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Abstract

In this paper we discuss mesoscopic models describing pattern formation mechanisms for a prototypi-
cal model of surface processes that involves multiple microscopic mechanisms. We focus on a mean field
partial differential equation, which contains qualitatively microscopic information on particle–particle in-
teractions and multiple particle dynamics, and we rigorously derive the macroscopic cluster evolution laws
and transport structure. We show that the motion by mean curvature is given by V = μσκ , where k is the
mean curvature, σ is the surface tension and μ is an effective mobility that depends on the presence of the
multiple mechanisms and speeds up the cluster evolution. This is in contrast with the Allen–Cahn equation
where V = κ .
© 2007 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study the effect of multiple microscopic mechanisms such as surface diffu-
sion and adsorption/desorption which are typically involved in surface processes, on macroscopic
cluster interface morphology and evolution. Although the starting point of our discussion is the
micromechanisms arising in surface processes, in this paper we focus on a simplified mean field
partial differential equation associated with the microscopics and rigorously derive the corre-
sponding cluster evolution laws and transport properties. The simplified mean field type equation
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is a combination of Cahn–Hilliard and Allen–Cahn type equations. The former models, as we
show later, can describe surface diffusion including particle/particle interactions, while the latter
describes a simplified model of adsorption to and desorption from the surface. It is worth men-
tioning that in the model of discussion, the mobility is completely different from the Allen–Cahn
equation and this implies that the diffusion speeds up the mean curvature flow.

Surface processes, such as catalysis, chemical vapor deposition and epitaxial growth, typically
involve transport and chemistry of precursors in a gas phase; unconsumed reactants and radicals
adsorb onto the surface of a substrate where numerous processes may take place simultaneously,
for instance surface diffusion, reactions and desorption back to the gas phase. Surface processes
have traditionally been modeled using continuum-type reaction diffusion models [11,15], where
the adsorptive layer has been assumed to be spatially uniform. This approach either neglects de-
tailed interactions between particles or treats them phenomenologically, while on the other hand
nonequilibrium statistical mechanics theories provide an exact microscocpic description [13].

Next we discuss microscopic mechanisms in surface processes and then connections to meso-
scopic e.g. Cahn–Hilliard/Allen–Cahn models.

1.1. Microscopic modeling

The mathematical tools employed in the statistical mechanics models are interacting particle
systems, which are Markov processes set on a lattice corresponding to a solid surface; typical
examples are the Ising-type systems [12], describing the evolution of an order parameter at each
lattice site. Such microscopic models are an important computational tool in numerous applica-
tions and are numerically solved using Monte Carlo algorithms [20]. Ising models are defined on
the d-dimensional lattice Z

d as follows. At each lattice site x ∈ Z
d an order parameter σ(x)—

referred to as “spin”—is allowed to take the values 0 and 1 describing vacant and occupied
sites, respectively. A spin configuration σ is an element of the configuration space Σ = {0,1}Z

d

and we write σ = {σ(x): x ∈ Z
d}. The energy H of the system, evaluated at σ , is given by a

Hamiltonian

H(σ) = −1

2

∑
x �=y

J (x − y)σ (x)σ (y) + h
∑
x

σ (x),

where h is attributed to an external field and J is a particle/particle interaction energy; J is even,
J (r) = J (−r), decays rapidly at infinity and is nonnegative, i.e. the interactions are attractive;
we may also consider potentials with both attractive and repulsive components. Equilibrium
states of the Ising model are described by the Gibbs states, defined at a prescribed temperature T

and on a finite domain [12]. The dynamics of microscopic models consist of a sequence of spin
flips and spin exchanges and correspond to different physical processes.

1.2. Stochastic microscopic dynamics

Next we briefly describe these detailed micromechanisms in the context of surface processes.
For more details we refer to the review article for surface processes [19].

1.2.1. Adsorption/desorption–spin flip mechanism
A spin flip at the site x is a spontaneous change in the order parameter, 0 is converted to 1

and vice versa. Physically this mechanism describes the desorption of a particle from the surface
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to the gas phase and conversely the adsorption of a particle from the gas phase to the surface.
Typically the desorption mechanism depends on the interactions with neighbors manifested in
the potential J , as well as the external filed h. An obvious requirement on the dynamics is that
they should leave the Gibbs states invariant and this condition is called a detailed balance law.
Typical choices of such dynamics are the Glauber and Metropolis dynamics.

1.2.2. Surface diffusion–spin exchange dynamics
A spin exchange between the neighboring sites x and y is a spontaneous exchange of the

values of the order parameter at x and y. Physically this mechanism describes the diffusion of
a particle on a surface, where sites cannot be occupied by more than one particle. The simplest
such dynamics are the Kawasaki and Metropolis dynamics.

1.3. Mesoscopic models

At large space/time scales and for long range potentials with interaction range γ −1 it turns
out that the small scale fluctuations of the Ising systems are suppressed and an almost determin-
istic pattern emerges described by suitable integrodifferential equations. The passage in the limit
γ → 0 (the interaction range is γ −1), which is related to coarse graining of quantities like the
thermodynamical pressure, coverage, etc., is known as the Lebowitz–Penrose limit [12]. Along
these lines we can study the asymptotic limit of the coarse-grained variable corresponding to a
local coverage in space,

uγ (x, t) = |Bx |−1
∑
y∈Bx

σt (y),

where Bx is a ball centered at x containing enough points so that, (a) the random fluctuations will
be (formally) suppressed due to the law of large numbers, and (b) spatial variations in the cover-
age are still captured. In the case of adsorption/desorption dynamics in asymptotic limit γ → 0,
we get a closed equation for the coverage, uγ (x, t) ≈ u(γ x, t), and u solves the mesoscopic
equation [7,16],

ut = Ψ
(−β(J ∗ u + h)

