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Abstract. We analyze the evolution of multi-dimensional normal graphs over

the unit sphere under volume preserving mean curvature flow and derive a
non-linear partial differential equation in polar coordinates. Furthermore, we

construct finite difference numerical schemes and present numerical results for

the evolution of non-convex closed plane curves under this flow, to observe that
they become convex very fast.

1. Introduction. In this paper, we study the evolution of normal graphs over
the unit sphere under volume preserving mean curvature flow (VPMCF). We use
a proper diffeomorphism and a general parametrization of the unit sphere. Our
main goal is to express evolution as an initial and boundary value problem with
periodic conditions for a second order non-linear partial differential equation with
non-local integral terms. In addition for the two-dimensional case, we solve the
problem numerically by applying finite difference schemes.

Given an initial simple and closed hypersurface S0 in Rn+1, we seek a family

S = {St; t ≥ 0}
of smooth closed hypersurfaces in Rn+1 on which the following equation is satisfied,
[4]

V = h−H on St, t ≥ 0. (1)

Here V = V (σ, t) and H = H(σ, t) denote respectively the normal velocity and mean
curvature of a point σ on St. The mean curvature on St is defined as an average of
principal curvatures or equivalently as the trace of the second fundamental form.
The function h = h(t) is defined as the average of the mean curvature on St

h(t) :=

∫
St
H(σ, t) dσ∫
St
dσ

, t ≥ 0. (2)

A basic property of the averaged mean curvature flow (1) is that it defines a vo-
lume preserving and area shrinking hypersurfaces family {St; t ≥ 0}. Any Euclidean
sphere in Rn+1 is a static solution of (1). Existence and uniqueness of solution
of (1) for smooth initial hypersurfaces is proved in [9] and [5]. Huisken [9] (and
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Gage [5] in the case of curves) proved that the solution of (1) exists globally and
converges to a sphere, if the initial surface S0 is convex and smooth, while for any
t ≥ 0 St remains convex. Extending the previous results, Escher and Simonett
in [4] proved that convexity is not necessary for global existence, i.e. there are
non-convex initial conditions S0 such that the solution of (1) exists globally and
converges exponentially fast to a sphere. Gage and Hamilton analyzed the heat
equation on convex plane curves in [6].

Alikakos and Freire [1] have shown neckpinching of certain class of rotationally
symmetric surfaces under volume preserving mean curvature flow. Later, Gang and
Sigal analyzed the motion of surfaces of revolution under mean curvature flow, [7].
Escher and Simonett in [4] proved for (1) by means of a center manifold analysis
the asymptotic stability of spheres under Hölder norm. In [2] a proof of this result
is given in Sobolev norms by orthogonal decomposition of the solutions near the
manifold of Euclidean spheres and by making use of certain properties of Lyapunov
functionals.

In Section 2, introducing a suitable diffeomorphism we present St as a normal
graph over the unit sphere in polar coordinates. In the next section we use this co-
ordinate system and write (1) in an equivalent formulation. The resulting equation
presented in Theorem 3.2 for general n and Remark 5 for the two-dimensional case
is an evolutionary in time non-linear partial differential equation (p.d.e.). Struwe,
in [12], derived in a more geometric manner in cartesian coordinates the evolution
equation for the mean curvature flow considering the multidimensional case. In
this paper, we analyze the volume preserving mean curvature flow and propose the
use of a polar coordinates system in order to present evolution as an initial and
boundary value problem.

Finally, in Section 4 we solve the problem numerically for non-convex initial con-
ditions by applying explicit finite difference schemes. The numerical results agree
to the theoretical result of asymptotic convergence to spheres; a general experimen-
tal observation is that non-convex curves evolving under volume preserving mean
curvature flow become convex very fast. Our numerical experiments verify for the
VPMCF the elegant theoretical result of Grayson [8] proved for smooth embedded
curves in R2 evolving under mean curvature flow. The result of Grayson completed
the proof of the conjecture that curve shortening shrinks embedded plane curves
smoothly to points, with round limiting shape, while these curves become convex
without developing singularities. In our case, the flow of evolution is different since
we refer to the volume preserving mean curvature flow (VPMCF), while the curve
under this flow does not shrink to a point but converges asymtotically to a sphere
always keeping the initial enclosed volume.

