p(x) < 0}, dD = {x e R" : p(x) = 0}, and dp(x) ^ 0
for each x e 3D. If the boundary of D is assumed to be C°°, then we can choose
a defining function p : R" -> R to be C00 (see [2]). Also if the boundary of D is
assumed to be real analytic, then we can choose a C°° defining function p : R" —> R
which is moreover real analytic in a neighborhood of 3D.

We will also use the following notation about higher order differentials. Form e N,
x € R\ and y = (yu ..., yn) € R"

dmp{x){y) = > — y h • • • yJm,
^-^ dX;, • • • dXj

1</| 'i«<n Jl lm

defined in the case p is of class Cm. In particular, dip(x) = dp{x).

LEMMA 2.1. LetD c W be a bounded open set with C1 boundary and p : R" -»• IK
a C1 defining function of it. Then D is convex if and only ifd{p(x)(x — y) > Ofor
every x e 3D and y e D.
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PROOF. Assume that D is convex. Suppose that for some x e 3D and y e D,

dlP(x)(x-y)<0.

By the convexity of D, r(t) = tx + (1 - t)y e D, for t e [0, 1). Define

h{t) = p(r(t)), for r e [0, 1].

Then h is a C function, h(\) = p(x) = 0 and h(t) < 0 for t e [0, 1). Also

Therefore there is an e with 0 < s < 1 such that /j'(r) < 0 for t e [1 — e, 1]. It
follows that h is strictly decreasing in the interval [1 - e, 1]. So/i(l — e) > h(\) = 0,
which contradicts the fact that h(t) < 0 for t e [0, 1).

This proves that

(1) dtp(x)(x - y) > 0 for every x e 3D and y e D.

Now suppose that for some x e 3D and y e D, ^,p(x)(x — y) = 0. Since D is
assumed open, there is a 8 > 0 so that the ball

B(y, 8) = {y + su : s e (-8, 8) and u € K" with |u| = 1} C D.

Letw e K" with |w| = 1. Then y + su e D, for 5 e (-8,8). By(l) ,

rf,/o(jt)(jc-(y + j«)) >0.

Since d\p{x)(x - y) = 0, it follows that 5<iip(x)(M) < 0, for 5 e ( - 5 , 8). Hence
J]P(JC)(M) = 0, for every « e R " with \u\ — 1. This contradicts the assumption that
dp(x) ^ 0 and completes the proof that d\p(x){x - y) > 0 for every x e 3D and
y e D.

Conversely, assume that dtp(x)(x - y) > 0 for every x e 3D and >> e D. Let
y, z € D, y ^= z, and suppose that for some x e [y, z], * e 3D. Let us write

x — y + t(z — y) = z + s(y — z), for some t, s e (0, 1).

Then

di/o(jc)(;c - y) > 0 and d{p(x)(x — z) > 0,

which implies that

dlp(x)(z-y)>0 and rf,p(x)(y - z) > 0,

which is impossible.
Thus for x e [y, z], either J: e D or x <£ D. If x & D then pU) > 0. Since

p(y) < 0, there exists a r € (0, 1) so that p(y + r(x — y)) = 0. Then y + r(x — y) €
3D n [y, z], which has already been excluded. This proves that D is convex. •
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LEMMA 2.2. Let D c R" be a bounded open and convex set with C°° boundary,
p : R" -> R a C°° defining function ofD,xedD, and y e R". Ifdmp(x)(y) = Ofor
m = 1, 2, . . . , 2k, then d2k+ip(x)(y) = 0.

PROOF. Since dmp(x){sy) = smdmp{x)(y), for every m, we may assume that
\y\ = 1. If d2k+iP(x)(y) > 0, then there is an s > 0 such that d2k+[p(z)(y) > 0 for
z 6 B(x, s). By Taylor's theorem, forO < \t\ < s,

2k 1 . 1
p(x + ty) = /o(*) + Y^ —dmp(x)(ty) + d1Mp(z,){ty)

fit. \J.K ~j~ 1 ) .

-t2k+ldlk+lp(z,Ky),

m=\

1

for some z, e [x, x + ty] c BU, e). It follows that for t e (—e, 0), p(x + ty) < 0,
and therefore x + ty e D. Then, by Lemma 2.1,

dlp(x)(x -(x + ty)) = dlp(x)(-ty) > 0.