)[
1 − u − exp(−βh)u exp(−βJ ∗ u)

]
, (1.1)

where Ψ = Ψ (r) is associated with the microscopic dynamics: typical choices include Ψ (r) =
(1 + er)−1 (Glauber dynamics), Ψ (r) = e−r/2 or Ψ (r) = e−r+

(Metropolis dynamics).
Equation (1.1) is equipped with a comparison principle, at least when J � 0, and it has one

or three steady states. When intermolecular forces between the adsorbates are strong we may
have coexistence of dilute and dense phases, each one corresponding to a different steady state
of Eq. (1.1). For instance, when h = −J0/2, (1.1) has three steady states when

β > βc = 4

J0
,

where J0 = ∫
J (r) dr . The stable states correspond to the dense and the dilute phases of the

system, i.e. we have bistability. Standing waves, for h = −J0/2, and traveling waves, when
h �= −J0/2, but still in the presence of multiple steady states, for Eq. (1.1) exist, and are crucial
for the long space/time cluster evolution analysis, since they connect high and low density phases,
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across a cluster boundary. The rigorous existence, uniqueness and stability of such solutions
follows from the analysis in [6], which covers a broad class of integrodifferential equations that
have a comparison principle. Note that for even potentials which are not necessarily radial we
obtain direction-dependent standing and traveling waves [17].

In the case of surface diffusion it can be shown [21] that uγ (x, tγ −2) ≈ u(γ x, t), and u solves
(for h = 0)

ut − ∇ ·
{
μ[u]∇

(
δE[u]

δu

)}
= 0, (1.2)

where μ[u] is the mobility and E[u] is the free energy,

E[u] = −1

2

∫ ∫
J (r − r ′)u(r)u(r ′) dr dr ′ +

∫
1

β

[
u lnu + (1 − u) ln(1 − u)

]
dr.

In the case of Metropolis/Kawasaki dynamics (1.2) was derived in [21] where the mobility is
μ[u] = Ψ (0)βu(1 − u). Typical choices of Ψ ’s associated with the microscopic diffusion dy-
namics are Ψ (r) = 2(1 + er)−1 (Kawasaki dynamics) and Ψ (r) = e−r+

(Metropolis dynamics).
Note that in both types of equations the coverage u satisfies 0 � u � 1 due to the presence of

the term u(1 −u) in the mobilities, which enforces the exclusion principle (i.e. at most one parti-
cle per lattice site) at the mesoscopic level. Equation (1.2) includes two competing mechanisms:
a diffusion term associated with the entropy in E[u], which competes with the attractive poten-
tial J � 0. We expect that when the inverse temperature β is large enough (β � βc), the particles
will tend to organize in clusters, overcoming the diffusive effects. These heuristics can become
more clear using a linearization argument around a constant coverage u0, yielding a regime of
spinodal decomposition [19].

1.3.1. Mesoscopic models for multiple micromechanisms
Typically surface processes take place simultaneously and interact. For instance we can con-

sider [14,18] a combination of Arrhenius adsorption/desorption dynamics, Metropolis surface
diffusion and simple unimolecular reaction; the corresponding mesoscopic equation is:

ut − D∇ · [∇u − βu(1 − u)∇Jm ∗ u
]− [

kap(1 − u) − kdu exp(−βJd ∗ u)
]+ kru = 0.

(1.3)

Here D is the diffusion constant, kr , kd and ka denote, respectively the reaction, desorption and
adsorption constants and p is the partial pressure of the gaseous species. The partial pressure p is
related to the external field h in (1.1) and here is assumed to be a constant, although realistically it
is given by the fluids equations in the gas phase. The steady states of (1.3) and (1.1) are identical
and when Jd = Jm and kr = 0, they also share the same standing wave. However there are no
general rigorous results available on the existence of traveling waves for (1.3); some numerical
simulations were carried out in [14] indicating the existence of nonmonotone traveling waves.
Finally, it is easy to see that, when kr = 0, the free energy E[u] is a Lyapunov functional for (1.3).

1.3.2. Relation to the Cahn–Hilliard and Allen–Cahn models
Next we briefly discuss the connections of the mesoscopic equations with well-known models

for phase separation such as the Allen–Cahn and the Cahn–Hilliard models. If we rescale space
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as x 	→ x/ε the potential J gives rise to the approximation of the Dirac distribution J ε(x) =
ε−dJ (x

ε
). Then after a simple change of variables and formally expanding in Taylor series,

J ε ∗ u(x) =
∫

J (z)u(x + εz) dz =
∫

J (z)

[
u(x) + ε∇u(x) · z + ε2

2
zT ∇2u(x)z + O

(
ε3)]dz.

Ignoring the O(ε3) terms and assuming that J is radially symmetric, i.e. J (r) = J (|r|), we have
that

J ε ∗ u(x) ≈ J0u(x) + ε2

2
J2
u(x),

where J0 = ∫
J (r) dr and J2 = ∫ |r|2J (r) dr . Then, for instance (1.1), is approximated by a

version of the Allen–Cahn equation with nonlinear diffusion,

ut = Du exp(−βJ0u)
u + c0
[
1 − u − exp(−βh)u exp(−βJ0u)

]
,

where D = c0
ε2

2 βJ0 exp(−βh). Note that the function f (u) = 1 − u − exp(−βh)u exp(−βJ0u)

is bistable or equivalently is the derivative of a double well potential when β > βc = 4/J0. We
remind the reader that the Allen–Cahn equation has the nondimensional form

ut = 
u + W ′(u),

where W is the double well potential W(u) = (u2 − 1)2.
In the case of the surface diffusion we can rewrite the free energy as

E[u] = 1

4

∫ ∫
J (r − r ′)

[
u(r) − u(r ′)

