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Abstract. We consider a generalized Stochastic Cahn-Hilliard equation with
multiplicative white noise posed on bounded convex domains in Rd, d = 1, 2, 3,

with piece-wise smooth boundary, and introduce an additive time dependent

white noise term in the chemical potential. Since the Green’s function of the
problem is induced by a convolution semigroup, we present the equation in a

weak stochastic integral formulation and prove existence of solution when d ≤ 2

for general domains, and for d = 3 for domains with minimum eigenfunction
growth, without making use of any explicit expression of the spectrum and the

eigenfunctions. The analysis is based on stochastic integral calculus, Galerkin

approximations and the asymptotic spectral properties of the Neumann Lapla-
cian operator. Existence is also derived for some non-convex cases when the

boundary is smooth.

1. Introduction.

1.1. The problem. We study the generalized stochastic Cahn-Hilliard partial dif-
ferential equation

ut = ∆
(
−∆u+ f ′(u) + F2(x, t)V̇

)
+ F1(u)Ẇ , x ∈ D, t > 0, (1)

associated with Neumann boundary conditions
∂u

∂n
=
∂∆u
∂n

= 0 on ∂D, (2)

where D is a convex bounded domain in Rd, d = 1, 2, 3, of sufficiently piece-wise
smooth boundary. The term V̇ appearing additive in the chemical potential is a
time dependent white noise; the multiplicative noise Ẇ is the formal derivative of
an one-dimensional l-parameter Wiener process. When the domain is rectangular
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we set l := 1 + d and define Ẇ as a space-time white noise, while in the case of
general domains we consider l := 1 and define Ẇ as V̇ i.e. as a time dependent
white noise. The function F2 is real and smooth on D for any t > 0, and F1 is
Lipschitz and bounded as a function of u. We consider f ′(u) := ∂uf(u) = u(u2−1),
where f := 1

4 (u2 − 1)2 is a double equal-well potential taking its global minimum
value 0 at u = ±1 [2] and models the tendency of a two species homogeneous alloy
to return in a two separated phases equilibrium [29].

The stochastic Cahn-Hilliard equation is one of the important cases of the non-
linear Langevin equations. It is based on a field-theoretic approach to the non-
equilibrium dynamics of metastable states [17, 35, 40]. When F1 = F2 = 0, equa-
tion (1) becomes the deterministic Cahn-Hilliard equation. The originally proposed
equation by Cahn and Hilliard contains logarithmic poles in the potential ([14, 13])
and is a model for phase separation of a binary alloy at fixed temperature, where
u(x, t) defines the mass concentration of one of the phases at a point x of a vessel
D at time t. The evolution of the concentration u undergoes two phases called
phase separation and phase coarsening. For more physical background, derivation
and discussion of the deterministic Cahn-Hilliard equation and related equations
we refer to [7, 13, 14, 26, 28] and the references therein.

1.2. The effect of noise. The standard Cahn-Hilliard model was extended by
Cook [17] (see also [40]) in order to incorporate thermal fluctuations as additive
noise:

∂tu = ∆
(
−∆u+ f ′(u)

)
+ ξ(x, t). (3)

This equation is usually called Cahn-Hilliard-Cook, and ξ is in general a Gaussian
noise. In the theory of Critical Dynamics, a Cahn-Hilliard equation of the form
(1) is described as Model B [35]. Such a generalized type Cahn-Hilliard model [32],
is based on the balance law for microforces; in this case the term F2 of (1) is the
external field [35, 32]. In [38], the Kawasaki exchange dynamics are applied, and a
modified Cahn-Hilliard equation is proposed, where F2 is the external gravity field.
The F1 term stands for the Gaussian noise ξ(x, τ) in Model B of [35] in accordance
with the Cahn-Hilliard-Cook model, while, following [32], the quantity F1 is the
external mass supply. Such model appears in [4] where spinodal decomposition is
analyzed as a mechanism for the formation of Liesengang bands. A generalized
Cahn-Hilliard equation appears also as a mesoscopic model for surface reactions.
In [34], a combination of Arrhenius absorption/desorption dynamics, Metropolis
surface diffusion and simple unimolecular reaction is considered. A special case of
this model, where the external force field enters the equation as a multiplicative
term, is the following generalized Cahn-Hilliard equation [5, 37, 36]:

∂tu = ∆
(
−∆u+ f ′(u) + F2(x, t)

)
+ F1(x, t)(1− u),

here obviously the function 1− u is Lipschitz in u.
The stochastic Cahn-Hilliard with f ′ polynomial of odd degree when F2 := 0

and F1 := 1 posed on multi-dimensional rectangular domains, was analyzed by Da
Prato and Debussche in [19]. In this case, an additive noise more regular than white
noise was defined as an infinite linear combination of the L2(D) orthonormal basis
with coefficients consisting of independent, t−dependent Brownian motions. When
the trace of the Wiener process is finite, existence was analyzed in [25]. Results for
the noisy Cahn-Hilliard equation are of great interest for the studying of coarsening
(Ostwald ripening) [3] and nucleation [8]. For a survey, including numerical results
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and conjectures concerning the nucleation problem, see [11]. In the stochastic case
the polynomial nonlinearity has been analyzed in [10, 11, 15, 16, 19, 25], while
in [22, 21, 31] a stochastic Cahn-Hilliard with reflection is considered. Numerical
results for the Cahn-Hilliard equation on the unit square has been presented in [41].

1.2.1. Motivation for the noise in the chemical potential. At the proposed model (1)
we split the noise into two terms. The chemical potential noise stands for external
fields while the free-energy independent noise may describe thermal fluctuations or
external mass supply. This presentation indicates the different physical meaning of
each term and seems to be important in an equivalent stochastic system formulation.

1.3. Existence and domain’s geometry. The aim of the present paper is to
study existence of solution for the generalized stochastic Cahn-Hilliard equation in
general convex domains. In [15], Cardon-Weber used an appropriate convolution
semigroup and established existence of solution in D := (0, π)d for the case F2 =
0 by using the explicit formulae for the spectrum and eigenfuctions of Neumann
Laplacian in this cube. Motivated by [15], in our proofs we avoid completely any
explicit formula in order to derive analogous results for general domains. We first
remark that if D is a cube of edge a, then by the change of variables x → x

a/π ,
t → t

a2/π2 we can always consider the equivalent Cahn-Hilliard in (0, π)d. Several
existence results for various formulations concerning the stochastic Cahn-Hilliard
equation are referred to cubic or rectangular space domains, and are based on
the explicit formula for the spectrum and eigenfunctions of the Neumann Laplacian
operator which is well- known for rectangles, [18]. In our approach, are used instead
only the asymptotic spectral properties of the Neumann Laplacian in domains of
general convex geometry with piece-wise smooth boundary, where the spectrum
and eigenfunctions are unknown. By convexity we derive Lipschitz estimates for
the eigenfunctions.

We extend in rectangles the existence result appeared in [15], while for convex or
Lipschitz domains (not necessarily convex) in Rd we study a model with time white
noise and prove existence for general domains when d ≤ 2. In three dimensions,
existence is proved under the assumption of minimum eigenfunction growth. Usually
in numerical simulations smooth domains are approximated by polyhedra. A case of
interest also considered in this paper is when D is a convex polyhedron. In addition,
our proof is valid for the standard ε-dependent Stochastic Cahn-Hilliard, where ε
is a measure for the inner interfaces length during spinodal decomposition.

Existence is proved for various simply connected D:
1. d = 1: if D is an open interval.
2. d = 2: (a) if D is convex and of smooth boundary, (b) if D is a convex

polyhedron, (c) if D is Lipschitz and of smooth boundary (here convexity is
not necessary).

3. d = 3: for the same cases (a), (b), (c) as in d = 2, plus the property of
minimum eigenfunctions growth.

Our title refers only to convexity while existence is proved for various domains
not necessarily convex, because our proof does not cover the non-convex polyhedral
case. Existence is also derived for the standard ε-dependent stochastic Cahn-Hilliard
equation.

The paper is organized as follows: in Section 2 we write the problem (1)-(2) in
a weak stochastic integral formulation and describe in details the main results. A



4 DIMITRA ANTONOPOULOU AND GEORGIA KARALI

weaker stochastic partial differential equation formulation is analyzed in Section 3,
while existence for the general problem is proved in Section 4. Finally, the last
section stands as an appendix for basic definitions from stochastic calculus.

2. Main results.

2.1. Preliminaries. We consider the Neumann Laplacian operator TN := −∆

defined on D(TN ) = {u ∈ H2(D) :
∂u

∂n
= 0 on ∂D}, where D is a bounded, domain

(open, simply connected set) in Rd, d = 1, 2, 3. The eigenvalue problem

TNv = µv in D, ∂v

∂n
= 0 on ∂D, (4)

admits a countable set of eigenvalues as D is open, bounded and connected. The
cases of interest in this paper are when D is convex or Lipschitz and ∂D is C2, or
when D is a convex polyhedron (in this case ∂D is piece-wise C∞).

