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Abstract

We consider a dilute mixture of a finite number of particles and we are interested in the
coarsening of the spatial distribution in two space dimensions under Mullins—Sekerka
dynamics. Under the appropriate scaling hypotheses we associate radii and centers to each
particle and derive equations for the whole evolution.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Ostwald ripening or coarsening is a diffusion process occurring in the last stage of
a first-order phase transformation. Usually, any first-order phase transformation
process results in a two-phase mixture with a dispersed second phase in a matrix.
Initially, the average size of the dispersed particles is very small and therefore the
interfacial energy of the system is large and the mixture is not in thermodynamical
equilibrium. The force that drives the system towards equilibrium is the gradient of
the chemical potential that, according to the Gibbs—Thomson condition, on the
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interface, is proportional to its mean curvature. As a result matter diffuses from
regions of higher curvature to regions of lower curvature and large particles grow at
the expense of smaller particles that eventually shrink to nothing. The outcome of
this process, known as Ostwald ripening is an increasing of the average size of
particles and a reduction of the number of them that makes the mixture coarser. A
quantitative description of Ostwald ripening [34] has been developed by Lifschitz
and Slyozov and independently by Wagner under the assumption that the relative
fraction of the dispersed phase is very small. Their theory (LSW theory in the
following) is in three dimensions and assumes that there are many particles in the
system with the size of the particles small compared to the distance between them.
LSW is a mean field theory and is derived as follows: The point of departure is the
quasi-static Stefan problem with surface tension (otherwise known as Mullins—
Sekerka free boundary problem, see (1.7)). From this problem a differential equation
(1.2) describing the evolution of the size of a typical particle is formally derived. The
derivation is based on the assumption that particles are exact spheres and that their
centers stay fixed in time. The evolution is characterized by the particle distribution
n(R,t) dR which is defined as the number of particles which at time ¢ have radius in
[R, R + dR]. More specifically the LSW theory provides the equation

On(R,1) | 0 (‘fi—fn(R,z)) —0 (1.1)

ot OR

with

dR 1 1 1

— = —— — 1.2

i =70 (7 ww) 12)
where R(7) is the average radius size

_ :f Rn(R,t)dR

RO = R (1.3)

System (1.1)—(1.3) is analyzed in [27,41] and it is shown that there exist infinitely
many self-similar solutions, but only one is believed to describe the typical behavior
of the system for large times

n(R,t);%g(&). (1.4)

The theory predicts also the following temporal laws for the average radius and the
total number of particles:

R~ (R(0) + 1), (1.5)

N(r) = (R3(0)+4r) ", (1.6)
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Niethammer [32] has rigorously derived Egs. (1.1) and (1.2) through a homogeniza-
tion procedure starting by a suitable modification of the Mullins—Sekerka problem.
Alikakos and Fusco [3-5] obtained precise expressions for the equations of the
centers and the radii by taking also into account the geometry of the distribution
thus removing these restrictive hypotheses. These results will make it possible to pass
rigorously to the limit [7,33].

The quasistatic Stefan problem or Mullins—Sekerka model [31] in dimensionless
variables takes the form

—Au=0 off I'(t), in QcR™ m=23,

u=H on I'(t),
@:0 on 0Q, (1.7)
av

V= Hg:” on I'(t),

where u is the chemical potential, H is the mean curvature of I'; the sign convention

for H is that H is positive for a shrinking sphere; ¥ is the outward normal to 0Q; V' is
the normal velocity positive for a shrinking sphere; [[34] = % + 9 s the jump of
the derivative of u in the normal direction to I'(z) where ut, u~ are the restrictions of
u on the exterior Q(¢) and the interior Q(¢) of I'(z) in Q and n~, n* the unit
exterior normal to QF(¢), Q (¢). Here I'(t) = Uﬁ] I';(¢) is the union of the
boundaries of the N particles and Q is a bounded, smooth domain (the container of
the mixture). The Mullins—Sekerka model is a nonlocal evolution law in which the
normal velocity of a propagating interface depends on the jump across the interface
of the normal derivative of a function which is harmonic on either side and which
equals the mean curvature on the propagating interface. If H = const. on I'(t) then
u(x) = H = const., Vxe Q and ¥V = 0 solve (1.7). Therefore Q is the union of N >1
equal balls with the same radius which are equilibria for (1.7).

The Mullins—Sekerka model arises as a singular limit for the Cahn—Hilliard
equation, a fourth-order parabolic equation which is used as a model for phase
separation and coarsening phenomena in a melted binary alloy [1,12,13,35]. In this
paper we are interested in the evolution in two space dimensions. This problem has
also some physical interest, for example, in the theory of thin films. We refer to
[30,36,38]. We denote by Per(I'(t)), Vol(2 (¢)), the surface area and the enclosed
volume (perimeter, enclosed area for n = 2), respectively, then (1.7) is a volume
preserving, perimeter shortening law. A standard computation (e.g. [14]) shows that

gratry=- [ay—- [ulZl—- [[wp<o as
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In this paper, we consider the case where Q™ is the union of N >1 small “particles”
which are initially very close to balls B¢, g, i = 1, ..., N with center £; and radii R;.
We assume that the radii are small with respect to interparticle distances. These
assumptions imply in particular that we work under the premise that the “volume
fraction, that is the ratio ¢ between the volume of the dispersed phase

|Q7|= >V, nR? and the measure of the set Q is a small quantity

|Q7| ~ Zz lan
€ €|

Q= <. (1.10)
We show that under these restrictions for the initial condition the particles retain
their almost circular shape until one singularity occurs which always results in the
fact that one or more particles disappear shrinking to nothing. We derive corrected
equations for the radii which take into account the distance and the size of the
neighboring particles and also equations for the motion of the centers of the
particles. Moreover, the robustness of the circular shape is established. In the case
that the boundary 0Q2 is removed, the equations of the radii and the centers take the
form:

EINE )
|loge| R ) \R R

2 R;
+ flog | lqu); ( l) Z log & — 5/1( ) + -, (L11)

h#i

_ ¢
= |log(p|Z(R Rh)|z,, AR (1.12)

where “dots” denote higher order terms, R is the harmonic mean of R;
defined by

SO

J=1

(1.13)

>o|~
==

and E is determined by the conservation of volume and is given by

XN: Rk(R Rk> NZ > loglé - fkl( ) (1.14)

k=1 h#k

We remark that the above products and sums are taken only over the particles which
have positive radius. This applies to all formulas throughout the paper. As it is well
known the Mullins—Sekerka problem has an invariance property. Indeed, if t— Q7 (¢)

is a solution and x>0 a positive constant then r—Q () =: pQ () is again a



N.D. Alikakos et al. | J. Differential Equations 205 (2004) 1-49 5

solution. The equations

R=—2_ 1L 1) (1.15)
|10ggD|Rl R Rl‘

_ éh 51
ST Ilogwl Z <R Rh>|éh—é (1.16)

which are obtained by (1.11) and (1.12) by retaining the principal terms enjoy the
same invariance property: if 1— (R(f),&(1)) is a solution then r— (R(r), (1)) =:
('“R(u%)’ ,ué(’%)) is again a solution. The complete equations (1.11) do exhibit exactly

the invariance property shared by Egs. (1.7) and (1.195).

Eqgs. (1.13), (1.15) state that given ¢, the radius R;(¢) of the ith particle, decreases or
increases according to whether at that time it is below or above the average value R.
Moreover, Egs. (1.15) preserve the total enclosed area and reduce the total
perimeter,

d N
Iy R, (1.17)
dt i=1

re o,

&|Q‘

reflecting the enclosed area preserving and perimeter shortening properties of
Mullins—Sekerka problem. We assume

0<R(0)<Ry(0)<--- <Ry(0),

and show (see Proposition 3.1) that the solution of (1.15) preserves the order:
R ()< -+ < Ry(?) in its maximal interval of existence [0, 7) and that T is bounded
and characterized by the fact that

lim R](Z) =0.

t— T;

After ¢ = Ty, the solution of (1.15) can be continued to an interval [T}, 7,) by
removing the first equation; changing N to N — 1, and taking R;(T1),j =2, ..., N as
initial condition. Proceeding in this way one defines a sequence of times
T, <T,<---<Ty_y characterized by the fact that limHTf—Rj(l) = 0. We show that

under the above assumption that Q~(0)= JY, Be,0),r,(0), something similar holds
true also for the full Mullins—Sekerka free boundary problem. Indeed we prove (see
Theorem 2.1) that there are times T <f2<, ey <Ty_; near to Ty, ...,Ty_1 such
that at time T] a singularity occurs and the jth particle shrinks to nothing. Eq. (1.15)
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for the case of 2 particles where first derived in [43] by the method of
images Eq. (1.15) were also obtained in [33] starting from a variation of the
Mullins—Sekerka model which assumes the Gibbs—Thomson relation in an averaged
integral form:

Comparison of principal terms

3 Dimensions 2 Dimensions
, 1/1 1 . 1 2 1 1
R=—(=—— R, =— -=——

R,’ R R,’ Rl' |10g g0| R R,’
5 lw 1 1\
R=="",R '_(_ N

j=1 1% R = Z.:

N N =1 R;
arithmetic mean harmonic mean
independent of distance independent of distance