]2
dr dr ′ +

∫
Wβ(u)dr,

Wβ(u) = 1
2J0u(1 − u) + 1

β
[u lnu + (1 − u) ln(1 − u)]. Wβ is a double-well potential provided

β > βc = 4/J0. Then, rescaling and expanding the convolution as before we have that

E[u] ≈ Ẽ[u] :=
∫

ε2J2

8
|∇u|2 + Wβ(u)dr, (1.4)

after omitting the higher order terms. This is the standard Ginsburg–Landau functional, in which
case (1.2) becomes a Cahn–Hilliard-type equation

ut − ∇ ·
{
μ[u]∇

(
δẼ[u]

δu

)}
= 0, (1.5)

with nontrivial mobility μ(u) = Du(1 − u); recall that in the standard Cahn–Hilliard model
μ(u) = 1. Notice that the truncations in the gradient expansions used here disregard higher order
effects as well as possible anisotropies in the potential J . However, in the vicinity of the critical
temperature the Allen–Cahn and Cahn–Hilliard equations become exact rescaled limits of the
mesoscopic models and the underlying particle systems.
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1.3.3. A simplified model with multiple microscopic mechanisms
To illustrate the effects of the multiple mechanisms we consider a simplification of (1.3) which

retains its fundamental structure and can be exactly obtained from rescalings of (1.2) close to the
critical temperature, when kr = 0 and Jm = Jd = J :

ut = D

(−
u + W ′(u)

)+ 
u − W ′(u), (1.6)

W is a double-well potential with wells ±1, the Cahn–Hilliard term corresponds to surface dif-
fusion, while the Allen–Cahn to adsorption/desorption. We refer to (1.6) as a scalar CH/AC
equation.

1.4. Mathematical structure of the scalar CH/AC equation

In the sequel of the paper we study in a rigorous fashion the behavior of the scalar CH/AC
equation (1.6), as time is rescaled with ε2 and space is rescaled with ε, which describes the
long-time behavior of large clusters. Under this diffusive rescaling the equation becomes⎧⎪⎪⎨

⎪⎪⎩
∂tu = ε2D

(
−


(

u + f (u)

ε2

))
+ 
u + f (u)

ε2
,

u = 1, on ∂Ω,

u(0, x) = u0(x),

(1.7)

where Ω ⊂ RN , N > 1, is a smooth, bounded domain.
First we present some remarks on the mathematical structure of (1.6) and (1.7). The free

energy

Fε(u) := 1

2

∫
Ω

ε|∇u|2 +
∫
Ω

1

ε
W(u) (1.8)

equals ε−1Ẽ[u], where Ẽ[u] is as in (1.4)—up to different coefficients which do not affect qual-
itative properties. Equation (1.7) is (up to a rescaling in time) a gradient flow for the energy (1.8)
with respect to the metric

〈f,g〉Aε := 〈
f,
(
Aε
)−1

g
〉
, (1.9)

where 〈·,·〉 denotes the L2-scalar product and

A := −D
 + I, (Af )(x/ε) = Aε
(
f (x/ε)

)
are self-adjoint operators w.r.t. to the L2-scalar product. In particular

Aε = −ε2D
 + I,

i.e. it is a small perturbation of the identity operator, provided the second derivatives are bounded.
Let

Aε(u) := 
u + ε−2f (u), f (u) = −W ′(u). (1.10)
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The Allen–Cahn equation, see [1], becomes under a diffusive rescaling of space and time

∂tu = Aε(u). (1.11)

The equation under consideration in this paper, (1.7) has the structure

∂tu = Aε
(
Aε(u)

)
.

So (1.7) is formally a small (yet singular) perturbation of (1.11), and one could expect that the
limit evolution will be described by the same limit evolution as the Allen–Cahn equation, i.e. by
motion by mean curvature: u → ±1 a.e., and the interface which bounds the region where u is
negative moves according to

V = κ,

where V is the velocity of the interface in normal direction, and κ the mean curvature of the
interface.

However, the small perturbation by a higher order term becomes relevant close to the interface,
where the derivatives of u become large. Therefore, we find qualitatively the same behavior, i.e.
motion by mean curvature, but with different coefficients.

We actually obtain

V = μσκ, (1.12)

here μ is an effective mobility and σ the surface tension. In order to define μ and σ , we need
the standing wave for the one-dimensional Allen–Cahn equation, i.e. a solution (unique up to
translations) q : R → (−1,1) of

∂2
zzu = −f (u), lim

z→±∞u(z) = ±1.

Then μ is given by

μ = 2

(∫
R

χ∂zq

)−1

, (1.13)

where χ is defined as

Aχ = ∂zq. (1.14)

The mobility is completely different from the Allen–Cahn equation, where the corresponding
expression equals [22],

2

(∫
∂2
z q

)−1

.

R
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Later we will show that the mobility μ is larger than the one for the Allen–Cahn equation, i.e.
the underlying diffusion mechanism speeds up the cluster evolution. The surface tension σ is
defined as [22]

σ =
1∫

−1

√
(1/2)W(s) ds = 1

2

∫
R

|∂zq|2

which is the same as for the Allen–Cahn equation.
The mobility by using a linear response argument is defined in the following way: look for

one-dimensional solutions of

∂tu = ε2
(

−D


(

u − f (u)

ε2

))
+ 
u − f (u)

ε2
+ ε−1h, (1.15)

i.e. a small forcing is added to f . The solution will be of the form u(t, x) = q(c(h)t −x)+O(ε),
and the function c(h) is (at least at highest order) of the form

c(h) = μh,

which defines the mobility.
In order to find a quantitative expression of the mobility in terms of the one-dimensional

profile q , we will need the linearization of (1.7) around a function u:

Luv := A
(

v + f ′(u)v

)
, Lεv := Aε

(

v + ε−2f ′(u)v

)
, (1.16)

where A = −D
 + I is as above.
For further use we define for Q(z) ∈ L2(R) the one-dimensional linear operator

L1Q := −D∂2
z

(
∂2
z Q + f ′(q(z)

)
Q
)+ ∂2

z Q + f ′(q(z)
)
Q. (1.17)

Note that L1 = AM, where

M := ∂2
z + f ′(q(z)

)
is the linearized Allen–Cahn operator.