In L2(D), we consider the usual inner product < w, v >:=
∫
D wvdx and the

induced norm ‖w‖2 :=< w,w >
1
2 . Any eigenvalue µ is real and non-negative

because < ∇v,∇v >= µ‖v‖22 for any eigenfunction v corresponding to µ. There
exists an orthonormal basis in L2(D) consisting of eigenfunctions {w0, w1, w2, · · · }
corresponding to the eigenvalues 0 = µ0 < µ1 ≤ µ2 ≤ · · · of (4) [39]. w0 related
to µ0 = 0 is obviously a constant function with w0 = (M(D))−1/2. From now
on, we will consider the L2(D) together with the orthonormal eigenfunction basis
{w0, w1, w2, · · · }. We remark that µk →∞ as k →∞ [20].

2.2. Weak formulation. In the present paper we write the generalized stochastic
Cahn-Hilliard equation (1) in a rigorous integral representation utilizing the Green’s
function induced by the operator proposed by Da Prato and Debussche [19, 15].
More specifically, let S(t) := e−A

2t be the semi-group generated by the operator
A2u :=

∑∞
i=1 µ

2
iuiwi where u :=

∑∞
i=0 uiwi. Then the convolution semi-group [15],

is defined by S(t)U(x) =
∑∞
i=1 e

−µ2
i t(U,wi)wi(x) for any U(x) in L2(D), with the

associated Green’s function

G(t, x, y) =
∞∑
i=0

e−µ
2
i twi(x)wi(y). (5)

As in [15] we let ϕ ∈ C4(D) such that
∂ϕ

∂n
=
∂∆ϕ
∂n

= 0 on ∂D. Let u0 be the

initial value at t = 0, then for any u satisfying the boundary conditions (2) equation
(1) is written in the weak form:∫
D

(
u(x, t)− u0(x)

)
ϕ(x) dx = −

∫ t

0

∫
D

(∆2ϕ)u dxds+
∫ t

0

∫
D

(∆ϕ)f ′(u) dxds

+
∫ t

0

∫
D

∆F2(x, t)ϕ(x) dxV (ds) +
∫ t

0

∫
D
F1(u)ϕ(x)W (dx, ds).

(6)

Here, V (ds) is the Wiener measure induced by the one-dimensional one-parameter
Wiener process V (with respect to time variable), i.e. V := {V (t), t ∈ [0, T ]} defined
on the probability space (Ω,F , P ) is Ft-adapted for any s ≤ t, where Ft, t ≥ 0 is
an increasing family of σ-algebras. The function F2 is considered smooth, hence,
the time integral

∫ t
0

∆F2(x, t)ϕ(x)V (ds) is a martingale.
We use a unified notation

∫ t
0

∫
D · · ·W (dx, ds) for representing stochastic integra-

tion in time and in space, for the sake of a generalized symbolism. In the case of
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general domain D, we consider W (dx, ds) := dxW1(ds), with W1 one-dimensional,
one-parameter Wiener process defined as V . The measure W (dx, ds) when the do-
main is rectangular is induced by the one-dimensional d+ 1-parameter Wiener pro-
cess (d for space variables, 1 for the time variable) W := {W (x, t), t ∈ [0, T ];x ∈ D}
in the set of the Ft-adapted processes {W (x, s); s ≤ t, x ∈ D} [15, 46]. In this case
too, since F1 is Lipschitz and bounded, the appearing stochastic space-time integral
is a martingale. We note that the analysis appearing in the present paper is valid
for both cases, and thus we proceed by keeping the general notation W (dx, ds) for
the space-time measure.

Remark 1. In the Appendix, we present detailed definitions concerning stochastic
process, Wiener process and Ft-adaptive processes.

Following J.B. Walsh formulation for parabolic problems [46], and C. Cardon-
Weber [15], a function u is considered a weak solution to the Stochastic Cahn-
Hilliard (1)-(2) or equivalently solution of (6) if and only if for any x ∈ D and
t ∈ [0, T ] satisfies the Stochastic Partial Differential Equation (SPDE)

u(x, t) =
∫
D
G(t, x, y)u0(y) dy +

∫ t

0

∫
D

∆G(t− s, x, y)f ′(u) dyds

+
∫ t

0

∫
D
G(t− s, x, y)∆F2(y, s) dyV (ds) +

∫ t

0

∫
D
G(t− s, x, y)F1(u)W (dy, ds),

(7)

where G is the Green’s function defined by (5).
We remind that F1 is Lipschitz in u and bounded, while F2 is smooth. In order

to study existence of solution for the generalized Cahn-Hilliard equation, we take
u0 ∈ Lq(D), q ≥ 4 and consider the following cut-off SPDE system

un(x, t) =
∫
D
G(t, x, y)u0(y)dy

+
∫ t

0

∫
D

∆G(t− s, x, y)χn
(
‖un(·, s)‖q

)
f ′
(
un(y, s)

)
dyds

+
∫ t

0

∫
D
G(t− s, x, y)∆F2(y, s)dyV (ds)

+
∫ t

0

∫
D
G(t− s, x, y)F1

(
un(y, s)

)
W (dy, ds),

(8)

where χn : R+ → R+ are C1 functions, such that |χn| ≤ 2, |χ′n| ≤ 2, for any n > 0,

and satisfy χn(x) =
{

1 for x < n
0 for x ≥ n+ 1.

2.3. Existence of solution for the Stochastic Cahn-Hilliard. The general
procedure that we follow in order to establish existence of solution for the SPDE
(7) for any t ≥ 0 is the following:

1. We first prove existence and uniqueness for the solution un of the SPDE (8)
in an appropriate setW of Ft-adapted random processes, for any initial value
u0, in every interval [0, T ].

2. By uniqueness of the process un for any t ≤ Tn, where Tn is a stopping time
defined by

Tn := inf
{
t ≥ 0 : ‖un(t, ·)‖q ≥ n

}
,
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follows that um(·, t) = un(·, t) for any m > n, and the process u(·, t) := un(·, t)
is well defined for all t ≤ Tn.

3. If t < Tn, then ‖un(t, ·)‖q < n and thus it holds that χn(‖un‖q) = 1. So the
process u is a solution of (7) (see (7) and (8) for χn = 1) in the interval [0, Tn)
for any n ≥ 1. Existence of solution for (7) for all t ≥ 0 a.s. is established by
proving that lim

n→∞
p[Tn ≤ T ] = 0 for any T > 0, i.e. lim

n→∞
Tn =∞ a.s.

In details, eq. (8) is written as a sum of operators:

un(x, t) =
∫
D
G(t, x, y)u0(y) dy +Mn(un)(x, t) + L(un)(x, t),

where the operator L involves the stochastic integrals. By fix point arguments,
since F1 is Lipschitz and F2 is smooth and independent of u, we prove that a
unique solution of (8) exists if T is sufficiently small, where T is independent of the
initial condition u0. Therefore, we extend each time the interval of solution in t by
setting the solution un(·, T ) as u0.

We prove Hölder type inequalities related to the Green’s function G. More
specifically, we first prove Lipschitz inequalities for the Neumann eigenfunctions
in D (for this, the domain’s geometry is crucial). We then use the asymptotic
properties of the eigenfunctions and eigenvalues of the Neumann Laplacian operator
and prove space-time Hölder type inequalities for the Green’s function in D.

Further, we define vn := un −L(un) and estimate un in the L4(D) norm and vn
in Lr(D) for any r ≥ 2; the estimates of vn are derived by constructing Galerkin
approximations. Combining these estimates together with the Hölder estimates,
and using a generalization of Kolmogorov’s Theorem, we prove existence of solution
for the SPDE (7) in an appropriate set of processes a.s. for any t ≥ 0.

Remark 2. In our initial and boundary value problem, we may consider in place
of (1) the following ε-dependent generalized stochastic Cahn-Hilliard equation

ut = ∆
(
− ε2∆u+ f ′(u) + F2(x, t; ε)V̇

)
+ F1(x, t; ε)Ẇ , x ∈ D, (9)

where the noise terms are defined as in (1). Here ε > 0 is a measure of the width of
inner interfaces that may be developed along phase transitions during time evolution
in spinodal decomposition. In order to keep the same Green’s function for our fourth
order evolutionary problem, we apply the simple rescaling t→ tε2. Thus, equation
(9) is transformed into an equivalent one of the form (1) where existence of solution
is proved.

Each noise term has a different physical meaning. F1Ẇ is in general a Gaussian
noise (thermal fluctuations or external mass supply, [17, 40, 35]), while F2V̇ is an
external field noise [38, 32, 35]. In our analysis the noise V̇ appeared into the
chemical potential of (1) or (9) is defined as a time noise, since it is coupled with
the Laplacian.

