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Abstract

We give a new, elementary proof of the theorem, due to J. Escher and G. Simonett, that for the
initial conditions close to Eucleadian spheres the solutions of the volume-preserving mean curvature
flow converge to Eucleadian spheres (which, in general, differ from the initial spheres). Our result is
in the metric given by Sobolev norms. While the proof by J. Escher and G. Simonett uses extensively
rather involved results from the infinite-dimensional invariant manifold theory and quasilinear parabolic
differential equations, our main point is to use an orthogonal decomposition of the solutions near the
manifold of Euclidean spheres and differential inequalities for the Lyapunov functionals. Apart from
local well-posedness, which is proven along standard lines, our proof is completely self-contained.

1 Introduction

In this paper we study the long time behavior of volume preserving mean curvature flow (VPMCF). This
flow is a natural modification of the mean curvature flow (MCF) such that the volume enclosed by the
evolving surface is preserved. Besides of an interest on its own, such a flow appears in material sciences
as an interface dynamics in the case of the mass conservation (see e.g. [I7, [5] [7] and was used recently in
Differential Geometry and General Relativity ([I3] 11]). Given an initial simple, closed hypersurface Sy in
R™*! the latter flow determines a family {S;; ¢ > 0} of smooth closed hypersurfaces in R"*! satisfying the
following evolution equation:

V =h—H, (1)

where V = V(t) denotes the normal velocity of S; at time ¢t and H = H(t) stands for the mean curvature of
S¢. Finally, h = h(t) is the average of the mean curvature on Sy, i.e.,

Hd
h= M, t>0. (2)
fSt do

If © = o(u,t) is a parametrization of S; (or an immersion), then V = Oyx - v, where v is the unit normal
vector field on S;.

*Department of Applied Mathematics, University of Crete & TACM/FORTH, Heraklion, Crete, Greece
TDepartment of Applied Mathematics, University of Crete & IACM/FORTH, Heraklion, Crete, Greece
fDepartment of Mathematics, University of Toronto, Toronto, Canada



VPMCF, August 28, 2010 2

Like the MCF, the VPMCF shrinks the area of the surfaces, is invariant under rigid motions (transla-
tions and rotations) and appropriate scaling, but, unlike the MCF, the VPMCF has stationary solutions -
Euclidean spheres (for closed surfaces) and cylinders for surfaces with flat boundaries.

The global well-posedness of VPMCF for smooth and uniformly convex initial conditions and for Hoélder
continuous initial conditions close to spheres was proven in [12] and [9], respectively. Results of this paper
imply the global well-posedness for Sobolev initial conditions close to spheres.

G. Huisken ([I2]), in the general case, and M. Gage ([10]), for curves, proved that the solution to (1)) exists
globally and converges exponentially fast to a sphere, provided that the initial surface Sy is uniformly convex
and smooth. Moreover, it is shown in [12, [I0] that S; stays uniformly convex for all ¢ > 0. Athanassenas
[3, 4] has shown neckpinching of certain class of rotationally symmetric surfaces under the volume preserving
modification of the mean curvature flow. See also N. Alikakos and A. Freire [1]. Later J. Escher and G.
Simonett ([9]) proved, by means of a center manifold analysis, the asymptotic stability of spheres under
Holder norm (see also [15]).

In this paper we give a new, elementary proof of this theorem, in the metric given by Sobolev norms.
(Though the proof in [9] is short and elegant it uses extensively rather involved results from the infinite-
dimensional invariant manifold theory and quasilinear parabolic differential equations). Our main point is
to use an orthogonal decomposition of the solutions near the manifold of Euclidean spheres and differential
inequalities for the Lyapunov functionals. Apart from local well-posedness, which is proven along standard
lines, see [12], our proof is completely self-contained. We believe our techniques can be extended to other
flows, such as anisotropic volume preserving mean curvature flow ([2]), Mullins-Sekerka and Hele-Shaw
models in the theory of phase transitions (see e.g. [g]).