1 . . . It
scale invariance compatible with 73 law  scale invariance compatible with 73 law
1 |

X—u 3x, t—ut X—u 3x, t—ut
No singularity for & + becomes singular at
the extinction times
Singularity like that of Singularity like that of
PR ko L2
R R? |log o|
milder than in 3D
No crossing of time lines No crossing of time lines
No effect of neighbors No effect of neighbors

We now present a formal derivation of the equations of the radii and the centers in
two dimensions. In the following, we will show that in the limit of small size the
distortion from sphericity measured by the function r; introduced in Section 5 does
not affect to principal order the evolution of the centers and the radii of the particles.
Therefore in this paragraph in doing the formal derivation we will assume that Q™ is
the union of N>1 perfect balls of center &; and radius R;>0,i=1,..., N that is
Q@ =Y, B r. We represent the boundary 9B g, of B: g, through the map
X': 8" R? defined by

S'su—x=X'(u) =& + Ru. (1.19)

We work under the assumption that the radii R; are small, that is we assume R; <1,
i=1,...,N. For this reason in the analysis that follows we will work with the
rescaled radii p; defined by

R; = eP;s
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where ¢>0 is a small parameter ¢ <1. The parameter ¢ can be identified with the
square root of the volume fraction ¢

Q7| @3N, np?
2| 12|

lle

(p:

By regarding &; and R; = ¢p; in (1.19) as functions of time ¢ and by differentiating
with respect to 7 we get x = &; + epu. By projecting this equation on the unit vector u
which coincides with the exterior normal to By, g, we get the following expression for
the normal velocity V' of dB;, g, at X'(u):

2
V(LI) = _gpi - Z él]<u7 ej>7 51] = <éi7ej>a (120)
J=1

where {e}, e,} is the standard basis of R?, {,  the standard scalar product of R? and
the “—" sign is due to the sign convention that we assume V positive for a shrinking
sphere. As we recall in Section 3, (1.7) can be reduced via potential theory (see also
[43]) to a problem that lives entirely on the interface:

/r() gx, )V (y)dy=H(x)—E, xeI, (1.21)

where g(x,y) = —3-log|x — y| +7(x,») is the Green function of the Neumann
problem

_Au:f7

ou

a0
fgu:jgf:o

I'=T(t); E=E(t), V and H also depend on time and E(¢) is to be chosen in order

to ensure that
/ V=0
r

which implies conservation of volume.

In the formal derivation that follows we do not consider the contribution of the
smooth part of the Green’s function. We will indicate at the end the extra terms that
one gets when the contribution of y is also accounted for.

Ifr=Uy, OB, 4, then, at 9B, ,, 3x = & + epu, ue S', Eq. (1.21) can be written
in the form

1 1

8p,-/sl — 5 -loglep;(u = v)|Vi(v) dv+; epy /S {—Elogléf—éhH(piu—phv)l
1

X Vh(v)dv:7—E, YueS', i=1,...,N. (1.22)
i
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Substituting Eq. (1.20) into Eq. (1.22) for xeI';(¢), we obtain
L L oS
o |- getoelond = gtoelu—ol] | =00 =32 &<

8 <51 éh?u> & <§i_€h7v> 2
+ ——1 Gl — oo p L Sl 4 0
%;,' o [ o8 | | 2n |§1 éhl 2n P |£1 - fh'z (8 )

)

: 1
X |—epn— Y Edvey | dv=——E, YueS', i=1,...,N. 1.23
[ P ; Y 11 ep ( )
We now observe that
/—ilo |u—v|dv=0 /—Llo |u—v|<v e'>dv—l<u ey
o 2n 8 IR R P G2 =G
du = 2m, / Cu,ej> du=0
N N
/(u,ej>2du:7r, /<u,el><u,eg>du:0.
s s

Moreover, we can write

2

=Gy =Y (& —Ehney(ue).

j=1
Utilizing the above expressions, we get from Eq. (1.23)

2

| epilog |epi| — Z gl ey |+ epy|epnlog |& — &l
j=1 h#i
&
+&pipn ZZ@ Eney <iey +0() =3 py
|€ éh j=1
2
i 1
Z <fz éhaezj> - _E (1.24)
= — &l epi
This equation implies
. . e X &G—&ne) 1
epiepilog lepil + 32 epy|epnlog|Ss — &l = Spu 30 Gy =TIl = — _,
h#i Jj=1 |éi - fh\ &p;

6p1(_%€l])+hz gphgzpl.ph 2<51 éh?ej>:07 l:177Naj:172
Zi

IS fh|
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From Eq. (1.25), we obtain

_ 282 Z ph <él éhv €]> (126)
h+#i 5 - fI1|

while Eq. (1.25), is equivalent to

epiepilog lep;| + Y epyepilog | — &l
h#i

&2 <5h ékvej><éi_éhae_/‘>:L_E 197
gp”; D T T (1:27)

If in Eq. (1.27) we disregard the third term on the left-hand side we get
1

ep;ep;iloge + epep;log p; + Z eppepnlog |& — &y = 7 —E. (1.28)
h#i L

From this if we determine E by imposing Zl]cv:l pPr =0 we get

R A T 1
o= — (LoD L s togp ¢ sppenlog |E — &,
|log8|8p,»(8m 8/)) log ¢] ep; ; ! 14 = &l
1 N
- epxepr log py + eppepnlog [&x — &l |- 1.29
F[),|10gF|N kz::l k k k’};;#k I/ | | ( )

Since we have Z]](V:l prpr = 0if t— p;(¢) is a solution of (1.29) then 1 — §;(¢) = ,upi(ﬁ)
is again a solution. Indeed if L(p), R(p) correspond to the left-hand side and right-
hand side terms of (1.29) we have

L1 log 1 log X 1
R(p) =—R EPpEPR — eppepn = — R(p).
)= 00 ety S v~ RN S s = 1 )

From this computation it appears that the extra terms in the expression of R()
cancel out even if Zf{\;l 0P #0. Let Q:i(p) be any function which satisfies the
following conditions:

1
= Qi(up) = FQi(p),
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N
€= Z piQi(p) = 0.
i=1

From the above discussion it follows that if we replace in the right-hand side of
(1.29) p; with Q;(ep) then the ODE that we obtain has the desired scale invariance.
Clearly, the function

I 1/1 1
00 = agaryi7)

satisfies ¢; and ¢,. This leads to the ODE

o L1 (1 1)
P o ogel | \ep e,

1
+——|logp, log ¢, - é1<—— )—E
|1ogs|[ wn (i) * 2 toeles—al{ -,

}, (1.30)

Fo S e (5 L) 1 S )

k=1 h#k

where

and this equation satisfies the correct scaling law.
Finally, we obtain from (1.26)

1 éh - él
1.31
Z |log g <8p CPh) & — & 0

h#i

This concludes the derivation.
Remark. The above analysis can be extended to include also the effect of the

boundary. With similar computations one finds that the boundary contributes with
the following terms:

. 11 11 1 , 1 1
epi=r——— | —=—— )+ |logp; + (&, &) | = ——
loge|ep; | \ep  ep; log ¢ &0 ep;

—|—Z (10g|éi_5h| +V(éivéh)) (Fip__ 1 ) — E }7

h#i Pn




N.D. Alikakos et al. | J. Differential Equations 205 (2004) 1-49

where
1 & 1 1
:N; 10g,0k+“/ 5k;fk))<8_p-_a>
1
+— (log &) — €k|+y<éh»5k>><___)
Z 2 %
and

o AN SGi—&G (&)
Si= \log ¢l ; (sp sph> <|§h — & + Ox )

We now present some examples which illustrate the use of system (1.29), (1.31)
(1.32).

The two-particle case (See Fig. 1).

We calculate

" logg| RI\R R

P 1(1;)
llogp| RA\R R»

= Ri(1)<0, Ry(1)>0

. 4 <1 )fz ¢

él* 1 R 29
logp|\R Ry/|&; — &

g = 4 (l__) & —&
logp[\R Ri)|&, — &

Fig. 1. The two-particle case for Rj <R;.



12 N.D. Alikakos et al. | J. Differential Equations 205 (2004) 1-49

Rj
.R1 .R2 .

]
1
1
(D — | 1 d —

Fig. 2. The three-particle case for Ry = Ry <Rj.

Notice that if 7 = é;f:‘ is the unit vector along &, & then (&,d) >0, (&, 1) >0.

Moreover, it holds that (&, (z),i) = {(&,(t),4). In the two-particle system, we see
that the smaller particle becomes smaller and the bigger becomes bigger. The two
unequal particles move in the same direction, in the direction of the smaller particle
with equal speeds.

The three-particle case (Fig. 2).