The proposed model (1) or (9) separating chemical potential noise and free-energy
independent noise is just emphatic and indicates an equivalent stochastic system
formulation. In particular, the rescaled (9)

∂tu = ∆(−ε∆u+ ε−1f ′(u)−G2V̇ ) +G1Ẇ (10)
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where G1 := ε−1F1, G2 := −ε−1F2, is written as the stochastic system
∂tu = −∆v +G1Ẇ

v = −f
′(u)
ε

+ ε∆u+G2V̇ ,

(11)

where v is the chemical potential. The previous, may be useful for a rigorous asymp-
totic analysis of the stochastic equation (9) as ε → 0+ which is a very interesting
open problem, or for the construction of numerical approximations.

In [5], the asymptotic behaviour of the deterministic (9) or (11) as ε → 0+

has been analyzed (i.e. for V̇ = Ẇ = 1). The sharp interface limit problem in
the multidimensional case demonstrated a local influence in phase transitions of
forcing terms that stem from the chemical potential, while free energy independent
terms act on the rest of the domain. In addition, the forcing may slow down the
equilibrium. Note that the case G1 = G2 = 0 has been analyzed in [2, 43].

In our existence analysis the system representation is not used, thus the mathe-
matical treatment of the noise term F2V̇ is the same as if it was additive in the
form (∆F2)V̇ .

3. Existence and uniqueness of solution for the SPDE (8). Letting q ≥ 1,
we define ‖ · ‖q as the usual norm in Lq(D). Our aim in this section is to first prove
that (8) admits a unique solution in an interval [0, T ], in the set

W =
{
u(·, t) ∈ Lq(D) : u is Ft − adapted random process and ‖u‖W <∞

}
,

where ‖u‖W := sup
0≤t≤T

E(‖u(·, t)‖βq )1/β , β ≥ q if d = 1, 2, and 6q
(6−q)+ > β ≥ q if

d = 3. Further, we will prove that solution exists for any T > 0.
Let us now consider the non-linear operators Mn defined on W by

Mn(u)(x, t) :=
∫ t

0

∫
D

∆G(t− s, x, y)χn
(
‖u(·, s)‖q

)
f ′
(
u(y, s)

)
dyds,

and let L be the operator on W given by

L(u)(x, t) : =
∫ t

0

∫
D
G(t− s, x, y)F1

(
u(y, s)

)
W (dy, ds)

+
∫ t

0

∫
D
G(t− s, x, y)∆F2(y, t) dyV (ds).

By the formulation of (8) we derive that

un(x, t) =
∫
D
G(t, x, y)u0(y) dy +Mn(un)(x, t) + L(un)(x, t). (12)

Remark 3. According to [24], for D smooth, there exist positive constants c1, c2
such that for t ∈ (0, T ] and for any x, y ∈ D

|G(t, x, y)| ≤ c1t−d/4 exp
(
− c2|x− y|4/3|t|−1/3

)
, (13)

|∆G(t, x, y)| ≤ c1t−(d+2)/4 exp
(
− c2|x− y|4/3|t|−1/3

)
. (14)

In the case of convex polyhedra, the same estimates follow on the limit by a standard
technique of approximating the polyhedral domain by a sequence Dn of convex
smooth subdomains, where D1 ⊂ D2 ⊂ · · · ⊂ Dn ⊂ · · ·D, and ∂Dn ∩ ∂D ⊆
∂Dn+1 ∩ ∂D ⊂ ∂D for any n. Here, ∂Dn ∩ ∂D is an increasing sequence of finite
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unions of planar surfaces and linear segments in ∂D (a detailed proof for the cube can
be found in [15]). By use of relations (13)-(14) it follows that if v ∈ L1([0, T ], Lρ(D))
with 1 ≤ ρ ≤ ∞, then there exists positive constant c such that for any ρ ≤ q ≤ ∞
and any x ∈ D∥∥∥∫ t

t0

∫
D

∆G(t− s, x, y)v(s, y)dyds
∥∥∥
q
≤ c

∫ t

t0

(t− s)−
d+2
4 + d

4r ‖v(·, s)‖ρds, (15)

∥∥∥∫ t

t0

∫
D
G2(t− s, x, y)v(s, y)dyds

∥∥∥
q
≤ c

∫ t

t0

(t− s)− d
2 + d

4r ‖v(·, s)‖ρds, (16)

where t ≥ t0 ≥ 0 and r > 1 such that 1
r = 1

q −
1
ρ + 1. In the case d = 3 for (15) we

need r < 3 while in (16) r is less than 3/2.
By a fixed point argument we prove existence and uniqueness for the SPDE (8)

for any initial value u0.

Theorem 3.1. The SPDE (8) admits a unique solution un in every interval [0, T ].

Proof. In [15], for the general case where f ′(u) is a third degree polynomial with
positive dominant coefficient when (8) is posed on cubic domains for F2 = 0 and
F1 Lipschitz, by use of (13)-(16) (which have been extended for the cubic case) is
proved that the operator Mn(W),L(W) ⊆ W, and Mn + L is a contraction in W
if T ≤ T1 for some T1 small and independent from u0.

In our case, the proof is similar with some slight differences. (a) We have an extra

term
∫ t

0

∫
D
G(t−s, x, y)∆F2(y, s)V (ds), appearing at the operator L which is a mar-

tingale with continuous representative because F2 is smooth, and is u-independent.
(b) The non-linearity f ′ = u(u2 − 1) is a third degree polynomial with positive
dominant coefficient. (c) In addition, since (13)-(16) hold in C2 domains ([24]) or
in convex polyhedra (see Remark 3), we obtain as in [15] thatMn(W),L(W) ⊆ W,
Mn + L is a contraction in W and thus admits a unique fixed point in the set
{u ∈ W : u(·, 0) = u0} if T ≤ T ∗, with T ∗ small and independent from u0.

Consequently, in [0, T ], for T ≤ T ∗, a unique solution un exists for the SPDE
(8). Setting t0 := T and initial value u0(x) = u(x, T ), we extend every time the
interval of existence and thus the solution exists on every interval [0, T ]. �

4. Existence and uniqueness of solution for the SPDE (7).

4.1. Hölder estimates. In this paragraph we prove Hölder-type estimates for the
Green’s function G in time and space also valid for the boundary ∂D. We consider
that d = 1, 2, 3; generally if D is open and bounded, then the eigenvector basis
{w0, w1, w2, · · · } is in C∞(D). If the open bounded domain D is convex then
convexity supplies the eigenvector basis {w0, w1, w2, · · · } with Lipschitz regularity
in D (the same is proved for smooth Lipschitz domains also). More specifically,
following Evans [27], we shall first prove that the basis is Lipschitz in D and for each
eigenfunction wi we shall calculate the Lipschitz coefficient depending on eigenvalue
µi. Furthermore, we shall derive upper L∞ bounds for the eigenfunction basis in
D.

Consider two points x and y in D identified by their position vectors and define
for 0 < λ < 1 the convex linear combination xy := λx+ (1− λ)y. As D is convex,
only the following two cases appear (for d = 2 see Fig. 1):

1. xy lies in D◦ = D.
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Figure 1. Various cases for the linear segment xy in convex domains.

2. xy lies on the boundary ∂D (this case implies that the boundary ∂D includes
linear segments or planar surfaces).

Consider now the general case: D is in Rn and define by |x− y| the usual metric
in Rn. By convexity and Cauchy-Schwarz inequality we obtain the next elementary
result.

Lemma 4.1. Let D be a convex bounded, domain (open and simply connected) in
Rn, and u is smooth, then for any x = (x1, · · · , xn), y = (y1, · · · , yn) in D, and
x̃(t) := tx+ (1− t)y, for any 0 < t < 1, it holds that

|u(x)− u(y)| ≤ |x− y|
∫ 1

0

∣∣∣∇u(x̃(t))
∣∣∣dt. (17)

Remark 4. The estimate (17) is true even if x, y ∈ ∂D under the assumption that
x̃(t) lies in D where u is regular.

We now extend Lemma 4.1 in order to obtain an analogous estimate in the case
where on the boundary exist linear segments or planar surfaces.

Lemma 4.2. Let D be a convex bounded domain of Rn. If u is smooth, x =
(x1, · · · , xn), y = (y1, · · · , yn) are in ∂D, and x̃(t) := tx+ (1− t)y, 0 < t < 1, lies
in ∂D, then there exists a positive constant c, independent from u, x, y, t, such that

|u(x)− u(y)| ≤ c|x− y|
∫ 1

0

(∣∣∣∇u(x̃1(t))
∣∣∣+
∣∣∣∇u(x̃2(t))

∣∣∣)dt, (18)

where x̃1(t) := tx+ (1− t)z, x̃2(t) := ty + (1− t)z, lie in D for any t ∈ [0, 1).