Let I be the n—dimensional unit sphere in R**1, centered at the origin, and let H* be the Sobolev
space over I'. Our main result is as follows.

Theorem 1. For initial conditions in H*, for some k > n/2+ 1, and close to Euclidean spheres, solutions
of exist globally and, ast — oo, converge exponentially in H*, k > n/2 + 1 to Euclidian spheres.

More precise formulation of Theorem [I| will be given in Section [2| Note that the initial conditions here
do not have to be convex (the principal curvatures could be of either sign and arbitrary large in absolute
value) and that the theorem implies that the VPMCEF has no stationary solutions close to Euclidean spheres.

In Section [2] we give a precise formulation of Theorem [I| in terms of graphs over spheres. In Section
we find the equation for the graph function equivalent to . The proof of Theorem [1}is given in Sections
[ 8] with some technical computations carried out in Appendices The latter appendices were worked
out jointly with Wenbin Kong and are used also in [I4].
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2 Volume preserving flow for graphs

Let I be the n—dimensional unit sphere in R™*!, centered at the origin, and let a hypersurface S be a graph
(in normal direction) over T, i.e. there exists a function p : I' — R such that

0, :w s plww (3)

is a diffeomorphism from I" to S. We write S = graphrp.

Let Sk . denote the sphere of radius R, centered at z € R"™!, o = (R, z) and p, be the map from I to
R such that 6, (w) = po(w)w is a diffeomorphism from I' to S,. Let o = (1,0), then po = 1. We give a
more precise version to Theorem

Theorem 2. If the initial datum Sy of equation satisfies So = graphrpo, with po € H*(T) and ||po —
Uge < 1 for some k > 5 + 1, then has a unique global solution, Si, which is a graph over I' of
p(t) € H*(T') and which satisfies
_e
10(t) = paiyllax S e

for some a(t) such that a(t) — s for some aoo. Here 8 > 0 is the 3rd smallest eigenvalue of the negative
Laplace-Beltrami operator —A on L?(T).

3 Differential equation for p

In what follows g;; is the metric induced on I' by the inner product in R"*! and A is the Laplace-Beltrami
operator in this metric. In the local coordinates u (with a local parametrization z = x(u)) we have g;; :=

‘Z\‘z’: %‘ Let V and Hess = V? be the standard connection on I' and the Hessian on T, respectively

(see e.g. [16]). In components, Hessp(V,W) = V'Hess;jpW7, where Hess;; = V;V; and where the

A2 -
summation over the repeated indices is assumed. In local coordinates on I', (Hessp);; = % — FZ%,

where I‘fj = %gk”(% + %gﬁ - ggui{ ). We also identify Vp with the gradient of p, with the components
km Op

oum”

Vip=yg

Proposition 3. Let S; be a graph in normal direction over T', determined by the function p(-,t) : T — R.
Then Sy satisfies the if and only if p satisfies the equation

Op=G(p)+9(p), (4)
with 1
G(p) = ;Ap - % - M(Hessp(vp, Vp) = plVol?), (5)
and
o)== [ Gy [ o )
where

w(p) = p?*+ Vol (7)
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Proof. Assume S; is a normal graph over T' determined by the function p(-,t) : T' — R. We extend p to
R\ {0} by p(x,t) = p(,t) = p(a(x),t), where & = L and o : R"™! — T, a(x) := & . Then we can write

||

Sy = {z € R""1 . p(x,t) = 0}, where ¢(x,t) = |z| — p(z,1). is equivalent to
Orp = (]31 — h)|Vap| on Sy, (8)

where V,, is the usual gradient in 2 and H := div( ‘gw‘) and his given in . We compute that 0, = —9,p,

Vaep = % — Vyp and
|z]
‘vx‘ﬂ =1+ ‘vxﬁ|2 (9)

and therefore

Ap=J(p) on Sy, (10)
where J(5) = \/T+ [VapP2(h — H) with 7 — div(\/'%). Since F(\z) = j(z), we have that z- V45 = 0.

