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Abstract

The capillarity driven evolution with slip of a thin liquid film over a dry surface is considered in the regime of “partial wetting”.
The focus is on the simplest model case of a constant, non-zero dynamic contact angle in the lubrication approximation. For the
analytical treatment of the corresponding free boundary problem, a new strategy is proposed, based on the introduction of an ad
hoc class of disjoining pressures which tend to concentrate at triple junctions. A first investigation of this approach yields the
existence of weak solutions which satisfy the dissipation relation as an inequality and which are different from those with zero
contact angle. A heuristic argument is also presented in order to clarify the connection between contact angle and dissipation
relation: it shows that moving droplets which satisfy the dissipation relation as an equality are forced to have the prescribed
contact angle.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The capillarity driven evolution of a Newtonian liquid film over a dry solid substrate is described, in lubrication
approximation, by a class of fourth-order degenerate operators for the non-dimensionalized thicirirsdilm,
whose prototype is given by the so called thin-film equation:

ur + mW)uyy)y =0 on {u> 0} (1.1)
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Eq. (1.1) is obtained when considering a two-dimensional setting € R x [0, co), with the solid surface at
y = 0, neglecting both external and intermolecular forces. The molility of the form

m@u)=u+u", ne(0?3) 1.2)

wheren accounts for different forms of the slip condition at the liquid-solid interface: 2 for the Navier’s one).

We refer t0[8,13] for reviews. Specifying the positivity set afin (1.1) emphasizes that the wetted region is also

an unknown: the evolution is in fact a free boundary problem — the free boundaries being the triple junctions where
liquid, solid and air meety{u > 0} — and the specification of free boundary conditions is required. Their number

is determined by half the order of the equation, which formally implies well-posedness on a fixed domain, plus
one—hence, in the present case, three. Two of them are obvious (at least in the supposed absence of a precurs
layer): vanishing thickness, which defines the free boundary, and vanishing mass flux:

m(u(t, x))uxxx(t, x) = 0. (1.3)

lim
{u(t,-)>0}>x—>xped{u(z,-)>0}
The third condition is less clear. The simplest approach, which we take as a model case, is to argue that
dynamic contact angle: equilibrium contact anglé.. (1.4)

In order to clarify(1.4), and to introduce our notion of solution, let us shortly review the statics. Consider a region
D C R x (0, oo) filled with a liquid. The free energy of the system is given, under the aforementioned assumptions,
by surface energy alone:

ED) = ystH*@D N {y > 0)) + (v — ysv)YH(OD N {y = 0})

(HY(I") denotes the one-dimensional Hausdorff measurg;dfe., its length). For an equilibrium configuration,
taking first variations of with respect to admissible displacements (which are mass preserving vector fields whose
vertical component vanishes at triple junctions), one recovers Laplace’s law in the-Qutk, ys| «, and Young'’s
law at triple junctions (cf[7]):

¥SLCOSOe = ySv — Vv - (1.5)

Hence, conditiorf1.4) corresponds to the limiting case of a fast evolution at triple junctions, which instantaneously
enforces local equilibrium, and a slow evolution in the bulk, which then reduces the free energy globally. Here we
are interested in the “partial wetting” regim, € (0, z/2). In view of Young’s law, the free energy can then be
rewritten as

E(D) = ysU[HOD N {y > 0}) — cosBe H(BD N {y = O})].

In lubrication approximation (cf[13,11) one assumes in particular that the ratio between the typical vertical
length-scaley and the typical horizontal length-scadeis small:Y/ X « 1. If we also assume th&tis a subgraph,

D={(X%,Y) €eRx (0,00):0< 5 < h(®)},

then we have

1/2

&(D) = X yst /

{(h>0}

Y2 .,
(1+ Xh)

- cos(i@eﬂ di
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Y2 1.5 oo .
—vysL | z(hf+05)dx, for VY <« X
X {h>0) 2 ~

(in the model case of a Hele-Shaw flow in half space, these asymptotics have been rigorously justified in the
dynamical context i9,11]). Therefore, at leading order one recovers the usual energy for the thin-film equation,
plus a correction which depends 6g This leads to define the “partial wetting” energy functional for the non-
dimensionalized thicknessas

A =F= [

{ 0}2(u§+é§)dx

(we shall hereafter omit the subindég, with the contact angle conditidii.4) reading as
it )| = Be (1.6)

lim

{u(t,")>0}>x—xped{u(t,-)>0
(angles are identified with their tangents in lubrication approximation). The regime of “complete wé&]ng”
corresponding t@e = 0, has been studied analytically by many authors in the last decade—we refer to the recent
paperg1,12], where further references may be found. On the other hand, in the regime of “partial wetting”, the only
available existence result is due to Ofttd]: He looks at the case(u) = u, whose peculiarity is that the evolution
can be understood as the gradient flowFofith respect to thé.2-Wasserstein metric. This is probably the deepest
insight behind his construction of a solution which satisfies cond{tlos) for almost every.