2. Normal graphs. Let Γ be a smooth hypersurface in Rn+1. A hypersurface S
in Rn+1 is a graph in the normal direction over Γ if there exists a function

% : Γ→ R

such that the function

θ% : Γ→ S

defined by

θ% := id+ %ν

is a diffeomorphism from Γ to S, i.e. is a one-to-one smooth function onto S and
θ−1
% is smooth too. Here ν is the unit outward normal vector field in Γ and id is the
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identity function on Γ. Moreover, S is said to be in the class Hs(Γ) if % is in the
class Hs.

0

1

St

( ,t)

Figure 1: Normal graph over the unit sphere in R2.

Let Γ be the unit sphere in Rn+1 of zero center and consider a family {St, t ≥ 0}
of closed hypersurfaces in Rn+1 where for any t ≥ 0 St is a graph in the normal
direction over Γ (see Fig. 1). More specifically, for Γ = {x ∈ Rn+1 : |x| = 1}, we as-
sume that there exists function ρ∗ : Γ×R→ R defining for t fixed a diffeomorphism
θρ∗(·, t) onto St:

θρ∗ : Γ× t→ St : θρ∗(γ, t) := γ + ρ∗(γ, t)ν(γ), γ ∈ Γ, t ≥ 0.

Since θρ∗(Γ, t) = St we deduce that in cartesian coordinates x1, · · · , xn+1, St is
represented by

St =
{
x ∈ Rn+1

∗ : |x| − 1− ρ∗
( x
|x|
, t
)

= 0
}
, (3)

where Rn+1
∗ := Rn+1−{0}. By setting ρ̂ := 1+ρ∗, [2], we define the diffeomorphism

θρ̂(γ, t) := ρ̂(γ, t)γ = θρ∗(γ, t)− id(γ).

We represent St by using the diffeomorphism θρ̂. St is identified by the function
ρ̂(·, t) : Γ→ R.

Let x = (x1, · · · , xn+1) ∈ Rn+1 in cartesian coordinates and consider the change
of variables in polar coordinates u = (u1, · · · , un+1)

x = x(u) =
(
x1(u1, · · · , un+1), · · · , xn+1(u1, · · · , un+1)

)
, (4)

x1 = un+1y1(u1, · · · , un), · · · , xn+1 = un+1yn+1(u1, · · · , un),

where un+1 = |x| ∈ [0,+∞).

The function y = (y1, · · · , yn+1) is on Γ and yi i = 1, · · · , n+ 1 in polar coordinates
may be expressed by the following formulas for n = 1, 2, ([10])

(n = 1) y1 = cos(u1), y2 = sin(u1), (5)

(n = 2) y1 = cos(u1) cos(u2), y2 = sin(u1) cos(u2), y3 = sin(u2),
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where u1, u2 ∈ [0, 2π]× [0, π). If n ≥ 3 then y can be defined by

y1 = cos(u1), yk =
( k−1∏
j=1

sin(uj)
)

cos(uk), k = 2, · · · , n− 1, (6)

yn =
( n−1∏
j=1

sin(uj)
)

cos(un), yn+1 =
( n−1∏
j=1

sin(uj)
)

sin(un),

([11]), where 0 ≤ uj < π for j = 1, · · · , n− 1, 0 ≤ un < 2π.
Note that the geometrical properties of St are independent of the choice of

parametrization y of Γ. We may write

u = u(x) = (u1(x1, · · · , xn+1), · · · , un+1(x1, · · · , xn+1))

as the change of variables is invertible.

Remark 1. Obviously, ρ∗
(
x
|x| , t

)
is a function of x = (x1, · · · , xn+1) and t for any

x ∈ Rn+1
∗ , therefore, for t fixed we define

ρ̃(·, t) : Rn+1
∗ → R

by

ρ̃(x1, · · · , xn+1, t) := 1 + ρ∗
( x
|x|
, t
)

=: ρ̂
( x
|x|
, t
)
.