We consider the above arrangement and we calculate

FRNEINRD A USRS A TR N
' “llog o R \R ™ Ri) " flogol | ¥ I\R R,

1 1 1 |
logd(=—— | +log2d(=—— | — E
+ Ogd(R R2> + log d(R R3> )

R — 2 1 (1 1)+ 2 o R2(1 1)
2T logp| R)\R Ry) "ogel| 2 I\R™ R,

T
(pZ
1 1 1 1
logd(=—— ) +logd(=——)—E
e (R R1>+Og (R R3>

By subtracting the above equations we obtain

. . 1 1
Ri—Ry=log2|=—— .
1 2 og <R R3>>0

So, the proximity to particle 3 impedes the growth of particle 2 and as a result
particle 1 grows faster than particle 2 (see Fig. 3).
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[pos— rpos
:; O ; O

T=0.955

AAYAR
N AN

a KM 4 e

-2 o H 4 € L} 0

Fig. 3. Four-particle system with the particles numbered from left to right, the leftmost particle denoted as
particle 1, the center particle as particle 2 and the rightmost particles as particles 3 and 4. Particles 3 and 4
are close to particle 2. We observe that despite particle 2 being smaller than particle 1, particle 2 grows at
the expense of 3 and 4.

Four-particle case. In systems with more than two particles, the competition is
complicated. Although location of a particle between particles of smaller and larger
sizes is a necessary condition for migration, calculations show that it is not a
sufficient condition. Small changes in the locations of the particles relative to one
another can have large effects on the evolution. With the permission of the authors
[43] we reproduce below some of their numerical results on four-particle systems (see
Figs. 3-5). A similar problem concerning numerical studies can be found in [39]
where the Laplace equation is solved only inside the region of the interface.

The paper is organized as follows: In Section 2, we present the statement of the
main result. In Section 3, we analyze the system of ODEs and present the integral
formulation of the equation. In Section 4, we present the operators 7', L and the
operator A = TL. Moreover, we express the mean curvature H in &, p, r coordinates.
In Section 5, we study the coordinate system [2,5,11,42]. Given an interface I close to
circular, we would like to associate to it in a unique way a circle and view the
interface as a small perturbation of that circle such that

() =¢+ep(l+er(u)u, ueS',

/r(u)duzO, /r(u)(u,e,-)duzo, i=1,2.
5! st

In Section 6, we solve the linear equation S(V) = H — H, assuming that H is known
and we obtain a system for &, p and r equations with estimates for the higher order
terms. In Section 7, we obtain bounds on r by analyzing the r-equation. The control
on r is accomplished by utilizing the maximal regularity theory of da Prato and
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: z S
o= Do
: O : O

-2 q 2 4 6 8 10

Fig. 4. A four-particle system with the same radius as in Fig. 3 with the difference that the two smaller
particles are away from particle 2.

T=0 T=1.25

s
N

2 a H 3 8 8 10

Fig. 5. A four-particle system with the same radius as in Fig. 3 but now the distance between particle 2 and
particles 3 and 4 is larger than those in Fig. 3 or Fig. 4. As a result particle 2 disappears before particles 3
and 4.

Grisvard [18]. In the previous sections we assume that &|[r||ciix gy <0 for 6>0, a

fixed small number. In Section 7, a uniform bound on ||r|| is established. The
uniform bound on ||r|| is one of the harder analytic results. We should mention that
the bound on r implies the robustness of the spherical shape. Chen [14] and
independently Constantin and Pugh [17] established the stability of a single circle
equilibrium in two space dimensions. Later [21] this was reestablished in a more
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general way. In our case, we first note that a configuration of two or more circles is
unstable and we show for arbitrary initial data of unequal circles that the distortion
away from circularity is small globally in time. Although the general layout is quite
close to [5] there are differences between two and three dimensions also on the
technical level with the two dimensional case tending in general to be harder. These
differences can always be traced back to the fundamental solution of the Laplacian
in two dimensions.

2. Statement of the main result

In Section 5, following [5], we will show that given an interface I" close to circular,
we associate to it in a unique way a circle and view the interface as a small
perturbation of this circle. So, each interface will have unique ¢€R? p>0 and
re C1(S") satisfying

I(t)={x/x=¢+ep(l +er(u))u,ueS'}, (2.1)
/S1 r(u) du =0, /S' r(w)u,e;y du=0, i=1,2. (2.2)

Theorem 2.1. Let Q<=R? be a bounded, connected and smooth domain. Assume that
r)=UY, ri0), N=2, with T:(0) of the form (2.1), &(0)e®, R;(0)>0 and
ri(0) e C3+*(S1) satisfying (2.2). Assume that

i(0)#&(0) for i#),

Rl(O) <R2(0) < - <RN(O)
then there is €>0 such that

N
0= 2imi nR%(O)<527
2

[[ri(O)|| coen(s1) <E

imply that the solution t—I'(t) of the Mullins—Sekerka problem (1.7) satisfies I'(t) =
Uf\il [i(t) with T'i(t) of the form (2.1) with £(), Ri(t) >0, r;(t) e C3T*(S') satisfying
(2.2) and exists globally as a weak solution in the sense of [15,37]. Moreover,

(i) There exist times Ty < ---<Ty_, such that lim,_, » Ri()=0,i=1,...,N—1.
The solution is classical except at that times.
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(i1) There are constants C,, Cr>0 depending on R l =2, ..., N such that

2 1/1 1
_ AN . 2.
llog ¢| R; (R Ri> + Cagh 23)

where R is the harmonic mean of R; defined by

N

X |

and g;(R,&,r) a smooth function satisfying

|gi] < ——.
|log |

The above expression holds for T;_, <t<T; where for t>T; i =1, ..., N we have that

R,‘(l) = 0.

In addition,

[Irill gsoxs1y < G-

3. The integral equation formulation and the equations of Ostwald Ripening

We would like to formulate the Mullins—Sekerka problem as an integral equation
in the class of C*** interfaces. The immediate advantage of this approach is that the
space dimension of the problem will be reduced by one. We will only need to solve
the integral equations along the boundaries of the evolving domains instead of
solving the two space dimension PDE problem. This approach has been used in
many problems such as Ostwald ripening [39], water waves [10], etc. It is known [43]
that we have the following integral formulation for the Mullins—Sekerka problem

(1.7):

/ g(x, )V (y)dS, — / / G )V () dS,dS, = H(x)~ B (3.1)
I'(r) ‘ I'(1)
with
a——L [ mus
T Sy 95

Then problem (1.7) takes the form S(V) = H — H where S is a linear operator, V'
the normal velocity, H the mean curvature, H the average value of H over I'(¢) and
|I'(7)| the surface area of I'(f). Moreover, we have that the Green’s function in two
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dimensions has the form

1
g(x,y) = —Tnlog\x—yl +7(x,¥), (3.2)

where ¢ is the function associated to the problem 5

—Au=f, in Q,
% =0, on 0Q, (3.3)

Joudx= [, fdx=0
and satisfies

—Ayg(x,y) =0:(r) g in L
99 _

ov, o
Jo 9(x,y)dy =0.

0 on 9Q, (3.4)

On the other hand, y is the smooth part of the Green’s function and satisfies

CAp(y) = e e yeo
€|
O(xy) 0 (1
TR 3.5
v, ow\ag 08 l)s xeQ yeoo, (3.5)
1
Jo 1(x.y)dy = [ 5-log |x — yldy,

where @ is an open, bounded, connected, smooth set in R? (the container of the
mixture) and J,(y) is the Dirac ¢ supported at xe Q.
From classical elliptic theory [24] one has the estimates

I9(x, )| < C log(dist(x, 02)), ‘ng;y )' < Clog?(dist(x, 0Q)). (3.6)

Proposition 3.1. We consider the system of ODEs

dR; 2 1/1 1
= —=—= Ti1<t<T;, i=1,...,N
dt |10g(p‘ Ri (R Rl‘>7 i—1 i l ) s 4V

dé; 4 (1 1) Sh— &

dt— |logolizi \R Ry & — &Y

(3.7)
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where

1 1

N £ R;

pull

and we assume that R;(0) <Ry(0) < --- <Ry(0).
For system (3.7) the following properties hold true:
() If Ri(0) <R;(0) then R;(t) <R;(t) on their common domain of existence.

i 4( R0) =0,
(i) 5 (X, R0 <0.

(iv) R (¢) is nonincreasing in time and Ry (t) is nondecreasing.
(v) If we assume Ry_1(0) <Ry (0) then all except the Nth particle get extinct in finite
times T\ < --- <Tn_1 and we have the estimate

|log ¢

NRy (0
. R;(0) )

EARN0)S T < 'Ry (0) — Ry (0)

(vi) System (3.7) has a scale invariance compatible with the t% law, that is if R(¢), &(¢)
is a solution then so is ,uR(ﬁ), ,ué(’%), u>0.
Proof. (i) Suppose that there exists *>0 such that R;(#") = R;(#*)>0. Then we
observe that R;(7) and R;() satisfy the same equation. By uniqueness, we can
conclude that R;(0) = R;(0), contradicting the assumption.

(i1) Between extinction times we have
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(iv) We have that

N
LIS N 1
R Nj:l iy NRp R
Analogously,
1.1
>
R™ Ry

So,

The result follows immediately from the above expression and the use of system

(3.7).
(v) We have that
2 1

dRi(1) 2 1(1 1)_ 2 1(R1 1>>
di [loge|RI\R R/ [logp|R}\R ~ llog | R

By integration, we obtain the inequality on the left

t+R3}(0).