Proof. D is convex, hence we can always construct a triangle xzy of vertex z ∈ D
and of sufficiently small height h (measured from z) such that the edges x̃1(t) :=
tx+ (1− t)z, x̃2(t) := ty+ (1− t)z are equal and in D for t ∈ [0, 1), and h ≤ |x− y|
(see Fig. 2 for the case d = 2, 3). By Lemma 4.1 and Remark 3 we obtain

|u(x)− u(y)| ≤ |u(x)− u(z)|+ |u(z)− u(y)|

≤ |x− z|
∫ 1

0

|∇u(x̃1(t))|dt+ |y − z|
∫ 1

0

|∇u(x̃2(t))|dt,
(19)

obviously |x− z|2 = |y − z|2 = h2 + |x− y|2/4 ≤ 5
4 |x− y|

2; thus by (19) we get the
result. �

In the following, we show that the basis {w0, w1, w2, · · · } is Lipschitz in D and
estimate the Lipschitz constants by the eigenvalues µi.
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x

z

y

!"

"

Figure 2. Lipschitz on the boundary: the inner triangle.

Proposition 4.3. There exists a positive constant c such that

|wi(x)− wi(y)| ≤ cµ
a
2
i |x− y|, (20)

for any x, y in D, and any i ≥ 1, where D is a bounded convex domain of Rd,
d = 1, 2, 3; a = 1 for d = 1 while a = 3 for d = 2, 3.

Proof. By Lemmas 4.1-4.2 in order to estimate the Lipschitz coefficient appearing
in (20) we need L2 or L∞ estimates for the gradient of wi. For the one-dimensional
case (d = 1) it holds that∫ t

0

|∇wi(z̃(t))|dt ≤
∫
D
|∇wi(x)|dx ≤ c‖∇wi‖L2(D)

for any linear segment z̃(t) inD ⊂ R (in this case the integral along z̃(t), for t ∈ (0, 1)
coincides to Lebesgue measure in R restricted in z̃(t), for t ∈ (0, 1)). The Neumann
Laplacian boundary conditions give ‖∇wi‖L2(D) = µ

1/2
i , therefore, by (17) and (18)

we get that |wi(x)− wi(y)| ≤ cµ1/2
i |x− y|.

When d = 2, 3, by general Sobolev inequality [1], valid for Lipschitz domains of
Rn [12], i.e. valid if D is C2 and convex or if D is a convex polyhedron, follows that

|∇wi| ≤ c
d∑
j=1

‖∂xj
wi‖H2(D) ≤ c

d∑
j=1

(
‖∆∂xj

wi‖2L2(D) +
d∑
j=1

< w0, ∂xj
wi >

2
)1/2

.

Using that ‖∆∂xj
wi‖2L2(D) = ‖µi∂xj

wi‖2L2(D) = µ3
i , the estimate |(w0, ∂xj

wi)| ≤
c‖∂xj

wi‖L2(D) ≤ cµ
1/2
i (where w0 is the constant function), observing that µi →∞

and using (17), (18), we finally obtain: |wi(x)− wi(y)| ≤ cµ3/2
i |x− y|. �

Remark 5. Without geometric assumptions for D, an upper bound in the L∞ norm

for the eigenfunction basis is: sup
D
|wi(x)| ≤ cµ

d−1
4

i , which according to Duistermaat-

Guillemin Theorem is sharp if the set of periodic geodesics at D is of zero measure
[23, 33]. Indeed, in the multi-dimensional case d ≥ 2 when D ⊂ Rd is rectangle,
this estimate is not the best as the basis is uniformly bounded in any i [9, 18], while

µ
d−1
4

i →∞.
Given i, when x ∈ ∂D, then, as D is convex we choose yi ∈ D such that |x−yi| =

hi (for sufficiently small hi), thus by Lipschitz condition and the bound in L∞ norm,
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we get

|wi(x)| ≤ |wi(x)− wi(yi)|+ |wi(yi)| ≤ µa/2i |x− yi|+ c0µ
d−1
4

i = hiµ
a/2
i + c0µ

d−1
4

i ,

as µi →∞ it is sufficient to choose hi := εµ
−a/2
i , ε bounded, to get that there exists

a positive constant c such that |wi(x)| ≤ cµ
d−1
4

i for any x ∈ D, and any i ≥ 0, and

obviously, follows that |wi(x)− wi(y)| ≤ cµ
d−1
4

i for any x ∈ D and any i ≥ 0.
If d = 3, a case of interest is when the manifold of solutions for the Neumann

Laplacian has the minimum eigenfunction growth, i.e. by definition when the eigen-
function basis is uniformly bounded for any i in D. In this case if D is convex, then
the analogous calculations yield: |wi(x)| ≤ c for any x ∈ D and any i.

Now we are able to prove the next crucial for our analysis space-time Hölder type
estimate, valid in D, involving Green’s function G, for general convex domains D
in Rd for d ≤ 2, or, in the case d = 3 if the Neumann Laplacian has the minimum
eigenfunction growth in the convex domain D.

Theorem 4.4. Let G be the Green’s function defined by (5). There exist c > 0 and
positive γ, γ′, such that for any t > s and any x, y ∈ D holds that∫ t

0

∫
D
|G(t− r, x, z)−G(t− r, y, z)|2dzdr ≤ c|x− y|γ , (21)∫ t

0

∫
D
|G(t− r, x, z)−G(s− r, x, z)|2dzdr ≤ c|t− s|γ

′
, (22)∫ t

s

∫
D
|G(t− r, x, z)|2dzdr ≤ c(|t− s|+ |t− s|γ

′
), (23)

for d ≤ 2, or when d = 3 if the manifold of solutions for the Neumann Laplacian
in D has the minimum eigenfunction growth.

Proof. Using |w0(x)− w0(y)| = 0,
∫
D |wi(z)|

2dz = 1 and µi →∞, we get∫ t

0

∫
D
|G(t− r, x, z)−G(t− r, y, z)|2dzdr ≤

∞∑
i=1

[e−2µ2
i (t−r)

2µ2
i

]t
0
|wi(x)− wi(y)|2

=
∞∑
i=1

1
2µ2

i

[1− e−2µ2
i t]|wi(x)− wi(y)|2 ≤ c

∞∑
i=1

µ−2
i |wi(x)− wi(y)|2.

As |wi(x) − wi(y)| is of order O
(
µ

d−1
4

i

)
in D for any i, we may define a positive

constant c such that:
(
cµ

d−1
4

i

)−1

|wi(x) − wi(y)| ≤ 1, hence, |wi(x) − wi(y)|2 ≤

c
(
µ

d−1
4

i

)2

|wi(x)−wi(y)|2l, for l ∈ (0, 1] because µi →∞. Therefore, by making use
of Proposition 4.3 we obtain∫ t

0

∫
D
|G(t− r, x, z)−G(t− r, y, z)|2dzdr ≤ c

∞∑
i=1

µ−2
i |wi(x)− wi(y)|2

≤ c
∞∑
i=1

µ
−2+ d−1

2
i |wi(x)− wi(y)|2l ≤ c|x− y|2l

∞∑
i=1

µ
−2+ d−1

2
i µ

2la/2
i = c|x− y|2l

∞∑
i=1

µσi ,
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for σ = −2 + d−1
2 + la. The asymptotic behavior of eigenvalues for large i is

µi = O
(

(i − 1)2/d
)

[47], therefore, the appearing series in the previous inequal-

ity converges if 2
d (−2 + d−1

2 + la) < −1 or equivalently for l < 5−2d
2a . Thus, for

0 < l < min{1, 5−2d
2a } we get (21) for 0 < γ := 2l < min{2, 5−2d

a } (we note that
the dimension is d = 1, 2). If d = 3 and the manifold of solutions for the Neu-
mann Laplacian has the minimum eigenfunction growth, then by the analogous
calculations we obtain:∫ t

0

∫
D
|G(t− r, x, z)−G(t− r, y, z)|2dzdr ≤ c|x− y|2l

∞∑
i=1

µ−2+la
i

hence, the series converges if 2
d (−2 + la) < −1, i.e. when l < 1/(2a). In this case

we set 0 < γ := 2l < 1/a.
By simple calculations, using the basis upper bound and µ0 = 0, we obtain∫ t

0

∫
D
|G(t−r, x, z)−G(s−r, x, z)|2dzdr ≤ c

∞∑
i=1

µ
d−1
2

i

1
2µ2

i

(e−µ
2
i (t−s)−1)2(1−e−2µ2

i s).