Note that the above gives that ρ̃ is independent from |x| while it depends only on
the directional angles, and thus any change of variables of Rn+1 from cartesians to
polar coordinates will give for x ∈ Rn+1

∗

ρ̃(x1, · · · , xn+1, t) = ρ(u1, · · · , un, un+1, t) = ρ(u1, · · · , un, t),

since un+1 := |x|. In this paper we compute ρ as a solution of an initial and
boundary value problem. Then we may use this ρ to construct St as follows: If Γ
is represented by

Γ := {y ∈ Rn+1 : y = (y1(u1, · · · , un), · · · , yn+1(u1, · · · , un))},

where y is given for example by (5), (6) then

St :=
{
x ∈ Rn+1 : x = ρ(u1, · · · , un, t)

(
y1(u1, · · · , un), · · · , yn+1(u1, · · · , un)

)}
.

(7)

3. The evolution equation. In this Section we consider St to be a normal graph
over the unit sphere Γ defined by (3) and prove an equivalent formulation for (1)
presented as an evolution equation in time for ρ = ρ(u1, · · · , un, t) in polar coordi-
nates. Then St may be constructed in Rn+1 by utilizing (7).

We prove the next lemma.

Lemma 3.1. If St satisfies the VPMCF (1) then ρ̃ satisfies

∂tρ̃ = h
√

1 + |∇xρ̃|2+
1

n

{
− n

|x|
+∆xρ̃−

|∇xρ̃|2

|x|(1 + |∇xρ̃|2)
−∇xρ̃Hessx(ρ̃)∇xρ̃T

(1 + |∇xρ̃|2)

}∣∣∣
x∈St

.

(8)
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Proof. By definition it holds that

ρ̃(x1, · · · , xn+1, t) = 1 + ρ∗
( x
|x|
, t
)
,

thus (3) gives that

St = {x ∈ Rn+1
∗ : φ(x, t) = 0}, (9)

where for t fixed, φ(·, t) : Rn+1
∗ → R is given by

φ(x, t) := |x| − ρ̃(x, t). (10)

Obviously any x ∈ St is a root of φ(x, t). In what follows, we use that ρ̃ is a function
defined on any x ∈ Rn+1

∗ , independent of |x|. The derivatives in formulae are applied
in the space Rn+1 in cartesians and at the end we consider x ∈ St ⊂ Rn+1 in order
to compute the exact values on the hypersurface St.

For the velocity and mean curvature of St we have respectively the formulae, [4]

V = − ∂tφ

|∇xφ|
|x∈St , H =

1

n
divx

( ∇xφ
|∇xφ|

)
|x∈St .

Using now the velocity formula in (1) we arrive at

∂tφ = (H − h)|∇xφ| on St. (11)

From (10) we compute

∂tφ(x, t) = −∂tρ̃(x, t), ∇xφ =
(∂|x|
∂x1

− ρ̃x1 , · · · ,
∂|x|
∂xn+1

− ρ̃xn+1

)
, (12)

while for any 0 ≤ i ≤ n+ 1 it follows that

∂|x|
∂xi

=
1

2
(

n+1∑
j=1

x2
j )
−1/22xi =

xi
|x|
.

Therefore, the second equality of (12) gives

∇xφ =
x

|x|
− ∇xρ̃. (13)

In (11) we replace ∂tφ by (12) and use (13) to obtain finally

∂tρ̃ = (h−H)
∣∣∣ x|x| − ∇xρ̃∣∣∣. (14)

Let us consider λ > 0, then the next equality easily follows

ρ̃(λx, t) = 1 + ρ∗(
λx

|λx|
, t) = 1 + ρ∗(

x

|x|
, t) = ρ̃(x, t).

Hence, for any λ > 0, we obtain

0 = ∂λ(ρ̃(x, t)) = ∂λ(ρ̃(λx, t)) =

n+1∑
i=1

ρ̃yi(y, t)
∂yi
∂λ

,

where
ρ̃(λx, t) = ρ̃(y, t),

and y := λx. So, x∇yρ̃(y, t) = 0 and therefore λ > 0 yields

y∇yρ̃(y, t) = λx∇yρ̃(y, t) = 0.

Setting λ := 1 we get that
x

|x|
⊥∇xρ̃(x, t),
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and thus ∣∣∣ x|x| − ∇xρ̃∣∣∣ =
(∣∣∣ x|x| ∣∣∣2 + |∇xρ̃|2

)1/2

=
√

1 + |∇xρ̃|2. (15)

Replacing (15) in (14) we obtain

∂tρ̃ = (h−H)
√

1 + |∇xρ̃|2. (16)

The next step is to calculate the mean curvature H in terms of ρ̃. By (13), (15)
and the definition (10) of φ it follows that

nH := divx

( ∇xφ
|∇xφ|

)
=

(
1 + |∇xρ̃|2

)− 1
2
( n
|x|
−∆xρ̃

)
(17)

−
(

1 + |∇xρ̃|2
)− 3

2 |∇xρ̃|
n+1∑
j=1

(
xj
|x|
− ρ̃xj )

∂

∂xj
(|∇xρ̃|).