Differentiating this equation with respect to z; we find that x-V,0,,p = —0,,p, and therefore x-V,|V,p|? =
2|V.p|*. Using this relation, we compute
ﬁ —Ayp _|71\|vwﬁ|2 + Vaup - Hessy(p)Vap

+ po )
V1+ Va2 (1+|Vap|?)3/2

where Hess, := (0,0, ), the standard Hessian in z. Let » = |z|. We note first that due to the well-known

z J

x
representation (see [6])

H= (11)

1
Ay =r7"0,r"0, + A on R (12)
r

we have that A,p |s,= ﬁ—lep. Next, we need the following lemmas which is proved in Appendices |A| and
respectively:

Lemma 4.

Vil® = IVl (13)
Vap - HessypVap = ﬁH essp(Vp, Vp). (14)

Lemma 5. Write s € S as s = p()y, v €. Then
[ 1= [0 me (15)

The first lemma and the equations H = H|g, and give

H(p) == ———L——G(p). (16)

N7k

and therefore J(p)|s, = @h + G(p). To compute h we use in addition, the second lemma to obtain ().

This, together with , gives - (@ Hence if S; = graphrp satisfies , then p = p(t) satisfies (4) - @
Reversing the steps we see that if p satisfies (4) - (6), then S; = graphrp, satisfies (1)) O

In the following we will consider equation (4)) instead of equation ().
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4 Linearized map

In this section we study, on L?(T), the linear operator L, = —0J(ps), which is the Gateaux derivative of
the map

J(p) == G(p) + g(p), (17)

see (4), at the sphere p,. We begin with the easiest case of the linearization on a sphere of radius R
centered at the origin: Lpg := —0J(R) (pro = R). Using the definition and the elementary relations
plp=r= R, Oppt |p)=r=1, G |p)=r= —% and 0,G |,=r= =, We obtain (see [§])

1 n

Proposition 6. Lgg is self-adjoint on L?(T') with discrete spectrum, o(Lgo), accumulating at +oo. More-
Il In+1

over, 0(Lpo) C [0,+00) and 0 is an eigenvalue of multiplicity n+2 with the eigenfunctions {1, R W}

Proof. Since (n, [&) = [71 /&= [(fME = ([ n,&) and since A is self-adjoint, we have that Lpq is self-
adjoint as well. By the general fact that I" is compact, the spectrum of Lpgq is discrete and accumulating at
400. Observe that Lrgl = 0. Consider Lgo acting on 1+ = {¢ € L*(I') : [.£ =0} and let L, = Lro|a1)-
Then Ly, = —7z(A + n). The spectrum of —A is well-known (see [18]): {I(l +n —1),l = 0,1,---},

with the corresponding eigenspaces H; of the dimension dim H; = ( n:l > — ( " +7i_ 2 > . Moreover,

Hy = span{l} and Hy, = spcm{%7 e ,“”%ll} Hence the spectrum of Lgg is {0, gz({((l+n—1) —n) : 1 =
2,3,---}, with the zero eigenvalue of multiplicity n + 2 having the eigenfunctions {1, %, cee %} Hence

the proposition follows.

This proposition implies the estimate

n+2 .o . x! zn
Hf” if §J~17 T .
R? || |z|

(& LRro§) > (19)

A key fact in understanding the spectrum of the operator L, is that d,p, are zero modes of this operator:
Ly0upa = 0. (20)

Indeed, this equation is obtained by differentiating J(po) = 0 we find 0J(pa)0apa = 0. These zero modes
are related to the zero modes of the operator Lpg described in Proposition [f] The fact that S, = graphp,
can be written as |p, (%)% — z| = R implies that p,(2)2 + |2|? — 2pa(2)2 - & = R? and therefore

pa(@) = 2z-2+1/R2 = (z-#1)2, where (z-21)% := |2)? — (2 - &)?

