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Abstract

We consider a dilute mixture of a finite number of particles and we are interested in the

coarsening of the spatial distribution in two space dimensions under Mullins–Sekerka

dynamics. Under the appropriate scaling hypotheses we associate radii and centers to each

particle and derive equations for the whole evolution.
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1. Introduction

Ostwald ripening or coarsening is a diffusion process occurring in the last stage of
a first-order phase transformation. Usually, any first-order phase transformation
process results in a two-phase mixture with a dispersed second phase in a matrix.
Initially, the average size of the dispersed particles is very small and therefore the
interfacial energy of the system is large and the mixture is not in thermodynamical
equilibrium. The force that drives the system towards equilibrium is the gradient of
the chemical potential that, according to the Gibbs–Thomson condition, on the
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interface, is proportional to its mean curvature. As a result matter diffuses from
regions of higher curvature to regions of lower curvature and large particles grow at
the expense of smaller particles that eventually shrink to nothing. The outcome of
this process, known as Ostwald ripening is an increasing of the average size of
particles and a reduction of the number of them that makes the mixture coarser. A
quantitative description of Ostwald ripening [34] has been developed by Lifschitz
and Slyozov and independently by Wagner under the assumption that the relative
fraction of the dispersed phase is very small. Their theory (LSW theory in the
following) is in three dimensions and assumes that there are many particles in the
system with the size of the particles small compared to the distance between them.
LSW is a mean field theory and is derived as follows: The point of departure is the
quasi-static Stefan problem with surface tension (otherwise known as Mullins–
Sekerka free boundary problem, see (1.7)). From this problem a differential equation
(1.2) describing the evolution of the size of a typical particle is formally derived. The
derivation is based on the assumption that particles are exact spheres and that their
centers stay fixed in time. The evolution is characterized by the particle distribution
nðR; tÞ dR which is defined as the number of particles which at time t have radius in
½R;R þ dR�: More specifically the LSW theory provides the equation

@nðR; tÞ
@t

þ @

@R

dR

dt
nðR; tÞ

� �
¼ 0 ð1:1Þ

with

dR

dt
¼ 1

RðtÞ
1

%RðtÞ �
1

RðtÞ

� �
; ð1:2Þ

where %RðtÞ is the average radius size

%RðtÞ ¼
R

RnðR; tÞ dRR
nðR; tÞ dR

: ð1:3Þ

System (1.1)–(1.3) is analyzed in [27,41] and it is shown that there exist infinitely
many self-similar solutions, but only one is believed to describe the typical behavior
of the system for large times

nðR; tÞD1

t
4
3

g
RðtÞ
%RðtÞ

� �
: ð1:4Þ

The theory predicts also the following temporal laws for the average radius and the
total number of particles:

%RðtÞD %R3ð0Þ þ 4
9

t
� �1

3; ð1:5Þ

NðtÞ ¼ %R3ð0Þ þ 4
9

t
� ��1

: ð1:6Þ
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Niethammer [32] has rigorously derived Eqs. (1.1) and (1.2) through a homogeniza-
tion procedure starting by a suitable modification of the Mullins–Sekerka problem.
Alikakos and Fusco [3–5] obtained precise expressions for the equations of the
centers and the radii by taking also into account the geometry of the distribution
thus removing these restrictive hypotheses. These results will make it possible to pass
rigorously to the limit [7,33].
The quasistatic Stefan problem or Mullins–Sekerka model [31] in dimensionless

variables takes the form

�Du ¼ 0 off GðtÞ; in OCRm; m ¼ 2; 3;
u ¼ H on GðtÞ;
@u

@n
¼ 0 on @O;

V ¼ @u

@n

� �� �
on GðtÞ;

8>>>>>>><
>>>>>>>:

ð1:7Þ

where u is the chemical potential, H is the mean curvature of G; the sign convention
for H is that H is positive for a shrinking sphere;~nn is the outward normal to @O; V is

the normal velocity positive for a shrinking sphere; ½½@u
@n
�� ¼ @uþ

@nþ þ @u�

@n� is the jump of

the derivative of u in the normal direction to GðtÞ where uþ; u� are the restrictions of

u on the exterior OþðtÞ and the interior O�ðtÞ of GðtÞ in O and n�; nþ the unit

exterior normal to OþðtÞ; O�ðtÞ: Here GðtÞ ¼
SN

i¼1 GiðtÞ is the union of the
boundaries of the N particles and O is a bounded, smooth domain (the container of
the mixture). The Mullins–Sekerka model is a nonlocal evolution law in which the
normal velocity of a propagating interface depends on the jump across the interface
of the normal derivative of a function which is harmonic on either side and which
equals the mean curvature on the propagating interface. If H ¼ const: on GðtÞ then
uðxÞ ¼ H ¼ const:; 8xAO and V 
 0 solve (1.7). Therefore O� is the union of NX1
equal balls with the same radius which are equilibria for (1.7).
The Mullins–Sekerka model arises as a singular limit for the Cahn–Hilliard

equation, a fourth-order parabolic equation which is used as a model for phase
separation and coarsening phenomena in a melted binary alloy [1,12,13,35]. In this
paper we are interested in the evolution in two space dimensions. This problem has
also some physical interest, for example, in the theory of thin films. We refer to
[30,36,38]. We denote by PerðGðtÞÞ; VolðO�ðtÞÞ; the surface area and the enclosed
volume (perimeter, enclosed area for n ¼ 2), respectively, then (1.7) is a volume
preserving, perimeter shortening law. A standard computation (e.g. [14]) shows that

d

dt
PerðGðtÞÞ ¼ �

Z
G

HV ¼ �
Z
G

u
@u

@n

� �
¼ �

Z
O
jruj2p0; ð1:8Þ

d

dt
VolðO�ðtÞÞ ¼ �

Z
G

V ¼
Z
G

@u

@n

� �
¼
Z
O\G

Du ¼ 0: ð1:9Þ
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In this paper, we consider the case where O� is the union of NX1 small ‘‘particles’’
which are initially very close to balls Bxi ;Ri

; i ¼ 1;y;N with center xi and radii Ri:

We assume that the radii are small with respect to interparticle distances. These
assumptions imply in particular that we work under the premise that the ‘‘volume
fraction’’, that is the ratio j between the volume of the dispersed phase

jO�jD
PN

i¼1 pR2i and the measure of the set O is a small quantity

j ¼ jO�j
jOj D

PN
i¼1 pR2i
jOj 51: ð1:10Þ

We show that under these restrictions for the initial condition the particles retain
their almost circular shape until one singularity occurs which always results in the
fact that one or more particles disappear shrinking to nothing. We derive corrected
equations for the radii which take into account the distance and the size of the
neighboring particles and also equations for the motion of the centers of the
particles. Moreover, the robustness of the circular shape is established. In the case
that the boundary @O is removed, the equations of the radii and the centers take the
form:

’Ri ¼
2

jlog jj
1

Ri

1

%R
� 1

Ri

� �8<
:

þ 2

jlog jj log
Ri

j
1
2

1

%R
� 1

Ri

� �
þ
X
hai

log jxi � xhj
1

%R
� 1

Rh

� �
� E

2
4

3
5
9=
;þ?; ð1:11Þ

’xi ¼ � 4

jlog jj
X
hai

1

%R
� 1

Rh

� �
xh � xi

jxh � xij2
þ?; ð1:12Þ

where ‘‘dots’’ denote higher order terms, %R is the harmonic mean of Ri

defined by

1

%R
¼ 1

N

XN

j¼1

1

Rj

ð1:13Þ

and E is determined by the conservation of volume and is given by

E ¼ 1
N

XN

k¼1
log

Rk

j
1
2

1

%R
� 1

Rk

� �
þ 1

N

XN

k¼1

X
hak

log jxh � xkj
1

%R
� 1

Rh

� �
: ð1:14Þ

We remark that the above products and sums are taken only over the particles which
have positive radius. This applies to all formulas throughout the paper. As it is well
known the Mullins–Sekerka problem has an invariance property. Indeed, if t-O�ðtÞ
is a solution and m40 a positive constant then t- *O�ðtÞ ¼: mO�ð t

m3Þ is again a
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solution. The equations

’Ri ¼
2

jlog jj
1

Ri

1

%R
� 1

Ri

� �
; ð1:15Þ

’xi ¼ � 4

jlog jj
X
hai

1

%R
� 1

Rh

� �
xh � xi

jxh � xij2
ð1:16Þ

which are obtained by (1.11) and (1.12) by retaining the principal terms enjoy the

same invariance property: if t-ðRðtÞ; xðtÞÞ is a solution then t-ðR̃ðtÞ; *xðtÞÞ ¼:

ðmRð t
m3Þ; mxð

t
m3ÞÞ is again a solution. The complete equations (1.11) do exhibit exactly

the invariance property shared by Eqs. (1.7) and (1.15).
Eqs. (1.13), (1.15) state that given t; the radius RiðtÞ of the ith particle, decreases or

increases according to whether at that time it is below or above the average value %R:
Moreover, Eqs. (1.15) preserve the total enclosed area and reduce the total
perimeter,

d

dt

XN

i¼1
R2i ¼ 0; ð1:17Þ

d

dt

XN

i¼1
Rip0 ð1:18Þ

reflecting the enclosed area preserving and perimeter shortening properties of
Mullins–Sekerka problem. We assume

0oR1ð0ÞoR2ð0Þo?oRNð0Þ;

and show (see Proposition 3.1) that the solution of (1.15) preserves the order:
R1ðtÞo?oRNðtÞ in its maximal interval of existence ½0;T1Þ and that T1 is bounded
and characterized by the fact that

lim
t-T�

1

R1ðtÞ ¼ 0:

After t ¼ T1; the solution of (1.15) can be continued to an interval ½T1;T2Þ by
removing the first equation; changing N to N � 1; and taking RjðT1Þ; j ¼ 2;y;N as

initial condition. Proceeding in this way one defines a sequence of times
T1oT2o?oTN�1 characterized by the fact that limt-T�

j
RjðtÞ ¼ 0: We show that

under the above assumption that O�ð0ÞD
SN

i¼1 Bxið0Þ;Rið0Þ; something similar holds

true also for the full Mullins–Sekerka free boundary problem. Indeed we prove (see

Theorem 2.1) that there are times T̂1oT̂2o;y;oT̂N�1 near to T1;y;TN�1 such

that at time T̂j a singularity occurs and the jth particle shrinks to nothing. Eq. (1.15)
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for the case of 2 particles where first derived in [43] by the method of
images Eq. (1.15) were also obtained in [33] starting from a variation of the
Mullins–Sekerka model which assumes the Gibbs–Thomson relation in an averaged
integral form:

Comparison of principal terms

3 Dimensions 2 Dimensions

’Ri ¼
1

Ri

1

%R
� 1

Ri

� �
’Ri ¼

1

Ri

2

jlog jj
1

%R
� 1

Ri

� �

%R ¼ 1
N

PN
j¼1 Rj %R ¼ 1

N

PN
j¼1
1

Rj

� ��1

arithmetic mean harmonic mean
independent of distance independent of distance

scale invariance compatible with t
1
3 law scale invariance compatible with t

1
3 law

x-m�
1
3x; t-mt x-m�

1
3x; t-mt

No singularity for 1%R
1
%R
becomes singular at

the extinction times
Singularity like that of Singularity like that of

’Ri ¼ � 1
R2i

’Ri ¼ � 1
R2i

2

jlog jj
milder than in 3D

No crossing of time lines No crossing of time lines
No effect of neighbors No effect of neighbors

We now present a formal derivation of the equations of the radii and the centers in
two dimensions. In the following, we will show that in the limit of small size the
distortion from sphericity measured by the function ri introduced in Section 5 does
not affect to principal order the evolution of the centers and the radii of the particles.
Therefore in this paragraph in doing the formal derivation we will assume that O� is
the union of NX1 perfect balls of center xi and radius Ri40; i ¼ 1;y;N that is

O� ¼
SN

i¼1 Bxi ;Ri
: We represent the boundary @Bxi ;Ri

of Bxi ;Ri
through the map

X i : S1-R2 defined by

S1{u-x ¼ X iðuÞ :¼ xi þ Riu: ð1:19Þ

We work under the assumption that the radii Ri are small, that is we assume Ri51;
i ¼ 1;y;N: For this reason in the analysis that follows we will work with the
rescaled radii ri defined by

