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Abstract

Ostwald ripening is the coarsening phenomenon caused by the diffusion and solidification process which occurs in the
last stage of a first-order phase transformation. The force that drives the system towards equilibrium is the gradient of
the chemical potential that, according to the Gibbs-Thomson condition, on the interface, is proportional to its mean
curvature. A quantitative description of Ostwald ripening has been developed by the Lifschitz-Slyozov-Wagner (LSW)
theory. We extend the work of Niethammer [16] which deals with kinetic undercooling in the quasi-static case to the
parabolic setting with temporally inhomogeneous driving forces on the solid-liquid interfaces. By means of a priori
estimates, local and global existence results for the parabolic Stefan problem, we derive a first order approximation
for the dynamical equations for the heat distribution and particle radii and then prove the convergence to a limiting
description using a mean-field equation.
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1. Introduction

1.1. The physical model

Ostwald ripening or coarsening [17] is a diffusion and solidification process occurring in the last stage of a first-
order phase transformation. Usually, any first-order phase transformation process results in a two phase mixture
with a dispersed (solid) second phase in a background (liquid) phase ([18, 19]). Initially the average size of the
dispersed particles is very small. Hence, the interfacial energy of the system is very large and the mixture is thus
not in thermodynamical equilibrium. The force that drives the system towards equilibrium is the gradient of the
chemical potential. According to the Gibbs-Thomson condition, on the interface between the two phases, the value
of this driving force is proportional to the mean curvature of the interface. As a result, matter diffuses from regions
of high curvature to regions of low curvature. This leads to the growth of large particles at the expense of small ones
which eventually shrink to vanish. The outcome of this process, known as the Ostwald ripening, is the increase of the
average particle size and the reduction of their number so that the mixture becomes coarser over time. A quantitative
description of this process was first developed by Lifschitz and Slyozov [13] and independently by Wagner [20] under
the assumption that the relative volume fraction of the dispersed phase is very small. The idea of the LSW theory is
to make use of the growth velocity of an isolated particle. The interaction between the particles is captured through
the average value of the background temperature field. This approach is thus called the mean field approximation.
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More specifically, the LSW theory produces an equation for n = n(R, t) the number density of the particles at time
t as a function of radius R. This function is shown to satisfy the following equation:

∂n(R, t)
∂t

+
∂

∂R

(
V(R, t)n(R, t)

)
= 0, (1)

where V is the growth rate of a particle of radius R:

V(R, t) =
1

R(t)

(
1

R(t)
−

1
R(t)

)
, (2)

and R(t) is the average particle radius:

R(t) =

∫
Rn(R, t)dR∫
n(R, t)dR

. (3)

Note that by definition, n(R, t)dR gives the number of particles at time t with radius in the range [R,R + dR]. Hence∫
n(R, t) dR is the total number of particles present at time t. The system (1) − (3) is analyzed in [13, 20]. It is argued

that there exist infinitely many self-similar solutions, but only one is believed to describe the typical behavior of the
system for large times. This is given by:

ns(R, t) �
1

t
4
3

G
(

R(t)

R(t)

)
where G(·) is some scaling function. (4)

Based on this, the following temporal laws are derived for the average radius and the total number of particles:

R(t) �
(
R

3
(0) +

4
9

t
) 1

3

and N(t) �
(
R

3
(0) +

4
9

t
)−1

. (5)

There have been many mathematical works concerning the above description. It is a nontrivial step to connect
statements (1) and (5) rigorously to the underlying diffusion and solidification process. Note that the above is a mean
field description — the velocity function V involves the average of all the radii. Hence the first mathematical task is
to understand under what realistic assumption this mean field model is justified. It turns out that this is true only when
the overall capacity of the solid particles vanishes. This is a much stronger condition than the requirement that the
volume fraction of the solid phase vanishes. The necessity of this will become clear from the estimates we derived in
the later sections.

Another important ingredient is the boundary conditions at the solid-liquid interphase. The most common ones
are the equilibrium Gibbs-Thomson condition and the more general kinetic undercooling. The purpose of this work
is to understand the effects coming from the presence of spatially inhomogeneous driving forces, in particular, at the
interfaces. The ultimate goal is to incorporate realistic stochastic driving forces. Even though we restrict our attention
to deterministic driving forces in this paper, we believe that our result can shed light on the plausible approaches and
the desired estimates to handle the stochastic case.

We now describe in detail the mathematical formulation of the above solidification phenomena.

1.2. Mathematical formulation — free boundary value problem
In this section, we describe the mathematical set-up for the diffusion and solidification process. In the following,

we consider the growth of the solid phase of a substance in an undercooled liquid phase of the same substance.
Assuming isotropic growth, one possible model is the following Stefan problem for the temperature field θ and the
solid-liquid-interface Γ, [8, 11]:

C∂tθ = K∆θ in ΩL

HV = −K∇θ · n on Γ

V = −M(θMσk + H(θ − θM)) on Γ,
(6)

where the liquid and solid phases are denoted by ΩL and ΩS = R3\ΩL respectively, while Γ = ∂ΩS is the solid-
liquid interface. Note that these sets are all time dependent. In the above, K is the thermal diffusivity, C is the heat
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capacity, θM is the melting temperature at a flat interface, H is the latent heat, σ is the surface tension, M is a mobility
coefficient, k denotes the mean curvature of Γ (which is positive for a ball), n is the outward normal to the solid phase,
and V is the normal velocity of the interface. The first interfacial condition on Γ, also known as the Stefan condition,
ensures local conservation of heat. The second interfacial condition, known as the kinetic undercooling, couples the
geometry of the interface with the evolution of the temperature in the liquid phase ΩL. The curvature term forces the
system to reduce the surface area of the interface Γ. But in the case of undercooled liquid, the second term gives a
growing tendency for the solid phase. In other words, these two terms compete against each other. The following
equilibrium condition

θMσk + H(θ − θM) = 0, (7)

formally derived by setting V = 0 or M = ∞ is called the Gibbs-Thomson law on the interface. It predicts that the
melting temperature is reduced for small particles. It is this effect which provides the barrier for nucleation of solid and
thus allows for the existence of undercooled liquid phase. Since during Ostwald ripening, the interfacial velocities
are relatively small, the Gibbs-Thomson condition is often used as an approximation of the general growth law.
Nevertheless, even for small interfacial velocities, the kinetic term in the boundary condition has a strong regularizing
effect on small particles.

System (6) is one type of free boundary value problems. There are many mathematical works that tackle these
problems. See for example [12, 3] for the existence of weak solution with the Gibbs-Thomson condition. A local
existence result of classical solution with kinetic undercooling is given by [4]. The key feature of the problem currently
undertaken is to describe the system under a large number of particles. This problem appears to be in the realm of
homogenization procedure. However, standard techniques of homogenization such as asymptotic expansion, two-
scale- or G− convergence do not suffice due to the highly nonlinear interaction between the heat distribution and the
solid-liquid interface. The intricacy is already seen in the more simplified, stationary, elliptic problems in perforated
domains. In this case, in order to derive the average equations that capture the behavior of the solutions in large
spatial scales, it is found out that the capacity of the holes is a crucial quantity. Most closely related is the work [5]
that considers Dirichlet problems in domains with holes in a similar setting. It proves that if the capacity does not
vanish, the type of the limit equation changes. In [6], the simpler Stefan problem with zero boundary condition for the
heat distribution at the solid-liquid interface was studied in which the solid phase is not allowed to melt completely.
This last mentioned work handles the case of finite capacity and hence it does not get a mean-field model in the limit.

The connection between (1)-(2) and (6) has been studied in [15] and [16]. The author is able to rigorously justify
the mean field description under the vanishing capacity assumption. The former work considers the Gibbs-Thomson
condition in both the quasi-static (K4θ = 0) and parabolic (C∂tθ = K4θ) case. The latter work considers the kinetic
undercooling condition in the quasi-static case. In both works, the vanishing capacity plays a crucial role.

A comment about the geometric set-up in the above two works. They both consider an isotropic approximation in
which the solid particles are disjoint spherical balls which are stationary in space, i.e. the center of the particles do
not move during the evolution. The works [1, 2, 9] remove this restrictive hypothesis by obtaining precise expressions
for the equations of the centers and also radii by taking into account the geometry of the solid particles. However, the
overall mean field description remains unchanged.

1.3. Motivation for the current work

The motivations of the current work are two folds. First we want to extend the work of [16] to the parabolic
setting. The cited work deals with kinetic undercooling in the quasi-static case. Even though the strategy of attack
follows closely to [15, 16], due to the combined presence of the parabolicity and the kinetic undercooling, some
additional terms appear in the derivation of energy estimates and the construction of sub- and super-solutions. These
terms require extra care in the analysis. Thus we feel that it is worthwhile to investigate more rigorously this case.

Second, we want to consider the effect of inhomogeneous driving forces both in the spatial and temporal setting.
Ideally, we would like to incorporate stochastic perturbations. Possible modification of (6) is the following:

C∂tθ = K∆θ + ξ(x, t) in ΩL

HV = −K∇θ · n on Γ

V = −M(θMσk + H(θ − θM)) + ζ(x, t) on Γ,
(8)
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where ξ and ζ are stochastic driving forces. A choice often used is some white noise in time and/or space (even
though this is far from clear from a modeling point of view). However, a general theory of stochastic perturbation
in moving boundary value problems, in particular the incorporation of white noise into the free boundaries, is not
currently available.

In order to understand the estimates involved, in the current paper, we restrict our attention to deterministic driving
forces which perturb in time the dynamics of the solid-liquid interface Γ. Specifically, we set ξ ≡ 0 and ζ to be some
time dependent function which can take on different values on separate parts of Γ. We believe the results obtained
here can lead to useful understanding to the ultimate, more general stochastic case.

An outline of this paper and the underlying method is in place. As mentioned before, we follow the overall strategy
of [15] and [16] fairly closely. The key technical step is the proof of the regularity in time of the particle radii near
their vanishing moments. This is obtained through the construction of appropriate sub- and super-solutions by use of
a maximum principle (Lemma 6.1). This is where our paper differs most from the cited works of Niethammer: we
need to dynamically adjust the ansatz in the construction in a careful manner (see Section 6). In addition, due to the
combined effects of parabolicity of the equation and the kinetic undercooling, additional terms involving the particle
radius regularity already appear in the derivation of the global energy estimates (see Section 5). This is not the case
in previous works.

The contents of this paper are as follow. Section 2 explains heuristically the origin of the mean-field model.
Section 3 sets up the rescaling regime for the spatial domain and particle sizes. After this, the local in time existence of
weak solution and global energy estimate are obtained in Sections 4 and 5. Section 6 provides the crucial construction
of sub- and super-solutions for the heat distribution which are used to prove the W1,p-regularity in time for the particle
radii. This then leads to the global in time existence of a solution, even after the vanishing of some particles. The
next two sections then provides accurate approximations for the heat distribution (Section 7) and the particle radius
dynamics (Section 8). The final Section 9 proves the limiting mean field description.

2. Mean field approximation

To simplify the analysis, it is convenient to non-dimensionalize system (6). Let

y→
H
σ

y, t →
θMKH
σ2 t, v :=

θM − θ

θM
, λ :=

CθM

H
, and β :=

K
MHσ

.

With the addition of some inhomogeneous driving force g(t) acting on the interface Γ, system (6) can be written as

λ∂tv = ∆v in ΩL

V = ∇v · n on Γ

v + g(t) = k + βV on Γ.
(9)

We will construct an approximate solution by making use of the idea that in the vicinity of a particle the solution
should look approximately like the one for a single particle. Hence, we first consider the single particle problem in
which the particle is a ball BR of radius R centered at the origin:

λ∂tv = ∆v in R3\BR

Ṙ = ∇v · n on ∂BR

βṘ = − 1
R + v + g(t) on ∂BR

lim
r→∞

v(r, t) = v∞(t).