This is a contradiction since, by assumption, d\p(x)(y) = 0. This shows that
d2k+\p(x)(y) > 0 cannot hold.

Similarly we prove that the inequality d2k+\p(x)(y) < 0 cannot hold either, and
the equation d2k+ip(x)(y) — 0 follows. •

LEMMA 2.3. Let D c K" be a bounded open and convex set with C°° boundary,
p : W ->• R a C°° defining function of D, x edDandy e R". Ifdmp(x)(y) = Ofor
m = \,2,...,2k-\, andd2kp(x)(y) £ 0, then d2kp(x)(y) > 0.

PROOF. If t is the straight line t = {r(t) — x + ty : t e R}, then the intersection
£ n D is a line segment, that is, £ n D = [a, b] for some a, b e R", and * e [a, H
We consider the following cases.

(i) a = b. Then the function h(t) = p(r(t)) for t e R has the property h(t) > 0
for f ^ 0 and h(0) = 0. Thus h has a minimum at / — 0. Since

[ ^ for m = l , 2 , . . . , 2 * - l ,

it follows that hm(0) = d2kp(x)(y) >.0.
(ii) a / b and [a, 6] C dD. In this case p(jc + fy) = 0 for every t e [r, a], where

i,(j 6 R with x < o and 0 e [r, a]. Therefore,

d2k
 r

= -7^[P(X + ty)] = 0.
r=0

Thus this case cannot occur.
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(iii) a / b and [a, b] £ 3D. Since [a, b] c D = D U 3D, there is a t0 ^ 0
such that* + toy € D. By Lemma 2A,d]p(x)(x - (x + tQy)) — d\p{x){-toy) > 0.
However, this implies that d\p{tQy) / 0 and therefore this case cannot occur either.

This completes the proof of the lemma. •

DEFINITION. Let D c R ' b e a bounded open set with C°° boundary and p : R" -*
K a C x defining function of it. For* e 3D, let T(x) = {y e 1" : dlp(x)(y) = 0}
and

;P(*)(>-) = 0 , for j = 1, 2, . . . , 2m - 1,

The set D is called Ik-strictly convex at the point x if for every y e T(x) \ {0}, there
exists a positive integer m(y) < k such that y € S2m(v)(*), and & = max{m(y) :
y e 7"(JC)}. The set D is called 2N-strictly convex if for each x e dD, there is
&(*) < W such that D is 2/:(*)-stnctly convex at *, and N = max{k(x) : x € 3D}.
If D is 2-strictly convex, then N — 1, and therefore &(JC) = 1 for every x e 3D.
Hence forx e dD, m{y) = 1 for every y e 7(;c) — {0}, that is,

d2p(x)(y) > 0 when d]p(x)(y) = 0 and y / 0.

In some sense, the 2-strictly convex sets are the most strictly convex sets.

REMARK 1. For each fixed* e 3D, the sets T(x) and S2m(x) do not depend on the
defining function p, that is, they depend only on the set D. This can be justified as
follows. Let k : U." -»• R be another C00 defining function of D. Then there is a C00

function /z, defined in a neighborhood W of 3D, so that h > 0 and A. = /jp in W (see
[2, page 51]). Thus d^ixJiy) = h(x)d[p(x)(y) if p(x) = 0, and the independence
of T(x) of the defining function, follows.

To show that the sets S2m (x) are also independent of the defining function, it suffices
to prove that

dkk(x)(y) = h(x)dkp(x)(y), if x e 3D and
( 2 ) djp(x)(y) = 0 for y = l , 2 , . . . , * - l .

Let us prove this for k — 2. A straightforward computation shows that

d2p
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and therefore d2k(x)(y) = h(x)d2p(x)(y), if p(x) = 0 and dxp{x)(y) = 0.
The proof of (2) in the general case is a computation, which is simplified if we

consider the functions

l(t) = X(x + ty) and r(t) = p(x + ty), t e 1,

and observe that
d'r

r=0

dr
and djp(x)(y) = —

/=0

Thus (2) follows from the formula

dk(Xr) __
dtk ' ^ \jj dt>

where x(0 = h(x + ty).
Notice also that (2) implies that for each k,

{x edD: djp(x)(y) = 0 for j = 1 , . . . , k - 1}

= {JC € 3 D : djk(x)(y) = 0 for y = 1, . . . , * - 1}.

