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Introduction

I Robust control is a very important part of stochastic control.

I In some sense it is the most realistic version of control theory:

I We wish to control a system but we do not know the exact
law of evolution of the state process.

I What we have is a family of laws (scenarios), and we want to
control the worst possible scenario.

I The best policy for the worst scenario is our robust control.

A. N. Yannacopoulos – Department of Statistics AUEB

Workshop on control theory and applications: In honour of Professor Emeritus G. Kalogeropoulos



Introduction A linear model Nonlinear systems

I This theme has become extremely useful in economics and
finance

I T. J. Sargent, Nobel Prize in Economics 2011 has devoted
most of his research in this field.

I Furthermore robust control has interesting connections with
game theory and in particular with stochastic differential
games.
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Control
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Robust control
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A linear model

I Consider a spatially extended economic system, located on a
discrete set D for simplicity, with state variable xn and with
state equation:

dxn = (
∑
m

anmxm +
∑
m

bnmum)dt +
∑
m

cnmdwm, n ∈ D

I Stochastic fluctuations are understood in the sense of the Itō
theory of stochastic integration.

I In compact form this can be expressed as

dx = (Ax + Bu) dt + Cdw

where A,B,C : `2 → `2 are linear operators, related to the
doubly infinite matrices with elements anm,bnm, cnm,
respectively.

I This can be understood as an infinite dimensional
Ornstein-Uhlenbeck equation on the Hilbert space `2.
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Figure: An illustration of the spatial economy.
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I The operator A gives us the interconnection of the various
economic units with each other.

I The operator B gives us how a control which is applied at site
m affects the state of the system at site n.

I The operator C is the covariance operator, and tells us how
uncertainty at site m affect the state of the system at site n.

I Of course in the finite dimensional case the model makes
perfect sense and all the above operators become matrices.

I Our model can be a model for e.g. a spatially extended fishery:
x is biomass at various compartments, u is harvesting rate.
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I Assume now that there is some uncertainty concerning the
“true” statistical distribution of the state of the system.

I This corresponds to a family of probability measures Q such
that each Q ∈ Q corresponds to an alternative stochastic model
(scenario) concering the state of the system.

I We restrict to measures Q ∼ P such that the Radon-Nikodym
derivatives dQ/dP are defined through an exponential
martingale of the type employed in Girsanov’s theorem,

dQ

dP

∣∣∣∣
FT

= exp

(∫ T

0

∑
n

vn(t)dwn(t)− 1

2

∫ T

0

∑
n

v 2
n (t)dt

)

where v = {vn}, n ∈ Z is an `2-valued stochastic process which
is measurable with respect to the filtration {Ft} satisfying the
Novikov condition.
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Girsanov’s theorem shows that the adoption of the family Q of
alternative measures concerning the state of the system, leads
to a family of different equations for the state variable

dxu,v
n = (

∑
m

anmxu,v
m +

∑
m

bnmum +
∑
m

cnmvm)dt +
∑
m

cnmdw̄m

where the superscipts u, v in xu,v := {xu,v
n } indicates that this

is the state of the system when the measure Q corresponding to
the “information drift” v = {vn} and the control procedure
u = {un} is adopted.

In compact form this equation becomes the infinite dimensional
Ornstein-Uhlenbeck equation

dxu,v = (Axu,v + Bu + Cv)dt + Cdw̄ .
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I For a fixed model v the decision maker solves the control
problem

min
u

EQ

[∫ ∞
0

e−rt(〈Pxu,v (t), xu,v (t)〉+ 〈Qu(t), u(t)〉)dt

]
subject to the dynamic constraints

dxu,v = (Axu,v + Bu + Cv)dt + Cdw̄ , xu,v (0) = x0.

where 〈·, ·〉 is the inner product in the Hilbert space `2 and
P,Q : `2 → `2 are symmetric positive operators, modelling
distance from a “target” and cost of control.

I This will provide a solution leading to a value function V (x0; v);
corresponding to the minimum deviation obtained for the model
Qv under the minimum possible effort.

A. N. Yannacopoulos – Department of Statistics AUEB

Workshop on control theory and applications: In honour of Professor Emeritus G. Kalogeropoulos



Introduction A linear model Nonlinear systems

I Being uncertain about the true model, the decision maker will
opt to choose this strategy that will work in the worst case
scenario; this being the one that maximizes V (x0; v), the
minimum over all u having chosen v , over all possible choices
for v .