Now (1.13) can be understood from the following formal asymptotics:

c∂zq − h = Lε
1Q,

and the Fredholm solvability condition gives (see for a rigorous derivation Section 2.2)

c

∫
χ ∂zq =

∫
χ,
R R
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and as ∫
R

χ =
∫
R

∂zq +
∫
R


χ

︸ ︷︷ ︸
=0

= 1 − (−1) = 2,

we obtain

c = 2

(∫
R

χ ∂zq

)−1

h,

μσ =
∫∞
−∞ ∂2

z q dξ∫∞
−∞ ∂zq χ dξ

. (1.18)

Note that by testing

−D∂2
zzχ + χ = ∂zq

with the solution χ we obtain∫
χ2 �

∫
|∂zχ |2 +

∫
χ2 � ‖χ‖2‖∂zq‖2,

and therefore

‖χ‖2 � ‖∂zq‖2.

This implies that ∫
χ∂zq =

∫
|∂zχ |2 +

∫
χ2 � ‖χ‖2‖∂zq‖2 � ‖∂zq‖2

2,

and therefore

μσ =
∫∞
−∞ ∂2

z q dξ∫∞
−∞ ∂zqχ dξ

� 1,

so that the diffusion speeds up the mean curvature flow. Note that for D = 0, Eq. (1.14) implies
that ∂zq = χ , that is μσ = 1 which corresponds to the Allen–Cahn equation.

While the limit evolution is—up to coefficients—the same as for the Allen–Cahn equation,
the mathematical treatment is necessarily quite different, because the Allen–Cahn equation has
a comparison principle, while (1.7) lacks this important property. The limit evolution, on the
other hand, has a comparison principle. Hence our Eq. (1.7) is a nonmonotone approximation
of a monotone evolution law. Therefore the powerful tools for passing to the limit as ε → 0
beyond singularities of the limit evolution, which are based on the comparison principle (see e.g.
[3]) are unavailable in our case. Instead, we show convergence until the first singularity of the
limit evolution occurs by making a formal asymptotic expansion rigorous with the help of linear
stability, in the spirit of [2].
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1.5. Results

In the sequel we study rigorously the scalar CH/AC equation for D = 1. Let Ω0 ⊂ Ω be
a compact set with smooth domain, and let T̂ be the first time at which the evolution of the
boundary ∂Ω(t), which is determined by (1.12), becomes singular. Let d(t, x) be the signed
distance from Ω(t).

The main theorems are:

Theorem 1.1.

(1) For any k > 0 and any T < T̂ there are functions ū(k)(t, x) such that they solve (1.7) up to a
right-hand side (residual) r(ε, k) such that∥∥r(ε, k)

∥∥
C2 < εk

for ε < ε0(k, T ) and t ∈ [0, T ).
(2) Moreover, there exists C > 0 and a function d(t, x, ε) such that for t ∈ [0, T ) limε→0 |d(t,

x, ε) − d(t, x)| = 0 and ∣∣ū(k)(t, x) − q
(
ε−1d(t, x, ε)

)∣∣� Cε.

Theorem 1.2. Let T < T̂ . Then there exists k, k0 ∈ N, such that for any k > k0 there exists
δ = δ(k) with both δ, k depending on the space dimension and ε0 and C depending on T (through
the distance from the singular time T̂ ) such that if∥∥ū(k)(0, x) − u(0, x)

∥∥∞ < εk

then for any 0 < t � T , ε < ε0 and p = 2(N+4)
N+2 , it holds that

∥∥ū(k)(t, x) − u(t, x)
∥∥

Lp < εδ.

Following the lines of [2] one can improve this estimate in order to get convergence in Cl ,
l ∈ N, if the order of approximation k is taken sufficiently large. Then one gets the following
sharp interface limit as a corollary:

Theorem 1.3. For any δ > 0 and any T < T̂ there exist functions u0(x) such that the solu-
tion u(t, x) of (1.7) starting from u0(x) has the property that u(t, x) > 0 for dist(x,Ω(t)) > δ

and u(t, x) < 0 for dist(x,Ωc(t)) > δ i.e. the zero level set of the solution is close to an interface
which evolves by the limit evolution.

Essentially, Theorem 1.2 is a consequence of Theorem 1.1 and the following spectral estimate:

Theorem 1.4. There exists λ0 > 0 such that for u = ū(k) as in Theorem 1.1 and for all test
functions f ∈ H

1,2
0 (Ω)

〈
f,Aε

(

 + ε−2f ′(u)

)
f
〉
Aε = 〈

f,
(

 + ε−2f ′(u)

)
f
〉
� λ0‖f ‖Aε . (1.19)
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1.6. Structure of the paper

The paper is organized as follows. In Section 2 we show that for any required order of the
residual in the small parameter ε, we can construct asymptotic solutions which have a resid-
ual that is of this order. Naturally, we will need many terms in the expansion. Luckily it is not
necessary to construct them explicitly, because it can be shown by induction that they have a
certain structure, which allows the use of Fredholm’s alternative in order to obtain existence and
regularity. Following e.g. [4] we treat fast variable (normal to the limit interface) and slow vari-
able (tangential to the interface) as independent variables in RN+1. This allows us to avoid the
complications arising from the use of a coordinate system on the limit interface. The approxi-
mate solutions converge to ±1 in the interior and exterior, respectively, of a set whose boundary
evolves by the limit evolution law V = (μσ)κ .