(10)

Note that the far-field value v∞(t) is imposed as a boundary condition at infinity.
In the elliptic (quasi-static) case λ = 0, the solution of problem (10) at any time t > 0 can be explicitly given by

v(r, t) = v∞(t) +
R(t)

(
1 − R(t)v∞(t) − R(t)g(t)

)
r
(
β + R(t)

) , (11)

and Ṙ(t) = −
1 − R(t)v∞(t) − R(t)g(t)

R(t)
(
β + R(t)

) . (12)
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From the above formula, we see that the positivity of β indeed has a profound effect on the dynamics of particles,
in particular near the time when the radius is about to vanish:

• when R � 1, if β > 0, equation (12) becomes:

Ṙ ≈ −
1

Rβ
and hence R(t) ≈

(
C −

2t
β

) 1
2

, (13)

• while for β = 0, it becomes

Ṙ ≈ −
1

R2 and hence R(t) ≈ (C − 3t)
1
3 . (14)

Even though the solution forms (11) and (12) are for the single particle case in the quasi-static situation, we expect
them to be still a good approximation for multiple particles if λ � 1 and all the particles are far away from each other.
In this case, the overall solution v of (10) is roughly given by the linear combination of the individual solutions:

v(y, t) ≈ v∞(t) +
∑

i

Ri(t)
(
1 − Ri(t)v∞(t) − Ri(t)gi(t)

)
(
β + Ri(t)

)∣∣∣y − yi

∣∣∣ , (15)

where i is the index of the particle with center at yi and radius Ri.
To complete the picture, we need to specify the quantity v∞(t) and its dynamics. Note that it is a spatially constant

variable describing the heat distribution far away from the solid-liquid interfaces. This justifies the terminology mean-
field description. Due to the assumption of small volume fraction (to be prescribed later), the overall background
domain Ω is very close to the region ΩL occupied by the liquid phase. Hence, we have

v∞ ≈
1
|Ω|

∫
ΩL

v.

We now compute

∂t

∫
ΩL

v =

∫
ΩL

∂tv −
∫
∂ΩL

Ṙv =

∫
ΩL

1
λ

∆v −
∫
∂ΩL

Ṙv = −

∫
∂ΩL

1
λ
∇v · n −

∫
∂ΩL

Ṙv = −
1
λ

∫
∂ΩL

Ṙ −
∫
∂ΩL

Ṙv,

so that
∂tv∞ ≈ −

1
|Ω|λ

∫
∂ΩL

Ṙ −
1
|Ω|

∫
∂ΩL

Ṙv.

Since λ is small, the second term is negligible. Note that ∂ΩL =
⋃

i ∂B(yi,Ri), by (12) we then get

∂tv∞ ≈
1
|Ω|λ

∑
i

(
1 − Riv∞ − Rigi(t)

Ri(β + Ri)

)
4πR2

i . (16)

The purpose of the current work is to derive rigorously the solution formulae (12), (15) and (16) from the free
boundary value problem (9) and give a limiting homogenized description when the number of particles is large.

3. Rescaling of the problem

In this section, we introduce a spatial rescaling of the Stefan problem (9) as a preparation for the derivation of a
limiting description for a large number of particles.

Recall that the domain of the liquid phase is denoted by ΩL. We consider the case that the solid phase ΩS = Ω\ΩL

consists of a collection of N disjoint balls, i.e.

ΩS =

N⋃
i=1

B(yi,Ri) and Γ =

N⋃
i=1

∂B(yi,Ri). (17)
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We further assume that the centers of the balls do not move and the spherical shapes are preserved during the evolution
Strictly speaking, there is no solution satisfying the above assumptions. As in [15, 16], we replace the second condition
of (9) by the following integral condition:

Vi := V
∣∣∣
∂Bi

=
1
|∂Bi|

∫
∂Bi

∇v(y, t) · nds (where ds is the area element and Bi = B(yi,Ri).) (18)

Since Vi = Ṙi, ki := k|∂Bi =
1
Ri

, and gi := g
∣∣∣
∂Bi

, the third condition of (9) is transformed into

v = βṘi(t) +
1

Ri(t)
− gi(t) on ∂B(yi,Ri(t)). (19)

Note that now v is constant on each of ∂B(yi,Ri(t)). (See Remark 3.1(5) for a discussion).
To model the facts that the volume occupied by the solid phase is very small compared to the vessel’s volume (i.e.

Vol(∪iBi) � Vol(Ω)) while the inter-particle distances are very large compared with the particle size, we apply the
same spatial rescaling as in [15, 16]. We use δ and δa to denote the typical length scales for the inter-particle distance
and the particle radii and consider the regime 0 < δa � δ i.e. a > 1. Now introduce the following change of variables

x = δay and u(x, t) = v(y, t); (20)

Rδ
i (t) :=

Ri(t)
δa and Bδi (t) := B

(
xi, δ

aRδ
i (t)

)
= B

(
yi,Ri(t)

)
. (21)

Let further
N(t) :=

{
i : Rδ

i (t) > 0
}
, N(t) = |N(t)| , and tδi := sup

{
t : Rδ

i (t) > 0
}
, (22)

be the collection and number of indices of particles at time t and the maximum existence time of Bδi . With the above,
we define the following domains:

Ωδ := δaΩ; Ωδ
T := Ωδ × (0,T );

Ωδ
S (t) :=

⋃
i∈N(t) Bδi (t); Ωδ

S ,T :=
⋃

t∈(0,T )

(
Ωδ

S (t) × {t}
)
;

Ωδ
L(t) := Ωδ

∖
Ωδ

S (t); Ωδ
L,T :=

⋃
t∈(0,T )

(
Ωδ

L(t) × {t}
)
,

(23)

where T is some finite fixed time instant.
Now using the variables x and Rδ

i ’s, upon choosing δa = δ4 (see the Remark 3.1(6)), the system of equations (9),
adjoined with the Neumann condition on ∂Ωδ leads to the following initial boundary value problem (IBVP):

λut = δ8∆u, in Ωδ
L,T ,

u(x, t) + gi(t) =
1

Rδ
i (t)

+
β

4πδ4(Rδ
i (t))2

∫
∂Bδi (t)

∇u · nds, x ∈ ∂Bδi (t), t ∈ (0, tδi ),

Ṙδ
i (t) =

1
4πδ4(Rδ

i (t))2

∫
∂Bδi (t)

∇u · nds, t ∈ (0, tδi ),

Rδ
i (t) = 0, t > tδi , (24)

∇u · n = 0, on ∂Ωδ,

u(x, 0) = u0(x), in Ωδ
L(0),

Rδ
i (0) = Rδ

i0, for i ∈ N(0).

The main purpose of this paper is to give a limiting description of the system as δ converges to zero. The following
are some remarks about the scalings and assumptions used in our problem.

Remark 3.1. Assumptions.

1. For simplicity, the underlying ambient domain Ωδ is bounded with smooth boundary ∂Ωδ.
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2. With the current spatial rescaling, we are working in the regime that the particles are separated from each other
by distances of at least O(δ), i.e.

∣∣∣xi − x j

∣∣∣ ≥ Cδ for all i , j. Hence N(t) = O
(
δ−3

)
. A simple such setting is to

have the particles located on a regular three dimensional lattice of lattice length δ although this is not absolutely
necessary.

3. Motivated by the approximate solution (15), the initial data u0 takes the following “well-prepared” form:

uδ0 = uδ0∞ +
∑

i

(
1 − Rδ

i0uδ0∞ − Rδ
i0gi0

)
δ4Rδ

i0(
Rδ

i0 + β
)
|x − xi|

η

(
|x − xi|

δ

)
. (25)

In the above, uδ0∞ is some constant, and η is a smooth cut-off function such that η(r) ≡ 1 for 0 ≤ r ≤ 1
8 and

η(r) ≡ 0 for r ≥ 1
4 . Furthermore, the initial radii Rδ

i0’s satisfy

sup
i

Rδ
i0 ≤ Rδ

0 < ∞. (26)

4. The inhomogeneous driving forces gi’s satisfy:

sup
i

sup
t≥0

{
|gi(t)| ,

∣∣∣Rδ
i (t)ġi(t)

∣∣∣ } ≤ M < ∞. (27)

The above are sufficient to derive some a priori estimates. However, in order to have a limit equation in a closed
form, we do need to make the assumption that each gi is a function of the radius Rδ

i . This is stated as follows:

there exists a function G ∈ C1(R+ × R+) and a function h ∈ C1(R+) such that gi(t) = G(t,Rδ
i (t)) + h(t). (28)

(See Remark 9.3 for further discussion.)
5. As the typical size of the solid grains (δa) is assumed small compared with the mean distance between them (δ),

the direct interactions between the particles is negligible and the particles thus behave as if they were isolated.
The only interaction is through the mean field quantity uδ∞. Hence it is natural to assume that they remain
spherical and their centers do not move in space. On the other hand, models incorporating non-spherical shapes
and the particle motions have been considered, cf. [1, 2, 9], in which it is shown that these additional features
only constitute to higher order effects and hence they do not affect the mean field limit.

6. In order to have a well-defined limiting description, we need to work in the setting of small volume fraction for
the particles. A quantitative requirement is that the capacity needs to vanish. With the current rescaling regime,
the order of magnitude of the capacity of a particle in Ω is given by δa−3. Hence, we take a = 4. In this case the
capacity is of order δ and the volume fraction is of order δ9. (See [5] for a model when the capacity does not
vanish.) The choice of the scaling λ = δ9 is to ensure that the system is close to being quasi-static. This will be
clear from the energy type identities derived in Section 5. (See the discussion in page 15 and Corollary 5.5).

The main theorems proved in this paper are:

• Theorem 6.3: existence of a global solution for (24) and regularity of particle radii near their vanishing moment.

• Theorem 9.2: mean field description of the system as the number of particles goes to infinity (δ −→ 0). This
is given by (12), (15) and (16) which govern the dynamics of the particle size, the mean field variable and the
profile of the heat distribution.

The overall strategy is briefly explained here. First we extend the local in time solution to globally existing
solution, i.e. beyond the times when some balls disappear. This is established by the a priori estimates coming from
integral inequalities (Section 5) and maximum principle (Section 6). When both λ and β are positive, we need to
control the appearing terms involving Rδ

i Ṙδ
i uniformly in δ and globally in time, even after some balls have vanished.

This makes it necessary to estimate the growth and decay in time for the radii Rδ
i (t)’s. First we analyze the single

particle case. The important issue is to investigate the solution as R −→ 0+ for δ � 1. The main conclusion is

that |RṘ| < C < ∞ and lim
R→0+

RṘ = −
1
β

(these results state the regularizing effect of kinetic undercooling) and thus
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R ∈ W1,p([0,T ]) for any 1 ≤ p < 2. This is established by constructing proper sub- and super-solutions. It is first done
for the case R � 1 and Ṙ < 0. If R > O(1), we show that

∣∣∣Ṙ∣∣∣ is uniformly bounded. Moreover, we prove that once R(t)
reaches below some small value, Ṙ will become negative and will stay negative until the extinction time of R(t). We
then employ the previous analysis to analyze the multiple particle case. The extension of solution beyond vanishing
time follows by the energy estimates from Proposition 5.3 and standard parabolic theory.

In the second step, we derive the limiting equation for the dynamics of the mean field variable and radii as δ −→ 0.
We produce a first order approximation for the heat distribution uδ in Section 7. In particular, we prove that far away
from the particle boundaries, the heat distribution uδ(·, t) is close to the mean field variable uδ∞(t) which satisfies the
following form:

∂tuδ∞(t) = 4πδ3
∑

i

(
1 − Rδ

i (t)uδ∞(t) − Rδ
i (t)gi(t)

) Rδ
i (t)

Rδ
i (t) + β

.

We then establish in Section 8 the following result which gives the dynamics of the radii as δ −→ 0: the radii satisfy
the following dynamical equation in some weak sense:

Ṙδ
i ≈ −

1 − uδ∞Rδ
i − giRδ

i

Rδ
i (Rδ

i + β)
.

Finally in Section 9, we provide a limiting description of uδ and Rδ
i ’s as δ → 0. In order to obtain an equation which

is closed in the limit, we do need to invoke the assumption (28) on the form of the inhomogeneous forces gi’s.
A Note on Notation. For the next few sections, we will only work with the rescaled variables x and the function u.

Hence for simplicity, we suppress the super-script δ from all the symbols: Ωδ, Ωδ
L, Bδi , Rδ

i , uδ0∞, uδ∞ and so forth. They
will be recovered in Section 9. Recall that the number of particles N(t) is of order O(δ−3). In the following, n refers
to the outward normal to the solid phase ΩS (t) =

⋃
i Bi(t). We will use M or M(T,Ω) to denote general constants that

might depend on the time interval [0,T ] and the domain Ω but not on δ.

4. Local in Time Existence and Uniqueness

In order to formulate the existence and uniqueness result for the system of equations (24), we first introduce some
function spaces. In the following, T is some fixed positive time (which does not depend on δ).