RI(1)> —
10>~ gl

For the inequality on the right, we have the estimate
LN S B P A A N U O B
R R N\R Rv/ NR; N|\R: R, Rv R

< 1/ 1 1y 1 /Ri—Ry

“N\Ry R/ N\ RRy /)

By making use of this estimate, we compute

dR1<Z>_LL<1_L>< 2 Li(Rl—RN>
dt llogp| R \R R;/ “Jlogg|Ri N\ RRy
L2 lL(Rl—RN>< 2 il(Rl(O)—RN(O)>
“lloggNRI\ Ry ) “[logo|NR} Rv(0) )"

Integrating we obtain the right-hand side in (v).

(vi) Straightforward verification.

The proof of Proposition 3.1 is complete. [
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4. The operators 7, L and A and the mean curvature in &, p, r coordinates

The operator T Consider Q< R’ a bounded, smooth, connected set in R> and I a
C'** closed, orientable surface in Q, Q~ represents the part of Q enclosed by I' and
Q" =0Q\Q. Set

Ou-  Ou Ou

For I'e C'**, ¢ : I' - R a sufficiently regular function satisfying fr ¢=0and u,ut
are the solutions to the Dirichlet problems

{ —Au” =0, xeQ,
u = ¢, xel,

—Aut =0, xeQ",
ut = ¢, xerl,
ou~

WZO, xe@Q,

where n~, n* are the outward normals to 0Q~, Q" and v is the outward normal to

0Q. T is the Dirichlet-Neumann operator

o[

ﬁw:L¢=m

and is invertible in the class

where the inverse is given by

wwmzzﬁwwww@—ﬁﬂlﬂmwww@w. (43)

The operator S can be interpreted as the inverse of the restriction 7 to the set of
functions satisfying [ ¢ = 0. In fact if

M(X):/Fg(x,y)w(y) dy*ﬁ/r /Fg(x,y)l//(y) dy dx, xeQ, (4.4)

then u is harmonic in Q~, Q*, [[2]],=V and so S is the Neumann-Dirichlet

operator.
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11
Let X ={¢el*(I), [ ¢=0}. We denote by X 2,X2 the closures of

{¢peC(I), [ ¢ =0} under the norms
= \/ <T'7'>L2(1")7 (45)

=/ <S5y, -l

11
where {, > ;> denotes the standard inner product in L*(I'), X2, X2 are Hilbert
spaces and Eq. (4.5) implies that

D=
=

plly =Wl 1 (4.6)
2 2
and so T, S are isometries,
1 1
T:X2->X2,
1 1
S: X 2-X2
with
ST=id |, TS=id . (4.7)
X2 X2
The operator L: L is the classical Jacobi operator
L=Ar, +Kk, (4.8)

where I'y = S', Ar, is the Laplace-Beltrami operator on I'y and k” is the principal
curvature of Iy.

The operator A: The linearized Mullins—Sekerka operator 4 at I’y = S! is given by
A=TL (4.9)

considering conservative perturbations along the normal direction and where 7', L
are defined as above.

Remarks.

® In what follows, we use the operator T defined by

_Oum  Out 14 gl
TOX—%—7+811—+ lnS7 XGC (S)7

where u~,u" are the harmonic functions determined by

—Au= =0 on B; = {xeR?/|x|<1},
u" =X on S,
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—Aut =0 on R*\ By,
ut =X on S!,

lim,_ o, u™ =0.
Ty is the analog of 7 for I' = S' and @ replaced by R? and it holds that

ou- Out n
Y, =— +— —=_Y
0 = o= Tont 2"

where Y, are the spherical harmonics of degree n [23].

® The linearization of the one phase Mullins—Sekerka operator for general inter-
faces I' has been determined by Kimura [26], for the sphere it can be found in [21].
More information about T, L, A operators and their spectrum can be found in [5].

In what follows, we prefer to rescale R and r according to R=¢p, r=¢r and
introduce the quantities p, r which are of order 1.
Eq. (2.1) reads

r(t)={x/x=¢+ep(1 +er(u))u, ueS'}. (%)

Instead of (%), we could more precisely scale R = ep, r = er with two independent
small parameters &, & and write

() ={x/x=¢+ep(l +er(u))u, ueS'}.

Going through the various steps of the proof of Proposition 6.1, it appears that the
whole argument applies to this more general situation. We limit ourselves to case ()
where ¢ =e¢; =¢ because all our estimates were originally done under this
assumption and also to keep the notation of already complicated computations
into reasonable limits.

The mean curvature in £, p, r coordinates: We would like to derive an expression for
the mean curvature H(X(u)) of I' at a point X (u) assuming that I = {x/x =
E+ep(1 +er(u))u, ueS'}y with re C1*(Sh).

Proposition 4.1. The mean curvature H(X (u)) of I’ has the form

H(X (1)) = %(1 —¢Lr+ B), (4.10)

where L is the classical Jacobi operator on S' as described above and B is an operator
1

of the form B = b(er, eGr, eG?r) with G = ((l +er)’ + 821’?9)2 and b(z,p, P) is a linear
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Sfunction in P that satisfies the estimate

1b(z,p, PI<C (|21 + |pl> + (21 + pI)IPI)  Sfor |2] <o.

Proof. H as a function of r, 3 (r, 3 polar coordinates) has the following expression:

1 9
Hzil{l + er — grgg —81’90.053
ep(1 + er)G2 sm
1
+6 {ergle(l + er)ry + 827'3733]}}, (4.11)

where

B|—

G= ((l +er) + £2r§> .

The desired result is obtained by (4.11) and also by using the expression of the
Laplace-Beltrami operator 4% on S' which takes the form L ((ry sin 9),)
[19]. O

5. The coordinate system

The definition of coordinate system is very important. Given an interface close to
circular, we associate to it in a unique way a circle and view the interface as a small
perturbation of that circle. Specifically, if the interface is already circular, the
procedure associates the same circle. So, to each interface in a certain class we will
give a center and a radius. There are many different coordinate systems that can be
used to accomplish this. The important fact about the coordinate system comes from
the way we intend to utilize it which is for studying the global stability properties of
the circular shape for a class of geometric operators related to the mean curvature.
By S:,=R? we denote the circle of center ¢ and radius p.

Proposition 5.1. Given an interface I' in a sufficiently small C' neighborhood of a circle
Sgc‘ﬁ, there are unique iele, p>0, re CI(SI) such that

I'={x/x=¢+ep(l +er(u))u, ueS'}, (5.1)

/sl r(u) du =0, (5.2)
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/ ru){u,e;y du=0, i=172, (5.3)
S

where ey = (1,0), ey = (0,1) and {-,-> is the euclidian inner product in R*.

Proof. The representation of all I’s in a C' neighborhood of Sg:‘ﬁ is given by the
form

I'={x/x=¢E+ep(l +ei(d))d, ieS'}.

Choosing the new origin at ¢ and for all &s in the neighborhood of & we have an
alternative expression

I'={x/x=¢+ep(l +er(u))u, ueS'},
where &, p,r and é, 0,7 are related through
Etep(l 4+ ef(@))id = & + ep(1 + er(u))u. (5.4)

From the above equation we have

and
ep(1+er(u)) = |&— &+ ep(1 + er(d) ). (5.6)

Condition (5.2) is equivalent to taking
1 ~
ep=— / |E— &+ ep(1 + er(ii(u)))it(u) du (5.7)
21 St

and ¢ is the remaining free variable while the map #—u for | — ¢| small is a C!
diffeomorphism. What we would like to show next is to choose £ such that Eq. (5.3)
is satisfied. In other words,

/ &= &+ ep(1 + o7l Sty e ddu = 0, i=1,2. (5.8)
St
Hence, (5.8) is equivalent to solving the system

0=Fi(¢ep,er) = [ |E—E+ep(l + &) uyeiddu=0, i=1,2, (59)
Sl
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where @ = i(u, &, ¢, ¢F) is implicitly defined by (5.5). So, we seek to solve
E(é,&ﬁ,ﬁf):(), 1:132
and we observe that
Fi(E,Sﬁ,O) =0.
We would like to employ the implicit function theorem. For this purpose we need to
calculate
D.Fy(&,ep, 08 =D [ |E+ep(1+er(@)a Cu, e du(&)
s
=D: | CEdep(1 +er(i))id,uy {u,e;ydu(€)
s

= | (- E+epDail uy {ueiydu, EeR? (5.10)
Sl

where D is the gradient of F; with respect to the first entry and we have set
Deii = D:i(u, &, 6,0).
Moreover, by differentiation of (5.5) with 7= 0, for £ = ¢ we get
—E 4 epDeil — ( — &+ epDeial, udu=0. (5.11)
By using the fact that <D5ﬁf, uy =0 we obtain from (5.11) that
epD:é = & — (& udu. (5.12)

From (5.12) and (5.10) we conclude
DeF(E,6p,0) = — /S Cu, & Cuyerydu = s (5.13)

So, the implicit function theorem applies for e[| c1(g1) <, for >0 and claims that
Eq. (5.9) has a unique solution & = (7, &, ¢p) such that & = £(0,&,¢p) =& O

Remarks.