In Section 3 we show a limit theorem for developed interfaces in the spirit of [2,4,9]: If the
approximate solution constructed in Section 2 has a sufficiently small residual, then any solution
of Eq. (1.7) with initial condition u0 sufficiently close to the initial condition will stay close
to the approximate solution on the macroscopic timescale, as long as the limit evolution (mean
curvature flow) does not encounter a singularity. In order to show this, we make use of the
stability of the linearization around the approximate solution. We prove the stability by adapting
the result obtained by Chen [5] for the Allen–Cahn equation to our situation where we deal with
the scalar CH/AC equation.

2. Asymptotic expansions

In this section Theorem 1.1 is shown with the help of asymptotic expansions, following e.g.
[2,9,10,16].

This is done in several steps: First, an approximate solution in a neighborhood of a smooth
interface is constructed by expanding around the standing wave profile. Here we use a fast and
a slow variable, because the gradients are large. For the same reason the inner expansion will be
very different from the one for Allen–Cahn equation: the fourth-order term becomes relevant.

Away from the interface we should in principle expand around ±1. However, this expansion
becomes trivial as we obtain immediately the constant functions ±1.

The solutions for the inner expansion converge exponentially fast towards their limits as the
fast variable tends to ±∞. This allows to construct the approximate solution by interpolating
between inner and outer solution with a cut-off function.

2.1. Inner expansion

We look for approximate solutions of this form:

u
M,ε
i = q

(
d(0)(x, t) +∑M

k=1 εkd(k)(x, t)

ε

)
+

M∑
k=1

εkQ(k)

(∑M
k=1 εkd(k)(x, t)

ε
, x

)
, (2.20)

where

d(x, t, ε) =
M∑

εkd(k)(x, t)
k=0
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and such that

∂tu
M,ε
i − Aε

(
Aε
(
u

M,ε
i

))= r(ε,M) = O
(
εM−1),∣∣∇d(x, t, ε)

∣∣− 1 = O
(
εM

)
. (2.21)

We will show existence of u
M,ε
i for arbitrary M by induction. In order to do so, it is conve-

nient to follow [4] or [9] and look for Q(k)(z, x), where the fast variable z is in R and the slow
variable x is in a fixed neighborhood of the interface, i.e. in a subset of Ω . This means that we
rewrite (1.7) replacing the differential operator ∂x by

∂x + ε−1∂z

and collect terms of same order in ε. For each of these terms, we will use the solvability condition
obtained from Fredholm’s alternative in z and treat x as a parameter.

Of course z and x are not independent variables, but related by

εz − d(x, t, ε) = 0.

This will lead to the necessity of adding additional terms of the form

g(x, t, ε)η(z)
(
z − ε−1d(x, t, ε)

)
to the equation. Here η is a cut-off function which vanishes as |z| → ∞. Note that this does not
affect the equation in the “physical” region εz − d(x, t, ε) = 0. Of course

g(x, t, ε) =
∑

εkg(k)(x, t).

At order ε−2 we obtain

∂2
z q + f (q) = 0,

which justifies (and enforces) the choice of the standing wave q as highest order term in the inner
expansion.

2.2. The first order

At order ε−1 we get

∂zq
(
d

(0)
t − 
d(0)

)+ ∂3
z q
d(0) − η(z)g(0)d(0) = L(1)Q(1), (2.22)∣∣∇d(0)

∣∣2 = 1, (2.23)

where q and Q(1) are functions of the fast variable z ∈ R, 
 is the Laplace operator in x. We
consider Eq. (2.22) as an equation in z with x and t as parameters. Equation (2.22) is solvable
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and has a smooth and exponentially decaying solution (as |z| → ∞) if for all χ ∈ Ker((L(1))∗) it
holds that

χ ⊥ (
∂zq

(
d

(0)
t − 
d(0)

)+ ∂3
z q
d(0) − η(z)g(0)d(0)

)
. (2.24)

(L(1))∗χ = 0 if and only if

M
(−∂2

z χ + χ
)= 0,

where M is the linearized Allen–Cahn operator. Using that KerM = ∂zqR we obtain

−∂2
z χ + χ = a∂zq

for some a ∈ R. By linearity it suffices to solve

−∂2
z χ + χ = ∂zq. (2.25)

(This is uniquely solvable, and by the maximum principle for the operator −∂2
z +I we get χ > 0.)

Thus KerL∗ = χR where χ solves (2.25). Now returning back to Eq. (2.22), this equation is
solvable for Q(1) if and only if (2.24) holds. That is:

( ∞∫
−∞

∂zqχ dz

)
dt −

[ ∞∫
−∞

∂zqχ dz −
∞∫

−∞
∂3
z qχ dz

]

d(0) = g(0)d(0)

∞∫
−∞

χη dz

︸ ︷︷ ︸
c

.

Using that

∞∫
−∞

∂zq
(
χ − ∂2

z χ
)
dz =

∞∫
−∞

∂2
z q dz

and

χ − ∂2
z χ = ∂zq,

we finally obtain

μ−1∂td
(0)(x, t) = σ
d(0)(x, t) + cg(0)(x, t)d(0)(x, t),

where c = ∫
R χη.

From (2.23) we derive that for any t , the set {x ∈ Ω: d(0)(x, t) = 0} is a hypersurface, where
d(0) is the distance from it. On this hypersurface we obtain the limit free boundary problem,

V = μσκ, μσ as in (1.18),

because there d(0)(x, t) = 0, ∂td
(0)(x, t) = V and 
d(0)(x, t) = κ . But for x away from the

interface, i.e. d(0) �= 0, we could not solve this without g. But as the curvature of parallel surfaces
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is a smooth function of the distance and the second fundamental form of the surface, we can solve
the equation in a ε-independent neighborhood of the interface by choosing

g(0)(x, t) := μσ
[

d(0)

(
Pr∂Ω(t)(x), t

)− 
d(0)(x, t)
]
/
(
cd(0)(x, t)

)
.