• For f : [0,T ] −→ R, denote ‖ f ‖L2(0,T ) :=
( ∫ T

0 | f (t)|2dt
)1/2

. Consider the following usual Lp and Sobolev
spaces on (0,T ):

L2(0,T ) =
(

f : ‖ f ‖L2(0,T ) < ∞
)
, L∞(0,T ) =

(
f : sup

t∈[0,T ]
| f | < ∞

)
,

H1(0,T ) :=
{
f : ‖ f ‖L2(0,T ) +

∥∥∥∥∥d f
dt

∥∥∥∥∥
L2(0,T )

< ∞
}

and ‖ f ‖H1(0,T ) =

(
‖ f ‖2L2(0,T ) +

∥∥∥∥∥d f
dt

∥∥∥∥∥2

L2(0,T )

) 1
2

.

• Let D(t) be a time dependent domain with smooth boundary. We define DT =
⋃

t∈[0,T ]D(t), while for

(u(·, t) : D(t) −→ R)0≤t≤T , we denote: ‖u‖L2(D(t)) :=
(∫
D(t) |u(·, t)|2 dx

) 1
2 .

H1(D(t)) =
{
u : ‖u‖L2(D(t)) + ‖∇u‖L2(D(t)) < ∞

}
, ‖u‖H1(D(t)) :=

(
‖u‖L2(D(t)) + ‖∇u‖L2(D(t))

) 1
2 ;

L∞
(
0,T ; L2

(
D(·)

))
:=

{
u : sup

t∈[0,T ]
‖u‖L2(D(t)) < ∞

}
, ‖u‖L∞(0,T,L2(D(t))) := sup

t∈[0,T ]
‖u‖L2(D(t)) ;

L2
(
0,T ; H1

(
D(·)

))
:=

(
u :

∫ T

0

[
‖u(·, t)‖2L2(D(t)) + ‖∇u(·, t)‖2L2(D(t))

]
dt < ∞

)
;

and ‖u‖L2(0,T,H1(D(·))) :=
(∫ T

0

[
‖u(·, t)‖2L2(D(t)) + ‖∇u(·, t)‖2L2(D(t))

]
dt

) 1
2

.
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The usual inner product on L2(D(t)) is denoted by
(
· , ·

)
D(t)

. For the later usage in this paper, the domain D(·) in the
above definition is usually taken to be ΩL(·) or simply the ambient domain Ω. For simplicity in notation, we will often
omit the subscript in the norms if it does not cause any confusion.

Definition of Weak Solution. Now we derive the weak formulation of the solution for our governing system (24).
Let ξ = ξ(·, t) : ΩL −→ R be such that for all t > 0, ξ equals a constant on all the ∂Bi’s. Multiplying the parabolic
equation of (24) by ξ and integrating over ΩL(t), then by means of the boundary condition on ∂Ω and ∂Bi’s, we have

0 =(λut, ξ)ΩL(t) − δ
8(∆u, ξ)ΩL(t) = (λut, ξ)ΩL(t) + δ8(∇u,∇ξ)ΩL(t) + δ8

N∑
i=1

∫
∂Bi

ξ∇u · nds

=(λut, ξ)ΩL(t) + δ8(∇u,∇ξ)ΩL(t) + δ8
N∑

i=1

ξ
∣∣∣∣∂Bi

∫
∂Bi

∇u · nds.

(29)

Next multiply the second equation of (24) by ξ
∣∣∣∣
∂Bi

and integrate on ∂Bi to get∫
∂Bi

(
u(x, t) + gi(t) −

1
Ri(t)

)
ξds − βδ4

∫
∂Bi

ξ∇u · nds = 0. (30)

Replacing the term ξ|∂Bi

∫
∂Bi
∇u · nds in (29) by (30) leads to

λ(ut, ξ)ΩL(t) + δ8(∇u,∇ξ)ΩL(t) +
δ4

β

N∑
i=1

∫
∂Bi

ξ
(
u −

1
Ri(t)

)
ds +

δ4

β

N∑
i=1

gi(t)
∫
∂Bi

ξds = 0.

The above leads to the following definition of solution before the first vanishing moment (t∗) of any ball. Let
T > 0 be a positive number. A collection of functions u : ΩL(·) −→ R and {Ri : [0,T ] −→ R+}i∈N is called a weak
solution of (24) with initial data u0 and

{
Ri0

}
i∈N

’s if (i) u ∈ L2
(
0,T ; H1(ΩL(·))

)
; (ii) ut ∈ L2

(
0,T ; H−1(ΩL(·))

)
; (iii)

u
∣∣∣∣
∂Bi

is a constant; (iv) Ri ∈ H−1([0,T ])
⋂

L2([0,T ]) and they satisfy the following identity:

∫ T∧t∗

0

−λ(u, ξt)ΩL(t) + δ8(∇u,∇ξ)ΩL(t) +
δ4

β

N∑
i=1

∫
∂Bi

u ξ ds

 dt − (u0, ξ(0))ΩL(0)

=

∫ T∧t∗

0

δ4

β

N∑
i=1

( 1
Ri(t)

− gi(t)
) ∫

∂Bi

ξds dt, (31)

and
∫ T∧t∗

0

−Ri(t)ϕ̇(t) −
ϕ(t)

4πδ4(R(
i t))

2

∫
∂Bi(t)
∇u · nds

 dt − Ri0ϕ(0) = 0 (32)

for all ξ ∈ C∞0 ([0,T ∧ t∗),C∞(ΩL(·))) with ξ
∣∣∣∣
∂Bi

equal to a constant for all i ∈ N and ϕ ∈ C∞0 ([0,T ∧ t∗)).
With the above definition, we now present the following local existence and uniqueness result.

Theorem 4.1. For any u0 ∈ H1(ΩL(0)) and {Ri(0)}i∈N satisfying (26), there exists a T > 0 such that (24) has a unique
weak solution {u,Ri : i ∈ N}. Furthermore, u ∈ L∞

(
0,T ; L2(ΩL(·)

))
∩ L2

(
0,T ; H1(ΩL(·)

))
and Ri ∈ H1([0,T ]).

Proof. The proof consists of two steps. The first is to prove the existence of solution for the parabolic problem with
given Ri’s (without taking into account of the conservation of heat flux at the particle boundary); the second is to use
fixed point theorem to find the correct Ri’s which do satisfy the conservation of heat flux. The overall procedure is
more or less standard. But we include it here for self-containedness. The strategy is also used in [14] for a related
problem without the kinetic undercooling.

In the following, we use R to denote the collection {Ri : i ∈ N}. The notation ‖R‖X refers to supi ‖Ri‖X . In addition,
any operation on R is performed in a component-wise manner: f (R) = { f (Ri) : i ∈ N}.
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Step I. Given R ∈ H1([0,T ])N with ‖R‖L∞([0,T ]) and
∥∥∥R−1

∥∥∥
L∞([0,T ]) < ∞. We claim that there exists a unique weak

solution u satisfying:

λut = δ8∆u, in ΩL,T ,

u(x, t) −
β

4πδ4R2
i (t)

∫
∂Bi(t)
∇u · nds =

1
Ri(t)

− gi(t) x ∈ ∂Bi(t),

∇u · n = 0, on ∂Ω,

u(x, 0) = u0(x), in ΩL(0),
Ri(0) = Ri0, for i ∈ N(0).

Furthermore, if u0 ∈ H1(ΩL(0)), then

‖u‖L∞(0,T,H1(ΩL(·))) , ‖u‖L2(0,T ;H2(ΩL(·))) , ‖ut‖L2(0,T ;L2(ΩL(·))) ≤ C
(
‖R‖L∞([0,T ]) ,

∥∥∥R−1
∥∥∥

L∞([0,T ]) , ‖R‖H1([0,T ])

)
. (33)

First we related the domain ΩL(0) to ΩL(t) by means of some diffeomorphism:

φ
(
·,R

)
: ΩL(0)→ Ω(t).

Define
Φ(y, t) := φ

(
y,R(t)

)
, and ṽ(y, t) := u

(
Φ(y, t), t

)
.

Differentiating in space we get

∇u = DΦ−T∇ṽ and
1

|∂Bi(t)|

∫
∂Bi(t)
∇u · n =

1
|∂Bi(0)|

∫
∂Bi(0)

DΦ−T∇ṽ · n,

while taking the derivative in time gives:
ṽt = ut + ∇u · ∂tΦ.

In the above we have used the notation:

DΦ−T =
(
(DΦ)T )−1 and ∂tΦ =

∂φ

∂R1
Ṙ1 + · · · +

∂φ

∂RN
ṘN = (∂Rφ) · (∂tR).

Let M = ‖R‖L∞(0,T ) +
∥∥∥R−1

∥∥∥
L∞(0,T ). Note the following estimates:∥∥∥DΦ, D2Φ, DΦ−T , D(DΦ−T )

∥∥∥
L∞(0,T ;L∞(ΩL(t))) ≤ C(M),

and ‖∂tΦ‖L2(0,T ;L∞(ΩL(·))) ≤ C(M) ‖R‖H1(0,T ) .
(34)

Let A = DΦT DΦ. Then the function ṽ solves:

λ
√

det A∂tṽ − δ8div
(√

det AA−1∇ṽ
)

= λ
√

det ADΦ−T∇ṽ · ∂tΦ in ΩL(0) × (0,T ),

ṽ −
β

4πδ4R2
i (0)

∫
∂Bi(0)

DΦ−T∇ṽ · n ds =
1
Ri
− gi, x ∈ ∂Bi(0),

∇ṽ · n = 0, on ∂ΩT ,

ṽ(x, 0) = u0(x), in ΩL(0).

(35)

To handle the inhomogeneous boundary condition on the ∂Bi(0)’s, we consider the solution w(y, t) of the problem

div
(√

det AA−1∇w
)

= 0, in ΩL(0),

w −
β

4πδ4R2
i (0)

∫
∂Bi(0)

DΦ−T∇w · n ds =
1
Ri
− gi, x ∈ ∂Bi(0),

w · n = 0, on ∂Ω.

(36)
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Setting v := ṽ − w, then v satisfies

λ∂tv −
δ8

√
det A

div
(√

det AA−1∇v
)

= λDΦ−T∇v · ∂tΦ − λ∂tw + λDΦ−1∇w · ∂tΦ,

v −
β

4πδ4R2
i (0)

∫
∂Bi(0)

DΦ−T∇v · n ds = 0, x ∈ ∂Bi(0).
(37)

Applying elliptic regularity to (36), we get:

‖w, ∂Rw‖L∞(0,T ;H1(ΩL(t))) ≤ C(M). (38)

Note that ∂tw = ∂Rw · ∂tR, and we also have

‖∂tw‖L2(0,T ;H1(ΩL(·))) ≤ C(M) ‖R‖H1(0,T ) . (39)

Combining the above together with estimate (34), equation (37) can be written as:

λ∂tv −
δ8

√
det A

div
(√

det AA−1∇v
)

= f1 · ∇v + f2,

for some
f1 ∈

(
L2(0,T ; L∞(ΩL(0)))

)3
and f2 ∈ L2(0,T ; L∞(ΩL(0))).

If u0 ∈ H1(Ω(0)
)
, then by standard theory for parabolic problems, [10], it follows that there exists a unique solution

v of (37) leading to the solution ṽ = v + w of (35) in the class L∞
(
0,T ; L2

(
ΩL(0)

))⋂
L2

(
0,T ; H1

(
ΩL(0)

))
. By (34), it

follows that u also belongs to L∞
(
0,T ; L2(ΩL(·)

))
∩ L2

(
0,T ; H1(ΩL(·)

))
. The improved regularity statement (33) also

follows from standard theory.
Step II. This step shows that for T small enough, there exists an R ∈ H1([0,T ]) such that the following condition

is satisfied:

Ṙi(t) =
1

4πδ4R2
i (t)

∫
∂Bi(t)
∇u · nds, t ∈ (0,T ) for all i ∈ N ,

where u is from Step I. Using the kinetic under-cooling condition, the above can be written as:

Ṙi(t) =
1

β |∂Bi(t)|

∫
∂Bi(t)

(
u −

1
Ri(t)

+ gi(t)
)

=
1

β |∂Bi(0)|

∫
∂Bi(0)

(
v + w −

1
Ri(t)

+ gi(t)
)
.