Extending Otto’s result to a generic mobility is a long-standing open question. Our scope is to propose and start
to investigate a new strategy, which is based on the introduction of an ad hoc class of disjoining pressures which
tend toconcentrateat the triple junctions. It is inspired by the following remark of Schwartz[1/5] (see also
the references therein) he considers the action of intermolecular forces, modelled by a disjoining pfeqare
which maintains all over the substrate an ultrathin liquid layer of non-dimensional thickres3(«*); he points
out that, at equilibrium, the force balance near the apparent contact line (wladtans its minimum) yields a
Young's type law of the form

1 - 00
5(ag'f"’)zz / I, (u) dut, (1.7)

where 93" the apparent contact angle, is defined as the slope af the inflection point. In the limit

of zero microscopic equilibrium thickness* | 0, one would hope that microscopic and apparent con-
tact angle coincide. But unfortunately, this is not the case if a standard two-term model of the form
Iy« (u) = Bl(u*/u)™ — (w*/u)~°],1 <m < s, is employed, since then the right-hand side (&f7) van-

ishes. Instead, here we consider an ad hoc class of disjoining pressures which concenmtatean the limit

of zero microscopic thickness. It is given, accordingi), by

1
() = éeg 86 (u),

where the continuous functigh has the form

1 u . _
5:(u) = g81 (E) ifu > eu
—ne(m) ifO<u<eu

: (1.8)

with . ands; non-negative and such that

[ " s dv = 1, lim 81(u) =0, (1.9)

u
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cu €40
/ ne(u) du — 0. (1.10)
0

We think ofeu as the microscopic equilibrium thickness. The cases0 (which we admit) or, = 0 correspond
to purely attractive potentials; > 0. Given a non-negativey such thatF(uo) is finite, let us therefore consider
solutions of

1.
ur + (m(u) (uxx — 29588(u)>x)x =0 (1.11)
u(0, x) = uo(x) + eu.

Sinced,(u) — 0 ase | 0 for anyu > 0, the effect of the disjoining pressure vanishes in the bulk, and the limiting
equation(1.1)is formally recovered. Furthermore, note that the free energflfad)is given by

1 ~
[ Sk B
{u>0}

where

u e0 |1 ifu>0 inviewof(19)
H,(u) = / 8e(v) dv — . L (1.12)
el 0 ifu=0 inview of(110).

Therefore, in the limit | 0 one formally recoverg for the free energy.

In Section3, a first investigation of this strategy will be performed in the model ease 0, showing that the
limit procedure can be rigorously justified to the following extent: in the main reBb#prem 3.2we obtain the
existence of aolution to(1.1)which conserves mass,

/Qu(t)dxz/guodx, (1.13)

and dissipate& in the sense that
T
Fu(T)) dx + / / m () |ty |2 dx df < Flug) dx. (1.14)
0 {u(r)>0}

Here 2 is the spatial domain, and the space-time integra(lii4) represents, at leading order in lubrication
approximation, the dissipation of kinetic energy due to viscous frictior{161). Hence, inequality1.14)is fully
consistent with the original energy landscape. In additioRrposition 3.3ve observe that such solutions indeed
differ from those with zero contact angle.

We understangl.13) and (1.14as weak counterparts ¢f.3), respectively(1.6). Note that(1.14)is, even as
an equality, not sufficient to guarantfe6) (and, a fortiori, uniqueness of solutions, which anyway is still an open

problem also in the zero contact angle case): indeed, any overturned parabola with given mass is a steady state wes

solution of(1.1)which satisfieg1.14)as an equality. In order that the evolution does not get stuck into these critical

points, the free boundaries have to move; once they do it, we believe that the contact angle condition will be enforced
by the dissipation relation at least when the latter holds true as an equality. In other words, for moving solutions
the contact angle condition is of Neumann type—encoded in the dissipation relation instead of being imposed as

a constraint on the ambient space. To clarify this issue, before going into the more analytical S¢atiwre

precise statements of the results are given, furthermore discussed, and proved), we wish to present a simple heurist

argument showing thahovingsolutions with connected support which sati€fyl4)as anequality, automatically
satisfy(1.6).
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2. The contact angle as a Neumann type condition