Here Pr∂Ω(t)(x) is the projection of the point x on the interface ∂Ω(t). Hence the solvability
condition can be fulfilled for all x, in a neighborhood of the limit interface which does not
depend on ε.

The cut-off function η has the following purpose: if |z| → ∞, then the equation at each level
of ε, if considered as equation in x with z as a parameter, should converge to the corresponding
equation without the correction term in order to obtain exponential convergence of Q(1)(z) as
|z| → ∞.

2.3. The higher orders

Let k � 1. At order εk−1 we obtain

L(1)Q(k+1) = ∂zq
(
∂td

(k) − 
d(k)
)− η(z)

(
g(k)d(0) + g(0)d(k)

)+ R(k), (2.26)

and from (2.21) at order εk

∇d(k)∇d(0) = B(k). (2.27)

R(k) depends only on the already known Q(1)(z, x, t), . . . ,Q(k)(z, x, t), d(0)(x, t), . . . ,

d(k−1)(x, t), g(0)(x, t), . . . , g(k−1)(x, t), and B(k) only on d(0)(x, t), . . . , d(k−1)(x, t).
We make the inductive assumption that Q(1)(z, x, t), . . . ,Q(k)(z, x, t), d(0)(x, t), . . . ,

d(k−1)(x, t), g(0)(x, t), . . . , g(k−1)(x, t) exist, are smooth, and, moreover, the Q(l) decay ex-
ponentially as |z| → ∞ uniformly in x, t . Note that it holds for Q(1), because ∂zq(z) decays
exponentially.

The solvability condition

∂zq
(
∂td

(k) − 
d(k)
)− η(z)

(
g(k)d(0) + g(0)d(k)

)+ R(k) ⊥ Ker
(
L(1)

)∗
and Eq. (2.27) yield

μ−1∂td
(k)(x, t) = σ
d(k)(x, t) + cg(0)(x, t)d(k)(x, t) + R̂(k)(x, t), on

{
d(0) = 0

}
, (2.28)

∇d(k)∇d(0) = B(k) on Uδ, (2.29)

g(k)(x, t) = (
d(0)(x, t)

)−1
l(x, t) on Uδ \ {d(0) = 0

}
, (2.30)

where Uδ is a δ-neighborhood of the limit interface for some small δ which depends on the
interface, but not on ε, and

l(x, t) = μ−1∂td
(k)(x, t) − σ
d(k)(x, t) + cg(0)(x, t)d(k)(x, t) + R̂(k)(x, t).

Note that l(x, t) = 0 on {d(0) = 0} by (2.28).
This system has a smooth solution d(k), g(k): first note that by using (2.29) Eq. (2.28) can be

re-written as a linear parabolic PDE for d(k) on the smooth manifold {d(0) = 0}. This PDE on the
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manifold has a unique, smooth solution. By the method of characteristics (2.29) can be solved to
define d(k) in the entire neighborhood Uδ . It remains to solve for g(k). Obviously g(k) is defined
uniquely away from the interface, it remains to show that it is sufficiently smooth everywhere.
This follows from the following lemma, which is cited as Corollary 6.5 in [8]:

Lemma 2.1. If f ∈ Ck(Rn), d(x) the distance to a smooth interface, and f (x) → 0 as d(x) → 0,
then the equation hd = f has a solution h ∈ Ck−2.

Idea of proof: Use Taylor-expansion of f around a point on the interface, and switch to tan-
gential and normal coordinates at that point. The hypotheses of the lemma implies that one can
factor out d in the Taylor series, and h is Ck−2 up to the boundary.

Thus d(k), g(k),Q(k+1) exist and satisfy the same properties that were assumed of d(k−1),
g(k−1), Q(k), and we can conclude by induction.

2.4. Construction of the approximate solution

As q(z) → ±1 exponentially fast as z → ±∞, and the Qk and their derivatives converge ex-
ponentially fast to zero as |z| → ∞, it is sufficient to choose the constant functions uo = +1 and
ui = −1 as outer expansions. Let δ be a small constant such that the distance function from ∂Ω(t)

is smooth for all (x, t) such that dist(x, ∂Ω(t)) < δ, 0 � t � T . Moreover let ζ : R → [0,1] be
a smooth cut-off function such that ζ(r) = 0 for r < 1, ζ(r) = 1 for r > 2. The function d(0) is
again the signed distance from the limit interface ∂Ω(t). Let

uk(M)(x, t) := (
1 − ζ

(
δ−1d(0)

)− ζ
(−δ−1d(0)

))
u

M,ε
i (x, t) + ζ

(
δ−1d(0)

)− ζ
(−δ−1d(0)

)
.

This satisfies the boundary conditions. (The assumption that the limit evolution does not en-
counter a singularity implies that the free boundary ∂Ω(t) does not touch ∂Ω .) Moreover,
because of the exponential convergence of the Q(k) and their derivatives, the residual of uk(M)

differs at most by one order from the residual of u
M,ε
i .

3. Proofs of Theorems 1.2–1.4

Let Rε := ū(k) − u, where u is a solution of (1.7) and ū(k) is the approximate solution. The
aim is to show that there exists a function C(T ) which is independent of ε such that∥∥Rε(T )

∥∥� C(T )
∥∥Rε(0)

∥∥+ Cε

where Cε → 0 as ε → 0 for any T < T̂ and the norm can be Lp or L∞, etc. This will prove
Theorem 1.2.

Note. Rε(0) can be assumed small if we restrict to “nice” initial conditions (developed interfaces
in the language of [2]). Hence ‖Rε(T )‖ → 0 as ε → 0. We will from now on make the simpli-
fying assumption that Rε(·,0) = 0, the extension to the case of ‖Rε(·,0)‖p sufficiently small is
straightforward.