But t > s and µi → ∞, therefore |e−µ2
i (t−s) − 1| is uniformly bounded, and also

|e−µ2
i (t−s) − 1| ≤ cµ2

i |t − s| as the exponential is Lipschitz. Therefore for l ∈ (0, 1)
we obtain∫ t

0

∫
D
|G(t− r, x, z)−G(s− r, x, z)|2dzdr ≤ c|t− s|l

∞∑
i=1

µ
−2+ d−1

2 +2l
i .

The series in the above inequality converges if 2
d (−2+ d−1

2 +2l) < −1 or equivalently
if l < 5−2d

4 . Consequently the estimate (22) follows for 0 < γ′ := l < min{1, 5−2d
4 }

for d = 1, 2. In the case when d = 3, we get∫ t

0

∫
D
|G(t− r, x, z)−G(s− r, x, z)|2dzdr ≤ c|t− s|l

∞∑
i=1

µ−2+2l
i ,

and the result follows for 0 < γ′ := l < 1/4.
Finally, by simple calculations we get that∫ t

s

∫
D
|G(t− r, x, z)|2dzdr ≤ c|t− s|+ c|t− s|l

∞∑
i=1

µ
−2+c0

d−1
2 +2l

i ,

for l ∈ (0, 1). The estimate (23) follows for 0 < γ′ := l < min{1, 5−2d
4 } if d = 1, 2

(where c0 = 1) or for 0 < γ′ := l < 1/4 when d = 3 (in this case c0 = 0). �

Remark 6. The minimum eigenfunction growth holds for example in rectangular
domains or torus [33]. We also note that the results (21), (22), (23) of Theorem
4.4 can be extended for some cases where D is simply connected but non-convex,
under the assumption of Lipschitz boundary (if d ≤ 3), and minimum eigenfunction
growth (if d = 3). More specifically, Lemma 4.1 is generalized in the following
convexity-independent result:

Lemma 4.5. Let D be a simply connected Lipschitz domain in Rn of smooth bound-
ary, and u is smooth, then there exists a positive constant k such that for any
x = (x1, · · · , xn), y = (y1, · · · , yn) in D it holds that

|u(x)− u(y)| ≤ k|x− y|sup
z∈D
|∇u(z)|. (24)
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Proof. By the definition of D, there exists a positive constant k such that for any
choice of points x, y in D there exists a smooth curve X̃ in D of length l(X̃) less
or equal k|x− y| connecting the two points (see for example [45]). Let us consider
X̃ = X̃(t) = (X̃1(t), · · · , X̃n(t)) ∈ Rn for t ∈ [0, 1], where X̃(0) = x, X̃(1) = y.

Defining ˙̃
Xi(t) := d

dtX̃i(t), it follows that

u(y)− u(x) =
∫ 1

0

d

dt
u(X̃(t))dt ≤

∫ 1

0

|∇u(X̃(t))|| ˙̃X(t)|dt

≤ sup
z∈D
|∇u(z)|

∫ 1

0

| ˙̃X(t)|dt = sup
z∈D
|∇u(z)|l(X̃) ≤ k|x− y|sup

z∈D
|∇u(z)|. �

Therefore, Proposition 4.3 holds true (in dimensions d = 2, 3 where the non-
convex simply connected case may appear, we estimate |∇wi|). So, the space-time
Hölder estimates (21), (22), (23) follow.

4.2. L4 estimates. We define vn := un − L(un), then vn is the weak solution in
[0, T ] of the SPDE

∂tvn + ∆2vn −∆
(
χn(‖un‖q)f ′(un)

)
= 0 in D,

(25)
vn(x, 0) = u0(x),

∂vn
∂n

=
∂∆vn
∂n

on ∂D,

by the sense of the weak formulation:∫
D

(
vn(x, t)− u0(x)

)
φ(x)dx = −

∫ t

0

∫
D

∆2φ(x)vn(x, s)dxds
(26)

+
∫ t

0

∫
D

∆φ(x)χn
(
‖un(·, s)‖q

)
f ′
(
un(x, s)

)
dxds,

for any φ ∈ C4(D) such that ∂φ
∂n = ∂∆φ

∂n on ∂D [15].
We note that for t fixed and for any w(t, ·) ∈ H2(D) ⊂ L2(D) it holds that

−∆w =
∑∞
k=0 µk < wk, w > wk =

∑∞
k=1 µk < wk, w > wk, as {w0, w1, w2, · · · }

is an orthonormal eigenfunction basis of L2(D) and µ0 = 0, while −∆wk = µkwk.
We define

‖L(un)‖∞ := sup
t∈[0,T ]

sup
x∈D
|L(un)(x, t)|. (27)

At the following lemma we make use of the Hölder estimates of the previous para-
graph.

Lemma 4.6. If un is the solution of the SPDE (8) then for any ρ, δ > 1 holds

sup
n∈N

E
(
‖L(un)‖2ρδ∞

)
<∞. (28)

Proof. Let a > 1, T > 0 and consider t, t′ ∈ [0, T ] and x, x′ ∈ D, then

E
(
|L(un)(x, t)− L(un)(x′, t′)|2a

)
= E

(∣∣∣ ∫ t

0

∫
D
AF1(un(y, s))W (dy, ds)

+
∫ t

0

∫
D
A(∆F2(y, s))dyV (ds)−

∫ t′

t

∫
D
BF1(un(y, s))W (dy, ds)

−
∫ t′

t

∫
D
B(∆F2(y, s))dyV (ds)

∣∣∣2a),
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where A := G(t− s, x, y)−G(t′ − s, x′, y′) and B := G(t′ − s, x′, y). So, by making
use of the Burkholder inequality we get

E
(
|L(un)(x, t)− L(un)(x′, t′)|2a

)
≤

c
{
E
(
|
∫ t

0

∫
D
AF1(un(y, s))W (dy, ds)|2a

)
+ E

(
|
∫ t

0

∫
D
A(∆F2(y, s))dyV (ds))|2a

)
+ E

(
|
∫ t′

t

∫
D
BF1(un(y, s))W (dy, ds)|2a

)
+ E

(
|
∫ t′

t

∫
D
B(∆F2(y, s))dyV (ds)|2a

)}
≤ c
{
E
(∫ t

0

∫
D
|A|2|F1(un(y, s))|2dyds

)a
+ E

(∫ t

0

∫
D
|A|2|∆F2(y, s)|2dyds

)a
+ E

(∫ t′

t

∫
D
|B|2|F1(un(y, s))|2dyds

)a
+ E

(∫ t′

t

∫
D
|B|2|∆F2(y, s)|2dyds

)a}
.

Thus, by Theorem (4.4) the next Hölder-type space-time estimate follows: there
exist γ, γ′ > 0 such that

E
(
|L(un)(x, t)− L(un)(x′, t′)|2a

)
≤ c(|x− x′|γ)a + c(|t− t′|+ |t− t′|γ

′
)a. (29)

Since F1, F2 are uniformly bounded on un, the definition of L and Burkholder
inequality yield

sup
n∈N

sup
t∈[0,T ]

sup
x∈D

E
(
|L(un)(x, t)|2ρδ

)
<∞. (30)

By (29) and (30) according to Garsia’s Lemma (generalization of Kolmogorov’s
Theorem [30, 15, 46]) the estimate (28) follows. �

The Green’s function is symmetric in space variables and satisfies (13). As in
[19, 15], we prove a priori estimates for vn = un − L(un).

Theorem 4.7. There exists positive constant c̃, depending only on the measure of
D, such that for the solution un of the SPDE (8) the next estimate holds true∫ t

0

χn

(
‖un‖q

)
‖un‖44ds ≤c̃

∫ t

0

(
1 + | < u0, w0 > w0|4 + ‖L(un)‖4∞

)
ds

+
1
2

∥∥∥ ∞∑
k=1

µ
−1/2
k < wk, u0 > wk

∥∥∥2

2
.

(31)

Proof. Using the orthonormal basis for representing vn ∈ L2(D) we write vn =∑∞
j=0 ρjwj . After some computations we get

∞∑
k=1

µ−1
k < wk, ∂tvn > wk =

∞∑
k=1

µ−1
k < wk, (∂tρk)wk > . (32)

Using the boundary conditions of (25) and the Neumann condition for wk, since ∆
is symmetric and wk are eigenfunctions we obtain

∞∑
k=1

µ−1
k < wk,∆2vn > wk =

∞∑
k=1

µk < wk, vn > wk. (33)

Finally, for L2(D) 3 Q := χn(‖un‖q)f ′(un) =
∑∞
j=0 ljwj it follows

∞∑
k=1

µ−1
k < wk,∆Q > wk = −Q+ l0w0. (34)
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Replacing (32)-(34) in equation (25) and taking the inner product with Rvn :=∑∞
j=1 ρjwj = vn − ρ0w0, the next statement follows

<

∞∑
k=1

µ−1
k (∂tρk)wk,

∞∑
j=1

ρjwj > + <

∞∑
k=1

µk < wk,

∞∑
j=1

ρjwj > wk,

∞∑
j=1

ρjwj >

+ < Q,Rvn > − < l0w0, Rvn >= 0.