® Tt is important to note that r(u) is the distortion from circularity and we would
like it to say under control during the evolution. By imposing condition (5.3) we
remove from it the element corresponding to translation and so we have r under
control. The spectrum of the restricted operator is also stable, something which
reflects the stability of the circular shape and suggests that the coordinate system
will be preserved along evolution. In order to see the meaning of condition (5.3),

we observe that the translate Se b ; of S¢ ; by 5, where >0 is a small number, in
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the direction e; is given by S5, - = {x/x =&+ (p+ 6<{u,e;y + 0(6*))u,ueS'}.
Therefore if Q is an operator which has S; ; and all its translates as equilibria then
{u,e;y has to be a zero eigenfunction of the linearization DQ, of Q at Sg 5 The
Mullins—Sekerka operator has this property and so (5.3) are orthogonality
conditions. Condition (5.2) implies that, to principal order, p is the average radius
of I'.

® Conditions (5.2) and (5.3) introduce 3 constraints but we also have 3 parameters
¢eR? and p>0.

® We can find similar coordinate systems in [2,11] concerning three and two
dimensions, respectively.

6. Solving the linear equation S(V) = H — H for given H

As it was mentioned in Section 3, instead of solving the two-space dimension
Mullins—Sekerka problem, we will solve the integral equations along the boundaries
of the evolving domains. We have the integral formulation

/m)g(x,y)V(y Sy — |/ /F<r) g(x,»)\V(y) dS, dS, = H(x) — H. (6.1

Throughout this section, we write I instead of I'(¢) and we take I' = Y, I'; with
Ii={x/x=X'(u) =& +ep;,(1 +eri(u))u, ueS'}. For ¢>0 small, the map X' :
S! 5T is a diffeomorphism with the same regularity as ;. We let o/ : I'; » S! be the
inverse of X’. Eq. (6.1) can be written in the form

N
Z / g(x,y)Vh(uh(y)) dy:H(X)_E7 XGF,‘, i:17"'7N7
h=1 JIn

= g(x, )V (y) dy dx
), o

and V;,(u(-)) is the restriction of ¥ to I';. We can see Eq. (6.1) as an equation in V'
which is nonlinear in I" due to the nonlinear dependence of H on the representation
of the interface. We are going to solve the above linear equation for H given and
then we are going to derive an expression for V' in terms of &, p and r.

where

Proposition 6.1. Let &eQ, p,>0, r;eC'**(S"), i=1,...,N be given and assume
¢i#¢; for i#]. Then the system

N
Z/rg(x,y)Vh(uh(y))dy:H(x)—E, xel;, i=1,...,.N  (62)
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has a unique solution V;e C*(S") and

\lep; Vi = ep, Vi + K| cogsny <IFl, (6.3)
where
_ 1 1 1 Vi
V= ——— <—E> + O] sup I IH2
ep; |log €| \ep; h |log ¢
and
S |
K= ) 382»0% log[&; — &l
h#ih=1

N
1
X / Vi(v) dv+ Y epp(&i, &) / Vi(v) dv — —ToLr; + € Ty
st =1 st ep;
1 _
X / 2—log lep;u — ep;v|(3ri(u) — ri(v)) Vi dv
Sl 4T
and F includes precise estimates for higher order terms

1 = Oty (Pl )+ 6202 24 21l oo, ) 1P

cr(sh)
ep; +ep
+ 8phOC1+x(Sl) <8||V/1|C1+a(51) 10g |éz - éh| + h) || Vh”C“(S')
|61‘ - €/1|
+ 10y (o014 ol 80 ) Willer
Proof. We have mentioned that the Green’s function has the form
(%,3) = —a-log x — y| + 7(x,)
gix,y) = anx Y XY
and we have
1
| sttt o) dy = [~ togl — 5V o) dy
r, r, 2n
+ [ Vit ) d. (6.4)
h

In what follows, we employ the notation f" = Ocx(s1)(||r|[c3+(s1)) meaning that the
C*(S") norm of £ is Ocx(s1)(||rl] casa(sry)-
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Step 1: We consider the case h = i, xeI'; and we are interested in the analysis of
the two integrals on the right-hand side of Eq. (6.4).

(a) We start our analysis with the study of the first integral on the right-hand side
of Eq. (6.4).

Consider the case h =i, xel';. Let Q; = {z/z = Ju,0<i<1 +er(u), ueS'} and
consider the function U’ : Q;— R defined by

. 1 ;
lﬂﬂ:/ifjbgé+Wﬂ*ﬂWW@»@
I T

1 .
—epy [ —onloglinz - e Vil Gt end)) e (65)
0Q; T

As soon as 0Q; is a surface of class C1**(S1), r;e C1*#(S!), we have by Theorem 2.1,
p. 307 in [29] applied to the derivatives of U, that U’ can be extended as a C!**
function to the closure Q; of Q; and we have the estimate

1T Ol sy <epiCIVi( (& + 201))l 2o, (6.6)

where C is a constant independent of r under the assumption |r;|| <¢. Moreover, the
map zedQ; —u'(&; +ep,z)eS' is a C'** diffeomorphism and

' (& + epi )l cren(on) < C(1+ ellrill gronsry) <C
while we have a similar estimate for the inverse map u— z.
Vi (& + ep)| o) < Cl Vil exgsty - (6.7)
From (6.5)—(6.7), we obtain that we have a map V;e C*(S') - U’|0Q;e C'**(S') and
together with the above properties of the diffeomorphism u— z(u) = X' (u) — &;, we
can define a map I} : C*(S') - C'**(S!) as follows:
ep (1] V) () = U'(X' () - ). (6.8)
Moreover, from Egs. (6.6) and (6.8) we obtain the estimate

13 Vill crasty < ClI Vil

cx(sh) (6.9)
Our purpose is to compute the main term in I{¥;. From (6.5) and

dz = (1+ 2er; + Ocus)(E|ril[Grasy)) du (6.10)
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we have that

(VD) = [ = 5108 X' (0) = X'WI(1+ 201(0) + Ocsio @l s 0) Vi) o

1 1
_/Sl - Elog lepu — epv| Vi(v) dv — ¢ /S1 Elog lepu — ep;v|2r(v) Vi(v) dv
1
- /s' ﬁlog lepu — 8P,~U|OC«(SI)(||”i||2c1+1(51))(v)Vi(v) dv
1 1 u — ep;v| —log | Xi(u) — X*
o [ gl gl (SRl ) ()
Sl

log [X"(u) — X'(v)|
(1 + 2er; + OCu(Sl)(ez\|r[||2C|+1<51)))V,(v) dv. (6.11)

By Mirandd [29], 1] V; and the first 3 integrals on the right-hand side of (6.11) are

C'"**(S") functions. Also the last integral on the right-hand side of (6.11) belongs to
Cl+<x (Sl ) .
Let ZV; be the last integral. We have

1
@V = [ =35 1oe lipu— sl

y (log |epiu — ep,v] — log |epu — ep;v + & (pri(u)u — p;ri(v)vl)
log [epju — ep;v + &*(pri(u)u — p;ri(v)v]
x (14 2zr; + Oca(sn) (2|1l [Gaengsn))) () Vi(v)

= (T1Vi)(u) + (T2 Vi) (u) + (Z3Vi) (u). (6.12)

After estimating (Z,V;), (Z2V3), (Z3V;), we conclude that

@V = = [ 55 Tox lapiu = el + r(0)Vi(e)

+ 80C‘”(S')(|‘riH2C‘+“(S1))||Vi

CZ(S])' (6.13)

(b) We now study the second integral on the right-hand side of Eq. (6.4)
| 1wy v dy
—on; [ @&t ap Vi E o) de = ap BV ). (614
The definition of X’(«) implies that

. a'\ . .
V(X' (u),ep;z) = (&, &) + OC‘“(S‘) (Spi %) (6.15)
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From (6.14) and (6.15) it follows

i (&, &
BV =68 [ Vit + O (slinlcnmco ) + o0, 7 50)
X ||Vi||Ca(Sl)' (616)
Eqgs. (6.16) and (6.7) imply the estimate
Vil creesty S Cl Vill oty (6.17)

So, from Egs. (6.4), (6.11), (6.13), (6.16) we conclude

[ o w00 v = [ (= toslenn— ool + (68 ) i) o

Sl
+ep,(I"V;) (), (6.18)
where 17 satisfies
Vil creasty < Cl Vil exgs) (6.19)
and
aﬂ fﬁéi
C= Ocl-a(sl) (SHVI‘HC] }7(Sl)y(§i7 él) + ep; %) . (620)

Step 2: We now consider the case h##i, where xeI'; and yeI';. Again our aim is to
analyze the two integrals on the right-hand side of Eq. (6.4).