For this, we define the function space:

MT =
{
R ∈ H1([0,T ])N : R(0) = R0, ‖R‖H1([0,T ]) ≤ D

}
,

where D is some fixed number and the operator F (R) :MT −→ H1([0,T ])N :

F (R)i(t) = Ri0 +

∫ t

0

[
1

β |∂Bi(0)|

∫
∂Bi(0)

(
v + w −

1
Ri(τ)

+ gi(τ)
)]

dτ, i ∈ N .

The goal is to prove that F has a fixed point inMT if T = T (D) is small enough.
For this, let R, S ∈ MT with R(0) = S (0) and let w1,w2, v1, v2 be the solutions of (36) and (37) with the radius

function given by R and S . Then,

F (R)i(t) − F (S )i(t) =

∫ t

0

[
1

β |∂Bi(0)|

∫
∂Bi(0)

(
(v1 − v2) + (w1 − w2) − (

1
Ri(τ)

−
1

S i(τ)
) + (gi(τ,Ri) − gi(τ, S i))

)]
dτ.
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Consider the equation satisfied by v1 − v2:

λ∂t(v1 − v2) −
δ8

√
det A1

div
( √

det A1A−1
1 (∇(v1 − v2)

)
=

δ8

√
det A1

div
( √

det A1A−1
1 ∇v2

)
−

δ8

√
det A2

div
( √

det A2A−1
2 ∇v2

)
−λ (∂tw1 − ∂tw2) + λDΦ−1

1 (∇w1 − ∇w2) · ∂tΦ1 + λDΦ−1
1 ∇w2 · ∂tΦ1 − λDΦ−1

2 ∇w2 · ∂tΦ2, (40)

and (v1 − v2) −
β

4πδ4R2
i (0)

∫
∂Bi(0)

DΦ−T
1 ∇(v1 − v2) · n ds

= −
β

4πδ4R2
i (0)

∫
∂Bi(0)

(
DΦ−T

1 − DΦ−T
2

)
∇v2 · n ds, for i ∈ N , (41)

and that for w1 − w2:

div
( √

det A1A−1
1 ∇(w1 − w2)

)
= −div

(( √
det A1A−1

1 −
√

det A2A−1
2

)
∇w2

)
, (42)

and (w1 − w2) −
β

4πδ4R2
i (0)

∫
∂Bi(0)

DΦ−T
1 ∇(w1 − w2) · n ds

= −
β

4πδ4R2
i (0)

∫
∂Bi(0)

(
DΦ−T

1 − DΦ−T
2

)
∇w2 · n ds +

(
1
Ri
−

1
S i

)
−

(
gi(t,Ri(t)) − gi(t, S i(t))

)
for i ∈ N , (43)

where A1, Φ1 and A2, Φ2 are the A and Φ for the radius functions R and S respectively. The estimates (34), (38), (39)
lead to

‖A1 − A2‖L∞(0,T ;L∞(ΩL(0))) , ‖w1 − w2‖L∞(0,T ;H1(ΩL(0))) ≤ C(M) ‖R − S ‖L∞(0,T ) ,

and ‖∂tΦ1 − ∂Φ2‖L2(0,T ;L∞(ΩL(0))) , ‖∂tw1 − ∂tw2‖L2(0,T ;H1(ΩL(0))) ≤ C(M) ‖R − S ‖H1(0,T ) .
(44)

Using the above together with the fact ‖v2‖L∞(0,T ;H1(ΩL(0))) < ∞, we see that the right hand side f for equation (40)
satisfies:

‖ f ‖L2(0,T ;L2(ΩL(0))) ≤ M1 ‖R − S ‖L∞(0,T ) + M2
∥∥∥Ṙ − Ṡ

∥∥∥
L2(0,T ) .

We are then led to the following estimate:

‖v1 − v2‖L2(0,T,H1(ΩL(0))) ≤ C(D) ‖R − S ‖H1(0,T ) .

As ‖v1 − v2‖L2(∂ΩL(0)) ≤ ‖v1 − v2‖H1(ΩL(0)), we have that∫ T

0
|F (R)i(t) − F (S )i|

2 dt ≤ C(D)T ‖R − S ‖2H1(0,T ) .

In the above, we have also used the assumption (27) about the gi’s. Finally if T is chosen small enough, Banach Fixed
Point theorem can be employed, leading to the existence of a fixed point for F inMT and hence a solution of (24). �

In order to extend the local in time solution to globally existing solution, in particular beyond the times when
some balls disappear, we would need a priori estimates. They will be established by means of integral inequalities
and maximum principle. The overall strategy is as follows. First the weak solution obtained above exists up to the first
time ti some ball vanishes (Ri = 0). From the global energy estimates derived in Section 5 together with the temporal
particle radius regularity proved in Section 6, the limit u(·, ti) = lim

t→t−i
u(·, t) exists. We can then use u(·, ti) as the new

initial data for (24). In this manner, a solution is constructed between any two times some radii vanish and hence the
existence of a solution up to any finite time (independent of δ) is established.
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5. Integral Identities

In this section, we will present some integral identities in line of energy type estimates. As the domain ΩL is time
dependent, we find it convenient to extend u to the whole domain Ω ⊃ ΩL by means of:

u
∣∣∣
Bi

= u
∣∣∣
∂Bi
, for all i.

The extended function is still denoted by u. Furthermore, we introduce the notation fi(t) = Ri(t)Ṙi(t).

Proposition 5.1. Let u be the solution of (24). Then we have

λ

∫
Ω

u(t) +
λ2πδ12

3

N∑
i=1

R2
i (t) +

4πδ12

3

N∑
i=1

R3
i (t) + λ4πδ12β

N∑
i=1

∫ t

0
f 2
i (r) dr

= λ

∫
Ω

u(0) +
λ2πδ12

3

N∑
i=1

R2
i (0) +

4πδ12

3

N∑
i=1

R3
i (0) +

λ4πδ12β

3

 N∑
i=1

R2
i (t) fi(t) −

N∑
i=1

R2
i (0) fi(0)


−
λ4πδ12

3

N∑
i=1

R3
i (t)gi(t) +

λ4πδ12

3

N∑
i=1

R3
i (0)gi(0) + λ4πδ12

∫ t

0

N∑
i=1

Ri(r) fi(r)gi(r) dr.

(45)

Proof. We integrate (24) on Ω to get

λ

∫
Ω

ut − λ

∫
Ω\ΩL

ut = δ8
∫
∂ΩL

∂u
∂n
.

Note that the part of ∂Ωδ on solid-liquid interfaces, we use the outward normal to the Bi’s. Hence

λ
d
dt

∫
Ω

u − λ
∑

i

4π
3

(δ4Ri)3
(

1
Ri
− gi + βṘi

)
t

= −
∑

i

4πδ12R2
i Ṙi

λ
d
dt

∫
Ω

u −
λ4πδ12

3

∑
i

R3
i

− Ṙi

R2
i

− ġi + βR̈i

 + 4πδ12
∑

i

R2
i Ṙi = 0

λ
d
dt

∫
Ω

u +
λ4πδ12

3

∑
i

(
RiṘi + R3

i ġi − βR3
i R̈i

)
+

4πδ12

3

∑
i

d
dt

R3
i = 0

λ
d
dt

∫
Ω

u +
λ4πδ12

3

∑
i

(
1
2

d
dt

R2
i + R3

i ġi − βR3
i R̈i

)
+

4πδ12

3

∑
i

d
dt

R3
i = 0.

Upon integrating in time from 0 to t and employing integration by parts, we obtain (45). �

Remark 5.2. For conceptual understanding and in order to compare with known results, we simplify the above iden-
tity for the case gi(t) ≡ 0.

1. For the quasi-static problem λ = 0 with β ≥ 0 the following volume conservation condition is obtained:

δ3
N∑

i=1

R3
i (t) = δ3

N∑
i=1

R3
i (0),

as in [15, 16].
2. For the parabolic case λ > 0 and β = 0: setting λ := δ9 as in (45), we obtain the result of [15]:∫

Ω

u(t) +
4
3
π

N∑
i=1

δ3R3
i (t) +

2
3
π

N∑
i=1

δ12R2
i (t) =

∫
Ω

u(0) +
4
3
π

N∑
i=1

δ3R3
i (0) +

2
3
π

N∑
i=1

δ12R2
i (0).
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Our result extends the above to the case when λ and β are both positive.

Next we derive the identity for ||u||L2(Ω).

Proposition 5.3. Let u be the solution of (24). Then we have

λ

2

∫
Ω

u2(t) + δ8
∫ t

0

∫
Ω

|∇u|2(s) ds + 2πδ12
∑

i

R2
i (t) + λ

4πδ12

3

∑
i

Ri(t)

+4πδ12β

∫ t

0

∑
i

f 2
i (s) ds + λ4πδ12β

∫ t

0

∑
i

f 2
i (s)

Ri(s)
ds

=
λ

2

∫
Ω

u2(0) +
4πδ12

2

∑
i

R2
i (0) + λ

4πδ12

3

∑
i

Ri(0) + λ
4πδ12

3
β
∑

i

Ri(t) fi(t)

−λ
4πδ12

3
β
∑

i

Ri(0) fi(0) + λ
2πδ12

3
β2

∑
i

Ri f 2
i (t) − λ

2πδ12

3
β2

∑
i

Ri f 2
i (0)

−λ2πδ12β2
∫ t

0

∑
i

f 3
i (s)

Ri(s)
ds + 4πδ12

∫ t

0

∑
i

Ri figi(s) ds

−λ
4πδ12

3

∑
i

R2
i (t)gi(t) + λ

4πδ12

3

∑
i

R2
i (0)gi(0) + λ4πδ12

∑
i

∫ t

0
fi(s)gi(s) ds

−λ
4πδ12

3
β
∑

i

R2
i (t) fi(t)gi(t) + λ

4πδ12

3
β
∑

i

R2
i (0) fi(0)gi(0) + λ4πδ12β

∑
i

∫ t

0
f 2
i gi ds

+λ
2πδ12

3

∑
i

Ri(t)3g2
i (t) − λ

2πδ12

3

∑
i

Ri(0)3g2
i (0) − λ2πδ12

∫ t

0

∑
i

Ri fig2
i (s) ds. (46)

Proof. Multiplying (24) by u and integrating on ΩL, we get

λ

∫
ΩL

utu = δ8
∫

ΩL

4uu

λ

∫
Ω

utu − λ
∫

Ω\ΩL

utu = −δ8
∫
∂ΩL

∂u
∂n

u − δ8
∫

ΩL

|∇u|2.

Using the boundary conditions in (24), it follows that

λ

2
d
dt

∫
Ω

u2 + δ8
∫

Ω

|∇u|2 − λ
4πδ12

3

∑
i

R3
i

(
1
Ri
− gi + βṘi

)
t

(
1
Ri
− gi + βṘi

)
+ 4πδ12

∑
i

R2
i Ṙi

(
1
Ri
− gi + βṘi

)
= 0,

λ

2
d
dt

∫
Ω

u2 + δ8
∫

Ω

|∇u|2 − λ
4πδ12

3

∑
i

R3
i

− Ṙi

R2
i

− ġi + βR̈i

 ( 1
Ri
− gi + βṘi

)
+ 4πδ12

∑
i

(
RiṘi − R2

i Ṙigi + βR2
i Ṙ2

i

)
= 0,

λ

2
d
dt

∫
Ω

u2 + δ8
∫

Ω

|∇u|2 + 4πδ12
∑

i

 d
dt

R2
i

2
+ βR2

i Ṙ2
i − R2

i Ṙigi


+ λ

4πδ12

3

∑
i

(
RiṘi + R3

i ġi − βR3
i R̈i

) ( 1
Ri
− gi + βṘi

)
= 0.

Expanding the above, and integrating in time from 0 to t together with integration by parts gives the stated identity. �
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Remark 5.4. Again, we give the simplified form of the above in the case gi(t) ≡ 0 and compare with known results.

1. λ = 0, β ≥ 0:

δ3
∑

i

R2
i (t) +

1
2πδ

∫ t

0

∫
Ω

|∇u|2 ds + 2β
∫ t

0

∑
i

δ3 f 2
i ds = δ3

∑
i

R2
i (0),

as in [16].
2. λ > 0, β = 0:

1
2

∫
Ω

u2(t) +
1
δ

∫ t

0

∫
Ω

|∇u|2 ds + 2πδ3
∑

i

R2
i (t) +

2
3
πδ12

∑
i

Ri(t)

=
1
2

∫
Ω

u2(0) + 2πδ3
∑

i

R2
i (0) +

2
3
πδ12

∑
i

Ri(0),

where we have set λ := δ9 (in accordance to [15]).