L

and, recall, £ = - Differentiating the former relation with respect to R and 27, we obtain

>

Orpa() = -t and 0 o) = L2 2 (21)

>
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Hence we have that

Orpa(2) =14 O(|2]), 0.ipa(t) = 27 + O(|2]), (22)
which relates to Proposition @
shows that Span{0spa} C Null L,. We conjecture that
Span{Oapat = Null L. (23)

For |z(«)| sufficiently small, this conjecture follows from Proposition |§| by perturbation theory, using the
following decomposition, which can be easily seen from the definition of L,

Lo = Lgo+ M, (24)

where a = (R, z) and where the 2nd order operator M satisfies the estimate | M&|| < ¢|z|||Lro&]|.

5 Orthogonal decomposition of solutions

In what follows the inner product and orthogonality relation is understood in the sense of L?(T"). We define
the manifold of spheres as M = {p, : @ € RT x R""1}. We have T, M = span{drpa,0.ipa}. Thus
2,5 =0,...,n+ 1, where we denoted 2 = 1, span an approximate tangent space T,,M. Recall that
o =(1,0) and po = 1.
Proposition 7. There is 6 > 0, s.t. if ||p — par|| < &, then there exists a = a(p) so that

p—pa L3l j=0,...,n+1, in L*(T,dy).

Moreover, |a(p) — &/| S [lp = parll and llp = pagllize < o — par e k.

Proof. The orthogonality conditions on the fluctuation can be written as F(p,«) = 0, where F : L*(T') x
R x R**1 — R s defined as F(p,a) = (p — pa,2’). Here and in what follows, all inner products are
the L? inner products.

Note first that the mapping F'is C*° and F'(pq, @) = 0, Va. We claim that the linear map 0, F (p, ) |p=p.,
is invertible, provided |z|, where (R, z) = «, is sufficiently small. Indeed, let «° = R, o/ = 27, j =1,... , n+1.
We compute using that

9ai F(p, a)lP:ch == <aaipavi'j> == <i'zvjj> + O(]z]).

Since (#%,47) is a diagonal matrix diag(— [ 1,— [L(21)2,--+, = [o(2"T)?) we have that 0o F(p, @)|p=p,, is
invertible, if |z is sufficiently small. Recall that o/ = (R,0). Hence, |z| < |a — /| and is small, if |a — o] is
small. Thus, the first part of the proposition follows by the implicit function theorem.

Next we expand the function F(p, «) in « around o’
F(p, a) = F(p, O/) + alF(p) 0/)(0( - O/) + R(pv Ot),
where R(p,a) = O(Ja — /|?) uniformly in « and p for p in a small neighbourhood of p,. Hence we have
la—a/| S F(p,a/)+|a—a/[?. Since |[F(p,a’)| < [lp—par|| < 1, it follows that [a—a/| < [F(p, )| < llp—pa |-

The latter estimate, the triangle inequality, [|p — pa(p) lax S 10— porllar + |Par — Pa(p) | e and the estimate
lpar — pallar <o’ — af imply the last inequality of the proposition. O
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6 Reparametrization of solutions

Applying Proposition [7] to the solution p(t) we find «a(t) s.t.

p('% t) = Pa(t) (’7) + 5(77 t)? (25)

where ¢ L xi, j=0,...,n+1,, as long as lp(t) — porll < 6. Plug into to obtain

€ = —Lal + N(§) + F, (26)
where
La = _6J(pa)7
N(&) = J(pa + &) — J(pa) — 0T (pa); (27)
F = —0upq - Q.

Now, we project onto span{#?, 7 =0,...,n+1}. By £13 and Lgod,4? =0, 7 =0,...,n+1,
we have

o (0i6,87) = = (§,037) = 0,
o (La&#7) = (& Lad’) = (&, M),
° <.7:,5pj> =-3, o <aaipa,fj>.