THEOREM 2.4. Let D C. W be a bounded open set with real analytic boundary.
The following are equivalent:

(i) D is connected and 2N-strictly convex, for some N e H.
(ii) D is convex and its boundary does not contain line segments.

PROOF, (i) implies (ii). Let Q. — {(x, y) e D x D : (1 - t)x + ty e D for every
t e [0, 1]}. Then £1 is an open subset of DxD. We claim that Q is also closed in DxD,
for otherwise there would exist a sequence (xv, yv) e £2, (xv, yv) —>• (x, y) e D x D
and (x, y) g Q. Then for some x e (0, 1), z — (1 — x)x + xy g D. Since xv —> x,
yv -> y, and (1 - t)xv + tyv e D, it follows that (1 - t)x + ty e D for t e [0, 1].
Hence h(t) = p{(\ - t)x + ty) < 0 for t e [0, 1], and h(x) = p(z) = 0, since
z edD. Throughout this proof, p : K" -> K is a C°° defining function of D which
is real analytic in a neighborhood of 3D. Thus h(t) takes its maximum at t — x, and
therefore h'{x) = dtp(z)(y — x) = 0. By assumption, there is an m < N such that

djp(z){y-x)=0, j = 1,2, ...,2m- 1, and d2mp{z)(y - x) > 0.

In other words,

A(-»(r) = 0 for y = 1,2, . . . , 2 / r a - 1 , and h(2m)(x) > 0,

and this is a contradiction since /i(0 takes its maximum at t = x. This proves that £2
is closed in D x D.
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Since D is assumed to be connected, it follows that £2 = D x D, that is, D is
convex.

Now we will show that 3D does not contain line segments. Assume, to reach a
contradiction, that [x, y] c 3D and x ^ y. Then

h(t) = p({\ -t)x+ty), for / € [0 ,1 ] ,

and therefore /z(m)(0) = dmp(x)(y - x) = 0 for every m e N. However, this
contradicts the assumption that D is 2yV-strictly convex.

(ii) implies (i). Let x e 3D and y e T(x) \ {0}. If d2mp{x){y) = 0 for every
m e N, then by Lemma 2.2, d2m+\p(x)(y) = 0 for every m e N. Since p is assumed
to be real analytic in a neighborhood of 3D,

p(x + />•) = p(*) + ^ d m p ( x ) ( r y ) = 0, for t e ( - e , e),
m = l

where e > 0. However, this implies that x + ty e 3D for t e (—e, e), that is, 3D
contains line segments, and this is a contradiction.

It follows that there exists /(y) so that d2ny)P(x)(y) / 0. Let m{y) be the smallest
integer with this property, that is, dimiy)p{x){y) ^ 0. If m(y) = 1 then, by Lemma 2.3,
d2p(x)(y) > 0. If m{y) > 2, then d2jp(x)(y) = 0 for 7 = 1, . . . , m ( » - 1, and
by Lemma 2.2, d2j+]p(x)(y) — 0 for j — 1 , . . . , m(y) — 1. Hence by Lemma 2.3,
^2m<.v)P(-0(v) > 0. This shows that for every y e T(x) \ {0} there is m(y) such that
v € S2m,vlU).

Let k(x) — sup{m(v) : y e T(x) \ {0}}. We will prove that k{x) < 00. To reach
a contradiction assume that k(x) = 00. Since m(y/\y\) = m(y) for y e T(x) \ {0},
there exists a sequence yv, e T(x) \ {0} with \yv\ = 1 and m(yv) -> 00. By the
compactness of the set {y : y e 7"(JC) \ {0} and |y| = 1}, we may assume that
y, - + v 6 T(x) \ {0} with \y\ = 1. Let m(y) be such that y e 52m(v)U). Then
^2m(v)PU)(.v) > 0, and therefore d2m(y)p(x)(yv) > 0 for v > v0, where v0 6 N. By
the choice of m(yv), m(yv) < m{y) for v > v0, which contradicts m(yv) —> 00.