Note that when both λ and β are positive, as in the current case with kinetic undercooling, extra terms involving fi
appear on the right hand side of (46). This causes the need to estimate

∣∣∣RiṘi

∣∣∣. This is the main goal of the Section 6.

Here we explain in more detail the usage of the above result and the choice of λ = δ9. Since we are aiming at
a limiting mean field description – the particles interact mainly through the quantity u∞(t), we expect that the heat
distribution u(·, t) will become roughly spatially constant (but still time dependent), i.e. ∇u ≈ 0 as δ −→ 0.

In view of the estimates of Remark 5.4, if either one of λ or β equals zero (as in [16] and [15]), the term∫ t
0

∫
Ω
|∇u|2(s) ds is estimated easily by the initial data. This is not the case for the parabolic setting with kinetic

undercooling and inhomogeneous driving forces presented in this paper (where both λ and β are non-zero). In the
current case, upon solving for

∫ t
0

∫
Ω
|∇u|2(s) ds in the identity of Proposition 5.3, we observe that if gi, Ri, and

fi = RiṘi are uniformly bounded in time for any i, then∫ t

0

∫
Ω

|∇u|2(s) ds ≤ −λ4πδ12−8β

∫ t

0

∑
i

f 2
i (s)

Ri(s)
ds − λ2πδ12−8β2

∫ t

0

∑
i

f 3
i (s)

Ri(s)
ds + C

λ

δ8 + Cδ4
∑
i∈N

O(1).

Hence as long as Ri ≥ O(1) > 0 for any i, we will have∫ t

0

∫
Ω

|∇u|2(s) ds ≤ Cλδ4
∑
i∈N

O(1) + C
λ

δ8 + Cδ4
∑
i∈N

O(1) ≤ Cλδ + C
λ

δ8 + Cδ.

The problem arises if time is approaching some extinction time ti (Ṙ < 0 and Ri −→ 0), so that the term f 3
i

Ri
(which

appears in the estimate only when λ and β are non-zero) will have a large negative value. In fact it will blow up to
−∞. However, we will prove that fi = RiṘi → −

1
β

as t → t−i . With this observation, near ti, this term can be controlled
in the following way:

−λ4πδ12−8β

∫ t

0

∑
i

f 2
i (s)

Ri(s)
ds − λ2πδ12−8β2

∫ t

0

∑
i

f 3
i (s)

Ri(s)
ds = −4λδ4πβ

∫ t

0

∑
i

f 2
i (s)

Ri(s)

[
1 +

β

2
fi
]

ds ≤ 0,

and thus it follows that ∫ t

0

∫
Ω

|∇u|2(s) ds ≤ C
λ

δ8 + Cδ4
∑
i∈N

O(1) ≤ C
λ

δ8 + Cδ.

(Alternatively, upon solving ṘiRi ≈ −
1
β
, we have Ri ≈ C(ti − t)

1
2 so that

∫ ti
0

1
Ri(t)

dt < ∞. Hence the term
∫ ti

0
f 3
i

Ri
dt will

also be bounded.) The above leads us to set λ = δ9 as mentioned in Remark 3.1. With this we have that∫ t

0

∫
Ω

|∇u|2(s) ds ≤ Cδ,

so that in the limit δ −→ 0, u will indeed converge to a spatial constant (in some weak sense).
We summarize the above observation in the following statement.
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Corollary 5.5. Let λ = δ9. Let further t∗ = ti be the first extinction time. Suppose there is an M > 0 (independent of

δ) such that sup
i

sup
t≤t∗

{ ∣∣∣Ri(t)Ṙi(t)
∣∣∣ ,Ri(t)

}
< M, and if lim

t→t−∗
RiṘi = −

1
β

, then we have:

sup
t<t∗
‖u‖2L2(Ω) +

1
δ
‖∇u‖2L2(Ωt∗ )

≤ M.

(In the above we have also used the assumption (27) for the gi’s.)
The next section is to prove the validity of the assumptions used in the above corollary. This will be shown using

maximum principle by means of sub- and super-solutions. Then the result of Corollary 5.5 will be used to extend the
solution u of (24) to even after the moment some balls have vanished.

6. Regularity of the radii Ri’s

6.1. Preliminaries

We first record the following lemma on a maximum principle suitable for our problem. It is the parabolic version
of Lemma 4.2 in [16].

Lemma 6.1. Let
{
Ω(t)

}
t≥0 be a time dependent Lipschitz domain and

⋃
i
{
Bi(t)

}
t≥0 be a finite collection of disjoint

balls such that
⋃

i Bi(t) ⊂ Ω(t) for all t ≥ 0.
Let u be a function which is constant on each ∂Bi and satisfy for all t ≥ 0 the following statements

ut − 4u ≥ (≤) 0 in Ω(t)\ ∪i Bi(t),

u − ci

∫
∂Bi(t)
∇u · n ≥ (≤) 0 on ∂Bi(t), for all i,

∇u · n ≥ (≤) 0 on ∂Ω(t),

where ci ≥ 0 for all i. If u(x, 0) ≥ (≤) 0, then u ≥ (≤) 0 in Ω(t)\
⋃

i Bi(t) for t > 0.

The rigorous proof of the above can be produced following the steps in [16]. Hence it is omitted. It can be
intuitively understood as follows. If u ≥ 0 at t = 0, then by strong maximum principle, it cannot reach zero inside the
domain Ω(t)\

⋃
i Bi(t). By means of the Hopf lemma, the boundary conditions also prevent the occurrence of zero on

∂Ω(t) and ∂Bi(t). Hence u will be strictly positive for all t > 0.
Equipped with the above result, we are ready to construct sub- and super-solutions which will be used to control

the growth and decay of the radii Ri(t)’s. First we present an a priori bound using the above maximum principle.

Lemma 6.2. There exist two constants M1(T,Ω) and M2(T,Ω) such that for any solution u of (24) with initial data
(25), we have

M1(T,Ω) ≤ u(x, t) ≤ M2(T,Ω) + u∞0 +
∑
i∈N

δ4

|x − xi|
. (47)

(In general, M1 might be negative.) The above leads to that for some constant M > 0,

1. at any particle boundary: for x such that |x − xi| = δ4Ri,

u
∣∣∣∣
∂Bi
≤ M +

1
Ri

; (48)

2. away from any of particle boundary: for x such that |x − xi| ≥
δ
4 for all i,

|u| ≤ M. (49)
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Proof. The fact that statements (48) and (49) follow from (47) is due to the assumptions on the bound on the number
of particles and their spatial separation by at least of distance O(δ) (see Remark 3.1(2)).

The proof of the lower bound in (47) is simply due to the fact that a negative constant with large magnitude (−M)
satisfies:

(−M) ≤ −gi(t) +
1
Ri

+
β

4πδ4R2
i

∫
∂Bi

∇(−M) · n,

and hence is a sub-solution.
The proof of the upper bound in (47) is similar to [15, Lemma 17]. It turns out that the function V denoting the

right hand side of (47) is automatically a super-solution for large enough M2(T,Ω). The reasoning is as follows.

1. For any i ∈ N(t),

V
∣∣∣∣
∂Bi

= M2 + u∞0 +
1
Ri

+
∑
j,i

δ4∣∣∣x j − xi

∣∣∣ ≥ M2 + u∞0 +
1
Ri

+ O(1)
∑
j,i

δ4

δ

≥ M2 + uδ∞0 +
1
Ri

+ O(1)
∑
j,i

δ3 ≥ M2 + O(1) +
1
Ri
.

In the above, we have used the fact that N(t) = O(δ−3) and
∣∣∣xi − x j

∣∣∣ ≥ cδ for any i , j.
2. Next we compute the gradient term: again for any i ∈ N(t),

β

4πδ4R2
i

∫
∂Bi

∇V · n =
β

4πδ4R2
i

∫
∂Bi

∇

 ∑
j∈Nδ(t)

δ4∣∣∣x − x j

∣∣∣
 · n

=
β

4πδ4R2
i

∫
∂Bi

∇

[
δ4

|x − xi|

]
· n +

β

4πδ4R2
i

∫
∂Bi

∇

∑
j,i

δ4∣∣∣x − x j

∣∣∣
 · n

≥
β

4πδ4R2
i

− δ4

δ8R2
i

 4πδ8R2
i +

O(1)
δ3

β

4πδ4R2
i

[
δ4

δ2

]
4πδ8R2

i = −
β

R2
i

+ O(δ3).

Hence with M2 chosen big enough and δ being small, we always have

V ≥ −gi +
1
Ri

+
β

4πδ4R2
i

∫
∂Bi

∇V · n.

3. In order for V to satisfy the Neumann boundary condition on ∂Ω, we consider a modification function w similar

to [15, Lemma 17]. Let h =
∑
i∈Nδ

δ4

|x − xi|
and w be the solution of the following equation:

δwt = 4w, in ΩT ,
∇w · n = −∇h · n on ∂ΩT ,
w(0, ·) = w0 in Ω,

where w0 solves:

−4w0 =

∫
∂Ω

∇h · n,

∇w0 · n = −∇h · n,∫
Ω

w0 = 0.

By [15, Lemmas 17, 20], w0 and w satisfy the following estimates:

‖w0‖∞ ≤ M
√
δ, ‖w‖∞ ≤ M, and ‖∇w‖∞ ≤ Mδγ for any γ <

1
2
.
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With the above, ∇(V + w) · n = 0 on ∂Ω and upon choosing M2 large enough, we have:

(V + w)
∣∣∣∣
∂Bi
≥ gi −

1
Ri

+
β

4πδ4R2
i

∫
∂Bi

∇(V + w) · n,

so that the desired result is still true with V replaced by V + w.

�
Now we proceed to construct sub- and super-solutions so as to control the growth and decay rates of the particle

radii.

6.2. Single Particle Case
We first consider the case of a single particle which forms the building block for the general multiple particle

scenario. In the following, we will use the notation Bδ4R to emphasize the radius of the rescaled ball. In this case,
problem (24) is formulated in the following form:

δut = 4u, on
{
|x| ≥ δ4R(t)

}
,

u =
1
R
− g(t) +

β

4πδ4R2(t)

∫
∂Bδ4R

∇u · n, on
{
|x| = δ4R(t)

}
, (50)

Ṙ =
1

4πδ4R2

∫
∂Bδ4R

∇u · n.

The key is to investigate the solution as R −→ 0+ in the regime δ � 1. The main conclusion is that |RṘ| < C < ∞

and hence R ∈ W1,p([0,T ]) for any 1 ≤ p < 2. As a by product, we get lim
R→0+

RṘ = −
1
β

. This will be established by

constructing sub- and super-solutions. It is first done for the case R � 1 and Ṙ < 0. If R > O(1), we will show that∣∣∣Ṙ∣∣∣ is uniformly bounded. However, once R(t) reaches below some small value, Ṙ will become negative and will stay
negative until the extinction time of R(t).

Construction of sub-solution under the assumption: Ṙ ≤ 0, R � 1. Let R(t) be given. Then U(x, t) is a
sub-solution of (50) if

δUt ≤ 4U, on
{
|x| ≥ δ4R(t)

}
,

and U ≤
1

R(t)
− g(t) +

β

4πδ4R2(t)

∫
∂Bδ4R

∇U · n, on
{
|x| = δ4R(t)

}
.

For any constant C, consider the function

UC,R(x) = C +

(
1 − RC − Rg

R + β

)
δ4R
|x|

. (51)

By simple computations, UC,R satisfies the following properties:

UC,R(x) > 0 for |x| ≥ δ4R,

UC,R(x) ≥ C for |x| ≥ δ4R and R(C + g) ≤ 1,

UC,R(δ4R) =
1 + βC − Rg

R + β
,

UC,R(δ4R) =
1
R
− g +

β

4πδ4R2

∫
∂Bδ4R

∇UC,R · n,

lim
R−→0+

UC,R(δ4R) = C +
1
β
,

lim
|x|→∞

UC,R(x) = C.
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Note that
∣∣∣UC,R

∣∣∣ is uniformly bounded by some constant M(C,G) < ∞. Furthermore,

∂UC,R

∂C
= 1 −

δ4R2

(R + β)|x|
≥ 1 −

R
R + β

=
β

R + β
> 0 if |x| ≥ δ4R, (52)

so that we can use the constant C to adjust the far-field value in order to ensure that at t = 0, UC,R is smaller than the
initial data.