Ri ¼ eri;
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where e40 is a small parameter e51: The parameter e can be identified with the
square root of the volume fraction j

j ¼ jO�j
jOj D

e2
PN

i¼1 pr
2
i

jOj :

By regarding xi and Ri ¼ eri in (1.19) as functions of time t and by differentiating

with respect to t we get ’x ¼ ’xi þ e ’riu: By projecting this equation on the unit vector u

which coincides with the exterior normal to Bxi ;Ri
we get the following expression for

the normal velocity V of @Bxi ;Ri
at X iðuÞ:

VðuÞ ¼ �e ’ri �
X2
j¼1

’xij/u; ejS; ’xij ¼ /’xi; ejS; ð1:20Þ

where fe1; e2g is the standard basis of R2; /;S the standard scalar product of R2 and
the ‘‘–’’ sign is due to the sign convention that we assume V positive for a shrinking
sphere. As we recall in Section 3, (1.7) can be reduced via potential theory (see also
[43]) to a problem that lives entirely on the interface:Z

GðtÞ
gðx; yÞVðyÞ dy ¼ HðxÞ � E; xAG; ð1:21Þ

where gðx; yÞ ¼ � 1
2p log jx � yj þ gðx; yÞ is the Green function of the Neumann

problem
�Du ¼ f ;

@u

@n
¼ 0;R

O u ¼
R
O f ¼ 0

8>><
>>:

G ¼ GðtÞ; E ¼ EðtÞ; V and H also depend on time and EðtÞ is to be chosen in order
to ensure that Z

G
V ¼ 0

which implies conservation of volume.
In the formal derivation that follows we do not consider the contribution of the

smooth part of the Green’s function. We will indicate at the end the extra terms that
one gets when the contribution of g is also accounted for.
If G ¼

SN
i¼1 @Bxi ;eri

then, at @Bxi ;eri
{x ¼ xi þ eriu; uAS1; Eq. (1.21) can be written

in the form

eri

Z
S1
� 1
2p
log jeriðu � vÞjViðvÞ dv þ

X
hai

erh

Z
S1

� 1
2p
log jxi � xh þ eðriu � rhvÞj

� �

� VhðvÞ dv ¼ 1

eri

� E; 8uAS1; i ¼ 1;y;N: ð1:22Þ
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Substituting Eq. (1.20) into Eq. (1.22) for xAGiðtÞ; we obtain

eri

Z
S1

� 1
2p
log jerij �

1

2p
log ju � vj

� �
�e ’ri �

X2
j¼1

’xij/v; ejS

" #
dv

þ
X
hai

erh

Z
S1

� 1
2p
log jxi � xhj �

e
2p

ri

/xi � xh; uS

jxi � xhj2
þ e
2p

rh

/xi � xh; vS

jxi � xhj2
þ Oðe2Þ

" #

� �e ’rh �
X2
j¼1

’xhj/v; ejS

" #
dv ¼ 1

eri

� E; 8uAS1; i ¼ 1;y;N: ð1:23Þ

We now observe thatZ
S1
� 1
2p
log ju � vj dv ¼ 0;

Z
S1
� 1
2p
log ju � vj/v; ejS dv ¼ 1

2
/u; ejS;Z

S1
du ¼ 2p;

Z
S1

/u; ejS du ¼ 0;Z
S1

/u; ejS2 du ¼ p;
Z

S1
/u; e1S/u; e2S du ¼ 0:

Moreover, we can write

/xi � xh; uS ¼
X2
j¼1

/xi � xh; ejS/u; ejS:

Utilizing the above expressions, we get from Eq. (1.23)

eri e ’ri log jerij �
1

2

X2
j¼1

’xij/u; ejS

" #
þ
X
hai

erh e ’rh log jxi � xhj
"

þ e2ri ’rh

1

jxi � xhj2
X2
j¼1

/xi � xh; ejS/u; ejSþ Oðe3Þ � e
2
rh

�
X2
j¼1

’xhj

/xi � xh; ejS

jxi � xhj2

#
¼ 1

eri

� E: ð1:24Þ

This equation implies

erie ’ri log jerij þ
P
hai

erh e ’rh log jxi � xhj �
e
2
rh

P2
j¼1

’xhj

/xi � xh; ejS

jxi � xhj2

" #
¼ 1

eri

� E;

erið� 12 ’xijÞ þ
P
hai

erhe
2ri ’rh

1

jxi � xhj2
/xi � xh; ejS ¼ 0; i ¼ 1;y;N; j ¼ 1; 2:

8>>>><
>>>>:

ð1:25Þ
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From Eq. ð1:25Þ2 we obtain

’xij ¼ 2e2
X
hai

rh ’rh

/xi � xh; ejS

jxi � xhj2
ð1:26Þ

while Eq. ð1:25Þ1 is equivalent to

erie ’ri log jerij þ
X
hai

erhe ’rh log jxi � xhj

� erh

X2
j¼1

X
kah

e2rk ’rk

/xh � xk; ejS/xi � xh; ejS

jxh � xkj2jxi � xkj2
¼ 1

eri

� E: ð1:27Þ

If in Eq. (1.27) we disregard the third term on the left-hand side we get

erie ’ri log eþ erie ’ri log ri þ
X
hai

erhe ’rh log jxi � xhj ¼
1

eri

� E: ð1:28Þ

From this if we determine E by imposing
PN

k¼1 rk ’rk ¼ 0 we get

e ’ri ¼ � 1

jlog ej
1

eri

1

eri

� 1
e %r

� �
þ 1

jlog ej e ’ri log ri þ
1

eri

X
hai

erhe ’rh log jxi � xhj
" #

� 1

erijlog ejN
XN

k¼1
erke ’rk log rk þ

X
k;h hak

erhe ’rh log jxk � xhj
" #

: ð1:29Þ

Since we have
PN

k¼1 rk ’rk ¼ 0 if t-riðtÞ is a solution of (1.29) then t- #riðtÞ ¼ mrið t
m3Þ

is again a solution. Indeed if LðrÞ; RðrÞ correspond to the left-hand side and right-
hand side terms of (1.29) we have

Lð #rÞ ¼ 1
m2

LðrÞ;

Rð #rÞ ¼ 1
m2

RðrÞ þ log m
erijlog ej

XN

h¼1
erhe ’rh �

log m
erijlog ejN

N
XN

h¼1
erhe ’rh ¼ 1

m2
RðrÞ:

From this computation it appears that the extra terms in the expression of Rð #rÞ
cancel out even if

PN
k¼1 rk ’rka0: Let QiðrÞ be any function which satisfies the

following conditions:

c1 � QiðmrÞ ¼
1

m2
QiðrÞ;
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c2 �
XN

i¼1
riQiðrÞ ¼ 0:

From the above discussion it follows that if we replace in the right-hand side of
(1.29) e ’ri with QiðerÞ then the ODE that we obtain has the desired scale invariance.
Clearly, the function

QiðrÞ ¼ � 1

jlog ej
1

ri

1

ri

� 1
%r

� �

satisfies c1 and c2: This leads to the ODE

e ’ri ¼
1

eri

1

jlog ej
1

e %r
� 1
eri

� �(

þ 1

jlog ej log ri

1

e %r
� 1
eri

� �
þ
X
hai

log jxi � xhj
1

e %r
� 1

erh

� �
� E

" #)
; ð1:30Þ

where

E ¼ 1
N

XN

k¼1
log rk

1

e %r
� 1

erk

� �
þ 1

N

XN

k¼1

X
hak

log jxh � xkj
1

e %r
� 1

erh

� �

and this equation satisfies the correct scaling law.
Finally, we obtain from (1.26)

’xi ¼ �2
X
hai

1

jlog ej
1

e %r
� 1

erh

� �
xh � xi

jxh � xij2
: ð1:31Þ

This concludes the derivation.

Remark. The above analysis can be extended to include also the effect of the
boundary. With similar computations one finds that the boundary contributes with
the following terms:

e ’ri ¼
1

jlog ej
1

eri

1

e %r
� 1
eri

� �
þ 1

jlog ej ðlog ri þ gðxi; xiÞÞ
1

e %r
� 1
eri

� �"(

þ
X
hai

ðlog jxi � xhj þ gðxi; xhÞÞ
1

e %r
� 1

erh

� �
� E

#)
;
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where

E ¼ 1
N

XN

k¼1
ðlog rk þ gðxk; xkÞÞ

1

e %r
� 1

erk

� �

þ 1
N

XN

k¼1

X
hak

ðlog jxh � xkj þ gðxh; xkÞÞ
1

e %r
� 1

erh

� �

and

’xi ¼ � 2

jlog ej
X
hai

1

e %r
� 1

erh

� �
xh � xi

jxh � xij2
þ @gðxi; xhÞ

@x

 !
:

We now present some examples which illustrate the use of system (1.29), (1.31),
(1.32).

The two-particle case (See Fig. 1).
We calculate

’R1 ¼
2

jlog jj
1

R1

1

%R
� 1

R1

� �
;

’R2 ¼
2

jlog jj
1

R2

1

%R
� 1

R2

� �
8>>><
>>>:

) ’R1ðtÞo0; ’R2ðtÞ40

’x1 ¼ � 4

jlog jj
1

%R
� 1

R2

� �
x2 � x1
jx2 � x1j2

;

’x2 ¼ � 4

jlog jj
1

%R
� 1

R1

� �
x1 � x2
jx2 � x1j2

:

8>>><
>>>:
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Notice that if ũ ¼ x2�x1
jx2�x1j is the unit vector along x1; x2 then /

’x1; ũS40; /’x2; ũS40:

Moreover, it holds that /’x1ðtÞ; ũS ¼ /’x2ðtÞ; ũS: In the two-particle system, we see
that the smaller particle becomes smaller and the bigger becomes bigger. The two
unequal particles move in the same direction, in the direction of the smaller particle
with equal speeds.
The three-particle case (Fig. 2).
We consider the above arrangement and we calculate

’R1 ¼
2

jlog jj
1

R1

1

%R
� 1

R1

� �
þ 2

jlog jj log
R1

j
1
2

1

%R
� 1

R1

� �2
4

8<
:

þ log d
1

%R
� 1

R2

� �
þ log 2d 1

%R
� 1

R3

� �
� E

3
5
9=
;;

’R2 ¼
2

jlog jj
1

R2

1

%R
� 1

R2

� �
þ 2

jlog jj log
R2

j
1
2

1

%R
� 1

R2

� �2
4

8<
:

þ log d
1

%R
� 1

R1

� �
þ log d

1

%R
� 1

R3

� �
� E

3
5
9=
;:

By subtracting the above equations we obtain

’R1 � ’R2 ¼ log 2
1

%R
� 1

R3

� �
40:

So, the proximity to particle 3 impedes the growth of particle 2 and as a result
particle 1 grows faster than particle 2 (see Fig. 3).
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Fig. 2. The three-particle case for R1 ¼ R2oR3:
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Four-particle case: In systems with more than two particles, the competition is
complicated. Although location of a particle between particles of smaller and larger
sizes is a necessary condition for migration, calculations show that it is not a
sufficient condition. Small changes in the locations of the particles relative to one
another can have large effects on the evolution. With the permission of the authors
[43] we reproduce below some of their numerical results on four-particle systems (see
Figs. 3–5). A similar problem concerning numerical studies can be found in [39]
where the Laplace equation is solved only inside the region of the interface.
The paper is organized as follows: In Section 2, we present the statement of the

main result. In Section 3, we analyze the system of ODEs and present the integral
formulation of the equation. In Section 4, we present the operators T ; L and the
operator A ¼ TL:Moreover, we express the mean curvature H in x; r; r coordinates.
In Section 5, we study the coordinate system [2,5,11,42]. Given an interface G close to
circular, we would like to associate to it in a unique way a circle and view the
interface as a small perturbation of that circle such that

GðtÞ ¼ xþ erð1þ erðuÞÞu; uAS1;

Z
S1

rðuÞ du ¼ 0;
Z

S1
rðuÞ/u; eiS du ¼ 0; i ¼ 1; 2:

In Section 6, we solve the linear equation SðVÞ ¼ H � %H; assuming that H is known
and we obtain a system for x; r and r equations with estimates for the higher order
terms. In Section 7, we obtain bounds on r by analyzing the r-equation. The control
on r is accomplished by utilizing the maximal regularity theory of da Prato and

ARTICLE IN PRESS

Fig. 3. Four-particle system with the particles numbered from left to right, the leftmost particle denoted as

particle 1, the center particle as particle 2 and the rightmost particles as particles 3 and 4. Particles 3 and 4

are close to particle 2. We observe that despite particle 2 being smaller than particle 1, particle 2 grows at

the expense of 3 and 4.
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Grisvard [18]. In the previous sections we assume that ejjrjjC1þaðS1Þod for d40; a
fixed small number. In Section 7, a uniform bound on jjrjj is established. The
uniform bound on jjrjj is one of the harder analytic results. We should mention that
the bound on r implies the robustness of the spherical shape. Chen [14] and
independently Constantin and Pugh [17] established the stability of a single circle
equilibrium in two space dimensions. Later [21] this was reestablished in a more

ARTICLE IN PRESS

Fig. 5. A four-particle system with the same radius as in Fig. 3 but now the distance between particle 2 and

particles 3 and 4 is larger than those in Fig. 3 or Fig. 4. As a result particle 2 disappears before particles 3

and 4.