(35)

We note that < l0w0, Rvn >= (
∫
D Qdx)(

∫
D Rvndx) = 0 as Rvn =

∑∞
j=1 ρjwj , and

obviously
∫
D wjw0 = 0 for any j = 1, · · · for w0 the constant function. Therefore, by

orthonormality, (35) takes the form
∑∞
k=1 µ

−1
k (∂tρk)ρk+

∑∞
k=1 µkρ

2
k+ < Q,Rvn >=

0, and equivalently

1
2
∂t(

∞∑
k=1

µ−1
k ρ2

k) +
∞∑
k=1

µkρ
2
k+ < Q,Rvn >= 0. (36)

Integrating (36) in time yields

1
2

∞∑
k=1

µ−1
k ρ2

k(t)− 1
2

∞∑
k=1

µ−1
k ρ2

k(0)+
∫ t

0

∞∑
k=1

µkρ
2
k(s)ds

+
∫ t

0

< Q(s), Rvn(s) > ds = 0.

(37)

The equality (37) is well defined because all appearing series converge. More
specifically for t fixed, vn is in L2(D) thus vn =

∑∞
j=0 ρjwj converges and the

same holds for
∑∞
j=1 µ

−1
j ρjwj because µj → ∞ as j → ∞. Let define B(u0) :=

‖
∑∞
k=1 µ

−1/2
k < wk, u0 > wk‖22, we note that vn(0) = un(0) − L(un)(0) = un(0) =

u0, hence
∞∑
k=1

µ−1
k ρ2

k(0) = ‖
∞∑
k=1

µ
−1/2
k < wk, vn(0) > wk‖22 = ‖

∞∑
k=1

µ
−1/2
k < wk, u0 > wk‖22.

We replace Q, B(u0) in (37) and get the following inequality∫ t

0

χn(‖un‖q)
∫
D
f ′(un)Rvndxds ≤

1
2
B(u0). (38)

We write (38) in the equivalent form∫ t

0

χn(‖un‖q)
∫
D
f ′(un)undxds ≤∫ t

0

χn(‖un‖q)
∫
D
f ′(un)(un −Rvn)dxds+

1
2
B(u0).

(39)

We note that by definition un(s) = vn(s)+L(un)(s), and Rvn(s) = vn(s)−ρ0(s)w0,
and thus un(s) − Rvn(s) = L(un)(s) + ρ0(s)w0. We also remark by (26) that∫
D[vn(s, x)−u0(x)]w0dx = 0 as w0 is the constant function, consequently ρ0(s) =<
u0, w0 > and thus un(s)− Rvn(s) = L(un)(s)+ < u0, w0 > w0. We replace this in
(39) and obtain∫ t

0

χn(‖un‖q)
∫
D
f ′(un)undxds ≤

(40)∫ t

0

χn(‖un‖q)
∫
D
f ′(un)(L(un)+ < u0, w0 > w0)dxds+

1
2
B(u0).
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We use f ′(un)un = u4
n − u2

n and Young’s inequality to get that |f ′(un)(L(un)+ <
u0, w0 > w0)| ≤ c̃0|un|4 + c̃1|L(un)|4 + c̃2| < u0, w0 > w0|4 + c̃3, where c̃0, c̃1, c̃2,
c̃3 are positive constants (independent of un, L(un), < u0, w0 > w0) and c̃0 is as
small as we want. By replacing B(u0), as χn is non-negative and bounded function,
relation (40) gives for D bounded the desired estimate (31). �

4.3. Galerkin approximation of vn. We approximate vn by functions vmn belong-
ing to finite dimensional subspaces of L2(D) produced by the m first eigenfunctions
of the orthonormal basis of L2(D) in order to derive on the weak limit as m → ∞
the properties of vn. Let Sm :=< w0, w2, · · · , wm > be the finite dimensional sub-
space of L2(D) produced by the m first orthonormal eigenfunctions of the L2(D)
basis. Let define Pm : L2(D) → Sm such that < w, φ >=< Pmw, φ > for any
φ ∈ Sm; obviously Pm is the L2 projection of L2(D) into Sm.

We consider the following initial and boundary value problem: we seek a function
vmn ∈ Sm satisfying

∂tv
m
n + ∆2vmn − χn

(
‖umn ‖q

)
∆
[
Pm
(
f ′(umn )

)]
, in D, 0 < t ≤ T,

vmn (0, x) = Pm(u0)(x), in D,
(41)

∂vmn
∂n

=
∂∆vmn
∂n

= 0, on ∂D, 0 < t ≤ T,

where umn := vmn + L(un). We multiply the partial differential equation (41) by
vmn and integrate in D. The boundary conditions of (41) and the definition of the
projection Pm yield

1
2
d

dt
‖vmn ‖22 + ‖∆vmn ‖22 − χn(‖umn ‖q) < f ′(umn ),∆vmn >= 0, (42)

since ∆vmn is in Sm.

Remark 7. As in [15], our purpose is to estimate vn in the L2([0, T ], H2(D)) norm.
We establish first the analogous estimates for the Galerkin approximation vmn ; on
the weak limit as m→∞ the estimates for vn will follow.

By use of (42), since f ′(w) = w3 − w, then the next lemma follows.

Lemma 4.8. If w ∈ H2(D) and ∂w
∂n = 0 on ∂D, then

< w3,∆w >≤ 0, (43)

< f ′(w),∆w >≤ c0‖∆w‖22 + c
(

1 + ‖w‖44
)
, (44)

where c0, c are positive constants independent of w, and c0 is arbitrary small.

By Lemma 4.8 and the definition of f ′ we derive the following result.

Lemma 4.9. For the Galerkin approximation vmn holds that

< f ′(umn ),∆vmn >≤c‖L(un)‖2∞
(

1 + ‖L(un)‖4∞ + ‖vmn ‖44
)

+ c
(

1 + ‖vmn ‖44
)

+ c̃0‖∆vmn ‖22,

for c, c̃0 positive constants independent from vmn and un and c̃0 arbitrary small.

Using Lemma 4.9 we prove the next estimate.
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Theorem 4.10. Let un be the solution of SPDE (8); then for the Galerkin approx-
imation vmn the next estimate holds

1
2
‖vmn (t, ·)‖22 + c

∫ t

0

[
‖∆vmn (s, ·)‖22 +

∣∣∣ < vmn (s, ·), w0 > w0

∣∣∣2]ds

≤ 1
2
‖u0‖22 + cT

(
1 + ‖L(un)‖6∞ +

∣∣∣ < u0, w0 > w0

∣∣∣2)+ c
(

1 + ‖L(un)‖2∞
)
Xm

(45)

c
(

1 + ‖L(un)‖2∞
)∫ t

0

χn

(
‖vmn (s, ·) + L(un)(s, ·)‖q

)
‖L(un)(s, ·)‖44ds,

where

Xm := c̃

∫ t

0

(
1+ | < u0, w0 > w0|4 +‖L(un)‖4∞

)
ds+

1
2
‖
m∑
k=1

µ
−1/2
k < wk, u0 > wk‖22.

Proof. We use Lemma 4.9 in (42); χn is nonnegative and bounded function, hence

1
2
d

dt
‖vmn ‖22 + c‖∆vmn ‖22 ≤ cχn(‖vmn + L(un)‖q) ·

(46)
·
{
‖L(un)‖2∞(1 + ‖L(un)‖4∞ + ‖vmn ‖44) + c(1 + ‖vmn ‖44)

}
for c positive constant. We integrate (46) in [0, t] ⊆ [0, T ], we use that vmn (0, x) =
Pm(u0)(x) and the fact that by definition ‖Pm(u0)‖2 = ‖u0‖2 to obtain

1
2
‖vmn (t, ·)‖22 + c

∫ t

0

‖∆vmn (s, ·)‖22ds ≤ 1
2
‖u0‖22 + cT (1 + ‖L(un)‖6∞)

(47)

+c(1 + ‖L(un)‖2∞)
∫ t

0

χn(‖vmn (s, ·) + L(un)(s, ·)‖q)‖vmn (s, ·)‖44ds.

Using the orthonormal basis for representing vmn we write vmn =
∑m
j=0 ρ

m
j wj . In

equation (41) we take the inner product with Rvmn :=
∑m
j=1 ρ

m
j wj = vmn − ρm0 w0,

use the boundary conditions of vmn and the Neumann condition for wk, to obtain
for Sm 3 Qm := χn(‖umn ‖q)Pm(f ′(umn )) =

∑m
j=0 l

m
j wj that

1
2
∂t(

m∑
k=1

µ−1
k (ρmk )2) +

m∑
k=1

µk(ρmk )2+ < Qm, Rvmn >= 0.