Now let R = R(t) be given from the solution of (50) and C = C(t) be some time dependent function (to be
specified). Then ∆UC,R = 0 and

∂UC(t),R(t)(x)
∂t

=
δ4Ṙ

(R + β)2|x|

[
(R + β)(1 − 2RC − 2Rg) − R + R2C + R2g

]
+

[
1 −

δ4R2

(R + β)|x|

]
Ċ −

δ4R2

(R + β)|x|
ġ

=
δ4Ṙ

(R + β)2|x|

[
β − R2C − 2RβC − R2g − 2Rgβ

]
+

[
1 −

δ4R2

(R + β)|x|

]
Ċ −

δ4R2

(R + β)|x|
ġ.

Using the standing assumptions that Ṙ ≤ 0 and R � 1 and also (27) on g, the above can be made negative by choosing
C(t) such that Ċ(t) is much bigger that |Rġ|. Thus UC,R is a sub-solution. So if C(0) is chosen small enough (possibly
with negative value), we have u0 ≥ UC(0),R(0) and hence u ≥ UC,R for t > 0. This leads to

Ṙ =
1

4πδ4R2

∫
∂Bδ4R

∇u · n =
1
β

[
u −

1
R

+ g
]
≥

1
β

[
UC,R(R) −

1
R

+ g
]

=
1
β

[
1 + Cβ − Rg

R + β
+ g −

1
R

]
& −

1
βR

. (53)

Construction of super-solution under the assumption: Ṙ < 0,R � 1. Again let R(t) be taken from the solution
of (50), then V(x, t) is a super-solution if

δVt ≥ ∆V, on
{
|x| ≥ δ4R(t)

}
, (54)

and V ≥
1

R(t)
− g +

β

4πδ4R2(t)

∫
∂Bδ4R

∇V · n on
{
|x| = δ4R(t)

}
. (55)

Consider the function

VC(t),R(t)(x) =
δ4a(t)
|x|

+ C(t) +
(1 − RC(t) − Rg)δ4R

(R + β)|x|
, (56)

where a(t) and C(t) are to be determined. Note that ∆VC(t),R(t) = 0 and

∂VC(t),R(t)

∂t
=

δ4ȧ
|x|

+
δ4Ṙ

(R + β)2|x|
[
β − R2C − 2RβC − 2R2g − 2Rgβ

]
+

[
1 −

δ4R2

(R + β)|x|

]
Ċ −

δ4R2

(R + β)|x|
ġ

≈
δ4ȧ
|x|

+
δ4Ṙ
β|x|

+

[
1 −

δ4R2

(R + β)|x|

]
Ċ −

δ4R2

(R + β)|x|
ġ.

To make (54) hold, we choose a(t) and C(t) such that

ȧ +
Ṙ
β
≥ 0 or a(t) = a0 −

R(t)
β

> 0, and Ċ is much bigger than |Rġ| (recall again (27)).

As Ṙ < 0, a convenient choice is

a(t) =
R(0)
β
−

R(t)
β
.

Condition (55) is then equivalent to
a(t)
R(t)

> βδ4δ4a(t)(−1)
1

δ8R2(t)
which is always true as long as a(t) > 0. Thus V is a super-solution. So if C(0) is chosen big enough, we have
u0 ≤ VC(0),R(0) and hence u ≤ VC(t),R(t) for t > 0.
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Now considering the dynamics of R(t), we have

Ṙ =
1

4πδ4R2

∫
∂Bδ4R

∇u · n =
1
β

[
u −

1
R

+ g
]
≤

1
β

[
V −

1
R

+ g
]

=
1
β

[
a
R

+
1 + Cβ
R + β

−
1
R

+ g
]

=
1
βR

[
a(t) − 1 +

R(1 + Cβ) + gR(R + β)
(R + β)

]
=

1
βR

[
a0 −

R(t)
β
− 1 +

R(1 + Cβ) + gR(R + β)
(R + β)

]
=

1
βR

[
−1 +

R(0)
β
−

R(t)
β

+
R(1 + Cβ) + gR(R + β)

(R + β)

]
. −

1
βR

. (57)

Combining (53) and (57), we finally have,

−
1
βR
≤ Ṙ ≤ −

1 − O(1)
βR

. (58)

Construction for balls with big radius. This section considers the case when R is not small. The idea is to
modify the previous construction of sub- and super-solutions by a term with small L∞-norm but large Laplacian value
(see [15, Lemma 18]).

Let (R, u) be the solution of (24). In addition, we assume for some fixed constants δ0, A1, A2 and B such that

δ ≤ δ0;
A1 < R(t) < A2;

Ṙ is uniformly bounded by B
δ

.
(59)

To produce a super-solution, we consider the following function:

ṼC,R(x, t) = C +
(1 − RC − Rg)δ4R

(R + β)|x|
−

1
2
|x − xi|

2 + ε, (60)

where ε � δ. It holds that

δ
∂ṼC(t),R(t)

∂t
− 4ṼC(t),R(t)

= δ

{
δ4Ṙ

(R + β)2|x|
[
β − R2C − 2RβC − 2R2g − 2Rgβ

]
+

[
1 −

δ4R2

(R + β)|x|

]
Ċ −

δ4R2

(R + β)|x|
ġ
}

+ 3, (61)

and

ṼC,R ≥ −g +
1
R

+
β

4πδ4R2

∫
∂Bδ4R

∇Ṽ · n. (62)

Under the assumption (59), the right hand side of (61) is positive. Hence V is a super-solution. As before we obtain
that

Ṙ ≤
1
βR

[
−1 −

R
β

+
R(1 + Cβ) + gR(R + β)

R + β

]
< M, (63)

for some constant M independent of δ.
For sub-solution, we similarly consider

ŨC,R(x, t) = C +
(1 − RC − Rg)δ4R

(R + β)|x|
+

1
2
|x − xi|

2 − ε. (64)

Again by (59), ŨC,R will be a sub-solution. So we have

Ṙ ≥
1
βR

[
−1 −

R
β

+
R(1 + Cβ) + gR(R + β)

R + β

]
> −M. (65)

Hence we obtain ∣∣∣Ṙ∣∣∣ < M. (66)
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6.3. Multi-particle case: existence beyond vanishing of some balls

Now we employ the above single particle analysis to prove a priori bounds for the multiple particle case. Consider
the initial data u0 given by (25). By Theorem 4.1, the solution exists locally in time. The key is to extend the solution
globally in time, beyond the vanishing times of some balls.

Let T be some fixed constant. By the uniform estimate (49), on the set K =
{
x : |x − xi| ≥

δ
4 for all i

}
(i.e. away

from each ∂Bi), |u|0≤t≤T is bounded uniformly by some fixed constant. Hence if C̃−i (0) and C̃+
i (0) are chosen sufficiently

small and large respectively, using (60) and (64), we have ŨC̃−i (0),Ri(0) ≤ u0 ≤ ṼC̃+
i (0),Ri(0) and hence

ŨC̃−i (t),Ri(t) ≤ u ≤ ṼC̃+
i (t),Ri(t),

for as long as A1 ≤ Ri ≤ A2 and
∣∣∣Ṙi

∣∣∣ ≤ B
δ

. On the other hand, by (66), it follows that
∣∣∣Ṙi

∣∣∣ ≤ M. Now given any finite
time interval [0,T ], choose A2 = R0 + 2MT . Then the upper bounds Ri ≤ A2 are always true for time interval [0,T ]
(independent of δ).

If some Ri(t) ever reaches some small value A1, by (63), Ṙi will be negative. Similarly choose C−i and C+
i to be

sufficiently small and large such that UC−i (t),Ri(t) and VC+
i (t),Ri(t) from (51) and (56) satisfy

UC−i (t),Ri(t) ≤ ŨC̃−i (t),Ri(t) (≤ u) and (u ≤) ṼC̃+
i (t),Ri(t) ≤ VC+

i (t),Ri(t).

Now by (57), Ṙ will stay negative and hence UC−i (t),Ri(t) and VC+
i (t),Ri(t) remain to be sub- and super-solutions up to the

vanishing moment ti of Ri. Finally estimates (58) hold.
Now let t∗ be the first vanishing time of some ball (ti). We then have

sup
i

sup
t<t∗

∣∣∣RiṘi

∣∣∣ ≤ M < ∞, and sup
i

sup
t<t∗

Ri(t) ≤ M < ∞. (67)

Upon integrating the ODE
∣∣∣ṘR

∣∣∣ ≤ M, we conclude that if Ri vanishes at t∗, then

|Ri(t)| ≤ C(t − t∗)
1
2 and

∫ t∗

0

1
Ri(t)

dt ≤ C. (68)

In particular, we have that Ri ∈ W1,p([0, t∗]) for all 1 ≤ p < 2.
With the above, the extension of solution beyond t∗ follows as in [15, pp. 158-159, 165]. We briefly outline the

procedure here for completeness. By Corollary 5.5, we have that sup
t<t∗
‖u‖L2(Ω) and ‖∇u‖L2(Ωt∗ ) are bounded indepen-

dently of δ. Hence standard parabolic theory leads to the existence in L2 of u(·, t∗) = lim
t→t−∗

u(·, t). Next we evolve

equation (24) from t = t∗ using u(·, t∗) as initial data. However, in general u(·, t∗) does not belong to H1(Ω) so that we
cannot directly invoke the local in time existence result Theorem 4.1. On the other hand, the H1-condition is only
needed near the boundary of each existing particles. Near the location where a ball has just vanished, only a regular
heat equation is involved which is well-posed with L2-initial data. A localization procedure is then used to construct
the solution starting from u(·, t∗). By the uniform estimate from Corollary 5.5, this process can be continued after
each vanishing moment of some balls. Hence, the solution exists up to any finite time T .

6.4. Iteration Step

The purpose of this step is to improve the constant 1 − O(1) in the right-hand side of (58). This is not absolutely
necessary for the later parts from the point of view of estimates and convergence results – all is needed is that R ∈
W1,p([0,T ]) and R−1 ∈ L1([0,T ]), but we feel it is of independent interest as it gives the limiting asymptotics of R(t)
near its extinction time in the strong form.

From the form of the super-solution, we need to progressively reduce a0 in (56). The expression for the super-
solution is simplified as

V0(x, t) =
δ4

β|x|
(R(0) − R(t)) + A + Bt,
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for some A and B large enough (but independent of time and δ).

Let t1 be such that R(t1) =
R(0)

2
. Then

V0(x, t1) =
δ4R(0)
2β|x|

+ A + Bt1 ≥ u(x, t1) (where u is the true solution).

Note that
1
β

+ A + Bt1 +
δ4

β|x|
(R(t1) − R(t)) ≥

δ4R(0)
2β|x|

+ A + Bt1 for all t ≥ t1 and |x| ≥ δ4R(t).

Hence by the similar argument as before, the function

V1(x, t) =
1
β

+ A + Bt1 +
δ4

β|x|
(R(t1) − R(t)) + A + B(t − t1) =

1
β

+ 2A + Bt +
δ4

β|x|
(R(t1) − R(t)),

is again a super-solution for t ≥ t1. Now we have for t ≥ t1 that

Ṙ ≤
1
β

[
V1 −

1
R

+ g
]

=
1
β

[
1
β

+ 2A + Bt +
δ4 (R(t1) − R(t))

βδ4R(t)
−

1
R

+ g
]

=
1

βR(t)

[
−1 +

R(t1)
β

+ R(t) (2A + Bt + g)
]
.

To continue, let t2 be the time such that R(t2) =
R(0)

4 . Set

V2(x, t) =
1
β

+
1
β

+ 2A + Bt2 +
δ4

β|x|
(R(t2) − R(t)) + A + B(t − t2) =

2
β

+ 3A + Bt +
δ4

β|x|
(R(t2) − R(t)).

It is again a super-solution for t > t2. By induction, let

Vn(x, t) =
n
β

+ (n + 1)A + Bt +
δ4

β|x|
(R(tn) − R(t)) where R(tn) =

R(0)
2n .

Finally, let
V∗(x, t) = inf

n
Vn(x, t), (69)

which stands as a super-solution for all t > 0. Therefore we obtain

Ṙ ≤
1
βR

[
−1 +

R(tn)
β

+ R(t)
(

n
β

+ (n + 1)A + Bt + g(t)
)]

for tn ≤ t ≤ tn+1.

The above shows that
RṘ ≤ −

1
β

as R −→ 0+.