Fig. 4. A four-particle system with the same radius as in Fig. 3 with the difference that the two smaller

particles are away from particle 2.
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general way. In our case, we first note that a configuration of two or more circles is
unstable and we show for arbitrary initial data of unequal circles that the distortion
away from circularity is small globally in time. Although the general layout is quite
close to [5] there are differences between two and three dimensions also on the
technical level with the two dimensional case tending in general to be harder. These
differences can always be traced back to the fundamental solution of the Laplacian
in two dimensions.

2. Statement of the main result

In Section 5, following [5], we will show that given an interface G close to circular,
we associate to it in a unique way a circle and view the interface as a small

perturbation of this circle. So, each interface will have unique xAR2; r40 and
rAC1ðS1Þ satisfying

GðtÞ ¼ fx=x ¼ xþ erð1þ erðuÞÞu; uAS1g; ð2:1Þ

Z
S1

rðuÞ du ¼ 0;
Z

S1
rðuÞ/u; eiS du ¼ 0; i ¼ 1; 2: ð2:2Þ

Theorem 2.1. Let OCR2 be a bounded, connected and smooth domain. Assume that

Gð0Þ ¼
SN

i¼1 Gið0Þ; NX2; with Gið0Þ of the form (2.1), xið0ÞAO; Rið0Þ40 and

rið0ÞAC3þaðS1Þ satisfying (2.2). Assume that

xið0Þaxjð0Þ for iaj;

R1ð0ÞoR2ð0Þo?oRNð0Þ

then there is %e40 such that

j ¼
PN

i¼1 pR2i ð0Þ
jOj o%e2;

jjrið0ÞjjC3þaðS1Þo%e;

imply that the solution t-GðtÞ of the Mullins–Sekerka problem (1.7) satisfies GðtÞ ¼SN
i¼1 GiðtÞ with GiðtÞ of the form (2.1) with xiðtÞ; RiðtÞ40; riðtÞAC3þaðS1Þ satisfying

(2.2) and exists globally as a weak solution in the sense of [15,37]. Moreover,

(i) There exist times T̂1o?oT̂N�1 such that limt-T̂i
RiðtÞ ¼ 0; i ¼ 1;y;N � 1:

The solution is classical except at that times.
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(ii) There are constants Cr; CR40 depending on
Rið0Þ
R1ð0Þ i ¼ 2;y;N such that

’Ri ¼
2

jlog jj
1

Ri

1

%R
� 1

Ri

� �
þ CRgi; ð2:3Þ

where %R is the harmonic mean of Ri defined by

1

%R
¼ 1

N

XN

j¼1

1

Rj

and giðR; e; rÞ a smooth function satisfying

jgijo
1

jlog jj2
:

The above expression holds for T̂i�1otoT̂i where for t4T̂i i ¼ 1;y;N we have that

RiðtÞ ¼ 0:
In addition,

jjrijjC3þaðS1ÞoCr:

3. The integral equation formulation and the equations of Ostwald Ripening

We would like to formulate the Mullins–Sekerka problem as an integral equation

in the class of C3þa interfaces. The immediate advantage of this approach is that the
space dimension of the problem will be reduced by one. We will only need to solve
the integral equations along the boundaries of the evolving domains instead of
solving the two space dimension PDE problem. This approach has been used in
many problems such as Ostwald ripening [39], water waves [10], etc. It is known [43]
that we have the following integral formulation for the Mullins–Sekerka problem
(1.7):Z

GðtÞ
gðx; yÞVðyÞ dSy �

1

jGðtÞj

Z
GðtÞ

Z
GðtÞ

gðx; yÞVðyÞ dSy dSx ¼ HðxÞ � %H ð3:1Þ

with

%H ¼ 1

jGðtÞj

Z
GðtÞ

H dSy:

Then problem (1.7) takes the form SðVÞ ¼ H � %H where S is a linear operator, V

the normal velocity, H the mean curvature, %H the average value of H over GðtÞ and
jGðtÞj the surface area of GðtÞ: Moreover, we have that the Green’s function in two
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dimensions has the form

gðx; yÞ ¼ � 1
2p
log jx � yj þ gðx; yÞ; ð3:2Þ

where g is the function associated to the problem 5

�Du ¼ f ; in O;
@u

@n
¼ 0; on @O;R

O u dx ¼
R
O f dx ¼ 0

8>><
>>: ð3:3Þ

and satisfies

�Dygðx; yÞ ¼ dxðyÞ � 1
jOj in O;

@g

@ny

¼ 0 on @O;R
O gðx; yÞ dy ¼ 0:

8>>><
>>>:

ð3:4Þ

On the other hand, g is the smooth part of the Green’s function and satisfies

�Dygðx; yÞ ¼ � 1jOj; xAO; yAO;

@gðx; yÞ
@ny

¼ @

@ny

1

2p
log jx � yj

� �
; xAO; yA@O;

R
O gðx; yÞ dy ¼

R
O
1

2p
log jx � yjdy;

8>>>>>>><
>>>>>>>:

ð3:5Þ

where O is an open, bounded, connected, smooth set in R2 (the container of the
mixture) and dxðyÞ is the Dirac d supported at xAO:
From classical elliptic theory [24] one has the estimates

jgðx; yÞjpC logðdistðx; @OÞÞ; @gðx; yÞ
@y

����
����pC log2ðdistðx; @OÞÞ: ð3:6Þ

Proposition 3.1. We consider the system of ODEs

dRi

dt
¼ 2

jlog jj
1

Ri

1

%R
� 1

Ri

� �
; Ti�1otoTi; i ¼ 1;y;N;

dxi

dt
¼ � 4

jlog jj
P
hai

1

%R
� 1

Rh

� �
xh � xi

jxh � xij2
;

8>>><
>>>:

ð3:7Þ
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where

1

%R
¼ 1

N

XN

j¼1

1

Rj

and we assume that R1ð0ÞoR2ð0Þo?oRNð0Þ:
For system (3.7) the following properties hold true:
(i) If Rið0ÞoRjð0Þ then RiðtÞoRjðtÞ on their common domain of existence.

(ii)
d

dt

PN
i¼1 R

2
i ðtÞ

� �
¼ 0:

(iii)
d

dt

PN
i¼1 RiðtÞ

� �
p0:

(iv) R1ðtÞ is nonincreasing in time and RNðtÞ is nondecreasing.
(v) If we assume RN�1ð0ÞoRNð0Þ then all except the Nth particle get extinct in finite

times T1o?oTN�1 and we have the estimate

jlog jj
6

R31ð0ÞpT1p
jlog jj
6

R31ð0Þ
NRNð0Þ

RNð0Þ � R1ð0Þ

(vi) System (3.7) has a scale invariance compatible with the t
1
3 law, that is if RðtÞ; xðtÞ

is a solution then so is mRð t
m3Þ; mxð

t
m3Þ; m40:

Proof. (i) Suppose that there exists t�40 such that Riðt�Þ ¼ Rjðt�Þ40: Then we
observe that RiðtÞ and RjðtÞ satisfy the same equation. By uniqueness, we can
conclude that Rið0Þ ¼ Rjð0Þ; contradicting the assumption.
(ii) Between extinction times we have

d

dt

XN

i¼1
R2i ðtÞ

 !
¼
XN

i¼1
2Ri

’Ri ¼
XN

i¼1
2Ri

1

Ri

2

jlog jj
1

%R
� 1

Ri

� �

¼ 4

jlog jj
XN

i¼1

1

%R
� 1

Ri

� �
¼ 4

jlog jj
N

%R
�
XN

i¼1

1

Ri

 !
¼ 0:

(iii) Between extinction times we have

d

dt

XN

i¼1
RiðtÞ ¼

XN

i¼1

’RiðtÞ ¼
XN

i¼1

1

Ri

2

jlog jj
1

%R
� 1

Ri

� �

¼ 2

jlog jj
1

%R

XN

i¼1

1

Ri

�
XN

i¼1

1

R2i

 !
¼ 2

jlog jj
N

%R2
�
XN

i¼1

1

R2i

 !
p0:
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(iv) We have that

1

%R
¼ 1

N

XN

j¼1

1

Rj

p
1

N

N

R1
¼ 1

R1
:

Analogously,

1

%R
X
1

RN

:

So,

1

RN

p
1

%R
p
1

R1
3R1ðtÞp %RðtÞpRNðtÞ:

The result follows immediately from the above expression and the use of system
(3.7).
(v) We have that

dR1ðtÞ
dt

¼ 2

jlog jj
1

R1

1

%R
� 1

R1

� �
¼ 2

jlog jj
1

R21

R1
%R
� 1

� �
X� 2

jlog jj
1

R21
:

By integration, we obtain the inequality on the left

R31ðtÞX� 6

jlog jj t þ R31ð0Þ:

For the inequality on the right, we have the estimate

1

%R
� 1

R1
¼ 1

N

1

R1
þ?þ 1

RN

� �
� N

NR1
¼ 1

N

1

R2
� 1

R1

� �
þ?þ 1

RN

� 1
R1

� �� �

p
1

N

1

RN

� 1
R1

� �
¼ 1

N

R1 � RN

R1RN

� �
:

By making use of this estimate, we compute

dR1ðtÞ
dt

¼ 2

jlog jj
1

R1

1

%R
� 1

R1

� �
p

2

jlog jj
1

R1

1

N

R1 � RN

R1RN

� �

p
2

jlog jj
1

N

1

R21

R1 � RN

RN

� �
p

2

jlog jj
1

N

1

R21

R1ð0Þ � RNð0Þ
RNð0Þ

� �
:

Integrating we obtain the right-hand side in (v).

(vi) Straightforward verification.