For h#iand X = X'(u) both integrals on the right-hand side of Eq. (6.4) have as
functions of ueS' the same smoothness as X’. The first integral on the right-hand
side of Eq. (6.4) gives

[ =z toe 1) = »1Viul )y
Iy

1 .
= ooy | =32 108 /() = X'OI(1 +2015(0) + Ol ) Vio) o

1
= ¢&p, /S‘ —%logﬁ[ =& Vi(v) dv

<pitepy

fi€h|> Vil cx(sy- (6.21)

+ Sph0C1+z<Sl) <8||rh||C|A7<Sl)10g & — £h| +
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The second integral on the right-hand side of Eq. (6.4) implies
[ 10V ) dy
h

= oy [ 700, XH(0)(1+ 2014(6) + O (Pl ) Vi) o

ay(éi; éh) a’y(éla 5/1)
= eppy(&is &) /Sl Vi(v)dv + &p;, O cria(sty <8Pi x + &py By
+ 8||Vh||Cl+“(Sl)y(éia fh)) 1Vl Cc(S1)s (6.22)
where the following expansion has been used:
1 h 8')) £i7él 3)’ éiaé
O X0(0) = 16 a) + O (o0, e 00y 5. 623)

From (6.21), (6.22) we conclude that (6.4) takes the form

/r g(X (), ) Vil () dy

/r L yog i) — | Vi () dy + / V(X)) Vil () dy

2n I,

= Sph/ <— 2L10g IS — Sl + (&, fh)) Vi(v) dv+ ep, (1" V) (v), (6.24)
N T

where

i ep; t+¢ep
1"V = Ocrossy) <8||Vh||cl+x<sl)10g |&i — &l + I—h) Vall cas

‘éi - éhl
9y(&is &n
—+ 0Cl+s<(Sl) (Sph (ayl) + 8| ‘rh”CH“(Sl)V(fia 5h)>

and I is a linear operator that satisfies
Vil <ClWilleasrys  h#i. (6.25)

Step 3: We compute V;: the average of V; on the sphere S', by utilizing the integral
representation (6.2) and the expressions obtained in Steps 1 and 2.
We saw that Eq. (6.1) can be written in the form

N
Z / g, Vi (»)dy = H(x) — E, xel;, i=1,...,N
h=1 JIn
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equivalently
N .
> /F g(X (), y) V(" (y)) dy = Hi(x) — E, i=1,...,N.
h=1 71

From Egs. (6.18) and (6.24), we have

(log lepu — ep;v| 4 2my(&;, &) ep; Vi(v) dv

.
1
B %; /Sl (log |&; — &nl + 27y (&, En))epn Vi(v) dv
ep (V)W) + Y opy(I"Vi)(w) = Hi ~ E. (6.26)

h#i

From (6.26) we obtain

1
7/ log [epu — ep;vlep; Vi(v) dv = —/ V(& &) epiVilv) du
2n N S!

1
B 272 /S (log & — &l + 2mp(&i, Sn)) ey Vin(v) d

h#i

N
+ > epy(I"Vy) (u) — H; + E. (6.27)
h=1

Let ¥; denotes the average of V; on the circle S' then by utilizing ¥; and [g (V; —
Vi) = 0, Eq. (6.27) takes the form

1 _ 1 )
%/Sl log |epju — epolep;(Vi— Vi) dv = — 3 /Sl log |epu — epvl|ep,; Vidv

- (&, 51‘)80{175

1 _
~ o > log & = Elepy Vi
h#i
— > (& ey Vi — Hi+ E
h#i
N

+epy Y (I"Vi)(u). (6.28)

h=1

Then by the theory of single layer potential, we know that the left-hand side defines
an harmonic function which is bounded at infinity. We extend the right-hand side of
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Eq. (6.28) in order to have also an harmonic bounded function at infinity
1 _
3 [ loglepu —epwlep;(Vi — Vi) do
T Jst

_ _ 1 _
= —ep Vilogr — (&, &)ep, Vi - 5; log |&; — Elepy Vi

N
= (& En)eps Vi + cilogr + ca + e, > (I V) (w). (6.29)
h#i h=1

Our aim is to determine ¥;. We will accomplish it by the following procedure: On the
boundary of the ith particle we have the leading order to condition

1
cilogep; + ¢ = T +E. (6.30)

Mi

Moreover, in order to obtain that the right-hand side is bounded, we need to impose
the following conditions:

—ep; Vi = —c1, (6.31)

_ 1 _ _
—ep, Vip(&i ) = 5= Y log & = ulepy Vi = Y 9(& &)epi Vi = —c2 (6.32)
h#i h#i

The above equations (6.30)—(6.32) form a system of 3N equations with 3N
unknowns. By substituting (6.31), (6.32) into (6.30) we obtain that

h#i h#i

_ 1 _ _
(log [ep;| +7(&i,&1))ep, Vi = (—% > logl&i = Eulepy Vi = Y (G &n)epy Vh>

1
=F—-—. (6.33)
ep;
Eq. (6.33) forms a diagonal dominant system for 0<e<1 and it has a unique
solution which is given to principal order by the formula

_ 1 1 /1 1
v, = — (= —E) +0pmg | —— . 6.34
" Jlogél ep; <8p,» ) “ <Sl)(llogdz) (634

Step 4: As soon as the right-hand side of Eq. (6.4) has been analyzed and V; has
been determined, we utilize the integral representation (6.2) in order to conclude on
to the desired result which is (6.3).

Using again theorem 2.I in [29], we observe that the function I V), h =1,...,N
has a harmonic extension both to the interior B; = {x/|x|<1} and to the exterior
R*\B; of S'. These harmonic functions can be extended as a C'** functions to B;
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and R?\B; with the estimate
N Vi) Mz < CI"Villcrsagsys

N Vi) Ml craregy < CIP Vil l vy

where the subscripts + denote the extensions, and C is a universal constant. From
these inequalities, it follows that
N ToI" Vil e sty < CIH" Vil | oo

After applying Ty to Eq.(6.28) and utilizing the expression for H given in
Proposition 4.1, Eq. (6.28) takes the form

=

8ini = 8piI7i — Z Sph(T()Il I/h) +70cl+x (81 ( Hr,||c1+1 Sl)) — TOVI/[, (635)
h=1 d

where WI-:H|F,-—E:$(1—8Lr,-+B,-)—E, i=12,...,N and T\ W;=
LT Lry 20cu(st)(Irll v il s

For 0<e<1, system (6.35) has a unique solution that can be computed by
iteration. The approximate solution (p V)(" (p V< ), e PN V](\f)) at step n is
computed by solving Eq. (6.35) with pV = (p V) "1 in the right-hand side starting
with (pV) = 0, Moreover, Egs. (6.11), (6.13), (6.14), (6.18), (6.19) imply

. 1 _
1"V — /1 ZlOglgpiu —ep|(3ri(v) — ri(+)) Vi(v) dv — epy(Ciy &) Vill croasy)
s

éla f
= OC1+"(SI)<8|ri||C“1(S1)V(éi’ fi)—l—spl (ax )+¢°2||r,‘|clu(sl ||V| cx(S") (636)
and from Egs. (6.21), (6.22), (6.24), (6.25)
; 1
R e N L) WL
T St Cl+a(Sh)
+¢
= Ociis(s1) <8|”h||cl+1(sl)10g & — &l + él pr> Vil exsny
8 éiaé1
+ 0o (o 2 1 e
X[ Vall cxs1y- (6.37)

Inserting these expressions of I“V;, IV}, into Eq. (6.29) we have the desired result
which is Eq. (6.3). O
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As soon as V; is known, we notice that the previous proposition reduces the

determination of V; to a system that, to principle order is coupled only through E.
The coupling constant E can be determined by the conservation requirement

/erhi: /r,, Vi =0. (6.38)

Proposition 6.2. Condition (6.39) uniquely determines the constant E. Moreover,

1 L1 |7l creags)
E= ; %+ OCM(S])(l +T>’ (6.39)
where
11
and ||r|| cria(sry is the norm of r = (r1, ..., ry).

Proof. By inserting the expression of ¥; obtained from (6.34) into (6.3) under the
standing assumption that for & |[rs|| ci1s(s1) <0 for 6>0 and by [29] we obtain

_ 1
ep;Vi=epVi+ o Ocs(s([[rill ereagsty) + Ocuisn (E[7il[eregsn))

1

1
+ o OCellrillerasn)- (6.40)

1

By utilizing the conservation requirement (6.38) we have

N N
2
0= 2_1: /F Vv, = 2_1: £p, /S Vi(l 4 2er; + Ocion(sty (&|Iril[groagsry)) . (6.41)

Substituting Eq. (6.41) into (6.40) and after some calculations we conclude
1 K1 (| 1y B}
E = N j; 87/)/4» 0C]+1(Sl) <p_ + 1 + 8(||r||C1+x(51) + p)E) .

If ¢>0 is smaller than some >0 this equation can be solved for E yielding estimate
(6.39). 0O

We now give a decomposition result for a general ¥ in terms of p,¢&, pr, for
interfaces with representation (5.1). We let V' = V'(u, t) to be the speed of I'(¢) in the
orthogonal direction to I'(z) at the point xeI'(¢) and we study the relationship

between V and p, pr, and &.
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Proposition 6.3. Assume that &||r||criug1) <0 for 6>0 a small fixed number, so that

Proposition 5.1 holds. Then V is a linear combination of ¢p,2pr,, & and the equation
V = Z with Ze C*(S?) a given function, determines uniquely ep, &> pr;,é. Moreover,
the following estimates hold true:

[2v/7ep + <Z,w > s < Ce (el s |1 Zl sy
2
Il ern(se) St < Zowi ) 12so)),

T £ 2
2/3 + <Zowp> 120s2)| < Coallragse) 121 vy

(6.42)
2
Hirllersisn Sl < Zownd s ).
H82pl’t +Z— Z/?:O <Z, wj >L2(SZ)Wj — 8<Z, wo >L2(SZ)1/V()V||C1<52)
2 2 2
< Co(elll1grea(se) 121 engsey + I sty Zhoa| < Zo Wi 252
for some constant C>0 and w;, j=0,1,2 defined as follows: woy = ﬁ, wyp =

<u ey = 5, €0s 9wy = \/. {u,epy = sm 3.