I The robust control problem to be solved is of the general form

min
u

max
v

EQ

[∫ ∞
0

e−rt(〈(Pxu,v )(t), xu,v (t)〉+ 〈(Qu)(t), u(t)〉 − θ〈(Rv)(t), v(t)〉)dt
]
,

subject to the dynamic constraint

dxu,v = (Axu,v + Bu + Cv)dt + Cdw̄ , xu,v (0) = x0.

where θ > 0 and R = {rnm} is a symmetric positive operator.

I The third term corresponds to a quadratic loss function related
to the “cost” of model misspecification.
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Quadratic loss functions are rather common in statistical decision
theory, mainly on account of their connection with the
Kullback-Leibler entropy of the two measures.

Proposition

The robust optimization problem is related to a robust control
problem with an entropic constraint of the form

inf
u

sup
Q∈Q

EQ

[∫ ∞
0

e−rt(〈Px(t), x(t)〉+ 〈Qu(t), u(t)〉)dt

]
,

subject to H(P | Q) =

∫
Ω

ln

(
dQ

dP

)
dQ < H0

and the dynamic constraint.

θ plays the role of the Lagrange multiplier for the entropic
constraint.
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Connection with stochastic differential games

I One particularly intuitive way of viewing this problem is as a
two player game:

I The first player is the decision maker while the second player is
an adversarial agent (nature) who has “control” over the
uncertainty.

I The first player chooses her actions so as to minimize the
distance of the state of the system from a chosen target at the
minimum possible cost, whereas the second player is a
considered by the first player as a malevolent player who tries to
“mess up” the first players efforts.

I This results to the interpretation of solution the robust control
problem as a Nash equilibrium of this game.
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Hamilton-Jacobi-Bellman-Isaacs equation

I The solution of this stochastic differential game can be obtained
using a generalization of the Hamilton-Jacobi-Bellman equation
called the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation.

I This equation is a fully nonlinear PDE involving the generator
operator which for the Ornstein-Uhlenbeck process is

LV = 〈Ax + Bu + Cv ,DV 〉+ Tr(CC∗D2V )

I Using L we construct the Hamiltonian H : `2 × `2 × `2 → R
defined as

H(V ; x , u, v) = LV + 〈Px , x〉+ 〈Qu, u〉 − θ〈Rv , v〉

A. N. Yannacopoulos – Department of Statistics AUEB

Workshop on control theory and applications: In honour of Professor Emeritus G. Kalogeropoulos



Introduction A linear model Nonlinear systems

I We need to obtain the upper hamiltonian and lower
hamiltonians defined respectively as

H̄ := sup
u

inf
v
H(V ; x , u, v), H := inf

v
sup
u
H(V ; x , u, v).

I The upper solution to the game is the solution of the HJBI
equation

∂V

∂t
+ sup

u
inf
v
H(V ; x , u, v) = 0

I The lower solution of the game is the solution of the HJBI
equation

∂V

∂t
+ inf

v
sup
u
H(V ; x , u, v) = 0
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A version of the minimax theorem guarantees that:

Theorem

Suppose that

H(V ; x) := sup
u

inf
v
H(V ; x , u, v) = inf

v
sup
u
H(V ; x , u, v)

then a Nash equilibrium to this stochastic differential game exists
and it is given by the solution of the HJBI equation

∂V

∂t
+ H(V ; x) = 0

The optimal strategies are given by the maximizers and the
minimizers of supu infv H(V ; x , u, v) and are given as feedback
laws.
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The solution of the linear quadratic robust control problem is given
by the following:

Theorem

The robust control problem has a solution for which the optimal
controls are of the feedback control form

u = −Q−1B∗Hsymx , v =
1

θ
R−1C∗Hsymx ,

and the optimal state satisfies the Ornstein-Uhlenbeck equation

dx = (A− BQ−1B∗Hsym +
1

θ
CR−1C∗Hsym)x dt + CdW

where Hsym is the solution of the operator Riccati equation

HsymA + A∗Hsym − HsymEsymHsym − rHsym + P = 0

and Esym := 1
2 (E + E∗) is the symmetric part of

E := BQ−1B∗ − 1

θ
CR−1C∗.
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The solvability and the properties of the solution for the optimal
control problem is reduced to the solvability and the properties of
the solution of the operator Riccati equation.