The proof of Proposition 3.1 is complete. &
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4. The operators T ; L and A and the mean curvature in n; q; r coordinates

The operator T : Consider OCR2 a bounded, smooth, connected set in R2 and G a
C1þa closed, orientable surface in O; O� represents the part of O enclosed by G and
Oþ ¼ O\ %O�: Set

Tf ¼ @u�

@n� þ @uþ

@nþ ¼:
@u

@n

� �� �
G
; xAG: ð4:1Þ

For GAC1þa; f : G-R a sufficiently regular function satisfying
R
G f ¼ 0 and u�; uþ

are the solutions to the Dirichlet problems

�Du� ¼ 0; xAO�;

u� ¼ f; xAG;

 

�Duþ ¼ 0; xAOþ;

uþ ¼ f; xAG;
@u�

@n
¼ 0; xA@O;

8>><
>>:

where n�; nþ are the outward normals to @O�; @Oþ and n
-
is the outward normal to

@O: T is the Dirichlet–Neumann operator

Tf ¼ @u

@n

� �� �
G
¼ c ð4:2Þ

and is invertible in the class Z
G
c ¼

Z
G
f ¼ 0;

where the inverse is given by

ðScÞðxÞ ¼
Z
G

gðx; yÞcðyÞ dy � 1jGj

Z
G

Z
G

gðx; yÞcðyÞ dy dx: ð4:3Þ

The operator S can be interpreted as the inverse of the restriction T to the set of

functions satisfying
R
G f ¼ 0: In fact if

uðxÞ ¼
Z
G

gðx; yÞcðyÞ dy � 1jGj

Z
G

Z
G

gðx; yÞcðyÞ dy dx; xAO; ð4:4Þ

then u is harmonic in O�; Oþ; @u
@n

! "! "
G¼ c and so S is the Neumann–Dirichlet

operator.
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Let X ¼ ffAL2ðGÞ;
R
G f ¼ 0g: We denote by X�12;X

1
2 the closures of

ffAC1ðGÞ;
R
G f ¼ 0g under the norms

jj � jj�1
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/S�; �SL2ðGÞ

q
; jj � jj1

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/T �; �SL2ðGÞ

q
; ð4:5Þ

where /;SL2ðGÞ denotes the standard inner product in L2ðGÞ; X�1
2; X

1
2 are Hilbert

spaces and Eq. (4.5) implies that

jjfjj1
2
¼ jjcjj�1

2
ð4:6Þ

and so T ; S are isometries,

T : X
1
2-X�1

2;

S : X�1
2-X

1
2

with

ST ¼ id
X
1
2
; TS ¼ id

X
�
1
2
: ð4:7Þ

The operator L: L is the classical Jacobi operator

L ¼ DG0 þ k2; ð4:8Þ

where G0 ¼ S1; DG0 is the Laplace–Beltrami operator on G0 and k2 is the principal
curvature of G0:

The operator A: The linearized Mullins–Sekerka operator A at G0 ¼ S1 is given by

A ¼ TL ð4:9Þ

considering conservative perturbations along the normal direction and where T ; L

are defined as above.

Remarks.

* In what follows, we use the operator T0 defined by

T0X ¼ @u�

@n� þ @uþ

@nþ in S1; XAC1þaðS1Þ;

where u�; uþ are the harmonic functions determined by

�Du� ¼ 0 on B1 ¼ fxAR2=jxjo1g;
u� ¼ X on S1;

(
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�Duþ ¼ 0 on R2\ %B1;

uþ ¼ X on S1;

limx-N uþ ¼ 0:

8><
>:

T0 is the analog of T for G ¼ S1 and O replaced by R2 and it holds that

T0Yn ¼ @u�

@n� þ @uþ

@nþ ¼ n

2
Yn;

where Yn are the spherical harmonics of degree n [23].
* The linearization of the one phase Mullins–Sekerka operator for general inter-
faces G has been determined by Kimura [26], for the sphere it can be found in [21].
More information about T ; L; A operators and their spectrum can be found in [5].

In what follows, we prefer to rescale R and r according to R ¼ er; r ¼ er and
introduce the quantities r; r which are of order 1.
Eq. (2.1) reads

GðtÞ ¼ fx=x ¼ xþ erð1þ erðuÞÞu; uAS1g: ð�Þ

Instead of (�), we could more precisely scale R ¼ er; r ¼ er with two independent
small parameters e1; e2 and write

GðtÞ ¼ fx=x ¼ xþ e1rð1þ e2rðuÞÞu; uAS1g:

Going through the various steps of the proof of Proposition 6.1, it appears that the
whole argument applies to this more general situation. We limit ourselves to case (�)
where e1 ¼ e2 ¼ e because all our estimates were originally done under this
assumption and also to keep the notation of already complicated computations
into reasonable limits.

The mean curvature in x; r; r coordinates: We would like to derive an expression for

the mean curvature HðX ðuÞÞ of G at a point XðuÞ assuming that G ¼ fx=x ¼
xþ erð1þ erðuÞÞu; uAS1g with rAC1þaðS1Þ:

Proposition 4.1. The mean curvature HðX ðuÞÞ of G has the form

HðXðuÞÞ ¼ 1
er
ð1� eLr þ BÞ; ð4:10Þ

where L is the classical Jacobi operator on S1 as described above and B is an operator

of the form B ¼ bðer; eGr; eG2rÞ with G ¼ ð1þ erÞ2 þ e2r2W
� �1

2
and bðz; p;PÞ is a linear
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function in P that satisfies the estimate

jbðz; p;PÞjpC jzj2 þ jpj2 þ ðjzj þ jpjÞjPj
� �

for jzjod:

Proof. H as a function of r; W (r; W polar coordinates) has the following expression:

H ¼ 1

erð1þ erÞG
1
2

1þ er � erWW � erW
cos W
sin W

 

þ1
G
ferW½eð1þ erÞrW þ e2rWrWW�g

%
; ð4:11Þ

where

G ¼ ð1þ erÞ2 þ e2r2W
� �1

2
:

The desired result is obtained by (4.11) and also by using the expression of the

Laplace–Beltrami operator Dsr on S1 which takes the form 1
sin W ððrW sin WÞWÞ

[19]. &

5. The coordinate system

The definition of coordinate system is very important. Given an interface close to
circular, we associate to it in a unique way a circle and view the interface as a small
perturbation of that circle. Specifically, if the interface is already circular, the
procedure associates the same circle. So, to each interface in a certain class we will
give a center and a radius. There are many different coordinate systems that can be
used to accomplish this. The important fact about the coordinate system comes from
the way we intend to utilize it which is for studying the global stability properties of
the circular shape for a class of geometric operators related to the mean curvature.

By Sx;rCR2 we denote the circle of center x and radius r:

Proposition 5.1. Given an interface G in a sufficiently small C1 neighborhood of a circle

S*x; *r; there are unique xAR2; r40; rAC1ðS1Þ such that

G ¼ fx=x ¼ xþ erð1þ erðuÞÞu; uAS1g; ð5:1Þ

Z
S1

rðuÞ du ¼ 0; ð5:2Þ
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Z
S1

rðuÞ/u; eiS du ¼ 0; i ¼ 1; 2; ð5:3Þ

where e1 ¼ ð1; 0Þ; e2 ¼ ð0; 1Þ and /�; �S is the euclidian inner product in R2:

Proof. The representation of all G’s in a C1 neighborhood of S*x; *r is given by the

form

G ¼ fx=x ¼ *xþ e *rð1þ er̃ðũÞÞũ; ũAS1g:

Choosing the new origin at x and for all x’s in the neighborhood of *x we have an
alternative expression

G ¼ fx=x ¼ xþ erð1þ erðuÞÞu; uAS1g;

where x; r; r and *x; *r; r̃ are related through

*xþ e *rð1þ er̃ðũÞÞũ ¼ xþ erð1þ erðuÞÞu: ð5:4Þ

From the above equation we have

u ¼
*x� xþ e *rð1þ er̃ðũÞÞũ
j*x� xþ e *rð1þ er̃ðũÞÞũj

ð5:5Þ

and

erð1þ erðuÞÞ ¼ j*x� xþ e *rð1þ er̃ðũÞÞũj: ð5:6Þ

Condition (5.2) is equivalent to taking

er ¼ 1
2p

Z
S1

j*x� xþ e *rð1þ er̃ðũðuÞÞÞũðuÞ du ð5:7Þ

and x is the remaining free variable while the map ũ-u for j*x� xj small is a C1

diffeomorphism. What we would like to show next is to choose x such that Eq. (5.3)
is satisfied. In other words,Z

S1
j*x� xþ e *rð1þ er̃ðũÞÞũj/u; eiSdu ¼ 0; i ¼ 1; 2: ð5:8Þ

Hence, (5.8) is equivalent to solving the system

0 ¼ Fiðx; e *r; er̃Þ :¼
Z

S1
j*x� xþ e *rð1þ er̃ðũÞÞũj/u; eiSdu ¼ 0; i ¼ 1; 2; ð5:9Þ
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where ũ ¼ ũðu; x; e *r; er̃Þ is implicitly defined by (5.5). So, we seek to solve

Fiðx; e *r; er̃Þ ¼ 0; i ¼ 1; 2

and we observe that

Fið*x; e *r; 0Þ ¼ 0:

We would like to employ the implicit function theorem. For this purpose we need to
calculate

DeFið*x; e *r; 0Þ#x ¼Dx

Z
S1

j*xþ e *rð1þ er̃ðũÞÞũj/u; eiSduð#xÞ

¼Dx

Z
S1

/*xþ e *rð1þ er̃ðũÞÞũ; uS/u; eiSduð#xÞ

¼
Z

S1
/� #xþ e *rDeũ#x; uS/u; eiSdu; #xAR2; ð5:10Þ

where Dx is the gradient of Fi with respect to the first entry and we have set

Dxũ ¼ Dxũðu; *x; e *r; 0Þ:

Moreover, by differentiation of (5.5) with r̃ ¼ 0; for x ¼ *x we get

�#xþ e *rDxũ#x�/� #xþ e *rDxũ#x; uSu ¼ 0: ð5:11Þ

By using the fact that /Dxũ#x; uS ¼ 0 we obtain from (5.11) that

e *rDxũ#x ¼ #x�/#x; uSu: ð5:12Þ

From (5.12) and (5.10) we conclude

DxFið*x; e *r; 0Þ#x ¼ �
Z

S1
/u; #xS/u; eiSdu ¼ �p#xi: ð5:13Þ

So, the implicit function theorem applies for jjer̃jjC1ðS1Þod; for d40 and claims that

Eq. (5.9) has a unique solution x ¼ xðer̃; *x; e *rÞ such that x ¼ xð0; *x; e *rÞ ¼ *x: &

Remarks.

* It is important to note that rðuÞ is the distortion from circularity and we would
like it to say under control during the evolution. By imposing condition (5.3) we
remove from it the element corresponding to translation and so we have r under
control. The spectrum of the restricted operator is also stable, something which
reflects the stability of the circular shape and suggests that the coordinate system
will be preserved along evolution. In order to see the meaning of condition (5.3),

we observe that the translate Sxþ*dei ; %r
of S%x; %r by

*d; where *d40 is a small number, in
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the direction ei is given by Sxþ%dei ; %r ¼ fx=x ¼ %xþ ð %rþ *d/u; eiSþ Oð*d2ÞÞu; uAS1g:
Therefore if Q is an operator which has S%x; %r and all its translates as equilibria then

/u; eiS has to be a zero eigenfunction of the linearization DQ0 of Q at S%x; %r: The

Mullins–Sekerka operator has this property and so (5.3) are orthogonality
conditions. Condition (5.2) implies that, to principal order, r is the average radius
of G:

* Conditions (5.2) and (5.3) introduce 3 constraints but we also have 3 parameters

xAR2 and r40:
* We can find similar coordinate systems in [2,11] concerning three and two
dimensions, respectively.