So far we proved that for each x e 3D there is k(x) so that D is 2k(x)-strictly
convex at x. Let N = sup{k(x) : x e 3D). It remains to show that N < 00.
To reach a contradiction, assume that N = 00. By the compactness of 3D, there
is a sequence *„ e 3D such that xv -> x e 3D and ^(J:,,) -> 00. Let y,, 6 T(xv)
with lyj = 1 and k(xv) — mXi.(yv), where mXv(yv) is the m(yu)-integer associated to
y,, € T(xv). Passing to a subsequence, we may assume that yv —>• y with \y\ — 1.
Since yv e T(xv), dxp{xv)(y,) = 0, and therefore, by continuity, dtp(x)(y) = 0, that
is, y € T(x) \ {0}. Then d2mAy)p(x){y) > 0, and therefore d2mAy)p(xv)(yv) > 0, for
v > v0, where v0 e N. By the choice of m.,,.()'„), mXv(yv) < mx{y) for v > y0. and
consequently k(xv) = w,, (yy) < mx(y), which contradicts A:(x,,) —> 00.

This proves that JVeN and that D is 2/V-strictly convex. •
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COROLLARY 2.5. Let D C W be a bounded open set with real analytic boundary.
Then the following are equivalent:

(i) D is connected and 2N-strictly convex for some N e N.
(ii) For every x e 3D and y e D \ {x}, d\p{x)(x - v) > 0.

PROOF, (i) implies (ii). By Theorem 2.4, D is convex and its boundary does not
contain line segments. If y e D, d\p{x){x — y) > 0 by Lemma 2.1. If y e 3D, then
x + t {y - x) 6 D for every t e (0, 1). Then, by Lemma 2.1,

dip(x)(x - t(y - x)) = tdip(x)(x - y) > 0,

and (ii) follows.
(ii) implies (i). By Lemma 2.1, D is convex. We claim that 3D does not contain line

segments. If [x, y] c 3D with x ^ y, then p((l - t)x + ty)) = 0 for t e [0, 1], and
this would imply that d\(x)(x — y) = 0. Hence 3D does not contain line segments,
and (i) follows from Theorem 2.4. •

REMARK 2. By examining the proof of Theorem 2.4 we see that if 3D is of class
C2N and D is 2/V-strictly convex then D is convex and its boundary does not contain
line segments, that is, one direction of the theorem does not require real analyticity
of the boundary (C2N is enough). However, for the other direction real analyticity is
necessary as seen by the example of the set {(JC, y) e R2 : y > <p(x)}, where

if^O,
if JC=O,

examining its boundary locally at the point (0, 0).

3. Exhaustion of convex sets by 2-strictly convex sets

The notation A CC B that we will be using, is defined as follows: A c c B if and
only if there is a compact set E so that A c £ c 8 .

LEMMA 3.1. Let D C K" be an open bounded and convex set. Then there is a
continuous convex function k : D —> R such that for every a 6 R",

{x e D : k(x) < a} CC D.

PROOF. We may assume without loss of generality that 0 € D. Let us consider
Minkowski's functional

XD(x) = inf \t > 0 : -x e D\ ,
t
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defined for x e R". Then kD : R" -> R is a continuous convex function with
the properties D = {x e R" : kD(x) < 1}, dD = {.v 6 R" : A.D(JC) = 1}, and
K " \ D = {JC € R" :XD(x) > 1}. Define

X(x) = , for x e D.
1 -XD(x)

It is straightforward to check that the function A. : D -» K has the required properties.

•

LEMMA 3.2. Let f : K x G ^ R be a continuous function, where G c K" «
a closed rectangle and K is a compact set. Then for every e > 0 r/zere eraf points
%j e G and positive numbers cr j = 1, 2, . . . , M, such that

cjfix^j) - / f(x,y)dy <s for x e K.

More generally this holds in the case where G e l " is a compact set whose boundary
has measure zero.

PROOF. This follows from the uniform continuity of / and the definition of the
integral. •

LEMMA 3.3. Let D C R" be an open set and f : D —>• R. a continuous function.
Let us also consider <f> e C°°(R"), (j>>0, </>(*) = Ofor \x\ > 1, and f<p(x)dx = 1.
For sufficiently small e > 0, set De = [x e D : dist(x, 3D) > e} and define the
function

= f f(y)~n<P t^1) dy, x € De.e"

Then f£ is well-defined and C°° in De, and fe converges to f uniformly on compact
subsets of D as e -*• 0+.

Moreover, if the function f is convex in D, then fe is convex in De too.