Proposition

Let m = ||A|| defined as m = {sup〈Ax , x〉, ||x ||`2 = 1} and
assume that m < r/2.
Then, for small enough values of ||E|| and ||P|| the operator
Riccati equation

HsymA + A∗Hsym − HsymEsymHsym − rHsym + P = 0

admits a unique bounded strong solution.
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Nonlinear systems

I Consider now the nonlinear system

dx = (Ax + F(x) + Bu)dt + Cdw

where A,B : H→ H are linear operators and F : H→ H is in
general a nonlinear operator and C is the covariance operator.

I The robust form of the system, using the Girsanov theorem is

dx = (Ax + F(x) + Bu + Cv)dt + Cdw .

I The robust control problem thus becomes

min
u

max
v

EQ

[∫ ∞
0

e−rt(U(x(t)) + K(u(t))− T(v(t)))dt

]
subject to the nonlinear state equation where U, K, T are
assumed convex.
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Theorem

The Hamilton-Jacobi-Bellman-Isaacs equation associated with the
nonlinear robust control problem is the infinite dimensional nonlinear
PDE

〈Ax + F(x),DV 〉+ Tr(CC∗D2V ) + U(x)

− K♦(−B∗DV ) + T♦(C∗DV ) = rV

where K♦, T♦ are the Fenchel-Legendre transforms of K and T♦

respectively defined by

K♦(p) := sup
x∈H

[〈p, x〉 − K(x)].

Given a solution of this equation V : H→ R of sufficient regularity
the associated closed loop system is the nonlinear infinite
dimensional Ornstein-Uhlenbeck system

dx = (Ax + F(x)− DK♦(B∗DV (x)) + DT♦(C∗DV (x)))dt + Cdw
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The solvability of the infinite dimensional HBJI equation is
provided in the next theorem.

Theorem

Assume that

(i) either A is the generator of an analytic semigroup or that A is
the generator of a C0 semigroup such that
||Q−1/2 exp(tA)|| ≤ C t−δ for some δ ∈ (0, 1), t ≥ 0.

(ii) F is a locally Lipschitz nonlinear operator.

Then, there exists a critical discount factor rcr such that for r > rcr
the HBJI equation has a unique solution V ∈ D(L).
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What does the model offer?

I A robust control protocol, that may lead to optimal control of
spatially extended systems under uncertainty.

I This can be useful for a number of possible applications e.g.
environmental or urban economics.

I Having the feedback laws we may solve

dx = (Ax + F(x)− DK♦(B∗DV (x)) + DT♦(C∗DV (x)))dt + Cdw

to obtain the optimal state.

I A study of this equation may provide us with qualitative
information regarding the dynamics of the optimal system such
as if there are lattice sites in which we have large deviations
from our control objectives – A hot spot.
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Breakdown of control: Hot spots

I What may be even more important from the conceptual point
of view is the failure of the model, rather than its success!

I Regions of important breakdown of the model are called
hotspots.

I Hotspots may arise on account of different reasons
(I) Model misspecification effects are too pronounced at
certain units of the system (loss of convexity)
(II) The deviation of the controlled system from the desired
target presents spatial variability
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These hotspots may be characterized in detail using the linearized
feedback control system and detailed estimates for the values of the
parameters of the model for which such behaviour arise can be
found.

Proposition

Assume that V is a C 2 solution of the HJBI equation and that K♦

and T♦ are C 2.
The linearized dynamics are given by

dz = (Az + DF(x0)z − D2K♦ B∗D2V (x0)z +

D2T♦ C∗D2V (x0)z)dt + Cdw

The hot spots correspond to the unstable modes of this equation,
i.e., to eigenfuntions of the operator

R := A + DF(x0)− D2K♦ B∗D2V (x0) + D2T♦ C∗D2V (x0)

with positive eigenvalues.
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I The value functions and the Legendre-Fenchel transforms
satisfy convexity properties.

I This gives important information on the second derivatives
D2K♦, D2V (x0), D2T♦ and in particular assuming sufficient
regularity they are positive operators.

I This property allows us at least to obtain some a priori
estimates on the spectrum of the operator R and thus provide
values on the parameters of the model which allow the
generation of hot spot formation.

A. N. Yannacopoulos – Department of Statistics AUEB

Workshop on control theory and applications: In honour of Professor Emeritus G. Kalogeropoulos



Introduction A linear model Nonlinear systems

Conclusions

I Robust control is a very important field in stochastic control
theory, with interesting applications in economics.

I We have formulated and studied a robust stochastic control
problem for a general class of interconnected systems arising
in economic modelling and provided solutions in terms of the
Hamilton-Jacobi-Bellman-Isaacs equation.

I An interesting phenomenon is the breakdown of control which
leads to hot spot formation.
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