Then we obtain Q& = (N (), Oupa) — <§, Ma:AJ> , where € is the matrix with the entries Q¥ = <3M-pa, icj>,

i,j=0,1,--- ,n+ 1. By (22)), we know that Q% = (', 27) 4+ O(|z|). Assume |z| < 1. Then by the proof of
Proposition [7} we know that € is invertible. This gives us

&= Q_l(<~/\/(£)vaapa> - <§7Mj">)7

which implies

& S IN (€I + 1=111€ll- (28)

Next, we estimate N (€), defined in (27), with (L7), (5) and (6). An explicit expression for N/(€) is rather
long and is given in Appendix [C] Here we write out only the worst term:

 Hess(€)(VE, VE)

, 29
2+ VEP) 29
where, recall, p = p, + £. Hence, assuming that |¢| < %pa, we have that

IV < (IVENZs + 1€l ) lIEN = + 1€l - (30)

This together with gives

(&) S (IVEIT + €l m)lIE] 2 + [2]l1€]- (31)
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7 Lyapunov functional

In this sectlon we assume that Proposition [7|holds and therefore the solution p can be written as p Pat+E,
n+1
with & 1 1 =% in L2(T). Let o = (R, z). For k > 1, we define the functional Ay (£) = 1€, Lk 0),

’\wl’“" ]

where L is given by (18) (i.e. Lroé = fﬁ(A +n)+ R Jr-€) and, recall, the inner product is taken in
L3(T). Since € L 1 =~ we have, by (19), that (Lro&, &) > 22 (|€]12.

a|w‘a"'7 [z »

Proposition 8. There exist constants ¢ > 0 and C > 0 such that

cR™2M||€|20 < Ak(§) < CR™F|€]%.

Proof. By a standard computation, we see that there exists a C' > 0 such that (¢, L},&) < CR™2*||¢[12.,
We prove the lower bound below. Recall (¢, Lro€&) > “2[|€[|2. From the definition of Lgo we also have
(€, Lro&) = C1R72||VE|)? — CoR72|€]|? for some C; > 0 and C3 > 0. These two inequalities imply that

(€, Lro&) = A(& Lpo&) + (1 = A) (& Lro&)
> AC1R72||VE|]2 — AC2R2||€]12 + (1 — A)(n + 2)R2||¢]?
= ACL1R72([|[VEI? + [I€]1?),

provided that A = where C' = n + 2.

__Cc
C+C1+Cy?

For the general case, observe that Lgg is a self-adjoint operator and L’feo has the same eigenfunctions as
Lo with eigenvalues { gk (I(l +n — 1) —n)* : 1 = 0,1,---}. Hence, by ([19), (¢, Lk&) > (%=2)¥[£]|2. On
the other hand, we have as before (¢, L%0&) > (44)"[|[€]|%% — C||€]|*]. Then proceeding as before we find
(& Lk &) 2 R72||¢||2,,, which is the lower bound in the proposition. O

Proposition 9. Let k > 2 + 1, [2| < 1 and |¢] < §pa. Then there exists a constant C > 0 such that

n+2

M2 A [ — COWOY + AL €I (32)

Ok (§) < — 3

Proof. We have %& <§,L’f30 > <5‘t§ Lk 0§> %<£, (atL§0)§>. Now, using , we obtain

Oy (& L&) = — (La&, L&) + (N(€), L&) + (F, L&) + <§, (0:L0)€) - (33)

We consider each term on the right hand side. First, we observe that one can show readily that the operator
M in the decomposition , L. = Lro + M, satisfies the estimate

k=1 k1
I1LRs ME|l < clz[l Lgg <ll- (34)
Using this estimate and the lower bound 7 we obtain

Lo&, LE
<1 €k+1 RO§> 1 k k k—1 k41
ULy €17+ 3 (Liig€, LroL i€ ) + (Lg ME Lpg €)

LESY " kE k k41 (35)
2 3lllas €7 + 5 (Lo Lio€) = clellL €17
> HLnp €1 + HRALE).
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To estimate the next term we need the following inequality proven in Appendix B:

1L NOI 'S (AY2(€) + AL 1Ly €]l (36)
This estimate implies that
N©. L) | =1 (L MO L €).
1L NI €l (37)

<
< C(AY2(€) + ML) | L €.