Further,

∂

∂xj
(|∇xρ̃|) =

∂

∂xj

(( n+1∑
i=1

ρ̃2
xi

) 1
2
)

= |∇xρ̃|−1
n+1∑
i=1

ρ̃xi ρ̃xixj ,

so replacing in (17) we get

nH = A−
(

1 + |∇xρ̃|2
)− 3

2B, (18)

for

A :=
(

1 + |∇xρ̃|2
)− 1

2
( n
|x|
−∆xρ̃

)
and

B :=

n+1∑
j=1

(
xj
|x|
− ρ̃xj )

( n+1∑
i=1

ρ̃xi ρ̃xixj

)
.

But we note that

∇xρ̃Hessx(ρ̃)∇xρ̃T =

n+1∑
j=1

n+1∑
i=1

ρ̃xi ρ̃xixj ρ̃xj =

n+1∑
j=1

ρ̃xj

n+1∑
i=1

ρ̃xi ρ̃xixj , (19)

thus replacing in B we get

B =

n+1∑
j=1

xj
|x|

( n+1∑
i=1

ρ̃xi ρ̃xixj

)
−∇xρ̃Hessx(ρ̃)∇xρ̃T , (20)

where ∇xρ̃T is the transpose of ∇xρ̃. Since x⊥∇xρ̃ we deduce that

n+1∑
j=1

xj ρ̃xj = 0.

By differentiation with respect to xi we obtain

n+1∑
j=1

xj ρ̃xjxi + ρ̃xi = 0

and consequently

n+1∑
j=1

xj
|x|

( n+1∑
i=1

ρ̃xi ρ̃xixj

)
= − 1

|x|

n+1∑
i=1

ρ̃xi ρ̃xi = −|∇xρ̃|
2

|x|
. (21)
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By (20) combined with (21) the next relation follows

B = −|∇xρ̃|
2

|x|
− ∇xρ̃Hessx(ρ̃)∇xρ̃T .

We replace B and A in (18) to arrive at

nH

=
n

|x|
√

1 + |∇xρ̃|2
− ∆xρ̃√

1 + |∇xρ̃|2
+

|∇xρ̃|2

|x|(1 + |∇xρ̃|2)
3
2

+
∇xρ̃Hessx(ρ̃)∇xρ̃T

(1 + |∇xρ̃|2)
3
2

∣∣∣
x∈St

.

(22)

Plugging the above in (16) we obtain equation (8).

The non-linear evolution equation for the VPMCF in polar coordinates is pre-
sented in the next theorem.

Theorem 3.2. Let St be a graph in normal direction over Γ determined by the
function ρ(·, t) : Γ→ R. If St satisfies the VPMCF (1) then ρ satisfies the evolution
equation

∂tρ = G(ρ), t ≥ 0, (23)

where

G(ρ) := J(ρ) +
h

ρ

√
ρ2 +R2(ρ).

Here J(ρ) is defined as

J(ρ) :=
1

n

{
− n

ρ
+
R1(ρ)

ρ2
− R2(ρ)

ρ(ρ2 +R2(ρ))
− R3(ρ)

ρ2(ρ2 +R2(ρ))

}
, (24)

with

R1(ρ) :=
[ n∑
i=1

n∑
j=1

∂2ρ

∂ui∂uj

n+1∑
m=1

∂uj
∂ym

∂ui
∂ym

+

n∑
q=1

∂ρ

∂uq

n+1∑
m=1

∂2uq
∂y2

m

]
, (25)

R2(ρ) :=

n+1∑
k=1

n∑
m=1

n∑
i=1

∂ρ

∂um

∂um
∂yk

∂ρ

∂ui

∂ui
∂yk

, (26)

R3(ρ) :=

n+1∑
j=1

n+1∑
i=1

([ n∑
s=1

∂ρ

∂us

∂us
∂yi

]
(27)

[ n∑
l=1

n∑
k=1

∂2ρ

∂ul∂uk

∂uk
∂yi

∂ul
∂yj

+

n∑
q=1

∂ρ

∂uq

∂2uq
∂yi∂yj

][ n∑
q=1

∂ρ

∂uq

∂uq
∂yj

])
,

while

h :=

∫
St
H dσ∫
St
dσ

= −
(∫

Γ

ρJ(ρ)(ρ2 +R2(ρ))−
1
2µρ

)(∫
Γ

µρ

)−1

,

where µρ is the Jacobian in polar coordinates.