From now on we drop the superscript k and simply write ū for the approximate solution and u

for the actual solution.
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Lemma 3.1. Let Rε := ū(k) − u as above, then

∂tR
ε = Aε

(
Aε(ū) −Aε(u)

)+ r(k, ε) = Lε
ūR

ε + N̂ε

(
Rε
)+ r(k, ε) (3.31)

where Lū is as in (1.16),

N̂ε

(
Rε
)= (−ε2
 + I

)
Nε,

Nε = 1

ε2

1∫
0

f
(
ū + sRε

)
ds
(
Rε
)2

is the linearization error, and r(k, ε) is the residual of the approximate solution given in Theo-
rem 1.1.

Proof. A direct consequence of Theorem 1.1 and the Taylor expansion of the nonlinearity f

around ū. �
Remark. We linearize around ū, not about q . The spectral properties should be the same for
the linearization around q , as both operators are very close. But the new operator may have
small eigenvalues of wrong sign. Chen’s theorems in [5] cover the case of linearization around a
sufficiently small perturbation of q and apply in our case.

For the sake of simplicity, we drop the ε and write R instead of Rε .
From the bounds on the approximate solution we get

Theorem 3.1. Let p ∈ [2,3], there exists a positive constant Cp depending only on p,
‖f ‖C2([−3C0,3C0]) and C0 such that the quantity N satisfies

RN (u,R) � Cp|R|p, ∀u ∈ [−C0,C0], R ∈ R.

Proof. We refer to [2] for the proof. �
Testing (3.31) with R in appropriate, i.e. 〈 , 〉Aε scalar product (or equivalently testing with

Ψ = A−1R in the L2 scalar product), we obtain

1

2
∂t

∥∥R(t)
∥∥2

Aε � ε−1〈ε
R + ε−1f ′(q)R,R
〉
L2 + 〈

Nε(R),R
〉
L2 + 〈

r(k, ε),R
〉
Aε

= (I) + (II) + (III). (3.32)

By Lemma 3.1 we obtain

(II) � Cp‖R‖p
p.

Moreover by the Hölder inequality and ‖A−1R‖p � C‖R‖p we immediately get
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Lemma 3.2 (Estimate on the remainder).〈
r(k, ε), uε

〉
�
∥∥r(k, ε)

∥∥
Lp∗

∥∥uε
∥∥

Lp ,

where p∗ is the exponent which is dual to p.

Hence,

1

2
∂t

∥∥R(t)
∥∥2

Aε �
∫

−|∇R|2 + ε−2
∫

f ′(q)(R)2 + ‖R‖p

(
ε−2‖R‖p−1

p + ∥∥r(k, ε)
∥∥

Lp∗
)
.

(3.33)

Now note that Theorem 1.4 implies

−
∫

|∇R|2 + ε−2
∫

f ′(q)R2 � λ0
∥∥R(t)

∥∥2
Aε .

Therefore we can apply Gronwall’s inequality, which yields

sup
t�T

∥∥R(t)
∥∥2

Aε � C(T )‖R‖Lp([0,t]×Ω)

(
ε−2‖R‖p−1

Lp([0,t]×Ω) + ∥∥r(k, ε)
∥∥

Lp∗([0,t]×Ω)

)
. (3.34)

We need an estimate for ‖∇R‖2. In order to simplify notation, set

‖ · ‖Lp(Ω) = ‖ · ‖p, ‖ · ‖Lp([0,t]×Ω) = ‖ · ‖p,t .

Since

−ε−2

t∫
0

∫
Ω

f ′(ū)R2 � ε−2‖R‖2
p,t

∣∣{f ′(ū) < 0
}∣∣1− 2

p max
s�C0

∣∣f ′(s)
∣∣� Cε

− 2
p ‖R‖2

p,t , (3.35)

where |A| denotes the Lebesgue measure of the set A. Integrating (3.33) over (0, t), t ∈ (0, T ],
yields

‖∇R‖2
2,t � Cε−2‖R‖p,t

[
ε
− 2

p ‖R‖p,t + ε2
∥∥r(k, ε)

∥∥
p∗,t

+ ‖R‖p−1
p,t

]
. (3.36)

Since we use Dirichlet boundary conditions and p = 2(N+4)
N+2 , the Sobolev imbedding theorem

implies that:

‖R‖p
p � Cp‖R‖

8
N+2
2 ‖∇R‖

2N
N+2
2 .

Also, note that

‖R‖2
2 = −

∫
Ω

R
(
ε2
 − I

)(
A−1R

)=
∫
Ω

ε2∇R,∇(A−1R
)+

∫
R
(
A−1R

)
�
(∥∥(ε∇R)

∥∥ + ‖R‖Aε

)‖R‖Aε . (3.37)
2
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The strategy is to derive from the Sobolev imbedding theorem and by using (3.36) and (3.34) a
recursive inequality for ‖R‖p,t . We estimate

‖R‖p
p,t � Cp

t∫
0

‖R‖
8

N+2
2 ‖∇R‖

2N
N+2
2

� C

t∫
0

(‖R‖Aε + ‖ε∇R‖2
) 4

N+2 ‖R‖
4

N+2
Aε ‖∇R‖

2N
N+2
2 . (3.38)

Now note that N � 2, i.e. 4/(N + 2) � 1. Hence we have that for any positive numbers a, b

(a + b)
4

N+2 � a
4

N+2 + b
4

N+2 ,

therefore

t∫
0

‖R‖p
p � C

t∫
0

‖Rε‖
8

N+2
Aε ‖∇R‖

2N
N+2
2 +

t∫
0

ε
4

N+2 ‖R‖
4

N+2
Aε ‖∇R‖

2N+4
N+2

2 .