We have by ,
[ (F, Li€) | = |él| (Qapas L) | = 18] (L0Dapa, &) |

Next, we use , the relation Lrg0qpa = MOupe and ( . ) to obtain
| (F, L&) | < CUIVENT o + €l + [2DIEN a2 1€l (38)
Finally, using and , we obtain

| (€ (8L §>\—| < o) | < CUIVEIRw + €l + 12D 1€ ] a2 1L o (39)

Now, by the condition £ > Z + 1 and Prop031t10n we have that ||VE|| L, ||§||H2 €N e < C’AI/2(§)
This, together with . . 6 . ) and (39) and the condition |z| < 1, gives O

8 Proof of Theorem [2

First, we note that we can either assume that the initial conditions are smooth and use the proof of [12] of
local well-posedness of or we can adapt the latter proof to the Sobolev spaces used here.

We begin with an estimate of |z| and |a — o/| (recall, that a = (R, z) and o/ = (1,0)) in terms of the
Lyapunov functionals Ag(§). Using the estimates |0;|z|| < |2| < |&| and | V€] L, |I€]la2, [|€]lar < C1A 1/2(5)
and Eqn , we obtain

1/2 AL/2
0u]2]] < Ca[A(€) + A2 (€) + 214, (&) (40)

By Gronwall’s inequality the equation implies
1/2 t
|2(t)] < CzeCtdo M7 EENds (|| +/0 max(AY2(€(r)), Ax(&(r))dr). (41)
Finally, by we have that |&] < C5[Ax(§) + A,lc/z( &)+ |z]]A 1/2( ) and therefore
o= /] < Jao — /] + Cs[Ak(€) + A2 (€) + 214 (). (42)

Let § be the same as in Proposition [7] and let £ be s.t. Proposition [9] holds for |z| < e. The initial
condition, &, for ¢ is given in Proposition [7] with p = po. By the latter proposition we can take initial
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condition py such that Ak(&))l + Ak(&))k < 150’ where the constant C' is the same as in Proposition @

Ar(&0) + |20] < 757¢, where C’ 03604, and |ag — /| + (1 + Cs n+2) 1/2(50) < 16, with the constants
C3, C4 and Cs, the same as in and ( . Let

Clearly, T > 0 while we assume T' < co. Then for any ¢ < T we get 9;A,(§) < —%2 A, (€). Integrate this:

T = sup{t > 0 : Ar(£(t)? + AR(E(t))F <

+2

Ag(€) < Ag(&o)e™ "1, (43)

which implies
1

+ A(E(T))* < Akl€0)* + Ar(é0)" < 15 (44)

[N

AR (§(T))
and, together with ,

1
12(t)] < C'(Jzo| + Aw(é0)) < 1 (45)
uniformly in ¢. Finally, Eqns , and imply that
1 1
A€+l —of| < 6. (46)

This, together with and 7 contradicts the assumption 7" < oo, so 7' = oo and , and
are valid for all ¢ < oo.

By and we have that |&| <

[Ax(€ )+A1/2( & +1z]]A 1/2( 6) < e*;TgtAiﬂ(fo). Hence there exists
Qoo > 0 such that |a(t) — as| S e Tk 1/2(50) To sum up we have p(7y,t) = pa@)(v) +£(7,t) and, by

Propositionand @3), € mr Se 2R2t||§(0)HHk and |a(t) — ax] S e 2R2t|\§( )| g+ for some ase > 0.
Due to the definition (25)), this proves Theorem 0O