Proof. By Lemma 3.1 the VPMCF (1) is transformed to (8). We express (8) in
terms of ρ. First, we calculate ∆xρ̃(x)|x∈St . Let x ∈ Rn+1

∗ , then for ρ̃(x, t) =
ρ(u1, · · · , un, t) (polar coordinates in space), we apply the chain rule and use that
x = un+1y = |x|y.

In details, for any x ∈ Rn+1
∗ , we consider

ρ̃(x, t) = ρ(u1, · · · , un, t)
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and compute

ρ̃xlxm =

n∑
i=1

n∑
j=1

∂2ρ

∂ui∂uj

∂uj
∂xl

∂ui
∂xm

+

n∑
q=1

∂ρ

∂uq

∂2uq
∂xl∂xm

(28)

=
1

|x|2
[ n∑
i=1

n∑
j=1

∂2ρ

∂ui∂uj

∂uj
∂yl

∂ui
∂ym

+

n∑
q=1

∂ρ

∂uq

∂2uq
∂yl∂ym

]
,

for any l,m ≤ n+ 1. Here we used that

∂ui
∂xm

=
1

|x|
∂ui
∂ym

,

and that

∂2uq
∂xl∂xm

=
1

|x|2
∂2uq
∂yl∂ym

,

since for any x ∈ Rn+1
∗ there exists y ∈ Γ such that x = |x|y. Note that y is defined

as a parametrization of Γ, for example by (5), (6). Hence we obtain

∆xρ̃ =

n+1∑
m=1

ρ̃xmxm =
1

|x|2
n+1∑
m=1

[ n∑
i=1

n∑
j=1

∂2ρ

∂ui∂uj

∂uj
∂ym

∂ui
∂ym

+

n∑
q=1

∂ρ

∂uq

∂2uq
∂y2

m

]

=
1

|x|2
[ n∑
i=1

n∑
j=1

∂2ρ

∂ui∂uj

n+1∑
m=1

∂uj
∂ym

∂ui
∂ym

+

n∑
q=1

∂ρ

∂uq

n+1∑
m=1

∂2uq
∂y2

m

]
. (29)

If x ∈ St then (9), (10) give that |x| = 1 + ρ∗( x
|x| , t) = ρ(u1, · · · , un, t). Thus (29)

yields

∆xρ̃(x)|x∈St =
1

ρ2
R1(ρ), (30)

for R1(ρ) defined by (25). We note that the terms appearing in (25) can be com-
puted because y is a known function given for example by (5) or (6).

Applying the chain rule at ρ̃(x, t) = ρ(u1, · · · , un, t) we arrive at

∂ρ̃

∂xk
=

n∑
l=1

∂ρ

∂ul

∂ul
∂xk

,

for any k ≤ n+ 1, consequently

|∇xρ̃|2 =

n+1∑
k=1

( n∑
l=1

∂ρ

∂ul

∂ul
∂xk

)2

. (31)

By (31) and by making use of the identity( n∑
l=1

εl

)2

=

n∑
m=1

n∑
i=1

εmεi

for

εl :=
∂ρ

∂ul

∂ul
∂xk

,
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we obtain

|∇xρ̃|2 =

n+1∑
k=1

n∑
m=1

n∑
i=1

∂ρ

∂um

∂um
∂xk

∂ρ

∂ui

∂ui
∂xk

=
1

|x|2
n+1∑
k=1

n∑
m=1

n∑
i=1

∂ρ

∂um

∂um
∂yk

∂ρ

∂ui

∂ui
∂yk

, x ∈ Rn+1.

Thus we get

|∇xρ̃|2|x∈St =
1

ρ2
R2(ρ), (32)

for R2(ρ) defined by (26).
Next, we express in terms of ρ the operator ∇xρ̃Hessx(ρ̃)∇xρ̃T appearing in (8).