We summarize the conclusion of Sections 6.3 and 6.4, in the following existence and regularity theorem for the
system (24).

Theorem 6.3. Let the initial data u0, Ri0 and the inhomogeneous driving forces gi satisfy the conditions (25), (26)
and (27). Then for any time T < ∞ and δ small enough,

1. there is a solution u of (24) in L∞
(
0,T ; L2(Ω)

)⋂
L2

(
0,T ; H1(Ω)

)
satisfying:

sup
t∈[0,T ]

‖u(t)‖2L2(Ω) +
1
δ

∫ T

0
‖∇u(t)‖2L2(Ω) dt ≤ M < ∞; (70)
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2. the radii Ri’s satisfy supi supt≥0 Ri(t) < ∞ and supi ‖Ri‖W1,p([0,min(ti,T )]) ≤ M < ∞ for any 1 ≤ p < 2. Furthermore,
we have that ∣∣∣RiṘi

∣∣∣ ≤ M < ∞ and lim
t→t−i

RiṘi = −
1
β
, (71)

so that for t < ti,

C1(ti − t)
1
2 ≤ Ri(t) ≤ C2(ti − t)

1
2 and

∫ ti

0

1
Rp

i (t)
dt ≤ C for any p < 2. (72)

With the above existence result for our system and the regularity of the evolving radii, our approach now follows
quite closely to that of [15]. The steps include: (i) construction of a first order approximation for the heat distribution
(Section 7); (ii) construction of a first order approximation for the radii (Section 8); and (iii) derivation of the limit
equations as δ −→ 0 (Section 9). We will still outline the main steps to keep the paper self-contained and to emphasize
the essential features, in particular the derivation of the limit equations. On the other hand, there are some differences
in the procedure which we will point out in appropriate places.

7. First Order Approximation for Heat Distribution

The goal here is to produce a good approximation for the heat distribution which is then used to derive the limiting
equation for the dynamics of the mean field variable u∞ and radii Ri’s as δ −→ 0. This is facilitated by the following
expression:

ζ(x, t) = u∞(t) +
∑

i

(
1 − Ri(t)u∞(t) − Ri(t)gi(t)

Ri(t) + β

)
δ4Ri(t)
|x − xi|

. (73)

Using the above, we will construct sub- and super-solutions to control the difference between the actual solution u and
Ri’s (from (24)) and the approximation ζ.

For this, we define:
u± = ζ + w + z ± Mδγ, (74)

where the correction functions w and z satisfy:

δwt = 4w − δ∂tu∞(t) in ΩT , (75)
∇w · n = −∇ζ · n on ∂Ω,

w(0, ·) = w0(·),

and

δzt = 4z − δ
∑

i


(
1 − Ri(t)u∞(t) − Rigi(t)

)
Ri(t)

Ri(t) + β


t

δ4

|x − xi|
in ΩL,T , (76)

z =
β

4πδ4R2
i (t)

∫
∂Bi

∇z · n on ∂Bi,

∇z · n = 0 on ∂Ω,

z(0, ·) = z0(·),

which are used to handle the inhomogeneous boundary conditions on ∂Ω and the ∂Bi’s. Their initial data are chosen
as z0 ≡ 0 and w0 = u0 − ζ0 so that all the boundary conditions are satisfied at t = 0. The M is chosen to be large
enough so that u− ≤ u0 ≤ u+ at t = 0.

The estimates for w are summarized by the following lemma.

Lemma 7.1. If we choose the mean-field variable u∞(t) according to

∂tu∞(t) = 4πδ3
∑

i

(
1 − Ri(t)u∞(t) − Ri(t)gi(t)

) Ri(t)
Ri(t) + β

, u∞(0) = u∞0, (77)
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then for any 0 < γ < 1
2 , there exists a Mγ such that:

‖w‖L∞(ΩT ) and ‖∇w‖L∞(ΩT ) ≤ Mγδ
γ. (78)

The proof is omitted as it is exactly the same as [15, Lemma 20] using careful energy type estimates from parabolic
regularity theory. But for completeness we will indicate the origin of (77). This equation is to ensure that

∫
Ω

w = 0
so that the behavior of u far away from the interfaces is indeed captured by the mean-field variable u∞. In addition,
technically speaking, the estimate for ∇w is proved first which together with the zero mean condition then gives the
estimate for w. With this in mind, we integrate (75) and obtain:

0 = δ
d
dt

∫
Ω

w =

∫
∂Ω

4w − δ∂tu∞ =

∫
∂Ω

∇w · n − δ∂tu∞.

Hence, it follows that

δ∂tu∞ =

∫
∂Ω

∂w
∂n

= −

∫
∂Ω

∂ζ

∂n
= −

∫
∂Ω

∑
i

(
1 − Ri(t)u∞(t) − Ri(t)gi(t)

Ri(t) + β

)
δ4Ri(t)∇

1
|x − xi|

· n.

As
∫
∂Ω

∇
1
|x|
· n = −4π, the above gives (77).

The estimates for z are stated in the next lemma.

Lemma 7.2. In the following, M denotes some generic finite constant independent of δ.

1. Let ti be the vanishing time of Bi, then

|z(t)|∂Bi
≤ MT

∣∣∣log(ti − t)
∣∣∣ for t < ti. (79)

2. Let A = Ω\ ∪i B(xi,
δ
4 ), then

sup
t∈[0,T ]

1
δ2

∫
Ω

(z(t))2 +
1
δ3

∫ T

0

∫
Ω

|∇z|2 +
1
δ

∫ T

0

∫
A

∣∣∣D2z
∣∣∣2 ≤ M. (80)

By Sobolev embedding theorem, the above gives

‖z‖L2(0,T,L∞(A)) ≤ M
√
δ. (81)

Proof. The proof is similar to [15, Lemma 21] using energy type estimates for parabolic equation, but in the current
case with the effect of kinetic undercooling in the parabolic setting, some additional terms appear in the derivation of
some energy identities. This leads to the need of estimates of the type (79).

We write (76) in the following form:

δzt = 4z − δh, where h =
∑

i


(
1 − Ri(t)u∞(t) − Rigi(t)

)
Ri(t)

Ri(t) + β


t

δ4

|x − xi|
.

Multiplying the above equation by z and extending z from ΩL to Ω by z
∣∣∣
Bi

= z
∣∣∣
∂Bi

lead to

δ

∫
ΩL(t)

ztz =

∫
ΩL(t)
4zz − δ

∫
ΩL(t)

hz,

δ

∫
Ω

ztz − δ
∫

Ω\ΩL(t)
ztz =

∫
∂ΩS (t)

z
∂z
∂n
−

∫
Ω

|∇z|2 − δ
∫

Ω

hz,

δ

∫
Ω

ztz − δ
∑

i

4πδ12R3
i

3

 żizi = −
∑

i

4πδ8R2
i zi(zn)i −

∫
Ω

|∇z|2 − δ
∫

Ω

hz,
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where zi = z
∣∣∣∣
∂Bi

and (zn)i =
∂z
∂n

∣∣∣∣
∂Bi

. As zi = βδ4(zn)i, the above becomes:

δ

∫
Ω

ztz +
∑

i

4πδ8R2
i z2

i

βδ4 +

∫
Ω

|∇z|2 = δ
∑

i

4πδ12R3
i

3

 żizi − δ

∫
Ω

hz, (82)

or δ
d
dt

∫
Ω

1
2

z2 +
4πδ4

β

∑
i

R2
i (t)z2

i (t) +

∫
Ω

|∇z|2 =
4πδ13

3

∑
i

R3
i (t)

 z2
i

2


t
− δ

∫
Ω

hz. (83)

Integrating in time then gives

δ

∫
Ω

1
2

z2(t) +
4πδ4

β

∫ t

0

∑
i

R2
i (s)z2

i (s) ds +

∫ t

0

∫
Ω

|∇z|2 + δ

∫ t

0

∫
Ω

hz

=
4πδ13

3

∑
i

R3
i (t)

 z2
i

2

 (t) −
4πδ13

3

∫ t

0

∑
i

3R2
i (s)Ṙi(s)

 z2
i

2

 (s) ds

+ δ

∫
Ω

1
2

z2(0) −
4πδ13

3

∑
i

R3
i (0)

 z2
i

2

 (0).

(84)

From the above, we see that the zi(t)’s appear in the right hand side which forces us to consider their estimate.
As supt∈[0,T ]

{
supi Ri(t), |Ri(t)gi(t)|

}
< ∞, we simplify equation (76) as:

δzt = 4z − δ
∑

i

δ4
(
Ai(t) + Bi(t)Ṙi(t)

)
|x − xi|

, (85)

where Ai and Bi are some uniformly bounded smooth functions. We construct sub- and super-solutions for z by

zsuper(t) = M1 +
∑

i

δ4ai(t)
|x − xi|

and zsub(t) = −M1 −
∑

i

δ4ai(t)
|x − xi|

,

where ȧi(t) = M2 + M3
∣∣∣Ṙi

∣∣∣. M1, M2 and M3 are large enough constants. (This is similar to the construction of the
super-solution V in (56).) Then (79) follows from:

|zi(t)| ≤ M1T +

∫ t

0

ȧ(s)
Ri(s)

ds ≤ M1T +

∫ t

0

M2 + M3
∣∣∣Ṙ(s)

∣∣∣
Ri(s)

ds = M1T +

∫ t

0

M2Ri + M3
∣∣∣Ri(s)Ṙi(s)

∣∣∣
R2

i (s)
ds

≤ M1T + M
∫ t

0

1
R2

i (s)
ds ≤ M1T + M

∫ t

0

1
(tδi − s)

ds ≤ M1T + M
∣∣∣log(ti − t)

∣∣∣ .
By Theorem 6.3(2), we see that the right hand side of (84) is bounded by a finite constant. Then the same

computations of [15, Lemma 21, pp 172-173] can be applied. They first give∫
Ω

z2 +
1
δ

∫ t

0

∫
Ω

|∇z|2 ≤ Mδ2,

and then the higher order regularity result follows:

sup
t∈[0,T ]

1
δ2

∫
Ω

(z(t))2 +
1
δ3

∫ T

0

∫
Ω

|∇z|2 +
1
δ

∫ T

0

∫
A

∣∣∣D2z
∣∣∣2 ≤ M.

These conclude the proof of (81).
(Note here that we do not need to any give special consideration for new initial data right after some balls have van-

ished such as in [15, p 167]. This is because the summands in ζ (73) corresponding to the vanishing Ri’s automatically
become zero.) �

Estimates (78) and (81) together with (73) and (74) give the following corollary which says that far away from the
particles, the heat distribution u is close to the mean field variable u∞.
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Corollary 7.3. For any 0 < γ < 1
2 , there is a constant Mγ such that

‖u − u∞(t)‖L2([0,T ],L∞(A)) ≤ Mγδ
γ. (86)

8. Approximation of the Dynamics of the Radii

The following is the main theorem of this paper which gives the dynamics of the radii as δ −→ 0.

Theorem 8.1. Let u∞ be given as in (77). Then for any i ∈ N(t) and ϕ ∈ W1,1([0,T ]), it holds that∣∣∣∣∣∣
∫ T∧ti

0
ϕ
[
Ri(Ri + β)Ṙi − (u∞Ri + giRi − 1)

]
dt

∣∣∣∣∣∣ ≤ Cγδ
γ ‖ϕ‖W1,1 . (87)

The above means that in the weak sense, the radii satisfy the following dynamical equation:

Ṙi = −
1 − u∞Ri − giRi

Ri(Ri + β)
. (88)

The proof is the same as [15, Theorem 2.b]. As this is the key result, we present the steps here to illustrate the
main idea and estimates.

Proof. Define:

ψi(x, t) =
δ4Ri(t)
|x − xi|

η

(
|x − xi|

δ

)
,

where η is a smooth function such that η(s) ≡ 1 for 0 ≤ s ≤ 1
8 and η(s) ≡ 0 for s ≥ 1

4 . This function satisfies:

ψi

∣∣∣∣
∂Bi

= 1,
1

4πδ4

∫
∂Bi

∇ψi · n = −Ri,

and the identity, ∫
ΩL

ψi4u = −

∫
∂Bi

ψi
∂u
∂n

+

∫
∂Bi

u
∂ψi

∂n
+

∫
ΩL

u4ψi.