A Appendix A: Proof of Lemma

Let 8 : U — R™"! be a local parametrization of I', and we denote p in the local coordinates, p o 3, again as
p: U — R. We write p := poa = pofo~toa, which we rewrite as p = poo, where o := ~loa : R — U.

ou” oul

DaT T = g, where we use the convention of summing over

Now, writing u = u(z) = o(x), we define
repeated indices. We claim

. ; 1
Gij(2)g”" (u) = lez’5ik- (47)
Indeed, since (o (x)) = a(z), we have
ox' ou™  dat 1 xiad
(3am ° D 07 = B5d = m(%‘ - W)- (48)

Note that ¢ is homogeneous of degree 0, so x - Vo = 0. This together with implies that

n

oy 5,0 Fi n

37 (@)gju(u) = g 5 (5 © 0)(Gw 0 0) (49)
— 1 ou (5 _ :vmx")am _ 1 Ou' 92"

|z] xgm \TMn |z]2 / Ouk 2] 9z™ duk
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ut o’ Aul 1 [ Ou’
Since |x| 5. 15 homogeneous of degree 0, we have that |x| M,,L = g |r, and therefore 5% = 2] (5aalT)-
ox?

Using o o § = 1y we compute that (aw] o B)g—gi = O;k, which is equivalent to 9% |F(W 00) = d;. This
gives us

w0t L o o1y
dxm ouk x| oz ouk T x|
From and we have the equation (47).
In what follows we use the relations 68 L. = g;;V7p (this follows from the definition of Vp) and 0,:p =

Buj Bp . .
5a7 5oy~ Using these relations and (47)) we can compute

(50)

V2 = O p0cp
= Q00O = G (2) Dk pDyr p

51
= (@G (V™ P W)V = V01V (51
= oelVel
This gives .
Now we prove ([14)). We have
Vo Hesso(9)V o = 001 iR, 6001
_ du™ Op ol i(au )Bu” op
- 81; gum (69x7 gulk 8i7 %u . %ﬁj dum
_ = P u u
= 9" gum 91 (557 5uF) 97 Bum (52)
— ~ml~kn Op 0%p  Op + ~ml _Op i(auk)@ ou™ Op
- 9 Ou™ Juluk du™ Ou™ Oul \ OxI / Ouk dxi Oum™
= A+ B.
Then o2 o2
_ =ml=kn p p . _ 1 ol p k
A=9"G" gmpV g e FndVip = z |4V Pouiaar Y P (53)
and
_1=ml dp 8p 8p 8 (0uF\d 1 9p dp 8p 8 (0u"\ouF
B = 30" 5 5 v oot (37; ) almLa + 29m Dar Do Dok Dut (597 ) 57
— lgml _Op @ﬂi(%%)
2 Ou™ Ouk dun Bu]lc Oxd Oz
_ lxml 9p Op Op 03""
-2 du™ Quk dum Oul *
Now B = B; = By = B3, where
_ 95k 8 a5k o
Br = 13" gy grs B 2 o NPV D = o ks B gen VPV P,
_ ~kn a5k o
By = %gmlgmsgm" agul auk EVTpVip = 2|910‘2 Gnr agus Fuk EVTpVep,
—m ~kn
B3 = %g lgkrgns agul aum V"pVep.
Hence ) 9
I
B=- G fsa pVTpVSp7 (54)
where I'2, = ‘zl (grs dur +gm 6u5 — 223" grr Gns aul ) Using that dur (gksg P) = 82T(|;‘253p) = 0 (points

k
x € R"™! are parameterized by 3(u) and |z|), we compute gksﬁf = 87" (grs™) — gkp% = —g’w%.
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This gives
— Iw‘Q ~kp Ogks ~kp Ogkr 2 ~pl ~kn Ogns
e, = 2, (g P 5u T3 P EC |5L'| 9" gkrg™" Dul )
_ |zl (=kp Ogks ~kp Ogkr _ ~pk OFrs
-2 (g ou” +9g Ous 9" Buk )