The equality ρ̃(x1, · · · , xn+1, t) = ρ(u1, · · · , un, t) yields

ρ̃xj =

n∑
l=1

∂ρ

∂ul

∂ul
∂xj

, ρ̃xixj =

n∑
l=1

n∑
k=1

∂2ρ

∂ul∂uk

∂uk
∂xi

∂ul
∂xj

+

n∑
q=1

∂ρ

∂uq

∂2uq
∂xi∂xj

.

By (19) and the above, we obtain for any x ∈ Rn+1

∇xρ̃Hessx(ρ̃)∇xρ̃T =

n+1∑
j=1

n+1∑
i=1

ρ̃xi ρ̃xixj ρ̃xj =

n+1∑
j=1

n+1∑
i=1

([ n∑
s=1

∂ρ

∂us

∂us
∂xi

][ n∑
l=1

n∑
k=1

∂2ρ

∂ul∂uk

∂uk
∂xi

∂ul
∂xj

+

n∑
q=1

∂ρ

∂uq

∂2uq
∂xi∂xj

]
(33)

[ n∑
q=1

∂ρ

∂uq

∂uq
∂xj

])
=

1

|x|4
n+1∑
j=1

n+1∑
i=1

([ n∑
s=1

∂ρ

∂us

∂us
∂yi

]
[ n∑
l=1

n∑
k=1

∂2ρ

∂ul∂uk

∂uk
∂yi

∂ul
∂yj

+

n∑
q=1

∂ρ

∂uq

∂2uq
∂yi∂yj

][ n∑
q=1

∂ρ

∂uq

∂uq
∂yj

])
.

Hence, we compute

∇xρ̃Hessx(ρ̃)∇xρ̃T |x∈St =
1

ρ4
R3(ρ), (34)

for R3(ρ) given by (27).
Utilizing the definition of J(ρ) in (24), the expression of H in (22) and the

definitions of R1(ρ), R2(ρ), R3(ρ), we obtain that

J(ρ) = −H
√

1 + |∇xρ̃|2,
hence (32) yields

H =
−J(ρ)ρ√
ρ2 +R2(ρ)

.

Using the previous expression in h =

∫
St
H dσ∫

St
dσ

and the values given by (30), (32),

(34) in (8) we get finally (23) since ∂tρ̃ = ∂tρ.

Remark 2. The operators R1, R2 and R3, e.g. (25)-(27), may be expressed in
terms of the Beltrami differential parameters of first and second order. Considering
the first fundamental form G = (G)ij , i, j = 1, · · · , n of the surface ρ we define in
cartesians

∂ρ := (∂1ρ, · · · , ∂nρ),
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where

∂kρ :=

n∑
m=1

gkm
∂ρ

∂um
, k = 1, · · · , n,

while gkm are the elements of G−1. Further let

|∂ρ|2G := ∂ρG∂ρT .

This expression is equal to the first differential parameter of Beltrami which is
invariant with respect to allowable transformations of coordinates, [10], [2]. We also
define ∆Γρ as the Laplace-Beltrami operator on the unit sphere which is invariant
too and also called as second differential parameter of Beltrami, [10]. Finally, let
the n × n matrix Hessρ be for t fixed the second covariant derivative of the scalar
function ρ(u1, · · · , un, t), [10], given by

(Hessρ)rs :=
∂2ρ

∂ur∂us
−

n∑
p=1

Γprs
∂ρ

∂up
,

where Γprs are the Christoffel symbols of second kind, then it follows that

R1(ρ) = ∆Γρ, R2(ρ) = |∂ρ|2G , R3(ρ) = ∂ρ Hessρ ∂ρT ,

and the VPMCF (1) admits an elegant representation in terms of Beltrami operators
and of covariant Hessian, [2].

Remark 3. Considering the standard parametrization (6), we note that

ui = arcot
(
yi(y

2
i + y2

i+1 + · · ·+ y2
n+1)−

1
2

)
, i = 1, · · · , n.

Remark 4. In order to compute an explicit formula for (23), we may use the
standard parametrization given by (5), or (6). We supplement the non-linear p.d.e.
(23) by an initial periodic condition ρ(·, 0) given for any

(u1, · · · , un) ∈ (0, π)× · · · × (0, π)× [0, 2π].