By the Hölder inequality in space and by taking the supremum in time over ‖R(·, s)‖Aε we obtain
(for a different constant C)

t∫
0

‖R‖
8

N+2
Aε ‖∇R‖

2N
N+2
2 � C

(
sup
[0,t]

∥∥R(·, s)∥∥2
Aε

) 4
N+2 (‖∇R‖2

2,t

) N
N+2

and

t∫
0

ε
4

N+2 ‖R‖
4

N+2
Aε ‖∇R‖

2N+4
N+2

2 � Cε
4

N+2

(
sup
[0,t]

∥∥R(·, s)∥∥2
Aε

) 2
N+2 ‖∇R‖2

2,t .

Note that this term is of the same structure as the corresponding term in [2] and can be estimated
in a similar way. We abbreviate

a = ‖R‖p,t and r = ∥∥r(k, ε)
∥∥

p∗,t .

Then (3.34) and (3.36) yield

ap � C
(
a
(
ε−2ap−1 + r

)) 4
N+2

(
ε−2a

[
ε
− 2

p a + ε2r + ap−1]) N
N+2

+ Cε
4

N+2
(
a
(
ε−2ap−1 + r

)) 2
N+2

(
ε−2a

[
ε
− 2

p a + ε2r + ap−1]). (3.39)

Define

T ε := sup
{
t ∈ (0, T ], ‖R‖Lp([0,t]×Ω) � εk

}
,
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i.e. for t � T ε we know that a � εk . Now choose ε so small that εk(p−1) � εk . (Note p > 2.)
Moreover we may (by taking sufficiently many terms in the construction of the approximate
solution) assume that r � εk . (This is not optimal.) Then we obtain from (3.39)

ap � C
(
ε−2ap

) 4
N+2

(
ε
−2− 2

p a2) N
N+2 + Cε

4
N+2

(
ε−2ap

) 2
N+2

(
ε
−2− 2

p a2).
As p = 2(N + 4)/(N + 2), we conclude that there exists a small number ρ > 0 and some l > 0,
both depending only on p and N , such that

ap � Cε−laρap.

If k is chosen sufficiently large, then this implies that at T ε still ap < εkp , contradicting the
definition of T ε . Therefore, T ε must be the maximal time interval on which we can construct the
approximate solution with r as required, thus proving the theorem.

We now provide a statement for a better regularity.

Theorem 3.2. Let the assumptions of Theorem 1.2 hold. Let m > 0 be any fixed integer and
assume that ∥∥ū(t, x)

∥∥
C

4m+5,m+ 5
4 ([0,t]×Ω)

+ ∥∥u(t, x)
∥∥

C
4m+3,m+ 3

4 ([0,t]×Ω)
� ε−(4m+6)

for all small positive ε. Then for any 0 < t � T∥∥ū(t, x) − u(t, x)
∥∥

C4m,m([0,t]×Ω)
� C

∥∥ū(0, x) − u(0, x)
∥∥

C
4m−2,m− 1

2 ([0,t]×Ω)

for all sufficiently small positive ε.

Proof. We refer to [2] for the proof. �
It remains to show the spectral estimate which was crucial in the preceding computations.
Let W be the double well potential such that W ′(u) = −f (u), where f as in (1.7).

Theorem 3.3. There exists a positive constant CAC such that for every ε ∈ (0,1] and every
ψ ∈ H 1(Ω) ∫

Ω

ε|∇ψ |2 + 1

ε
W ′′(q)ψ2 � −CACε

∫
Ω

ψ2.

Proof. We refer to [5, pp. 1382–1383]. �
The linear stability Theorem 1.4 is a direct consequence of the following theorem:

Theorem 3.4. There exist λ0 > 0 and ε0 > 0 such that for every ε ∈ (0, ε0] and ψ ∈ H 1
0 (Ω)

inf
ψ∈H 1(Ω)

ε2
w−w=ψ

∫
ε|∇ψ |2 + ε−1W ′′(q)ψ2 dx∫

ε2|∇w|2 + w2 dx
� −ελ0. (3.40)
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Proof. First note that there is nothing to prove if∫
ε|∇ψ |2 + ε−1W ′′(q)ψ2 dx > 0,

because in such a case the left-hand side of the inequality (3.40) is positive, while the right-hand
side is negative. Therefore assume without loss of generality∫

ε|∇ψ |2 + ε−1W ′′(q)ψ2 dx � 0,

which implies ∫
ε2|∇ψ |2 �

∥∥(W ′′(q)
)
−
∥∥∞

∫
ψ2. (3.41)

Set

ε2
w − w = ψ

then

ψ2 = −wψ + ε2
wψ

and ∫
ψw = −

∫
ε|∇w|2 − w2 dx.

Moreover, ∫
ψ
w = −

∫
∇ψ∇w � δ

∫
|∇ψ |2 + 1

δ

∫
|∇w|2.

Then ∫
ψ2 dx �

∫
ε2|∇w|2 +

∫
w2 + δ

∫
ε2|∇ψ |2 + δ−1

∫
ε2|∇w|2

�
∫

ε2(1 + δ−1)|∇w|2 +
∫

w2 + δ

∫
ε2|∇ψ |2

�
(
1 + δ−1)∫ (

ε2|∇w|2 + w2)+ δ

∫
ε2|∇ψ |2.

Using the previous estimate together with (3.41) we obtain for δ < ‖(W ′′(q))−‖−1∞∫
ψ2 � 1 + δ−1

′′

∫ (
ε2|∇w|2 + w2). (3.42)
1 − δ‖(W (q))−‖∞
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By Theorem 3.3, see [5], and (3.42) we get

∫ ∫
ε|∇ψ |2 + 1

ε
W ′′(q)ψ2 � −CAC

1 + δ−1

1 − δ‖(W ′′(q))−‖∞
ε

(∫
ε2|∇w|2 + w2

)
. (3.43)

Thus the proof is complete. �
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