Using the dynamics of Ri(t), we have
d
dt

(
1
3

R3
i (t)

)
=

1
4πδ4

∫
∂Bi

∇u · n from which we compute

d
dt

(
1
3

R3
i

)
=

1
4πδ4

∫
∂Bi

ψi∇u · n =
1

4πδ4

∫
∂Bi

u
∂ψi

∂n
−

1
4πδ4

∫
ΩL

ψi4u +
1

4πδ4

∫
ΩL

u4ψi

=
ui

4πδ4

∫
∂Bi

∂ψi

∂n
+

1
4πδ4

∫
ΩL

(u − u∞(t))4ψi −
δ

4πδ4

∫
ΩL

ψiut +
u∞(t)
4πδ4

∫
ΩL

4ψi (as δut = 4u)

= −Riui −
u∞(t)
4πδ4

∫
∂Bi

∂ψi

∂n
+

1
4πδ4

∫
ΩL

(u − u∞(t))4ψi −
δ

4πδ4

∫
ΩL

ψiut

= −Ri

(
1
Ri
− gi + βṘi

)
+ u∞(t)Ri(t) +

1
4πδ4

∫
ΩL

(u − u∞(t))4ψi −
δ

4πδ4

∫
ΩL

ψiut (as ui =
1
Ri
− gi + βṘi).

Hence, we obtain

Ri(Ri + β)Ṙi − (u∞Ri + giRi − 1) =
1

4πδ4

∫
ΩL

(u − u∞(t))4ψi −
δ

4πδ4

∫
ΩL

ψiut. (89)

Now let ϕ be a test function on [0,T ]. Then we have∫ T

0
ϕ
[
Ri(Ri + β)Ṙi − (u∞Ri + giRi − 1)

]
dt =

∫ T

0
ϕ

[∫
ΩL

(u − u∞(t))4ψi

4πδ4

]
dt − δ

∫ T

0
ϕ

[∫
ΩL

ψiut

4πδ4

]
dt. (90)
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The first term of the right hand side of (90) is estimated as,∫ T

0
ϕ

[∫
ΩL

(u − u∞(t))4ψi

4πδ4

]
dt ≤ ‖ϕ‖L∞([0,T ]) ‖u − u∞(t)‖L∞(supp(4ψi)) ×

1
4πδ4

∫
supp(4ψi)

|4ψi| ≤ Cγδ
γ ‖ϕ‖L∞([0,T ]) .

For the second term, we compute,∫ T

0
ϕ

∫
ΩL

ψiut

4πδ4 dt =

∫ T

0

ϕ

4πδ4

[∫
ΩL

(
(uψi)t − uψit

)]
dt

=

∫ T

0

ϕ

4πδ4

[∫
ΩL

(uψi)t −

∫
ΩL

u
δ4Ṙi

|x − xi|
η

(
|x − xi|

δ

)]
dt.

Note that
∫

ΩL

(uψi)t =

(∫
ΩL

uψi

)
t
+ (uψi)

∣∣∣∣
∂Bi

(δ4Ṙi)(4πδ8R2
i ). Hence, we arrive at

∫ T

0
ϕ

∫
ΩL

ψiut

4πδ4 dt

= −

∫ T

0
ϕt

∫
ΩL

uψi

4πδ4 dt − ϕ(0)
∫

ΩL

u(·, 0)ψi

4πδ4 +

∫ T

0

ϕδ8

4π

(
1
Ri
− gi + βṘi

)
ṘiR2

i dt −
∫ T

0

ϕṘ
4π

∫
ΩL

uη
|x − xi|

dt

= −

∫ T

0
ϕt

∫
ΩL

uψi

4πδ4 dt − ϕ(0)
∫

ΩL

u(·, 0)ψi

4πδ4 +

∫ T

0

ϕδ8

4π

(
RiṘi − giR2

i Ṙi + βṘ2
i R2

i

)
dt −

∫ T

0

ϕṘ
4π

∫
ΩL

uη
|x − xi|

dt.

Using the facts that:

‖u‖L∞(0,T,L2(Ω)) ,

∥∥∥∥∥ 1
|x|

∥∥∥∥∥
L2(Ω)

,

∥∥∥∥∥ ψi

4πδ4

∥∥∥∥∥
L∞(0,T,L2(Ω))

,
∥∥∥RiṘi

∥∥∥
L∞(0,T ) ,

∥∥∥Ṙi

∥∥∥
L1(0,T ) ≤ M,

we finally have the conclusion:∣∣∣∣∣∣
∫ T

0
ϕ
[
Ri(Ri + β)Ṙi − (u∞Ri + giRi − 1)

]
dt

∣∣∣∣∣∣ ≤ Mγδ
γ ‖ϕ‖W1,1(0,T ) . (91)

9. Limit Problem as δ −→ 0

This section presents and proves the main result of this paper: the limit description of u and Ri’s as δ −→ 0. Here
for clarity, we recover the superscript δ in uδ, uδ∞ and Rδ

i to emphasize their dependence on δ.
With the estimates derived so far, all the results of [15, 16] in principle carry over. However, in order to obtain an

equation which is closed in the limit, we do need to invoke the assumption (28) on the form of the inhomogeneous
forces gi’s. This will also motivate the incorporation of white noise in the future work so that the machinery of
stochastic analysis is applicable.

Since the estimates are the same as those in [15, 16], we will omit the proof of the existence of a limit which is a
consequence of general compactness results. Instead, we will concentrate on the derivation of the limit equations. For
this, we introduce the empirical measure νδ ∈ L1

(
0,T ; C0(0,KT ])

)∗
of the radii:

〈
νδ, ϕ

〉
=

∫ T

0

1
N(t)

∑
i∈N(t)

ϕ(t,Rδ
i (t)) dt for ϕ ∈ L1([0,T ]; C0[0,KT ]), (92)

where KT = supi,δ

∥∥∥Rδ
i

∥∥∥
L∞(0,T ). Then we have the following convergence result:
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Lemma 9.1. Given any T < ∞, there exist a ν∗ ∈ L1
(
0,T ; C0[0,KT ]

)∗
and u∗∞ ∈ W1,p(0,T ) (1 ≤ p < ∞) such that

for a subsequence of δ −→ 0, the following hold:

νδ ⇀ ν∗ in the weak∗ topology of L1
(
0,T ; C0[0,KT ]

)∗
, (93)

uδ∞ −→ u∗∞ uniformly in (0,T ), (94)
uδ −→ u∗∞ in L2(0,T ; H1(Ω)). (95)

Furthermore, there exists a family of probability measures
{
ν∗t

}
t≥0 ⊂ C0[0,KT ]∗ and a non-negative function α ∈

L∞(0,T ) such that

〈ν∗, ϕ〉 =

∫ T

0

∫
ϕ(t,R) dν∗t (R)α(t) dt for ϕ ∈ L1

(
0,T ; C0[0,KT ]

)∗
. (96)

In the above, α(t) = lim
δ→0

N(t)
N(0)

represents the percentage of active particles in the system.

The proof of the above is some application of convergence of measures and Lp spaces. The specific concept used is
that of Young measures. For details, see [15, Lemmas 7, 8] and [16, Lemma 5.1].

In order to have a closed equation in the limit, we state here again the assumption about the functional form for
the gi(t)’s:

there exists a function G ∈ C1(R+ × R+) and a function h ∈ C1(R+) such that gi(t) = G(t,Ri(t)) + h(t). (28)

We will make some remarks about this assumption after presenting the main theorem which is stated as follows:

Theorem 9.2. The mean field variable u∗∞ and the distribution ν∗ satisfy:

∂tu∗∞(t) = 4π
∫ ∞

O

(
1 − Ru∗∞(t) − RG(t,R) − Rh(t)

) R
R + β

dν∗t (R)α(t) dt, (97)

and ∫ T

0

∫ {
∂tϕ(t,R) + V(t,R)∂Rϕ(t,R)

}
dν∗t (R)α(t) dt +

∫
ϕ(0,R)dν∗0(R) = 0 (98)

for all ϕ ∈ C∞0 ([0,T ] × R+), where

V(t,R) = −
1 − Ru∗∞(t) − RG(t,R) − Rh(t)

R(R + β)
, (99)

and ν∗0 is the limit of the empirical measure of the initial radii Rδ
i0.

Proof. For (97), let η ∈ C1
0(0,T ). Then we get∫ T

0
η(t)

(
uδ∞

)
t

dt =

∫ T

0
η(t)

4πδ3
∑

i

(
(1 − Rδ

i uδ∞ − Rδ
i gi

) Rδ
i

Rδ
i + β

 dt.

For the left hand side of the above, we have∫ T

0
η(t)

(
uδ∞

)
t

dt = −

∫ T

0
ηt(t)uδ∞ dt −→ −

∫ T

0
ηt(t)u∗∞ dt =

∫ T

0
η(t)

(
u∗∞

)
t dt.

Considering the right hand side, we express it in terms of the empirical measure νδ:∫ T

0
η(t)

4πδ3
∑

i

(
(1 − Rδ

i uδ∞ − Rδ
i gi

) Rδ
i

Rδ
i + β

 dt =
〈
νδ, Φδ

〉
,
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where Φδ(t,R) = 4πη(t)
[
1 − Ruδ∞(t) − R(G(t,R) + h(t))

] R
R + β

. By the strong convergence of uδ∞ to u∗∞ and the form

of gi’s, we have that

〈
νδ, Φδ

〉
−→

∫ T

0
η(t)

∫
4π

(
1 − Ru∗∞ − RG(t,R) − Rh(t)

) R
R + β

dν∗t (R)α(t) dt,

which gives (97).
For (98), consider for any φ ∈ C∞0 ([0,T ],R+):∫ T

0
η(t)

 1
N

∑
i∈N

d
dt
φ(t,Rδ

i (t))

 dt +
1
N

∑
i∈N

φ(0,Rδ
i0) dt = 0.

The convergence of the second term is trivial. For the first term, we compute:∫ T

0
η(t)

 1
N

∑
i∈N

d
dt
φ(t,Rδ

i (t))

 dt =

∫ T

0
η(t)

 1
N

∑
i∈N

φt(t,Rδ
i (t))

 dt +

∫ T

0
η(t)

 1
N

∑
i∈N

φR(t,Rδ
i (t))Ṙδ

i

 dt.

The first term on the right becomes:∫ T

0
η(t)

 1
N

∑
i∈N

φt(t,Rδ
i (t))

 dt =
〈
νδ, η∂tφ

〉
−→ 〈ν∗, η∂tφ〉 .

For the second term, we compute:∫ T

0
η(t)

 1
N

∑
i∈N

φR(t,Rδ
i (t))Ṙδ

i

 dt

=

∫ T

0
η(t)

 1
N

∑
i∈N

φR(t,Rδ
i (t))

(
Ṙδ

i − V(t,Rδ
i )
) dt +

∫ T

0
η(t)

 1
N

∑
i∈N

φR(t,Rδ
i (t))V(t,Rδ

i )

 dt.

As φ has compact support, only the values of the radii which are bounded away from zero matter in the computation.
Hence a trivial modification of the proof of Theorem 8.1, in particular the steps (89) and (90) give∫ T

0
η(t)

 1
N

∑
i∈N

φR(t,Rδ
i (t))

(
Ṙδ

i − V(t,Rδ
i )
) dt −→ 0.

Finally we have the convergence result:∫ T

0
η(t)

 1
N

∑
i∈N

φR(t,Rδ
i (t))V(t,Rδ

i )

 dt −→ 〈ν∗, ηφR〉 ,

which all together gives (98), completing the proof of the theorem.

Remark 9.3. Here we explain the need to impose the functional form (28) for the inhomogeneous forces. From the
derivation of the limit equations, we are forced to deal with summations in the form of∫ T

0
ϕ(t)

∑
i

F
(
t, Ri(t), {R j(s)} j, 0≤s≤t, gi(t)

)
dt for some nonlinear function F.

The dependence on {R j(s)} j, 0≤s≤t is through the mean-field variable uδ∞(t). In principle the above can all be expressed
in terms of some Young measures. But it is not clear if there is any meaningful equation we can obtain to describe these
Young measures. The limit equations will thus not be closed – the usual problem when dealing with weak convergence
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in nonlinear equations. Imposing some probabilistic independence among the gi does not help immediately due to the
non-local dependence in time. A reasonable alternative is to consider white noise for the gi’s so that techniques from
Itô’s calculus can be used to take advantage of the stochastic cancellation in time. Such an approach is used in many
works deriving continuum equations from particle systems with mean-field or long range interactions. This will be
investigated in some future works.
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