Proof. We refer the reader to [5] for a detailed proof which can be easily adapted to
two dimensions. [

Proposition 6.4. There is >0 such that for ¢ <& Eq.(6.1) is equivalent to the
following system of evolution equations:

% = |102gs| F;l (L— 5) +f(p, & 1),
O Togrl A~ g O = Ton)| 8. ()
@—fg(p &),
where
A=TyN —1)+31
and [P (p, &,7), f1(p, & 1), [~(p, &, r) are smooth, uniformly bounded in & functions of
p=(p1s-spn),E=(&1y ..o En) and ¥ = (r1, ..., rn) and ep is the harmonic mean of

ep; defined by
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Proof. Egs. (6.43) follow from Egs. (6.42) and Proposition 6.1. More details can be
found in [5]. O

7. The R, r estimates

Now, we turn back to the old notation R = ¢p,r = ¢r and our aim is to provide
estimates for the R, r equations. Especially, the control on r is a very important
factor. In the previous sections we assume that |[r||cr.(51) <6 for 6>0 a fixed small

number. In this section, we are going to establish a uniform bound on [|r||css(s1)- By

N
2
Zf:l nR;

[

recalling that ¢ = , we have from Proposition 6.5 the following system of

evolution equations:

dR; 2 1 /1 1 "

dr; 2 11 1N g

dr [logg| R <R Rl-) /R Cr),

dr,‘ 2 1 -~ 1

dr _Ai_—_ 3i_Ti ‘rR7 I 9 7.1
dt |10g<p|{R3 "TRER (3 Or)} +/(R,C) (7.1)

déi_ &
?_fi (RM;I’).

In [16,22] the local (in time) existence of classical solutions is established for the
Mullins—Sekerka model for arbitrary space dimensions. From Egs. (7.1) with initial
conditions R;(0),r;(0),&;(0) we have a classical solution R; = R;(t),r; =r;(f), & =
&,(1) in some maximal interval of existence [0, 7). We start the analysis of this section
by providing information which will be used in the proof of subsequent theorems.

Lemma 7.1. Let A be the operator defined in Eq. (6.43). Then A is a self-adjoint
1 -
operator on X 2 and the eigenvalues of A are given by
ty=2n(1—n®)+3, n=12, .., (7.2)
where w, has multiplicity 2n and the corresponding eigenspace is spanned by the 2n

spherical harmonics Y, of degree n. Additionally, the eigenvalues of A restricted to the
subspace

1
X={reX2, {r,wi>p=0 i=0,1,2,3}

satisfy
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Proof. The spherical harmonics of degree n are eigenfunctions of the operator Tj.

61/!,' au()
TvY,=— =2nY,. 4
0%n 61’1,’ + ane M n (7 )
Moreover, we have
AY, = —n’Y,, (7.5)

where the eigenvalue —n? has multiplicity #2. From the definition of 4 and the
completeness of the set of spherical harmonics we have the desired result. [J

Remarks. We will need to obtain estimates on r for
roy = ToLr+f = Ar +f(r(2)). (7.6)

If r is a solution of r, = Ar +f(r(z)) then r satisfies the “variation of constants
formula”

((t) = e~ 4r(0) + / ’ e A £(r(s)) ds. (7.7)
0

Moreover, from well known properties of analytic semigroups [25] we have: If 4 is a
self-adjoint densely defined operator and if A4 is bounded below, then A is a sectorial

and if A4 is a sectorial operator then it is the infinitesimal generator of an analytic
semigroup, while the following estimates hold:

e @l cavasty < Me™™||@llcas(sry,  @€E, (7.8)
N M.
||€AS$||C3+1<SI)<S_ﬁM€ us(p‘|c2+a(sl), ¢€C2+1(Sl)ﬂE0, ﬁ = %7 (79)

where p, M >0 constants. We can assume that the constant M satisfies M >1. We
will be utilizing the semigroup setting of maximal regularity due to da Prato and
Grisvard, [8,9,28]. The result of this theory is:

Ae M, (Ey, E;) if the following estimate holds:

/ eg(s’”)(p(a) do
0

sup
0<s<s

<C sup [|o(s)]lcxsiys (7.10)

C3o(Sh) 0<s<s

where C>0 is a constant independent of 5. In general, C is dependent of s but here
from Lemma 7.1 the spectrum of A is bounded above by a negative number. Let
H%(S') be the “little” Holder space and let

Ey=h(S"YnX, E =hr>(S)nX. (7.11)
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The “little” Holder spaces h*,0<a <1 are obtained by completing the C* functions

in the C* norm. More generally, the spaces of the little Holder continuous functions
are defined by

0-0 _y<s |t—s]"

h“(17X) = {feCV(LX) . llm sup M: 0}7

(1 X)) = {feCHIL X)) - fP e (I, X)}.

One checks immediately that C?(I, X) ch*(I, X) for 0> a. Moreover, if 0 <a <1 and
0>o then h*(I,X) is the closure of CYI,X) in C*(I,X) and the following
interpolation fact is true:

(hz hl+zx)0 _ h(170)1+()(170().

Moreover, if Ae M, (Ey, E) we have a relationship between the fractional spaces and
the interpolation spaces Ejy:

0
|47 <[],
where

[1x]1, = sup m'~"||4ePx]],
m>0
and Ej is defined as
Ey= {ero : lim m!' =% 4e™x||, = o}, 0<0<l.
m-—

The following proposition justifies Egs.(7.1) by showing that R; can be
approximated well by R;, the solutions of (3.7). We focus on the first extinction
interval [0, T)). By repeating the argument, we obtain analogous results in

(11, T2), .. (Tv-2, Tn).
Proposition 7.2. Assume N >=2. Assume there exists { >0 such that
()l sy <Cs 1€00, 7). (7.12)
Assume also
Ri(0)<Ry(0)< - <Ry_1(0), R;(0)=R;(0), i=1,....N

and let Ty be the extinction time of Ry characterised by R (T)) = 0 and T, = T be the
extinction time of Ry characterized by Rl(Tl) = 0. Then there exists €>0 such that
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@ <& and positive constants Cr,cy,Cy,Cr, Cr, a depending on R;(0),i=1,...,N
such that the following estimates hold true:

1
() |T T1|<CT“g¢‘

W) (7= i< Ri()< O (T - 17,
(i) cr<Ri(t)<Cgr, t€[0,T), i>1,

(IV) |R,() ,'( )|<CR 1 7 lE[O,Tl Cr
[log o|3

R (1) F
(v) l—ﬁ>a7 tel0, 7).

W=

il

Ilog ol

Proof. (A) Eq. (7.1), can be written in the form

dR; 2 1 R; 1 .
dri 2 1R Y L rol—1 )| i1 7.13
i " Toggl R KR > * (log M ’ 7.13)

(B) The following estimates hold:
@ S, (R(1) ~ R (0) = 01,
(®) L1 (RH(1) = Ri (1) = O( ).

(¢) R;: uniformly bounded in ¢, equicontinuous in ¢ and uniformly continuous on

[0, 7).
d (1 .
Verification:  (a) dz(z >y R,?(z)) =YL ROR() = ZL g n& -1+
0(\1og1(p\2) = 0(|1ogl<p|2)’ by recalling Proposition 3.1(ii).
Integrating we obtain 3> (RX(1) — R2(0)) < O(—2—).

llog ol°
From this by Schwartz and Gronwall we obtain a bound on > R?(7) hence
Zfil R; and as a result (a).
Condition (b) follows from (a) by utilizing the conservation of vaz L R(1).
Condition (c¢) follows from (a).
(C) Let T*> T arbitrary otherwise. Then

lim min R; =0. (7.14)
»=0 |17, 7%
We argue by contradiction. Assume that lim,_,,inf (7, 7] R;>0. Then
lim,, _,, infm’m Ri>c>0,j=1,...,N. By continuous dependence as long as there
is no singularity in [T}, 7*] we can pass to the limit in (7.13) and deduce that

Ri(f)=¢>0in [T}, T*] contradicting that T} < T*. Finally the lim can be replaced by
lim by the equicontinuity of R.
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(D) We show that Ty <oo, R;>0 on [0,7}), Ty <T>,...,Tx_1. We argue by
contradiction. Assume that 7, = o0, so T'= co. By (7.13) for i = 1, we have

i<lR3)< 2 <R‘ 1)+0 % . (7.15)
dr\3 [log ¢ llog o]

We fix a T* > T7. By (C) there exists 7** € [T}, T*] such that )> <! and hence over an

interval [T’*, T + 0] which can be chosen uniformly in ¢ (by the equicontinuity of
R)). It follows that R; is decreasing on [T*,T* +J] by a fixed amount. By
equicontinuity we can repeat the argument over [f‘* +0, T + 29], ... to conclude
that 7} < oo. Next, we consider Eq. (7.13) for i = 1,2. By subtracting them we have

1d, s . 2 1 1 1 )
il —R)>——" —_(Ry—R))-C >-C on [0,7}),
3a R~ Ri) |10g¢|R( 2= Ri) llog ¢/ llog o[ 0.1

where we used that R, > R;. Integrating we obtain

1
R (1)=R5(0) — R}(0) - C—
log <p|
from which it follows that
3/ 3 3 1 A
RY(T1)=R3(0) — R}(0) — C———T
|log |

and as a result T,>7, for ¢: small. Similarly we show that
Ty_1>Ty_»>--->T>>T;. From which (iii) and (v) follow.