Forn € (0, 3), let us consider a mass-conserving and, for simplicity, even solutimfin(1.1) with connected
support, supp((t, -)) = [—s(z), s(r)]. Let us also assume thatsatisfieg1.14)as an equality. Then we may write
for almost every

d s(1) )
&f(t) = / m(u) x| dx. (2.1)

—s(1)

On the other hand, integrations by parts show that

d s(t) 1 R s(t) 1. R ]
d / L2+ @yt / () el = S50+ 82 oy + M (e 1y -+ )t t2s).
dr J_s) 2 —s(1) 2 x—s(1)

2.2)

Then(2.1)implies that that the right-hand side @.2) has to be equal to zero for almost evérgince the speed
of the contact line can be ascertained fr@hil) and (1.2fo be given bys(z) = lim, s u" i, this means
that

B(u) = [un_luxxx(uyzc + ég) + 2uu; + zunuxxuxxx] xt)S([) 0. (23)
Folklore suggests that the profile ofz, y) = u(z, x + s(r)) near a moving contact line is selected among those
of travelling wave solutions. This yields: a one parameter family of positive contact angle profiles given

by

By + Ay*", O<n<3,n#2
u(t. ) ~ {ei + Aiz logy, n=2 g 24
with 6 > 0 andA = A(n, s, 6); a zero contact angle profile given by
Ayg/”, %<n<3,'s>0,
u(t,y) ~ ¢ Ay*(=logy)?3, n=35>0, (2.5)
Ayg/”, O<n<%,&<0

. . 3 . . .
with A = A(n, s) > 0; and, forn € (0, 2), a one parameter family of zero contact angle profiles given by

3
u(t,y) ~ > + Ay, O0<n< > (2.6)

with x > 0 andA = A(n, s, k). Substituting2.4)—(2.6)into (2.3) gives, at leading order as| —s(¢),

AGY(O% — 0D)(n — ) — 3)(n — 2), for(2.4).,n #2,

2 AG(6? — 62), for (2.4),n = 2,

3 e 3
Blu(t. ) ~ —3A"0(3 - m)(3 - 20), for (25).n # -,

4 . 3

§A3/295, for (2.5), n = >

2AK"102(5 — 2n)(2n — 3)(n — 2),  for(2.6).n € (o, g) :
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Therefore, in view 0f2.3), the only admissible profile i€.4) with # = e. This shows that, for moving solutions
with connected support, the contact angle condition is of Neumann type, i.e. itis already contained in the dissipation
relation(1.14)provided it holds true as an equality.

3. Existence of weak solutions

There will be no additional difficulty in slightly relaxing assumpti@in2) on the mobility:
m € C([0, o0)), increasingm(u) ~ u" asu | 0for some: € (0, 3). (3.1)

Our notion of solution is the following:

Definition 3.1. Letfe > 0, 2 = (—a, a),a > 0, and assum€3.1). We say that ans2|-periodic (w.r.t.x) non-
negative functiom € C%’%([O, 00) x £2) is a weak solution of1.1)with partial wetting energy if:

() uxxx € L%C({u > 0}), /m()iyrx € Lz_({u > 0});
(i) for all |£2|-periodicy € C2°((0, o00) x £2),

o o0
/ / u@; dx dr + / / m(u)uxxx @y dx dt = 0O;
JO 2 0 {u(r)>0}

(iii) F(u(r)) < oo for almost every > 0, and inequality{1.14)holds true for almost every > 0.

The periodicity ofu is a complementary boundary condition 6f2 which guarantees uniqueness of positive
solutions. The main result of this paper is the following:

Theorem 3.2. Letfe > 0, 2 = (—a, a), a > 0, and assum¢3.1). For any non-negativeg such thatF(ug) < oo,
a weak solution of1.1)with partial wetting energy exists in the senséeffinition 3.1 such that(0, x) = ug(x).

As a simple consequence, we also obtain the following:

Proposition 3.3. Letfe > 0, 2 = (—a, a),a > 0,and assumé3.1). Let u be a weak solution ¢t.1)with partial
wetting energyand assume thak(up) < afe. Then

(i) u(r) does not converge to its mean value uniformlymst 1 oo;

(i) asequence; ity oo exists such that(z;, x) ey u4(x) uniformly in$2, whereu, is a non-degenerate parabola
on each connected componen{of > 0}.