6. Solving the linear equation SðVÞ ¼ H � %H for given H

As it was mentioned in Section 3, instead of solving the two-space dimension
Mullins–Sekerka problem, we will solve the integral equations along the boundaries
of the evolving domains. We have the integral formulationZ

GðtÞ
gðx; yÞVðyÞ dSy �

1

jGðtÞj

Z
GðtÞ

Z
GðtÞ

gðx; yÞVðyÞ dSy dSx ¼ HðxÞ � %H: ð6:1Þ

Throughout this section, we write G instead of GðtÞ and we take G ¼
SN

i¼1 Gi with

Gi ¼ fx=x ¼ X iðuÞ :¼ xi þ erið1þ eriðuÞÞu; uAS1g: For e40 small, the map X i :

S1-Gi is a diffeomorphism with the same regularity as ri: We let ui : Gi-S1 be the

inverse of X i: Eq. (6.1) can be written in the form

XN

h¼1

Z
Gh

gðx; yÞVhðuhðyÞÞ dy ¼ HðxÞ � E; xAGi; i ¼ 1;y;N;

where

E ¼ %H � 1jGj

Z
G

Z
G

gðx; yÞVðyÞ dy dx

and Vhðuhð�ÞÞ is the restriction of V to Gh: We can see Eq. (6.1) as an equation in V

which is nonlinear in G due to the nonlinear dependence of H on the representation
of the interface. We are going to solve the above linear equation for H given and
then we are going to derive an expression for V in terms of x; r and r:

Proposition 6.1. Let xiAO; ri40; riAC1þaðS1Þ; i ¼ 1;y;N be given and assume

xiaxj for iaj: Then the system

XN

h¼1

Z
Gh

gðx; yÞVhðuhðyÞÞ dy ¼ HðxÞ � E; xAGi; i ¼ 1;y;N ð6:2Þ
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has a unique solution ViACaðS1Þ and

jjeriVi � eri
%Vi þ KjjCaðS1ÞpjjF jj; ð6:3Þ

where

%Vi ¼ � 1
eri

1

jlog ej
1

eri

� E

� �
þ O sup

h

jjVhjj
jlog ej2

 !

and

K ¼
XN

hai;h¼1

1

2p
e2r2h log jxi � xhj

�
Z

S1
VhðvÞ dv þ

XN

h¼1
e2r2hgðxi; xhÞ

Z
S1

VhðvÞ dv � 1
eri

T0Lri þ e2T0

�
Z

S1

1

2p
log jeriu � erivjð3riðuÞ � riðvÞÞ %Vi dv

and F includes precise estimates for higher order terms

jjF jj ¼OC1þaðS1Þ e2jjrijjC1þaðS1Þrhgðxi; xiÞ þ e2r2i
@gðxi; xiÞ

@x
þ e2jjrijjC1þa2ðS1Þerh

� �
jjVijjCaðS1Þ

þ erhOC1þaðS1Þ ejjrhjjC1þaðS1Þ log jxi � xhj þ
eri þ erh

jxi � xhj

� �
jjVhjjCaðS1Þ

þ erhOC1þaðS1Þ erh

@gðxi; xhÞ
@y

þ ejjrhjjC1þaðS1Þgðxi; xhÞ
� �

jjVhjjCaðS1Þ:

Proof. We have mentioned that the Green’s function has the form

gðx; yÞ ¼ � 1
2p
log jx � yj þ gðx; yÞ

and we have Z
Gh

gðx; yÞVhðuhðyÞÞ dy ¼
Z
Gh

� 1
2p
log jx � yjVhðuhðyÞÞ dy

þ
Z
Gh

gðx; yÞVhðuhðyÞÞ dy: ð6:4Þ

In what follows, we employ the notation f ¼ OCaðS1ÞðjjrjjC3þaðS1ÞÞ meaning that the
CaðS1Þ norm of f is OCaðS1ÞðjjrjjC3þaðS1ÞÞ:
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Step 1: We consider the case h ¼ i; xAGi and we are interested in the analysis of
the two integrals on the right-hand side of Eq. (6.4).
(a) We start our analysis with the study of the first integral on the right-hand side

of Eq. (6.4).

Consider the case h ¼ i; xAGi: Let Oi ¼ fz=z ¼ lu; 0plo1þ erðuÞ; uAS1g and
consider the function Ui : Oi-R defined by

UiðzÞ :¼
Z
Gi

� 1
2p
log jxi þ eriz � yjViðuiðyÞÞ dy

¼ eri

Z
@Oi

� 1
2p
log jeriz � eriz

0jViðuiðxi þ eriz
0ÞÞ dz0: ð6:5Þ

As soon as @Oi is a surface of class C1þaðS1Þ; riAC1þaðS1Þ; we have by Theorem 2.I,
p. 307 in [29] applied to the derivatives of Ui; that Ui can be extended as a C1þa

function to the closure %Oi of Oi and we have the estimate

jjUið�ÞjjC1það %OiÞperiCjjViðuiðxi þ eri�ÞÞjjCað@OiÞ; ð6:6Þ

where C is a constant independent of r under the assumption jjrijjod
e:Moreover, the

map zA@Oi-uiðxi þ erizÞAS1 is a C1þa diffeomorphism and

jjuiðxi þ eri�ÞjjC1það@OiÞoC̃ð1þ ejjrijjC1þaðS1ÞÞoC

while we have a similar estimate for the inverse map u-z:

jjViðuiðxi þ eri�ÞÞjjC1það@OiÞpCjjVijjCaðS1Þ: ð6:7Þ

From (6.5)–(6.7), we obtain that we have a map ViACaðS1Þ-Uij@OiAC1þaðS1Þ and
together with the above properties of the diffeomorphism u-zðuÞ :¼ X iðuÞ � xi; we

can define a map I i
1 : CaðS1Þ-C1þaðS1Þ as follows:

eriðI i
1ViÞðuÞ ¼ UiðX iðuÞ � xiÞ: ð6:8Þ

Moreover, from Eqs. (6.6) and (6.8) we obtain the estimate

jjI i
1VijjC1þaðS1ÞpCjjVijjCaðS1Þ ð6:9Þ

Our purpose is to compute the main term in I i
1Vi: From (6.5) and

dz0 ¼ ð1þ 2eri þ OCaðS1Þðe2jjrijj2C1þaðS1ÞÞÞ du ð6:10Þ
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we have that

ðI i
1ViÞðuÞ ¼

Z
S1

� 1
2p
log jX iðuÞ � X iðvÞjð1þ 2eriðvÞ þ OCaðS1Þðe2jjrijj2C1þaðS1ÞÞÞðvÞViðvÞ dv

¼
Z

S1
� 1
2p
log jeriu � erivjViðvÞ dv � e

Z
S1

1

2p
log jeriu � erivj2riðvÞViðvÞ dv

� e2
Z

S1

1

2p
log jeriu � erivjOCaðS1Þðjjrijj2C1þaðS1ÞÞðvÞViðvÞ dv

� e
Z

S1

1

2p
log jeriu � erivj

log jeriu � erivj � log jX iðuÞ � X iðvÞj
log jX iðuÞ � X iðvÞj

� �

� ð1þ 2eri þ OCaðS1Þðe2jjrijj2C1þaðS1ÞÞÞViðvÞ dv: ð6:11Þ

By Mirandd [29], I i
1Vi and the first 3 integrals on the right-hand side of (6.11) are

C1þaðS1Þ functions. Also the last integral on the right-hand side of (6.11) belongs to
C1þaðS1Þ:
Let IVi be the last integral. We have

ðIViÞðuÞ ¼
Z

S1
� 1
2p
log jeriu � erivj

� log jeriu � erivj � log jeriu � eriv þ e2ðririðuÞu � ririðvÞvj
log jeriu � eriv þ e2ðririðuÞu � ririðvÞvj

� �

� ð1þ 2eri þ OCaðS1Þðe2jjrijj2C1þaðS1ÞÞÞðvÞViðvÞ dv

¼: ðI1ViÞðuÞ þ ðI 2ViÞðuÞ þ ðI3ViÞðuÞ: ð6:12Þ

After estimating ðI1ViÞ; ðI2ViÞ; ðI3ViÞ; we conclude that

ðIViÞðuÞ ¼ �
Z

S1

1

2p
log jeriu � erivjðriðuÞ þ riðvÞÞViðvÞ dv

þ eOC1þaðS1Þðjjrijj2C1þaðS1ÞÞjjVijjcaðS1Þ: ð6:13Þ

(b) We now study the second integral on the right-hand side of Eq. (6.4)Z
Gi

gðX iðuÞ; yÞViðuiðyÞÞ dy

¼ eri

Z
@Oi

gðX iðuÞ; xi þ erizÞViðuiðxi þ erizÞÞ dz ¼: eriðI i
2ViÞðuÞ: ð6:14Þ

The definition of X iðuÞ implies that

gðX iðuÞ; erizÞ ¼ gðxi; xiÞ þ OC1þaðS1Þ eri

@gðxi; xiÞ
@x

� �
: ð6:15Þ
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From (6.14) and (6.15) it follows

I i
2Vi ¼ gðxi; xiÞ

Z
S1

ViðvÞdv þ OC1þaðS1Þ ejjrijjC1þaðS1Þgðxi; xiÞ þ eri

@gðxi; xiÞ
@x

� �
� jjVijjCaðS1Þ: ð6:16Þ

Eqs. (6.16) and (6.7) imply the estimate

jjI i
2VijjC1þaðS1ÞpCjjVijjCaðS1Þ: ð6:17Þ

So, from Eqs. (6.4), (6.11), (6.13), (6.16) we conclude

Z
Gi

gðX iðuÞ; yÞViðuiðyÞÞ dy ¼ eri

Z
S1

� 1
2p
logjeriu � erivj þ gðxi; xiÞ

� �
ViðvÞ dv

þ eriðI iiViÞðuÞ; ð6:18Þ

where I ii satisfies

jjI iiVijjC1þaðS1ÞpCjjVijjCaðS1Þ ð6:19Þ

and

C ¼ OC1þaðS1Þ ejjrijjC1þaðS1Þgðxi; xiÞ þ eri

@gðxi; xiÞ
@x

� �
: ð6:20Þ

Step 2: We now consider the case hai; where xAGi and yAGh: Again our aim is to
analyze the two integrals on the right-hand side of Eq. (6.4).

For hai and X ¼ X iðuÞ both integrals on the right-hand side of Eq. (6.4) have as
functions of uAS1 the same smoothness as X i: The first integral on the right-hand
side of Eq. (6.4) gives

Z
Gh

� 1
2p
log jX iðuÞ � yjVhðuhðyÞÞdy

¼ erh

Z
S1
� 1
2p
log jX iðuÞ � X hðvÞjð1þ 2 erhðvÞ þ OCaðS1Þðe2jjrhjj2C1þaðS1ÞÞÞVhðvÞ dv

¼ erh

Z
S1
� 1
2p
logjxi � xhjVhðvÞ dv

þ erhOC1þaðS1Þ ejjrhjjC1þaðS1Þlog jxi � xhj þ
xri þ erh

jxi � xhj

� �
jjVhjjCaðS1Þ: ð6:21Þ
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The second integral on the right-hand side of Eq. (6.4) implies

Z
Gh

gðX iðuÞ; yÞVhðuhðyÞÞ dy

¼ erh

Z
S1
gðX iðuÞ;X hðvÞÞð1þ 2erhðvÞ þ OCaðS1Þðe2jjrhjj2C1þaðS1ÞÞÞVhðvÞ dv

¼ erhgðxi; xhÞ
Z

S1
VhðvÞdv þ erhOC1þaðS1Þ eri

@gðxi; xhÞ
@x

þ erh

@gðxi; xhÞ
@y

�

þ ejjrhjjC1þaðS1Þgðxi; xhÞ
�
jjVhjjCaðS1Þ; ð6:22Þ

where the following expansion has been used:

gðX iðuÞ;X hðvÞÞ ¼ gðxi; xhÞ þ OCaðS1Þ eri

@gðxi; xhÞ
@x

þ erh

@gðxi; xhÞ
@y

� �
: ð6:23Þ

From (6.21), (6.22) we conclude that (6.4) takes the form

Z
Gh

gðX iðuÞ; yÞVhðuhðyÞÞ dyZ
Gh

� 1
2p
log jX iðuÞ � yjVhðuhðyÞÞ dy þ

Z
Gh

gðX iðuÞ; yÞVhðuhðyÞÞ dy

¼ erh

Z
S1

� 1
2p
log jxi � xhj þ gðxi; xhÞ

� �
VhðvÞ dv þ erhðI ihVhÞðvÞ; ð6:24Þ

where

I ihVh ¼OC1þaðS1Þ ejjrhjjC1þaðS1Þlog jxi � xhj þ
eri þ erh

jxi � xhj

� �
jjVhjjCaðS1Þ

þ OC1þaðS1Þ erh

@gðxi; xhÞ
@y

þ ejjrhjjC1þaðS1Þgðxi; xhÞ
� �

and I ih is a linear operator that satisfies

jjI ihVhjjpCjjVhjjCaðS1Þ; hai: ð6:25Þ

Step 3: We compute %Vi: the average of Vi on the sphere S1; by utilizing the integral
representation (6.2) and the expressions obtained in Steps 1 and 2.
We saw that Eq. (6.1) can be written in the form

XN

h¼1

Z
Gh

gðx; yÞVhðuhðyÞÞ dy ¼ HðxÞ � E; xAGi; i ¼ 1;y;N
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equivalently

XN

h¼1

Z
Gh

gðX iðuÞ; yÞVhðuhðyÞÞ dy ¼ HiðxÞ � E; i ¼ 1;y;N:

From Eqs. (6.18) and (6.24), we have

� 1
2p

Z
S1
ðlog jeriu � erivj þ 2pgðxi; xiÞÞ eriViðvÞ dv

� 1
2p

X
hai

Z
S1
ðlog jxi � xhj þ 2pgðxi; xhÞÞerhVhðvÞ dv

þ eriðI iiViÞðuÞ þ
X
hai

erhðI ihVhÞðuÞ ¼ Hi � E: ð6:26Þ

From (6.26) we obtain

1

2p

Z
S1
log jeriu � erivjeriViðvÞ dv ¼ �

Z
S1
gðxi; xiÞ eriViðvÞ dv

� 1
2p

X
hai

Z
S1
ðlog jxi � xhj þ 2pgðxi; xhÞÞ erhVhðvÞ dv

þ
XN

h¼1
erhðI ihVhÞðuÞ � Hi þ E: ð6:27Þ

Let %Vi denotes the average of Vi on the circle S1 then by utilizing %Vi and
R

S1
ðVi �

%ViÞ ¼ 0; Eq. (6.27) takes the form

1

2p

Z
S1
log jeriu � erivjeriðVi � %ViÞ dv ¼ � 1

2p

Z
S1
log jeriu � erivjeri

%Vidv

� gðxi; xiÞeri
%Vi

� 1

2p

X
hai

log jxi � xhjerh
%Vh

�
X
hai

gðxi; xhÞerh
%Vh � Hi þ E

þ erh

XN

h¼1
ðI ihVhÞðuÞ: ð6:28Þ

Then by the theory of single layer potential, we know that the left-hand side defines
an harmonic function which is bounded at infinity. We extend the right-hand side of
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Eq. (6.28) in order to have also an harmonic bounded function at infinity

1

2p

Z
S1
log jeriu � erivjeriðVi � %ViÞ dv

¼ �eri
%Vi log r � gðxi; xiÞeri

%Vi �
1

2p

X
hai

log jxi � xhjerh
%Vh

�
X
hai

gðxi; xhÞerh
%Vh þ c1log r þ c2 þ erh

XN

h¼1
ðI ihVhÞðuÞ: ð6:29Þ

Our aim is to determine %Vi:We will accomplish it by the following procedure: On the
boundary of the ith particle we have the leading order to condition

c1log eri þ c2 ¼ 2
1

eri

þ E: ð6:30Þ

Moreover, in order to obtain that the right-hand side is bounded, we need to impose
the following conditions:

�eri
%Vi ¼ �c1; ð6:31Þ

�eri
%Vigðxi; xiÞ �

1

2p

X
hai

log jxi � xhjerh
%Vh �

X
hai

gðxi; xhÞerh
%Vh ¼ �c2: ð6:32Þ

The above equations (6.30)–(6.32) form a system of 3N equations with 3N
unknowns. By substituting (6.31), (6.32) into (6.30) we obtain that

ðlog jerij þ gðxi; xiÞÞeri
%Vi � � 1

2p

X
hai

logjxi � xhjerh
%Vh �

X
hai

gðxi; xhÞerh
%Vh

 !

¼ E � 1
eri

: ð6:33Þ

Eq. (6.33) forms a diagonal dominant system for 0oe51 and it has a unique
solution which is given to principal order by the formula

%Vi ¼ � 1

jlog ej
1

eri

1

eri

� E

� �
þ OC1þaðS1Þ

1

jlog ej2

 !
: ð6:34Þ

Step 4: As soon as the right-hand side of Eq. (6.4) has been analyzed and %Vi has
been determined, we utilize the integral representation (6.2) in order to conclude on
to the desired result which is (6.3).

Using again theorem 2.I in [29], we observe that the function I ihVh; h ¼ 1;y;N

has a harmonic extension both to the interior Bi ¼ fx=jxjo1g and to the exterior
R2\ %B1 of S1: These harmonic functions can be extended as a C1þa functions to B1
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and R2\ %B1 with the estimate

jjðI ihVhÞ�jjC1það %B1ÞpCjjI ihVhjjC1þaðS1Þ;

jjðI ihVhÞþjjC1þaðR2\B1ÞpCjjI ihVhjjC1þaðS1Þ;

where the subscripts 7 denote the extensions, and C is a universal constant. From
these inequalities, it follows that

jjT0I ihVhjjCaðS1ÞpCjjI ihVhjjC1þaðS1Þ:

After applying T0 to Eq. (6.28) and utilizing the expression for H given in
Proposition 4.1, Eq. (6.28) takes the form

eriVi ¼ eri
%Vi �

XN

h¼1
erhðT0I ih %VhÞ þ

1

eri

OC1þaðS1ÞðejjrijjC1þaðS1ÞÞ � T0Wi; ð6:35Þ

where Wi ¼ HjGi � E ¼ 1
eri
ð1� eLri þ BiÞ � E; i ¼ 1; 2;y;N and T0Wi ¼

1
eri

T0Lri
e
eri

OCaðS1ÞðjjrijjC1þaðS1ÞjjrijjC3þaðS1ÞÞ:
For 0oe51; system (6.35) has a unique solution that can be computed by

iteration. The approximate solution ðrVÞðnÞ ¼ ðr1V
ðnÞ
1 ;y; rNV

ðnÞ
N Þ at step n is

computed by solving Eq. (6.35) with rV ¼ ðrVÞðn�1Þ in the right-hand side starting
with ðrVÞð0Þ ¼ 0; Moreover, Eqs. (6.11), (6.13), (6.14), (6.18), (6.19) imply

jjI iiVi �
Z

S1

1

2p
logjeriu � erivjð3riðvÞ � rið�ÞÞViðvÞ dv � erigðxi; xiÞ %VijjC1þaðS1Þ

¼ OC1þaðS1Þ ejjrijjC1þaðS1Þgðxi; xiÞ þ eri

@gðxi; xiÞ
@x

þ e2jjrijjC1þaðS1Þ

� �
jjVijjCaðS1Þ ð6:36Þ

and from Eqs. (6.21), (6.22), (6.24), (6.25)

I ihVh þ erh

1

2p
log jxi � xhj � gðxi; xhÞ

� �Z
S1

VhðvÞ dv

����
����

����
����
C1þaðS1Þ

¼ OC1þaðS1Þ ejjrhjjC1þaðS1Þlog jxi � xhj þ
eri þ erh

jxi � xhj

� �
jjVhjjCaðS1Þ

þ OC1þaðS1Þ erh

@gðxi; xhÞ
@y

þ ejjrhjjC1þaðS1Þgðxi; xhÞ
� �

� jjVhjjCaðS1Þ: ð6:37Þ

Inserting these expressions of I iiVi; I ihVh into Eq. (6.29) we have the desired result
which is Eq. (6.3). &
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As soon as %Vi is known, we notice that the previous proposition reduces the
determination of Vi to a system that, to principle order is coupled only through E:
The coupling constant E can be determined by the conservation requirement

Z
G

V ¼
XN

h¼1

Z
Gh

Vh ¼ 0: ð6:38Þ

Proposition 6.2. Condition (6.39) uniquely determines the constant E: Moreover,

E ¼ 1
N

XN

j¼1

1

erj

þ OC1þaðS1Þ 1þ
jjrjjC1þaðS1Þ

%r

� �
; ð6:39Þ

where

1

e %r
¼ 1

N

XN

j¼1

1

erj

and jjrjjC1þaðS1Þ is the norm of r ¼ ðr1;y; rNÞ:

Proof. By inserting the expression of %Vi obtained from (6.34) into (6.3) under the
standing assumption that for e jjrhjjC1þaðS1Þod for d40 and by [29] we obtain

eriVi ¼ eri
%Vi þ

1

ri

OCaðS1ÞðjjrijjC3þaðS1ÞÞ þ OCaðS1Þðe2jjrijj2C1þaðS1ÞÞ

þ 1
eri

OðejjrijjC1þaðS1ÞÞ: ð6:40Þ

By utilizing the conservation requirement (6.38) we have

0 ¼
XN

i¼1

Z
Gi

Vi ¼
XN

i¼1
eri

Z
S1

Við1þ 2eri þ OC1þaðS1Þ ðe2jjrijj2C1þaðS1ÞÞÞ du: ð6:41Þ

Substituting Eq. (6.41) into (6.40) and after some calculations we conclude

E ¼ 1
N

XN

j¼1

1

erj

þ OC1þaðS1Þ
jjrjjC1þaðS1Þ

%r
þ 1þ eðjjrjjC1þaðS1Þ þ %rÞE

� �
:

If e40 is smaller than some %e40 this equation can be solved for E yielding estimate
(6.39). &

We now give a decomposition result for a general V in terms of ’p; ’x; rrt for
interfaces with representation (5.1). We let V ¼ Vðu; tÞ to be the speed of GðtÞ in the
orthogonal direction to GðtÞ at the point xAGðtÞ and we study the relationship
between V and r; rrt and ’x:
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Proposition 6.3. Assume that ejjrjjC1þaðS1Þod for d40 a small fixed number, so that

Proposition 5.1 holds. Then V is a linear combination of e ’r; e2rrt; ’x and the equation

V ¼ Z with ZACaðS2Þ a given function, determines uniquely e ’r; e2rrt; ’x: Moreover,
the following estimates hold true:

j2
ffiffiffi
p

p
e ’rþ/Z;w0SL2ðS2ÞjpCe ejjrjj2C1þaðS2ÞjjZjjCaðS2Þ

�
þjjrjjC1þaðS2Þ

P2
h¼1j/Z;whSL2ðS2Þj

�
;

j2
ffiffip
3

p
’xj þ/Z;wjSL2ðS2ÞjpCe ejjrjj2C1þaðS2ÞjjZjjCaðS2Þ

�
þjjrjjC1þaðS2Þ

P2
h¼1j/Z;whSL2ðS2Þj

�
;

jje2rrt þ Z �
P2

j¼0/Z;wjSL2ðS2Þwj � e/Z;w0SL2ðS2Þw0rjjCaðS2Þ

pCe ejjrjj2C1þaðS2ÞjjZjjCaðS2Þ þ jjrjj2CaðS2Þ
P2

h¼1j/Z;whSL2ðS2Þj
� �

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð6:42Þ

for some constant C40 and wj; j ¼ 0; 1; 2 defined as follows: w0 ¼ 1ffiffi
2

p
p
;w1 ¼

1ffiffi
2

p
p
/u; e1S ¼ 1ffiffi

2
p

p
cos W;w2 ¼ 1ffiffi

2
p

p
/u; e2S ¼ 1ffiffi

2
p

p
sin W:

Proof. We refer the reader to [5] for a detailed proof which can be easily adapted to
two dimensions. &

Proposition 6.4. There is %e40 such that for jo%e2 Eq. (6.1) is equivalent to the

following system of evolution equations:

e
dri

dt
¼ 2

jlog ej
1

eri

1

e %r
� 1
eri

� �
þ f

r
i ðr; x; rÞ;

dri

dt
¼ 2

jlog ej
1

e3r3i
Ãri �

1

e3r2i %r
ð3ri � T0riÞ

� �
þ f r

i ðr; x; rÞ;

dxi

dt
¼ f x

i ðr; x; rÞ;

8>>>>>>><
>>>>>>>:

ð6:43Þ

where

Ã ¼ T0ðDs � IÞ þ 3I

and f
r

i ðr; x; rÞ; f r
i ðr; x; rÞ; f x

i ðr; x; rÞ are smooth, uniformly bounded in e functions of

r ¼ ðr1;y; rNÞ; x ¼ ðx1;y; xNÞ and r ¼ ðr1;y; rNÞ and e %r is the harmonic mean of

eri defined by

1

e %r
¼ 1

N

XN

j¼1

1

erj

:
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Proof. Eqs. (6.43) follow from Eqs. (6.42) and Proposition 6.1. More details can be
found in [5]. &

7. The R; r estimates

Now, we turn back to the old notation R ¼ er; r ¼ er and our aim is to provide
estimates for the R; r equations. Especially, the control on r is a very important
factor. In the previous sections we assume that jjrjjC1þaðS1Þod for d40 a fixed small
number. In this section, we are going to establish a uniform bound on jjrjjC3þaðS1Þ: By

recalling that j ¼
PN

i¼1 pR2i
jOj ; we have from Proposition 6.5 the following system of

evolution equations:

dRi

dt
¼ 2

jlogjj
1

Ri

1

%R
� 1

Ri

� �
þ f R

i ðR; x; rÞ;

dri

dt
¼ 2

jlogjj
1

R3i
Ãri �

1

R2i %R
ð3ri � T0riÞ

� �
þ f r

i ðR; x; rÞ;

dxi

dt
¼ f x

i ðR; x; rÞ:

8>>>>>>><
>>>>>>>:

ð7:1Þ

In [16,22] the local (in time) existence of classical solutions is established for the
Mullins–Sekerka model for arbitrary space dimensions. From Eqs. (7.1) with initial
conditions Rið0Þ; rið0Þ; xið0Þ we have a classical solution Ri ¼ RiðtÞ; ri ¼ riðtÞ; xi ¼
xiðtÞ in some maximal interval of existence ½0; T̂Þ:We start the analysis of this section
by providing information which will be used in the proof of subsequent theorems.