Integration in time yields

1
2

m∑
k=1

µ−1
k (ρmk )2(t)− 1

2

m∑
k=1

µ−1
k (ρmk )2(0)+

∫ t

0

m∑
k=1

µk(ρmk )2(s)ds

+
∫ t

0

< Qm(s), Rvmn (s) > ds = 0.

(48)

By the definition of the L2 projection and Young’s inequality we get finally∫ t

0

χn(‖umn ‖q)‖umn ‖44ds ≤c̃
∫ t

0

(1 + |ρm0 (0)w0|4 + ‖L(un)‖4∞)ds

+
1
2
‖
m∑
k=1

µ
−1/2
k < wk, u0 > wk‖22,

(49)

where c̃ is a positive constant depending only on the measure of D and t. We note
that as vmn (0) = Pm(u0) then ρm0 (0) =< vmn (0), w0 >=< Pm(u0), w0 >=< u0, w0 >
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and consequently ρm0 (0)w0 =< u0, w0 > w0, replacing in (49) we arrive at the
estimate∫ t

0

χn(‖vmn + L(un)‖q)‖vmn + L(un)‖44ds ≤
(50)

c̃

∫ t

0

(1 + | < u0, w0 > w0|4 + ‖L(un)‖4∞)ds+
1
2
‖
m∑
k=1

µ
−1/2
k < wk, u0 > wk‖22,

We note that < vn, w0 > w0 =< vmn , w0 > w0 =< u0, w0 > w0, hence, by (47)
we get

1
2
‖vmn (t, ·)‖22 + c

∫ t

0

[‖∆vmn (s, ·)‖22 + | < vmn (s, ·), w0 > w0|2]ds ≤

1
2
‖u0‖22 + cT (1 + ‖L(un)‖6∞ + | < u0, w0 > w0|2)

(51)

+c(1 + ‖L(un)‖2∞)
∫ t

0

χn(‖vmn (s, ·) + L(un)(s, ·)‖q)‖vmn (s, ·)‖44ds.

The function χn is nonnegative; we use (50) in (51) and obtain the desired estimate
(45). �

Theorem 4.11. Let un be the solution of the SPDE (8), then for vn it holds that

1
2
‖vn(t, ·)‖22 + c

∫ t

0

[
‖∆vn(s, ·)‖22 +

∣∣∣ < vn(s, ·), w0 > w0

∣∣∣2]ds ≤

1
2
‖u0‖22 + cT

(
1 + ‖L(un)‖6∞ + | < u0, w0 > w0|2

)
+ c
(

1 + ‖L(un)‖2∞
)
X
(52)

c
(

1 + ‖L(un)‖2∞
)∫ t

0

χn

(
‖vn(s, ·) + L(un)(s, ·)‖q

)
‖L(un)(s, ·)‖44ds,

where

X := c̃

∫ t

0

(
1 + | < u0, w0 > w0|4 + ‖L(un)‖4∞

)
ds+

1
2
‖
∞∑
k=1

µ
−1/2
k < wk, u0 > wk‖22.

Proof. From the estimate (45), using that χn is bounded, we get that vmn ∈
L2(D)∩L2([0, T ], H2(D)) because the norm ‖w‖ := ‖∆w(s, ·)‖22+| < w(s, ·), w0 > |2
is equivalent to the H2(D) norm [19]. Thus, the sequence (vmn )m∈N is bounded
in L2([0, T ], H2(D)) and converges in the weak∗ topology of L2([0, T ], H2(D)) as
m→∞ [15]. Hence its weak limit is the weak solution of (25), and thus equals vn.
Consequently, we obtain that vn ∈ L2([0, T ], H2(D)). As (31) holds, by repeating
the same computations as in the proof of (45) for vn in place of vmn , the estimate
(52) follows. �

4.4. Existence of solution a.s. for any t. Our aim is to establish existence of
the solution of (7) in any time interval a.s. Now by Lemma 4.6, using the estimate
(52) and the Sobolev inequality we prove the following lemma.

Lemma 4.12. If un is the solution of the SPDE (8) then

sup
n∈N

E
(

sup
0≤t≤T

(∫ t

0

‖un‖aq
)β)

<∞, (53)

for any q ∈ [2,∞), a ∈ [q,∞).
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Proof. We remind that by Lemma 4.6

sup
n∈N

E(‖L(un)‖2pδ∞ ) <∞,

while
‖L(un)‖∞ := sup

t∈[0,T ]

sup
x∈D
|L(un)(t, x)|,

thus ∫ t

0

‖L(un)(s, ·)‖44ds ≤ T‖L(un)‖4∞.

By (52) we get

sup
t∈[0,T ]

‖vn‖2β2 ≤ c(1 + ‖L(un)‖6β∞ ) and E( sup
t∈[0,T ]

‖vn‖2β2 ) ≤ c(1 + E(‖L(un)‖6β∞ )).

Taking the supremum over n, we arrive at

sup
n
E( sup

t∈[0,T ]

‖vn‖2β2 ) ≤ c(1 + sup
n
E(‖L(un)‖6β∞ )) <∞. (54)

If ∂D is C1 and if w ∈ H2(D) then by Sobolev inequality [27], ‖w‖r ≤ c‖w‖H2(D)

for any r ≥ 2 (this inequality holds also in convex polyhedra as the L∞ norm is
bounded by the H2 norm [12]), hence (52) gives∫ t

0

‖vn(s, ·)‖2rds ≤ c
∫ t

0

‖vn(s, ·)‖2H2(D)ds ≤ c(1 + ‖L(un)‖6∞).

We set t = T and get E[(
∫ T

0
‖vn(s, ·)‖2rds)β ] ≤ c(1 + E(‖L(un)‖6β∞ )). Taking the

supremum over n the next estimate follows

sup
n∈N

E[(
∫ T

0

‖vn(s, ·)‖2rds)β ] ≤ c(1 + sup
n∈N

E(‖L(un)‖6β∞ )) <∞. (55)

By definition un = vn + L(un), and thus

‖un‖2βr ≤ c(‖vn‖2βr + ‖L(un)‖2βr ) ≤ c(‖vn‖2βr + ‖L(un)‖2β∞ ).

Therefore, by (54) and (55) follows for r ≥ 2

sup
n
E( sup

0≤t≤T
‖un‖2β2 ) <∞, and sup

n∈N
E[(
∫ T

0

‖un(s, ·)‖2rds)β ] <∞. (56)

Hölder inequality gives ‖un‖aq ≤ ‖un‖
2a(1−λ)/q
2 ‖un‖2r for λ ∈ [0, 1]. The previous

yields:
∫ T

0
‖un‖aqds ≤ c sup

0≤t≤T
‖un‖2a(1−λ)/q

2

∫ T

0

‖un‖2rds. Consequently

(
∫ t

0

‖un‖aqds)β ≤ c( sup
0≤t≤T

‖un‖2a(1−λ)/q
2 )β(

∫ T

0

‖un‖2rds)β ,

and by (56), the relation (53) follows for any q ∈ [2,∞), a ∈ [q,∞). �
Assume that the initial condition u0 of (8) is in Lq(D); by Theorem 3.1 un(·, t)

is in Lq(D) for any t ≤ T . We consider q ≥ 4 and prove the next theorems.

Theorem 4.13. If un solves the SPDE (8) and q ≥ 4 then

sup
n
E
(

sup
0≤t≤T

‖Mn(un)‖βq
)
<∞. (57)
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Proof. Let q ≥ 4 and set ρ := q/3; then by Young’s inequality and by the definition
of f ′ it follows that

‖f ′‖ρ = ‖u3
n − un‖ρ ≤ c‖un‖3q + c. (58)

Using (15) for ρ := q/3 and (58) we obtain for t0 := 0

‖Mn(un)‖q ≤ c
∫ t

0

(t− s)−
d+2
4 + d

4r (‖un‖3q + 1)ds. (59)

Hölder inequality for γ′ ∈ (1,∞) and (59) give

‖Mn(un)‖βq ≤ c+ c(
∫ T

0

‖un‖3γ
′

q ds)β/γ
′
,

and thus E(‖Mn(un)‖βq ) ≤ c + cE((
∫ T

0
‖un‖3γ

′

q )β)1/γ′ . Taking supremum over
t ∈ [0, T ] and n we arrive at

sup
n
E( sup

0≤t≤T
‖Mn(un)‖βq ) ≤ c+ c sup

n
E( sup

0≤t≤T
(
∫ T

0

‖un‖3γ
′

q ds)β)1/γ′ . (60)

By use of Lemma 4.12 and (60) for 3γ′ ≥ q ≥ 2 we obtain (57). �
We define the stopping time

Tn := inf
{
t ≥ 0 : ‖un(t, ·)‖q ≥ n

}
. (61)

Then the process u(·, t) := un(·, t) is well defined on any t ≤ Tn and constitutes a
solution for (7) in the interval [0, Tn) for any n ≥ 1. In the next theorem we will
show that lim

n→∞
Tn =∞ a.s, i.e. the solution u exists in [0, T ] for any T > 0 a.s.