We also impose periodic and Dirichlet boundary conditions and derive an initial
and boundary value problem. More specifically, if n ≥ 2 we consider the p.d.e. (23)
at any t > 0 for (u1, · · · , un−1) in the open set A := (0, π) × · · · × (0, π), and for
any un ∈ (0, 2π). Since St is closed we impose a periodic boundary condition on
the azimuth un by

ρ(u1, · · · , un−1, 0, t) = ρ(u1, · · · , un−1, 2π, t) for any (u1, · · · , un−1) ∈ A, t ≥ 0.

In addition, we assign boundary values at the south and north poles 0, π. Since
the coordinate system is polar, these values at the poles must be independent of the
azimuth un (un is measured along the equator), so we impose Dirichlet conditions
on the azimuthal derivatives for any un ∈ [0, 2π] and any t > 0 as follows

∂ρ

∂un
(0, u2, · · · , un, t) = 0,

∂ρ

∂un
(π, u2, · · · , un, t) = 0, ui ∈ (0, π), i 6= 1, n,

∂ρ

∂un
(u1, 0, · · · , un, t) = 0,

∂ρ

∂un
(u1, π, · · · , un, t) = 0, ui ∈ (0, π), i 6= 2, n,

............................
∂ρ

∂un
(u1, u2, · · · , 0, un, t) = 0,

∂ρ

∂un
(u1, u2, · · · , π, un, t) = 0,

ui ∈ (0, π), i 6= n− 1, n.

For the case n = 1 we only consider periodicity on azimuth.
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Remark 5. For the 2-dimensional VPMCF (23), i.e. in the case of curves in R2,
let n = 1. We use the symbol u1 =: θ, to obtain ρ = ρ(θ, t), y1 = cos θ, y2 = sin θ,
θ = arctan(y2y1 ), 0 ≤ θ ≤ 2π, and we further compute ∂θ

∂y1
= − sin θ, ∂θ

∂y2
= cos θ,

∂2θ
∂y21

= −2 cos θ sin θ, ∂2θ
∂y1∂y2

= −1 + 2 cos2 θ, ∂2θ
∂y22

= 2 cos θ sin θ. We replace in R1,

R2, R3 e.g. (25)-(27), to obtain after straightforward calculations that

R1(ρ) = ρθθ, R2(ρ) = ρ2
θ, R3(ρ) = ρ2

θρθθ.

Thus by (24) we get

J(ρ) =
ρθθ − ρ2θ

ρ

ρ2 + ρ2
θ

− 1

ρ
.

In order to calculate h we write

St =
{
z ∈ R2 : z = (z1(θ, t), z2(θ, t)) = ρ(θ, t)(cos θ, sin θ), θ ∈ [0, 2π]

}
,

thus
∫
St
dσ =

∫ 2π

0

√
z2

1θ + z2
2θdθ. We compute z2

1θ + z2
2θ = ρ2

θ + ρ2 to get∫
St

dσ =

∫ 2π

0

√
ρ2
θ + ρ2dθ, h = −

∫ 2π

0
ρJ(ρ)dθ∫ 2π

0

√
ρ2
θ + ρ2dθ

.

We replace in (23) and obtain the final equation

∂tρ =
ρθθ − ρ2θ

ρ

ρ2 + ρ2
θ

− 1

ρ
−
√
ρ2 + ρ2

θ

∫ 2π

0
ρJ(ρ)dθ

ρ
∫ 2π

0

√
ρ2
θ + ρ2dθ

. (35)

Remark 6. In three dimensions (n = 2) using (5) we write

St =
{
z ∈ R3 : z = ρ(θ, φ, t)(cos θ cosφ, sin θ cosφ, sinφ), θ ∈ [0, 2π], φ ∈ [0, π]

}
.

In this case we may compute H by using the first and second fundamental forms
for hypersurfaces.