Lemma 7.1. Let Ã be the operator defined in Eq. (6.43). Then Ã is a self-adjoint

operator on X�1
2 and the eigenvalues of Ã are given by

mn ¼ 2nð1� n2Þ þ 3; n ¼ 1; 2;y; ð7:2Þ

where mn has multiplicity 2n and the corresponding eigenspace is spanned by the 2n

spherical harmonics Yn of degree n: Additionally, the eigenvalues of Ã restricted to the

subspace

X ¼ frAX�1
2; /r;wiSL2 ¼ 0; i ¼ 0; 1; 2; 3g

satisfy

mp� 9: ð7:3Þ
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Proof. The spherical harmonics of degree n are eigenfunctions of the operator T0:

T0Yn ¼ @ui

@ni

þ @ue

@ne

¼ 2nYn: ð7:4Þ

Moreover, we have

DsYn ¼ �n2Yn; ð7:5Þ

where the eigenvalue �n2 has multiplicity n2: From the definition of Ã and the
completeness of the set of spherical harmonics we have the desired result. &

Remarks. We will need to obtain estimates on r for

rðtÞ ¼ T0Lrþ f ¼ Ãrþ f ðrðtÞÞ: ð7:6Þ

If r is a solution of rt ¼ Ãrþ f ðrðtÞÞ then r satisfies the ‘‘variation of constants
formula’’

rðtÞ ¼ e�Ãtrð0Þ þ
Z t

0

e�Ãðt�sÞf ðrðsÞÞ ds: ð7:7Þ

Moreover, from well known properties of analytic semigroups [25] we have: If Ã is a

self-adjoint densely defined operator and if Ã is bounded below, then Ã is a sectorial

and if Ã is a sectorial operator then it is the infinitesimal generator of an analytic
semigroup, while the following estimates hold:

jjeÃsjjjC3þaðS1ÞpMe�msjjjjjC3þaðS1Þ; jAE1; ð7:8Þ

jjeÃsjjjC3þaðS1Þp
M

sb
Me�msjjjC2þaðS1Þ; jAC2þaðS1Þ-E0; b ¼ 1

3
; ð7:9Þ

where m;M40 constants. We can assume that the constant M satisfies M41: We
will be utilizing the semigroup setting of maximal regularity due to da Prato and
Grisvard, [8,9,28]. The result of this theory is:

AAM1ðE0;E1Þ if the following estimate holds:

sup
0psp%s

Z s

0

eÃðs�sÞjðsÞ ds
����

����
����

����
C3þaðS1Þ

p %C sup
0psp%s

jjjðsÞjjCaðS1Þ; ð7:10Þ

where %C40 is a constant independent of %s: In general, %C is dependent of s but here

from Lemma 7.1 the spectrum of Ã is bounded above by a negative number. Let

hkþaðS1Þ be the ‘‘little’’ Hölder space and let

E0 ¼ haðS1Þ-X ; E1 ¼ haþ3ðS1Þ-X : ð7:11Þ
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The ‘‘little’’ Hölder spaces ha; 0oao1 are obtained by completing the CN functions
in the Ca norm. More generally, the spaces of the little Hölder continuous functions
are defined by

haðI ;XÞ ¼ fACaðI ;XÞ : lim
d-0

sup
jt�sjod

jjf ðtÞ � f ðsÞjj
jt � sja ¼ 0

( )
;

hkþaðI ;X Þ ¼ ffACk
b ðI ;X Þ : f ðkÞAhaðI ;XÞg:

One checks immediately that CyðI ;XÞChaðI ;XÞ for y4a:Moreover, if 0oao1 and
y4a then haðI ;XÞ is the closure of CyðI ;X Þ in CaðI ;XÞ and the following
interpolation fact is true:

ðha; h1þaÞy ¼ hð1�yÞaþyð1�aÞ:

Moreover, if AAM1ðE0;E1Þ we have a relationship between the fractional spaces and
the interpolation spaces Ey:

jjAyxjj0pjjxjjEy
;

where

jjxjjEy
¼ sup

m40
m1�yjjAeAxjj0

and Ey is defined as

Ey ¼ xAE0 : lim
m-0

m1�yjjAemAxjj0 ¼ 0
 %

; 0oyo1:

The following proposition justifies Eqs. (7.1) by showing that Ri can be
approximated well by Ri; the solutions of (3.7). We focus on the first extinction

interval ½0; T̂1). By repeating the argument, we obtain analogous results in

ðT̂1; T̂2Þ;y; ðT̂N�2; T̂N�1Þ:

Proposition 7.2. Assume NX2: Assume there exists z40 such that

jjriðtÞjjC3þaðS1Þoz; tA½0; T̂Þ: ð7:12Þ

Assume also

R1ð0ÞoR2ð0Þo?oRN�1ð0Þ; Rið0Þ ¼ Rið0Þ; i ¼ 1;y;N

and let T1 be the extinction time of R1 characterised by R1ðT1Þ ¼ 0 and T̂1 ¼ T̂ be the

extinction time of R1 characterized by R1ðT̂1Þ ¼ 0: Then there exists %e40 such that
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jo%e2 and positive constants CT ; c1;C1;CR;CR; a depending on Rið0Þ; i ¼ 1;y;N

such that the following estimates hold true:

(i) jT̂ � T1joCT
1

jlog jj2;

(ii)
c1ðT̂ � tÞ

1
3oR1ðtÞoC1ðT̂ � tÞ

1
3;

(iii) cRoRiðtÞoCR; tA½0; T̂Þ; i41;
(iv) jRiðtÞ � RiðtÞjoCR

1

jlog jj
4
3

; tA½0;T1 � CT
1

jlog jj2�;

(v) 1� R1ðtÞ
%RðtÞ4a; tA½0; T̂Þ:

Proof. (A) Eq. ð7:1Þ1 can be written in the form

dRi

dt
¼ 2

jlog jj
1

R2i

Ri

%R
� 1

� �
þ RiO

1

jlog jj

� �� �
; i ¼ 1;y;N: ð7:13Þ

(B) The following estimates hold:

(a)
PN

i¼1 ðR2i ðtÞ � R2i ð0ÞÞ ¼ Oð 1

jlog jj2Þ;
(b)

PN
i¼1 ðR2i ðtÞ � R2i ðtÞÞ ¼ Oð 1

jlog jj2Þ;
(c) Ri: uniformly bounded in j; equicontinuous in j and uniformly continuous on

½0; T̂Þ:

Verification: (a)
d

dt

1

2

PN
i¼1 R2i ðtÞ

� �
¼
PN

i¼1 RiðtÞ ’RiðtÞ ¼
PN

i¼1
2

jlog jj
1

Ri
ðRi
%R
� 1Þ þ

Oð 1

jlog jj2Þ ¼ Oð 1

jlog jj2Þ; by recalling Proposition 3.1(ii).

Integrating we obtain
PN

i¼1 ðR2i ðtÞ � R2i ð0ÞÞpOð 2

jlog jj2Þ:

From this by Schwartz and Gronwall we obtain a bound on
PN

i¼1 R2i ðtÞ hencePN
i¼1 Ri and as a result (a).

Condition (b) follows from (a) by utilizing the conservation of
PN

i¼1 R
2
i ðtÞ:

Condition (c) follows from (a).

(C) Let T̂�4T1 arbitrary otherwise. Then

lim
j-0

min
½T1;T̂��

R1 ¼ 0: ð7:14Þ

We argue by contradiction. Assume that limj-0 inf ½T1;T̂�� R140: Then

limj-0 inf ½T1;T̂�� RjXc40; j ¼ 1;y;N: By continuous dependence as long as there

is no singularity in ½T1; T̂�� we can pass to the limit in (7.13) and deduce that
R1ðtÞXc40 in ½T1; T̂�� contradicting that T1oT̂�: Finally the lim can be replaced by
lim by the equicontinuity of R:
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(D) We show that T̂1oN; R140 on ½0; T̂1Þ; T̂1oT̂2;y; T̂N�1: We argue by

contradiction. Assume that T̂1 ¼ N; so T̂ ¼ N: By (7.13) for i ¼ 1; we have

d

dt

1

3
R31

� �
p

2

jlog jj
R1
%R
� 1

� �
þ O

1

jlog jj2

 !
: ð7:15Þ

We fix a T̂�4T1: By (C) there exists t��A½T1; T̂�� such that R1ðt��Þ
%Rðt��Þo

1
2 and hence over an

interval ½T̂�; T̂� þ d� which can be chosen uniformly in j (by the equicontinuity of
R1). It follows that R1 is decreasing on ½T̂�; T̂� þ d� by a fixed amount. By
equicontinuity we can repeat the argument over ½T̂� þ d; T̂� þ 2d�;y to conclude

that T̂1oN: Next, we consider Eq. (7.13) for i ¼ 1; 2: By subtracting them we have

1

3

d

dt
ðR32 � R31ÞX

2

jlog jj
1

%R
ðR2 � R1Þ � C

1

jlog jj2
X� C

1

jlog jj2
on ½0; T̂1Þ;

where we used that R24R1: Integrating we obtain

R32ðtÞXR32ð0Þ � R31ð0Þ � C
1

jlog jj2
t

from which it follows that

R32ðT̂1ÞXR32ð0Þ � R31ð0Þ � C
1

jlog jj2
T̂1

and as a result T̂24T̂1 for j: small. Similarly we show that

T̂N�14T̂N�24?4T̂24T̂1: From which (iii) and (v) follow.

(E) We argue near T̂1: Given d40; there exists %d such that for T̂1 � %dotoT̂1 )
jR1%R jod: Let tA½T̂1 � %d; T̂1Þ; from (7.13) with i ¼ 1; we obtain

d

dt

1

3
R31

� �
¼ 2

jlog jj
R1
%R
� 1

� �
þ O

1

jlog jj2

 !
p

2

jlog jj
R1
%R
� 1

� �
þ C

1

jlog jj2

p ð�1þ dÞ 2

jlog jj þ
C

jlog jj2
o� 1

2
:

Integrating this inequality from t to T̂1 we obtain the inequality on the left-hand side
of (ii). To obtain the inequality on the right-hand side we utilize an upper bound on

jR1%R j on ½T̂1 � %d; T̂1Þ and we have

d

dt

1

3
R31

� �
X

2

jlog jj
R1
%R
� 1

� �
� C

1

jlog jj2
X� C:
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Integrating from t to T̂1 we obtain the right-hand side of estimate (ii).
(F) We have

1

3

d

dt
ðR3i � R3i Þ ¼

2

jlog jj
Ri

%R
� Ri

%R

� �
þ O

1

jlog jj2

 !
:

By integration

jR3i ðtÞ � R3i ðtÞjp
2

jlog jj

Z t

0

Ri

%R
� Ri

%R

����
����dtþ C

1

jlog jj2
:

Utilizing R1pRi we obtain

R21

XN

i¼1
jRi � RijpC

2

jlog jj

Z t

0

XN

i¼1
jRi � Rijdtþ C

1

jlog jj2
:

Set

yðtÞ ¼ R21ðtÞ
XN

i¼1
jRi � Rij:

Then

yðtÞp 2

jlog jj

Z t

0

yðsÞ
R21ðsÞ

ds þ C
1

jlog jj2
:

Utilizing that

C1ðT1 � tÞ
1
3XR1ðtÞXc1ðT1 � tÞ

1
2;

we obtain that yðtÞpC 1

jlog jj2 hence

R21ðtÞ
XN

i¼1
jRi � RijpC

1

jlog jj2
:

So,

XN

i¼1
jRi � RijpC

1

R21ðtÞjlog jj
2
:

Now,

R1ðtÞXC
1

jlog jj

� �2
3
if tpT1 � CT

1

jlog jj2
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and so

XN

i¼1
jRi � RijpC

1

jlog jj
4
3

0
@

1
A; tA 0;T1 � CT

1

jlog jj2

" #
:

(G) We now prove (i). We first note that (ii) implies a lower bound on T̂1:

Indeed, if T̂1pT1 � C 1

jlog jj2; CXCt then

jR1ðT̂1Þ � R1ðT̂1ÞjpCR

1

jlog jj
4
3

hence jR1ðT̂1ÞjpCR
1

jlog jj
4
3

:

On the other hand by the lower bound on R1

cðT1 � T̂1Þ
4
3pCR

1

jlog jj
4
3

which if cðcÞ
4
34cR we arrive at a contradiction. Thus,

T̂1XT1 � c
1

jlog jj2
; c : appropriate:

To obtain an upper bound we argue as follows: From

R1 T1 �
C

jlog jj2

 !
� R1 T1 �

C

jlog jj2

 !�����
�����oCR

1

jlog jj
4
3

;

we obtain

R1 T1 �
C

jlog jj2

 !
oC� 1

jlog jj
4
3

:

For tXT1 � C

jlog jj2 we have
dR1
dt
pð�1þ dÞ 1

R2
1

: Integrating we obtain

0p
1

3
R31ðtÞpC�3 1

jlog jj2
� t � T1 �

C

jlog jj2

 ! !

from which we obtain an upper bound for t of the form T1 þ C 1

jlog jj2: The proof of

the proposition is complete. &
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For convenience, we utilize the ‘‘pseudo-times’’ si in estimating ri in order to

handle the factor 2
jlog jj

1
R3

i

infront of Ãri in Eq. ð7:1Þ2: The ‘‘pseudo-times’’ are defined
by

si ¼:

Z t

0

2

jlog jj
1

R3i ðtÞ
dt; i ¼ 1;y;N; tA½0; T̂Þ: ð7:16Þ

Proposition 7.3. Assume NX2: Then there exists %e40 such that jo%e2;
jjrið0ÞjjC3þaðS1Þo%e and z independent of %e such that the following inequality holds true:

jjriðtÞjjC3þaðS1Þoz; tA½0; T̂Þ i ¼ 1;y;N: ð7:17Þ

Proof. If we introduce the ‘‘pseudo-times’’ si defined in Eq. (7.16) then system (7.1)
takes the form

dRi

dsi

¼ Ri

Ri

%R
� 1

� �
þ gR

i R; x; rð Þ
� �

;

drit
dsi

¼ Ãri �
Ri

%R
ð3ri � T0riÞ þ

2

jlog jj gr
iðR; x; rÞ;

dxi

dsi

¼ gx
i ðR; x; rÞ;

8>>>>>>><
>>>>>>>:

ð7:18Þ

where

gR
i ¼ Ri f R

i ; gr
i ¼ R3i f r

i ; gx
i ¼ Ri f x

i :

1. Let z40 any number that satisfies

jjrið0ÞjjC3þaðS2Þoz; i ¼ 1;y;N: ð7:19Þ

Then by continuity there exists T̂0pT̂ such that the inequality jjriðtÞjjC3þaðS1Þoz holds

in ½0; T̂0Þ: Then estimates (iii), (v) in Proposition 7.2 hold in ½0; T̂0Þ and we can also
assume jgR

i joa: Therefore Eq. ð7:18Þ1 implies

R1ðtðs1ÞÞpR1ð0Þe�as1 : ð7:20Þ

Let ŝ1 be chosen large enough so that,

Mð3þ jjT0jjÞN
R1ð0Þ
RNð0Þ

e�aŝ1 sup
s1Xŝ1

Z s1

ŝ1

e�mðs1�sÞ

ðs1 � sÞb
dso
1

4
ð7:21Þ

for b fixed as in (7.9).
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2. In the interval ½0; T̂0Þ we have from (7.16), (7.20) and estimate (iii) in Proposition
7.2

si ¼
Z s1

0

R31
R3i

ds1
0p

R1ð0Þ
cR

� �3 Z s1

0

e�3as1
0
ds1

0

p
1

3a

R1ð0Þ
cR

� �3
¼ ŝ; i41: ð7:22Þ

Let %s1 ¼ maxfŝ; ŝ1g:
3. The map si-½Ri

%R
ðri � T0riÞ�ðtðsiÞÞ is a continuous map from sið½0; T̂0ÞÞ�1 into

C2þaðS2Þ and we have

Ri

%R
ð3ri � T0riÞ

����
����

����
����
C3þaðS1Þ

p
NCR

RNð0Þ
ð3þ jjT0jjÞjjrijjC3þaðS1Þ: ð7:23Þ

From this and (7.9) it follows thatZ si

0

eAðsi�sÞ Ri

%R
ð3ri � T0riÞ

� �
ðtðsÞÞ ds

����
����

����
����
C3þaðS1Þ

pM
NCR

RNð0Þ
ð3þ jjT0jjÞs1�b

i sup
0ospsi

jjriðtðsÞÞjjC3þaðS1Þ: ð7:24Þ

We fix s40 small, so that

MN
CR

RNð0Þ
ð3þ jjT0jjÞs1�bo

1

4
: ð7:25Þ

4. Let %k ¼ ½%s1s � þ 1 where %sn; s are defined in 3 and 4 and where [ ] stands for the
integer part.

5. Utilizing estimate (iii) in Proposition 7.2 we have for tA½0; T̂0Þ

jjgr
i jjCaðS2ÞpC0ðCRzþ zjjrijjC3þaðS1ÞÞ:

Therefore from (7.10) it follows that

sup
0ospsi

Z s

0

eÃðs�sÞ 2

jlog jjg
r
i

����
����

����
����
C3þaðS1Þ

¼ 2

jlog jj
%CC0CRðCR þ zÞ þ 2

jlog jj
%CC0z sup

0ospsi

jjriðtðsÞÞjjC3þaðS1Þ

p
2

jlog jj C1ð1þ zÞ þ 2

jlog jj C1z sup
0ospsi

jjriðtðsÞÞjjC3þaðS1Þ; ð7:26Þ

where C1 is a suitably chosen constant.
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6. Assume %e40 so small that for jo%e2

2
2

jlog jj C1zo
1

4
; ð7:27Þ

2
2

jlog jj C1
X%k�1
k¼0

ð2MÞko
1

8M
: ð7:28Þ

We now make a definite choice for z (cf. 7.19)

z ¼ 8Mð2MÞ %kr0 þ 1; ð7:29Þ

where %k is defined in 4 and r0 ¼ maxi jjrið0ÞjjC3þaðS1Þ:

7. From the variation of constants formula applied to Eq. ð7:18Þ2 it follows via
(7.24), (7.26), that

zipMzið0Þ þ C2s
1�b
i zi þ

2

jlog jj C1ð1þ zÞ þ 2

jlog jj C1zi; ð7:30Þ

where we have set

zi ¼ sup
0ospsi

jjriðtðsÞÞjjC3þaðS1Þ; zi0 ¼ jjrið0ÞjjC3þaðS1Þ ð7:31Þ

and

C2 ¼ MN
CR

RNð0Þ
ð3þ jjT0jjÞ:

Eq. (7.30) is valid in the interval Ii ¼ ½0; siðT̂0ÞÞ: From (7.25) and (7.27) it follows that
for siAIi-½0; s� we have

zio2Mzið0Þ þ 2
2

jlog jj C1ð1þ zÞ; siAIi-½0; s�: ð7:32Þ

If we replace in (7.30) zið0Þ and ziðsÞ and si by ðsi � sÞ and use Eq. (7.34) to estimate
ziðsÞ we get

zioð2MÞ2zi0 þ 2
2

jlog jj C1ð1þ zÞð2M þ 1Þ; siAIi-½0; 2s�: ð7:33Þ

By iterating this procedure we get

zioð2MÞk
zið0Þ þ 2

2

jlog jj C1ð1þ zÞ
Xk�1
h¼0

ð2MÞh; siAIi-½0; ks�: ð7:34Þ

Eq. (7.34) is one of the basic estimates needed to complete the proof.
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8. We now prove that ŝiAI1: This follows from Eq. (7.34). In fact for kp %k we have

ð2MÞk
zið0Þ þ 2

2

jlog jj C1ð1þ zÞ
Xk�1
h¼0

ð2MÞh

pð2MÞ %kr0 þ 2
2

jlog jj C1
X%k�1
h¼0

ð2MÞh þ 2 2

jlog jj C1
X%k�1
h¼0

ð2MÞz

pð2MÞ %kr0 þ
1

8M
þ z
8M

o
z
4M

; ð7:35Þ

where we have utilized definition (7.29) of z and (7.34). This inequality, recalling the
definition of %k in 4, shows that Eq. (7.34) implies

ziðsiÞo
z
4M

oz; i ¼ 1;y;N ð7:36Þ

for siA½0; %si�; where %s1 is defined in 2 and

%si ¼
Z %si

0

R31
R3i

ds1 if i41: ð7:37Þ

Since, by definition %siXŝi; the claim is proved.
9. From Eq. (7.36) it follows that the condition

jjriðtÞjjC3þaðS1Þoz ¼ 8Mð2MÞ %kr0 þ 1 ð7:38Þ

is satisfied in the time interval ½0; T̂0Þ: Notice that T̂0 cannot be infinity because, as we
have seen from Proposition 7.2(ii), condition (7.36) implies R1ðtÞ-0 in finite time.
Thus the maximal interval of existence of the solution of system (7.1) and therefore

T̂0 ¼ T̂: The proof of the proposition is complete. &
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[9] S.B. Angenent, Nonlinear analytic semigroups, Proc. Roy. Soc. Edinburgh A 115 (1990) 91–107.

[10] G. Baker, O. Meiron, S. Orszag, J. Fluid Mech. 123 (1982) 477.

[11] G. Bellettini, G. Fusco, Some aspects of the dynamics of SðVÞ ¼ H � %H; J. Differential Equations

157 (1999) 206–246.

[12] J.W. Cahn, On spinodal decomposition, Acta Metall. 9 (1961) 795–801.

[13] J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system I. interfacial free energy, J. Phys.

Chem. 28 (1958) 258–267.

[14] X. Chen, The Hele–Shaw problem and area-preserving curve shortening motion, Arch. Rational

Mech. Anal. 123 (1993) 117–151.

[15] X. Chen, Global asymptotic limit of solutions of the Cahn–Hilliard equation, J. Differential Geom.

44 (2) (1996) 262–311.

[16] X. Chen, X. Hong, F. Yi, Existence, uniqueness and regularity of solutions of the Mullins–Sekerka

problem, Comm. Partial Differential Equations 21 (1996) 1705–1727.

[17] P. Constantin, M. Pugh, Global solutions for small data to the Hele–Shaw problem, Nonlinearity 6

(1993) 393–415.

[18] G. da Prato, P. Grisvard, Equations d’evolution abstraites non lineaires de type parabolique, Ann.

Mat. Pura Appl. 4 (120) (1979) 329–396.

[19] M.P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, New York, 1976.

[21] J. Escher, G. Simonett, Classical solutions for Hele Shaw models with surface tension, Adv.

Differential Equations 2 (1997) 619–642.

[22] J. Escher, G. Simonett, A center manifold analysis for the Mullins–Sekerka model, J. Differential

Equations 143 (1998) 267–292.

[23] G. Folland, Introduction to Partial Differential Equations, Princeton University Press and University

of Tokyo Press, Princeton, NJ, 1976.

[24] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin.

[25] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics,

Springer, Berlin, 1981.

[26] M. Kimura, An application of the shape derivative to the quasistationary Stefan problem, preprint.

[27] I.M. Lifschitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J.

Phys. Chem. Solids 19 (1961) 35–50.

[28] A. Lunardi, Analytic semigroups and optimal regularity for parabolic problems, Progress of

Nonlinear Differential Equations and its Applications, Vol. 16, Birkhäuser, Basel, 1995.
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