Theorem 4.14. The solution u of the SPDE (7) exists in the interval [0, T ] for
any T > 0 a.s. or equivalently

lim
n→∞

p[Tn ≤ T ] = 0 for any T > 0.

Proof. We recall the definition (61) of Tn, that is if Tn ≤ T , then for any t : Tn ≤
t ≤ T follows that ‖un(t, ·)‖2βq ≥ n2β , and thus sup

Tn≤t≤T
‖un(t, ·)‖2βq ≥ n2β . Hence,

the next inequality follows for n > 0

p[Tn ≤ T ] ≤ p
[

sup
Tn≤t≤T

‖un(t, ·)‖2βq ≥ n2β
]
. (62)

But for the density f ≥ 0 of a probability measure in [0,∞) it holds that

p[y ≥ 1] =
∫ ∞

1

f(y)dy ≤
∫ ∞

1

yf(y)dy ≤
∫ ∞

0

yf(y)dy = E(y).

Setting y := n−2β sup
Tn≤t≤T

‖un(t, ·)‖2βq in (62), we obtain

p[Tn ≤ T ] ≤ E(y) =
1
n2β

E
(

sup
Tn≤t≤T

‖un(t, ·)‖2βq
)
. (63)

Obviously sup
[Tn,T ]

‖un‖2βq ≤ sup
[0,T ]

‖un‖2βq , therefore, (63) yields

p[Tn ≤ T ] ≤ 1
n2β

E
(

sup
0≤t≤T

‖un(t, ·)‖2βq
)
→ 0 as n→∞, (64)
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because by (57) of Theorem 4.13, Lemma 4.6, by (12), and the definition (27)
of ‖L(un)‖∞ holds that sup

n∈N
E
(

sup
0≤t≤T

‖un(t, ·)‖2βq
)
< ∞. Consequently the result

follows, i.e. lim
n→∞

p[Tn ≤ T ] = 0. �

5. Conclusions-Generalizations.

5.1. A geometry based existence proof for the Stochastic Cahn-Hilliard.
Inspired by Cardon-Weber’s paper [15] for cubic domains, we relate in our work the
role of domain’s geometry in an existence proof for a stochastic equation. As in [15,
19] we use an eigenvalue-dependent convolution semi-group. It is well known that
the spectrum defines exactly the domain. For general geometry, the computation of
exact formulae for the eigenvalues and spectral analysis is one of the most difficult
open problems.

A. Avoiding any explicit eigenvalue formula, we derive the space-time Hölder
estimates (21), (22), (23) for the Green’s kernel for various simply connected D:

1. d = 1: if D is an open interval.
2. d = 2:

(a) if D is convex and of smooth boundary,
(b) if D is a convex polyhedron,
(c) if D is Lipschitz and of smooth boundary (see Remark 6, here convexity

is not necessary).
3. d = 3: for the same cases (a), (b), (c) as in d = 2, plus the property of

minimum eigenfunctions growth.
These estimates are independent results useful for the analysis of fourth order sto-
chastic equations with various types of noise (Itô, Stratonovich, in the sense of
Walsh).

B. In our existence proof we also use the Green’s estimates (13), (14) of [24]
and the resulting (15), (16) for domains of smooth boundary that can be extended
in convex polyhedra. Therefore, since all other arguments in this paper hold true,
existence for the generalized stochastic C-H equation (1) is valid for any case pre-
sented in A. The title refers only to convexity while existence is proved for various
domains not necessarily convex, because our proof does not cover the non-convex
polyhedral case. Convexity seems to be an important issue for the proof of (13), (14)
for piece-wise smooth boundaries, since only in the convex case the approximating
smooth domain sequence is in D (see Remark 3, or the cubic case in [15]).

C. In [15] the case D = (0, π)d for F2 = 0 was analyzed and the explicit eigenvalue
formulae for this cube was used. As mentioned in the introduction, if D is a cube of
edge a, then by using the C-H scale i.e. the change of variables x→ x

a/π , t→ t
a2/π2

we can always consider the equivalent C-H in (0, π)d, therefore the result of [15] is
extended for any cube.

For a general rectangular domain of Rd, d = 2, 3 with edges ai one could trans-
form D into the cube (0, π)d by applying a weighted change of space variables
xi → xi

ai/π
in every direction, but this would change the fourth order operator ∆2

at the right-hand side of C-H i.e. the Green’s function and the weak formulation,
so the result of [15] is not directly applicable. In our eigenvalue formulae-free proof
this case is considered as a special case of convex polyhedron; we denote that in
rectangles the minimum eigenfunction growth holds (this property is needed in our
analysis only if d = 3).
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D. Existence is also derived for the standard ε-dependent stochastic C-H equation
(9) (see Remark 2).

5.2. Noise in the chemical potential. The noise in (1) or the ε-dependent (9)
is splited in two terms. Every term has a different physical meaning. The chemical
potential noise describes external fields while the free-energy independent noise
may describe thermal fluctuations or external mass supply. This presentation is
important in an equivalent stochastic system formulation (see Remark 2).

Acknowledgment. The second author is supported by a Marie Curie Interna-
tional Reintegration Grant within the 7th European Community Framework Pro-
gramme, MIRG-CT-2007-200526, and partially supported by the FP7-REGPOT-
2009-1 project “Archimedes Center for Modeling, Analysis and Computation”. The
authors would like to thank Prof. S. Luckhaus and Prof. E. Presutti for stimulating
discussions. The authors also wish to thank the two anonymous referees for their
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6. Appendix. In this appendix, we provide detailed definitions concerning sto-
chastic processes, Wiener processes and Ft− adaptive processes.

6.1. Definitions. We proceed by presenting the following basic definitions [42, 6,
44, 46]:

• Let Ω, F a σ−algebra on Ω, and P : F → [0, 1] a probability measure on
(Ω,F). A function Y : Ω → Rn is called F−measurable if Y −1(U) := {ω ∈
Ω;Y (ω) ∈ U} ∈ F , for any Borel set U ⊂ Rn.

• A random variable X is an F−measurable function X : Ω→ Rn, and induces
a probability measure µX on Rn, defined by µX(B) := P (X−1(B)). The
measure µX is called distribution of X.

• Expectation of X: E[X] :=
∫

Ω
X(ω)dP (ω) :=

∫
Rn xdµX(x).

• For p ∈ [1,∞) and X : Ω → Rn,we define the Lp norm by ‖|X‖|p =
(
∫

Ω
|X(ω)|pdP (ω))1/p. The space Lp(P ) := {X : Ω → Rn; ‖|X‖|p < ∞}

is a Banach space with the norm ‖| · ‖|p, and for p = 2 is Hilbert space with
the inner product (X,Y ) := E[XY ].

• A family {Xt, t ∈ I} of Rn-valued random variables is called a stochastic
process with index set I and state space Rn.

• Let {Ft}t≥0 be an increasing family of σ−algebras of subsets of Ω. The process
σ(t, ω) : [0,∞) × Ω → R is called Ft−adapted, if for any t ≥ 0 the function
ω → σ(t, ω) is Ft−measurable.

• A stochastic process {Xt, t ∈ [t0, T ]}, t0 ≥ 0 defined on the probability space
(Ω,F , P ) with index set I = [t0, T ] ⊂ [0,∞) and state space Rn, where
F = (Bn)[t0, T ] is the product σ-algebra generated by the Borel sets of Rn in
Bn for t ∈ [t0, T ], is called Markov process if for any t0 ≤ s ≤ t ≤ T and any
B ∈ Bn then P (Xt ∈ B|F([t0, s])) = P (Xt ∈ B|Xs). Given a Markov process
the past and future are statistically independent when the present is known.

• The Wiener process is a mathematical model of the Brownian motion of a
free particle in the absence of friction, and is defined as a homogeneous n-
dimensional Markov process Wt on [0,∞) with stationary transition proba-
bility P (Wt+s ∈ B|Ws = x) =

∫
B

(2πt)−n/2e−|x−y|
2/2tdy.
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• Burkholder inequality for stochastic integrals, [44], [46]:

E[|
∫
y

f W (dy)|p] ≤ cE[(
∫
y

f2dy)p/2],

for any p ≥ 2 when
∫
y
f W (dy) is a local martingale; here c is a positive

constant. We note that in Itô calculus this inequality appears as identity for
p = 2 and c = 1 and is called Itô isometry [42].
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