PROOF. Firstly the existence of functions like <j> is quite standard, but we can also
give a specific example as follows: For t e R, set

| e x p [ - l / ( f + l ) 2 ]exp[- l / ( f - I)2] if \t\ < 1,

[0 i f | r | > l ,

and define <j>(x) = i/r(|x|2) and <j) = 4>/ f <j>dx.



58 Leoni Dalla and Telemachos Hatziafratis [10]

Now, since supp(</>) C B(0, 1),

/ « ( * ) = / fiy)-<l>\—L\dy, xeDe.

and therefore fe is well-defined for x e De.
Furthermore, if a e De, there is a sufficiently small r > 0, such that Bia, r) c D

and for * close to a,

feix) =
/y€fl(a,r)

It follows that / e is C°° in D£.
Next, changing the variable in the integral which defines fe, we obtain

= f
•/.vefi(0

fe(x) = f fix- sy)4>(y)dy, for x e De.
•/.vefi(0,l)

Also if A" is a compact subset of D, then the set Ke = {x € W : dist(x, K) < e} is a
compact subset of D, for e > 0 and sufficiently small.

By observing that the function f(u)<f>(y) for (M, y) e Ke x B(0, 1) is uniformly
continuous, and writing

fe(x) - f{x) = f [fix - ey) - f(x)]ij>(y)dy,
JyeB(0,\)

which follows from the assumption f </>dx = 1, we obtain that fe converges to / ,
uniformly on K, as e —> 0+.

Finally, it follows from Lemma 3.2 and the fact that the uniform limit of convex
functions is also convex, that each fe is convex, if / is a convex function. Indeed, fe

is a — uniform on compact subsets of De — limit of functions of the form

M

fix — syj)Cj, with cs > 0,

which are convex functions. •

A C2-function /x : W —> K, defined in an open set W c R", is 2-strictly convex if
for every x e W,

d2fMix)iy) = J^ T^yjyt > 0 for y e K" \ {0}.

In the following we will use the term strictly convex function to mean 2-strictly convex
function.
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LEMMA 3.4. Let /x be a strictly convex C2-function in a neighborhood of a compact
set ^ C R". Then there exists an e > 0 with the following property: If g is a
C2-function in a neighborhood of K and \d2g/dxjdxk\ < s on K for every j , k, then
the function ix + g is strictly convex in a neighborhood of K.

PROOF. Define

I d2 ( ) }

Y ^ y,yk : x e K and y e R " with |y| = 1 \ .
*—*' OXJOXL

\<j.k<n ' j
Then e > 0 and it is straightforward to check that it has the required property. D

THEOREM 3.5. Let D c R" be a bounded open and convex set, K c D a compact
convex subset, and U C Dan open neighborhood ofK. Then there exists a C°° strictly
convex function fx : D -> R such that for every a e R, {x e D : fi(x) < a] CC D,
and moreover fi < 0 on K and JX > 0 on D \ U.

PROOF. By Lemma 3.1, there is a continuous convex function k : D —>• R such
that for every a e R, {x e D : k(x) < a] CC D. Adding a negative constant to the
function k, if necessary, we may assume that k < 0 on K.

Now consider the set A" = {x e D : k(x) < 0}. Since K is assumed to be
convex, for every x e K' n (D \ U), there is an affine function ux (that is, a function
of the form ux(t) — c0 + c\t\ + • • • + cntn, with c, constants) so that ux(x) > 0 while
ux < 0 on K. By the compactness of the set K' D (D \ U), we may choose affine
functions uit ..., uM in such a way that max(Mi,.. . , uM) > 0 on K' D (D \ U) and
max(wi, . . . , uM) < 0 on K.

Setting M = max(A, « , , . . . , uM), we have u < 0 on K, u > 0 on D \ U, and of
course u is continuous and convex on D. Also, {x e D : u(x) < a} CC D for every
a € R.

In order to construct a C°° and strictly convex function with these properties, we
consider the sets D, = {JC e D : u(x) < j} for j = 0, 1, 2 , . . . , and we construct a
sequence of functions /xj, j — 1, 2, . . . , such that

(1) fij is C00 and strictly convex in a neighborhood of Dj,
(2) fij < Oon K,
(3) ix j > u on D,,and
(4) fij = fXj-t on Dj_2, for j > 2.