4. Numerical experiments for the 2-dimensional VPMCF.

4.1. Finite difference schemes. We consider the case n = 1. The VPMCV can
be presented (Remark 5, eqn. (35)) as the following non-linear initial and boundary
value problem for ρ

∂tρ =
ρθθ − ρ2θ

ρ

ρ2 + ρ2
θ

− 1

ρ
+
√
ρ2 + ρ2

θ

∫ 2π

0

(−ρθθ+
ρ2θ
ρ

ρ2+ρ2θ
+ 1

ρ

)
ρ dθ

ρ
∫ 2π

0

√
ρ2 + ρ2

θ dθ
, 0 < θ < 2π, t > 0,

ρ(θ, 0) = ρ0(θ), 0 ≤ θ ≤ 2π, ρ(0, t) = ρ(2π, t), t ≥ 0, (36)

with periodic conditions and smooth periodic initial data ρ0. We will consider the
case when ρ0 is non-convex. We approximate numerically (36) by explicit finite
difference schemes using the trapezoid rule for the non-local integral terms.

More specifically, let define the uniform partition 0 = θ0 < θ1 < θ2 < · · · < θJ =
2π, with θj := jh, j = 0, · · · J , for h := 2π

100 , J := 100. We approximate the terms

ρ(θj , t
n), ∂tρ(θj , t

n+1), ρθ(θj , t
n), ρθθ(θj , t

n)

for j = 1, · · · , J − 1, by

ρnj ,
ρn+1
j − ρnj

k
,

ρnj+1 − ρnj−1

2h
and

ρnj+1 − 2ρnj + ρnj−1

h2
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respectively, for k = 1
100 , and tn := nk, n = 0, · · · , N . We also approximate

the values ρ(θ0, t
n+1) = ρ(θJ , t

n+1) by ρn+1
1 for n = 0, · · · , N , and use the initial

condition ρ0
j := ρ0(θj), j = 1, · · · , J . Obviously

S0 = {z ∈ R2 : z = ρ0(θ)(cos θ, sin θ), θ ∈ [0, 2π]},

while for any t > 0

St = {z ∈ R2 : z = ρ(θ, t)(cos θ, sin θ), θ ∈ [0, 2π]}.

In details, let ρ0
j := ρ0(θj), j = 1, · · · , J . For any n = 1, · · · , N we solve the

J − 1× J − 1 diagonal system

ρn+1
j − ρnj

k
=

ρnj+1−2ρnj +ρnj−1

h2
−

(
ρnj+1−ρnj−1

2h

)2

ρn
j

(ρnj )2+

(
ρn
j+1

−ρn
j−1

2h

)2 − 1
ρnj

+

√
(ρnj )2+

(
ρn
j+1

−ρn
j−1

2h

)2

ρnj

An
Bn
,

where j = 1, · · · , J − 1, while An, Bn are the approximations of the non-local
integral terms of (36) at t := tn calculated by the trapezoid rule. Further using
the periodic conditions for j = J and any n = 0, · · · , N we set ρn+1

0 := ρn+1
1 ,

ρn+1
J := ρn+1

1 .

4.2. Numerical results. For the first experiment (Case 1), we use as initial con-
dition the following non-convex smooth and periodic function

ρ0(θ) = (4 + cos3 θ)(2 + sin3 θ).

Figure 2 presents the evolution of the closed initial curve S0 for various times t0 = 0,
t1 = 1, t2 = 10, t3 = 20. In this case the asymptotic convergence to a sphere is
observable.

10 8 6 4 2 0 2 4 6 8 10 12
10

5

0

5

10

S1

S0

S3

S2

Figure 2: Case 1.

We next consider for the second experiment (Case 2)

ρ0(θ) = (1.5 + cos3 θ)(2 + sin3 θ)(2− cos3 θ sin θ).

The above function creates a closed curve which is locally intensively non-convex.
In Figure 3 we present St for t0 = 0, t1 = 1, t2 = 10, t3 = 20. A general observation
stemming from these experiments is that the VPMCF converges first rapidly to a
convex curve and after asymtotically to a sphere.
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Figure 3: Case 2.

5. Conclusions. The (VPMCF) acting on normal graphs over the unit sphere is
presented as a non-linear initial and boundary value evolutionary problem for the
radial function in polar coordinates. The resulting equation is a second order partial
differential equation containing some non-local integral terms. The (VPMCF) is an
optimization procedure that drives hypersurfaces to spheres (i.e. to minimal area
surfaces) under the constraint of constant enclosed volume. Our numerical results
for the 2-dimensional case indicate that convexity is a local minimizer and arise the
question if this is indeed true in two or higher dimensions.
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