Since zero contact angle solutions converge uniformly to their mean valy2,@ij, Proposition 3.3mplies that,

starting from the same initial datum, solutions with partial wetting energy differ from those with zero contact angle.
Hence, our result may also be seen as an example of non-uniquengk4 Yarhich is both not pathologic (in the

sense that it does not rely on fine tuning of the parameters in the approximating scheme adopted for constructing
solution, as opposed to the non-uniqueness exampi)inand generic (non-uniqueness of source-type solutions

is well-known, cf.[5]). From the mathematical point of view, we should also notice that an approximating scheme
analogous to the one we adopt, has been used by Caffarelli and Vazd6Ggramprove the existence of solutions

for a second order parabolic equation with prescribed jumg.in
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Theorem 3.ds far from being exhaustive. A more complete picture would require capturing the contact angle
condition(1.6)for almost every, as obtained by Otto fon(u) = u. The greatest obstacle is an insufficient control
on the topology of the support, which is ultimately due to the highly nonlinear character of the intrinsic metric of
the evolution, as visualized by the space-time integréliti4) All this is of course related to the need of a more
robust regularity theory for thin-film equations. A less conclusive but yet interesting achievement, would be to infer
the contact angle condition assuming some knowledge on the topology of the support. We hope that our method
will serve as a base for further investigations in these directions.

Proof of Theorem 3.2. By the scale invariance of the equation, we may set, without loss of gene?iaﬁtﬂ. We
consider the following approximating problems:

ur + <m(u) (umC — ;88(u)) > =0 on{u > 0}

u(t, -) |$2|-periodic
u(0, x) = uo(x) + eu X € L.

(3.2)

Since our result is oblivious of the specific form of the short-range tgrin the definition (1.8)of 5., we set it to
be zeroxn, = 0. Concerning1, we assume it to be a non-negative, Lipschitz continuous functiom j§)) such
thatd1(«) = 0 and(1.9) holds.

Remark 3.4. At least under these assumptions, one could avoid adding an initial microscopic layer of thickness
su; the proof would go through far(0, x) = ug(x) with no modification.

Our starting point is the following existence result {8r2).

Lemma 3.5. Foranye > 0and any non-negativey such thatF(uo) < oo, an|$2|-periodic non-negative function
u € C83([0, 00) x £2) exists such that

() ue C1’4({u > 0}), /Mm@ty € L2({u_> 0});
(i) for all [§2|-periodicy € C°((0, oo) x £2)

o0 o0 1 ,
/ / uq; dx dr + / / m(u) <uxxx — 288(u)ux> @y dxdr = 0;
0 2 0 {u()>0}

(i) u(0, x) = uo(x) + su;
(iv) for almost eveny > O,

1, r 1, 2
/.(2 é(“x(T) + H(u(T))) dx —|—/O /{”(1)>0} m(u) (uxxx — 238(u)ux) dx dr
1
< [ 3h+ Hutuo) . @3)

Lemma 3.5s essentially a consequence of the work by Bertozzi and Ptjghn long-wave unstable thin-film
equations; more precisely, of Theorem 3.4. As a matter of fact, there the fugtjor —m(s)s.(s) is assumed to
be positive, whereas here it changes sign. But since the positive s¢ga tife “bad” sign, it is easy to see that their
proof covers the case under consideration, too. Also, note thatit@ms ot contained in their statement; anyhow,
it follows from the properties of their approximating solutions, by exactly the same argument we shall use below to
infer the corresponding item for our limit solution.
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Letu, be the solution of3.2) as given by Lemma 2.1. We denote Gya generic positive constant independent
of ¢. Conservation of mass

/Q ug(t) dx = /9 uo dx, (3.4

follows from choosing (after a straightforward density argument) x(o., in (ii). It follows immediately from
(3.3)that

sup | ul()dx<C, (3.5)
te(0,00) J 2
o0 1 2
/ / m(us) (”sxxx - *8;(148) Max) drdr < C. (36)
0 Ju>0) 2

Bounds(3.4) and (3.5rombine into

luell oo (0, 00): HE(52)) = C- 3.7)
From(3.5)we also see that

lue(t, x1) — ue(t, x2)| < Clxy — xa| ™2, (3.8)
Bounds(3.6)—(3.8)combine into Hblder continuity in time:

lue(t1, x0) — ue(t2, x0)| < Clt1 — 12|/, (3.9)
To see this, consider a non-negative cut-off funcigre C2°(R) such that supg() C (-2, 2) and 5 ¢(s) ds = 1,
and letps(x) = 8~ 1p(8~1(x — x0)), with § > 0 to be chosen later. Writing

lue(t1, x0) — ue(t2, xo)| < / @s(x — x0)lus(r1, x0) — ue(r1, x)| dx + / @s(x — x0)lue(t2, x0) — ug(tz, x)| dx
22 2