Then, setting fi = /z7 on Dj_2, we obtain the desired function.
First we construct fx,. Let us choose e > Osothatw + e < Oon A". By Lemma 3.3,

there is a C°° and convex function jfli in a neighborhood of D|, so that \jl\ — u\ < e/2
on D\. Then, for<5 > 0, the function / I I (JO + 5|JC|2 is strictly convex in a neighborhood
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of D\, and if <5 is sufficiently small, the function ii\(x) = /I|(x) + <$|x|2 + £/2 satisfies
the required conditions.

Next let us assume that the functions p ^ , . . . , /xy_i have been constructed for j > 2.
Since /ny-_, is C°° in a neighborhood of £>y-_i, there is a C°° function /!_,•_! : R" -» E
such that ju,_i = jiiy_i in a neighborhood of D;_, . By Lemma 3.3, there is a C00 and
convex function #7 in a neighborhood of D,, so that \Jlj — u\ < 1 /2 on D,. Let 8 > 0
be sufficiently small so that the strictly convex C°°

defined in a neighborhood of Dj, satisfies |/x; — u\ < 1/2 on Dj. Then (and in
combination with the definition of the sets Dj)

jlj < j - 3/2 on Dj-2 and Uj > j ~ 3/2 on Dj \ D,-_,.

Now let us take a C°° and convex function x • R -> R with x ( 0 = 0 for t < j - 3/2
and x' > 0 for t > j - 3/2. For example, we may choose

f exp [ - \/(s - j + 3/2)2] ds if ? > j - 3/2,

0 if t < j - 3/2.

Then x o jlj•. = 0 on D;_2 and x ° My > 0 on D7 \ D;_, . Moreover x ° M; is convex
in a neighborhood of Dj and strictly convex in a neighborhood of D, \ Dj_]. Here
we used the facts that /I; is strictly convex in a neighborhood of Dj, jlj > j — 3/2
on Dj \ D,_, and that x'U) > 0 for t > j — 3/2, to conclude that x ° My is strictly
convex in a neighborhood of D, \ D,_i.

Now we claim that for a sufficiently large C > 0, the function/x7 = /27_i+Cx°M;
satisfies the conditions (l)-(4). First let us observe that (4) and (2) are satisfied for
every C > 0. Indeed, since x ° My — 0 a n d My-i = My-i o n ^y-2. we obtain (4), and
(2) follows, from K c Do c Dj_2, because /z;_i satisfies (2). That (3) is satisfied
for C > 0, sufficiently large, follows from the facts that /Xy_!(= Mj_i) > u on £>j_i,
A" ° My > 0 on D7, and x ° My > 0 on £)y \ D7_i.

It remains to show that (1) also holds, if C > 0 and sufficiently large. Since the
function /2;_i(= M7_i) is strictly convex and x ° My is convex in a neighborhood
of Dj-i, it follows that IXJ is strictly convex in a neighborhood of Dj_t for C > 0.
Moreover, since x ° My ' s strictly convex in a neighborhood of Dj \ Dj_\, it follows
from Lemma 3.4, that

My

is also strictly convex in a neighborhood of Dj \ D 7 _ , , if C > Ois sufficiently large, so
that 1/C is small enough. Here we also used the fact that the second order derivatives
of the function jfx7_i are all bounded on a compact set.
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This completes the proof of the theorem. •

COROLLARY 3.6. Let D c U" be an open convex set. Then D can be exhausted by a
sequence of 2-strictly convex sets with C°° boundary, that is, there exists a sequence Dj
of 2-strictly convex sets with C~° boundary such that D} CC Dj+\ CC D and

PROOF. Assume that D is bounded. According to Theorem 3.5, there exists a C°°

and strictly convex function /J. : D —>• K such that for a e l ,

[x e D : n(x) < a} CC D.

However, the function /u, being strictly convex, has at most one critical point in D.
Therefore, the sets D}• = {x 6 D : /x(x) < j} have C°° boundary, for j e N and
sufficiently large, and, since // is a strictly convex function, they are 2-strictly convex.
Now it is clear that these sets have the required properties.

Finally if D is unbounded we may write D = U/Li Gj, where Gy CC Gj+i CC D
are open convex sets, and choose the 2-strictly convex sets Dj with C°° boundary such
that Gj CC Dj CC Gj+i. D
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