(E) We argue near 7). Given 6> 0, there exists ¢ such that for 7 — d<r<Tj =
& <6. Let te[T) — 6, Ty), from (7.13) with i = 1, we obtain

1 2 1 2 1
i<—R?> (Rl 1) +0 > (Rl 1) +C—y
dr\3 |log ¢| [log ¢| \log o [log o|

> ¢ _
|log o] |logqo|2 2

< (=1+9)

Integrating this inequality from 7 to 7} we obtain the inequality on the left-hand side
of (ii). To obtain the inequality on the right-hand side we utilize an upper bound on
% on [T} — §,T) and we have

i(l]ﬁ) >L(R__'_ 1) —C%
dr\3 |10g(p| R |]ogg0|
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Integrating from 7 to 7} we obtain the right-hand side of estimate (ii).

(F) We have
1d 2 Ri R; 1
~— (R} —R}) = (;_T’>+0 .
3dl( ) [logp| \R R [log go|2

By integration

d+C

R R log o[>

3
RO - Rl [ R

Utilizing R; <R; we obtain

N
Z|R R|<C

/)ZHR mm+c‘ =

Ilog |

Set

N

10D IR = R

i=1

Then
< yz(s) ds+C——.
llog o] Jo Rj(s) llog |

Utilizing that

1
Cl(Tl - l)§>R1(I)ZCl(T1 - [)2’

we obtain that y(f) < C \1og1(p\2 hence
2 o 1
So,
SR Rl<C ]
i=1 (1)[log |
Now,
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and so

ul 1
Z\R[—Ri|<c 2|, te
i=1

llog @3

1
0,7, — Cr ]
llog [

(G) We now prove (i). We first note that (i) implies a lower bound on 7}.
Indeed, if T, <T) — C—1—, C>C, then

[log o]
A A 1
|Ri(T1) — Ri(T1)|<Cr 7
log |3
hence |Ry(71)|< Cr—1.
llog o3
On the other hand by the lower bound on R,
4 1
o(Ty — T1)3 Cr 7
[log o3

4 . ..
which if ¢(c)3>cg we arrive at a contradiction. Thus,

T\>T —c ¢: appropriate.

log ¢/

To obtain an upper bound we argue as follows: From

C C 1
R <T1 —72> ~R <T1 ——2>‘<CR—4,
[log o llog ¢| llog o

C 1
Ry (Tl — 72) <C* 7
llog | llog o3

v = we have R < (—1+ ). Integrating we obtain
1

[log ¢
1 C
s\t - (T ————=
llog ¢ |log ¢|

from which we obtain an upper bound for ¢ of the form 7T} + C

we obtain

Fort=T, —

1
0<3Ri()<C?

‘_ The proof of

the proposition is complete. [
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For convenience, we utilize the “pseudo-times” s; in estimating r; in order to
handle the factor L% infront of Ar; in Eq. (7.1),. The “pseudo-times” are defined

[log o]
by

) 1 .
= | ———— g, i=1,...N, 1€, T). 7.16
Au%¢@u> 0.7) (7-16)

Proposition 7.3. Assume N=2. Then there exists >0 such that ¢@<@,
|[r:(0)|| cs+(51) <E and { independent of & such that the following inequality holds true:

()| snsty < 1€[0,T) i=1,...,N. (7.17)

Proof. If we introduce the “pseudo-times’ s; defined in Eq. (7.16) then system (7.1)
takes the form

dR; R; R

N r[(F-1) +atmen].
dr; o R; 2

b e — R o) 4 —2 (R 7.18
o = AT R(3r or)+|log(p|g,( &), (7.18)
d¢; ¢
d_Si_gi(Rvévr)a

where

gf =Riff, ¢ =Rf, g;=RSf;.

i
1. Let {>0 any number that satisfies
(0| caensry <&, i=1,...,N. (7.19)

Then by continuity there exists 77 < 7 such that the inequality |[ri(0)]] c3+2(s1) < holds

in [0, 7%). Then estimates (iii), (v) in Proposition 7.2 hold in [0, 7’) and we can also
assume |gR| <a. Therefore Eq. (7.18), implies

Ri(t(s1)) <R (0)e™ . (7.20)

Let s be chosen large enough so that,

Ri(0) 4 et ]
M3+ ||Tol|)N e sup / ——ds<— 7.21
(3 +[1Toll) R S P (7.21)

for f fixed as in (7.9).
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2. In the interval [0, i ) we have from (7.16), (7.20) and estimate (iii) in Proposition

7.2
R} Ri(0)\* [* ,
5 :/ f;dsllﬁ < 1( )> / 6731131 dSll
o K CR 0

< 1<R1 (0)>3 =5 i>l. (7.22)

~
3a\ cgr

Let 5, = max{s, §; }.

3. The map siﬁ[%(ri — Tor)](z(s;)) is a continuous map from s;([0, 7))~" into
C?**(5?) and we have
Rl' NCR
— (3r; — Tyr; < 3 T il caag g1y 7.23
[Fo-m0| g O I, 029
From this and (7.9) it follows that
Si Alsi—s) R;
e —(3r; — Tor;) | (¢(s)) ds
0 R C3”‘(Sl)
NCrg ,
<MRN(0) 3+ Tol)s; ”Oiggs_ [Iri(2() e 1y - (7.24)
We fix >0 small, so that
Cr g1
MN 255 B+1ITolhe" P < 5 (7.25)

4. Let k = [2] + 1 where 5,,¢ are defined in 3 and 4 and where [ ] stands for the
integer part.
5. Utilizing estimate (iii) in Proposition 7.2 we have for 7€ 0, T“')

Hg;”C“(SZ) <CO(CRg + C||ri||c3+x(sl)).

Therefore from (7.10) it follows that

5oz 2
/ EA(S_U)—g;
0 |log ¢|

sup
0<s<s; C3a(sh)
_ 2 CCyCr(Cr+0) + 2 CCol sup ||ri(2(s))]|
N |10g (p\ O-RAER \10g §D| ’ 0<s£s,- o sl
2 2
<—— G+ ++——C( su ri(¢(s 34a(gl)s 7.26
|10g(ﬂ| 1( ) |10gq0‘ 1 ()<sI\<)s,- || l( ( ))HC3 (Sh) ( )

where Cj is a suitably chosen constant.
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6. Assume >0 so small that for ¢ <&

2 1
= - 2
|10g<p|C1§<4’ (7:27)
k—1
Z M) (7.28)

\log ¢l
We now make a definite choice for { (cf. 7.19)
{=8MQ2M)ro+1, (7.29)

where & is defined in 4 and ry = max; [[r;(0)[] caiag1)-

7. From the variation of constants formula applied to Eq. (7.18), it follows via
(7.24), (7.26), that

_ 2 2
Z,<MZ,(0)+C2S} pZ,+MC1(1 +C)+MCIC” (730)
where we have set
2= sup (6 sty 70 = I(O) s (731)
0<s<s;
and
Cr
€ = MN 0o (341170l

Eq. (7.30) is valid in the interval I; = [0, 5;(7")). From (7.25) and (7.27) it follows that
for s;eI;n]0, 0] we have

Z,<2MZ,(O) +2 C](l —|—C), S,’GI,‘(’\[0,0’]. (732)

[log |

If we replace in (7.30) z;(0) and z;(¢) and s; by (s; — ) and use Eq. (7.34) to estimate
z;(a) we get

<(2M)*zi +2 og ] C(1+02M+1), s;elin|0,20]. (7.33)
By iterating this procedure we get
k 2 \ h
<(2M)*z;(0) +2—C (1 + ¢ 2M)", siel;n]0, ko]. 7.34
(2M)"zi(0) Tog ol i )h;( ) [0,ka]. (7.34)

Eq. (7.34) is one of the basic estimates needed to complete the proof.
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8. We now prove that s; e I;. This follows from Eq. (7.34). In fact for k <k we have

) k—1
(M) z:(0) + 2 W C(1+0) Z M)"
h=
k-1 k—1
<(@M)* r0+2 C1 Z oM + Togal C Y@My
=0 h=0
1 C {
< < .
M) "+ 537 T R0 <207 (7.35)

where we have utilized definition (7.29) of { and (7.34). This inequality, recalling the
definition of k in 4, shows that Eq. (7.34) implies

{

zi(.vi)<m<c, i=1,...,N (7.36)

for s;€[0, 5], where 3; is defined in 2 and
K R3 )
5= / —;dsl if i>1. (7.37)
0 R,‘

Since, by definition 5;>5;, the claim is proved.
9. From Eq. (7.36) it follows that the condition

()] senqsy <C = 8M(2M)rg + 1 (7.38)

is satisfied in the time interval [0, 7'). Notice that 7" cannot be infinity because, as we
have seen from Proposition 7.2(ii), condition (7.36) implies R;(¢)— 0 in finite time.
Thus the maximal interval of existence of the solution of system (7.1) and therefore

T' = T. The proof of the proposition is complete. [
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