+

[ s = sl ) iz ) dx] e h4 bt (3.10)

we have for the first two integrals

(3.9)
=

h+1 < csY2. (3.11)

It follows from (ii) in Lemma 3.5hat

15 1
/ / m(ug) (usxxx - 25;(1/!8)14”) @sy dx dt
. J{u(t)>0}

) 1/2
12 1 ,
X </ / m(ug) (umx - 285(145)14”) dxdt)
11 J{ue(t)>0}

oo 12 36),37
x( / / m(ug)gogxdxdt) ( ’5( )C8_3/2|t1—t2|1/2. (3.12)
1 2

Collecting(3.11) and (3.12)nto (3.10)and minimizing the right-hand side with respecttgields(3.9).
Inequalities(3.8) and (3.9pllow (by Ascoli-Arzeh Theorem) to select a subsequence (still indexes) lsych
that

Iz = <C

e — uinC82([0, 00) x 2) ase | 0 (3.13)
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with u(z, -) |£2|-periodic. By(3.7)
e - uin L2((0, 00): HY(2)) ase | O. (3.14)
Bound(3.6), combined with(3.13) gives in particular that

// luexex|2drdr < C(K) oneachk cC {u > 0}.
K

In turn, this implies that

Uexex = Uper N LEc({u > 0}) ase | 0. (3.15)
Let

. { m(ug) (uam - ;58(u8)> on{u, > 0}

0 elsewhere
By (3.6)
el0 2

Je— f € L((0, o0) x £2), (3.16)
and by(3.13), (3.15) and (1.9)

£ @ i L2o(u > O)).
Hence

f=v/m@uux onfu> 0} (3.17)

which together witl{3.16)implies (i) in Definition 3.1 To prove (i) inDefinition 3.1, we pass to the limitas— 0
in (ii) of Lemma 3.5which we may rewrite as

o0 o0
/ / uegr ded + / / (i) fops e = 0
0 2 0 2

for all |§2]-periodicy € C2°((0, o0) x .(_2). The passage to the limit on the first integral is straightforward in view
of (3.13) For the second integral, usig.13) and (3.16yve obtain

o0 O o
| vt feocdear™ [ [t oo
00 @17) [
= / / v m(u) fordedr "= / / m(u)u xxx @y dx d.
0 J{u()>0} 0 J{u()>0}

Our last goal is to pass to the limit ag, 0 in the energy estima(8.3). The passage to the limit on the right-hand
side follows immediately from dominated convergence Theorem, sin¢e.b)

1 if 0 —
£ { uo(x) > forallx € £2.

He(ue(0,x)) = He(uole) +2u) = o 4 3 g
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For the left-hand side, by lower semi-continuity we obtain in vieW314) and (3.16)

lim inf e (T)dx>/ u?(T)dx forae. T,

317)
I|m|nf/ /fs dxdt>/ / f2dxdr / / m (1) |t | cbx dl.
{u()>0}

Finally, (3.13)implies that for ally > 0

/ He(us(T)) dx > / He(ue(T)) e S 1dy,
Q {u(T)>n}

{u(T)>n}

and therefore

Iiminf/ Hs(ug(T))dxz/ 1de forall T
=0 Jo {u(T)>0}

This proves (iii) and completes the proof of Theorem 3.2

Proof of Proposition 3.3. Once again, by scale invariance we consi@lex= 1 without loss of generality. The
first assertion is straightforward: if converged to its mean value uniformly f& ast 1 oo, then we would have
Fu(T)) = afor T > 1, in contradiction with(1.14)andF(uo) < a. To prove the second assertion, we observe that

by (1.14)a sequence; ity oo exists such that
[ )P o (3.18)
{u(t;)>0}

On the other hand, we have

[uydi= [wan [ uPd=c
2 2 2

so that by Ascoli-Arzel Theorem
u(tj, x) 719 u.(x) uniformly in &2, and/ Uy dx = / ug dx (3.19)
2 2

for a subsequence (still indexed Pywith u, non-negative an¢k2|-periodic. The support af, is not empty (by
(3.19) and strictly contained 2 sinceF(u,) < F(ug) < a. In view of (3.18) and (3.19)we have

Jjtoo .
(1) = 0 inL2 ({us > 0}),
u ]T—og Uy in C%C({u* > 0}).
This means that. has to be a (possibly degenerate) parabola on each connected compainfent> 0}. Since

|I| < |82, the degenerate cas€(= 0) would violate the continuity of.. in §2 (taking of course periodicity into
account). This completes the proofffoposition 3.3 [
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