Since |z| = 1, and therefore gP* = g*?, we have that on T

1 agks agkr 8grs
P _ _ kP _
rs = o9 (8u7" T ow T ok )
which coincides with our definition for I'’_ at the beginning of Section
Equations (52)), and and the relations Hessp(V,W) = Vi(Hessp);;W’ and (Hessp)i; =
% — Ik Op give . This finishes the proof of the lemma. O

iJ Ouk

B Appendix B: Proof of Lemma

In this appendix we prove Lemmal[5} In what follows we drop the subindex ¢ in S;, as well as the t—dependence
of p. First, we note that if 8(u) is a local parametrization of ', then

Bu) = p(B(u))B(u) (55)

is a local parametrization of S. We denote metrics on I' and S by g;; := gzrj and g;; := gfj, respectively. Let
g := det(gi;) (not to be confused with the map g(p) defined in (6)) and g := det(g;;).

The following lemma proves a simple formula estabilishing the relation between g and g.

Lemma 10.

g=p"""g (p2 + \VPIQ)- (56)
Proof. The definitions g;; = ‘g‘zk ‘giu’; and g;; = ng giuj, imply
da* w Op [ Od”  Op
9ij (au’erU 8u")<6u3p+0 8u1) (57)
Since 0 -0 =1 on I' and therefore o - ai% =0, (57) gives
- dp Op
o= 2 _
gzg gsz + auz 8u3’
and hence 9 8
_ p Op
—4q t( e —) 58
g et\gip”+ ou® OuJ (58)

Writing (91‘,7‘02 + 595 OOTPJ) = p2G/? (1 + ,0_2G_1/2(%)(%)G_1/2)Gl/z, where G := (g;5), we compute

§=pg det(l + )\P), (59)

where A := p~2|Vp|? and P is the projection onto the vector G*1/2(£f’j ). Due to the relation det (1+)\P) =
1+ A, for any rank-one projection P, we arrive at .

O
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By the local definition of the integral over a surface, we have

_ =, _ WL
/S J= /U Fp(B(w)B))v/Gdmu = / £(o() >\/; | (60)

The last equation together with and the definition (7)) proves (15).

C Appendix C: Expression for N (&)

In this appendix we derive the explicit expression for the term N (), defined in , with , and @
Let OF(p) and 9?F(p)) denote the first and second Gateaux derivatives of F(p) evaluated at p, OF (p) : £ —
OF (p)¢ and 02F(p) : (£,m) — 0%F(p)(&,n) and at € and n. Recall the notation

n(p) = v p* +|Vpl?
and the definition of the map J. In what follows we use the shorthand f~ (&,m) = Hessf(&,n). We have
Lemma 11. The nonlinearity N'(§) := J(pa + &) — J(pa) — 0J(pa)§ can be written as

N(E) = / s / T 40T (po + 1€)(E,€), (61)

where 82 J(p) = 02°G(p) + 0%g(p), with 0*G(p) and 8*g(p) given by

2 ’ﬂ2
2G(p)(e.6) = — L0842 20t

p4 p3
L 2AVER 2VpVERpE +5VpVE) | 2AVpPE(pt + 2VpV)
pH? ppt pPut
_ 2VpEVE | 2VplE N 8|Vp|*VpVE(p€ + VpVE)
p*u? p3u? pus (62)

—— (26" (V0. V) + 5" (VE, V)

3¢2 E(pE+VpVE)  A(pE+VpVEE & +|VEPN
_2(p4,ﬁ L8l p3u4p ) | A p%g )¢ p2lu4 | )p (Vp.Vp)
3 § + VpVE " .
+2<p3u2 +2 P2/~Lf )(2,0 (Vp, V&) +¢ (Vp,Vp)>
" 2 2+ VpEVE  E+EVE | (p6 + VpVE)?
2 o 2u 5 P p 3 p p
ro (L - BTV ope - M gep(e g, (63
PH P
where

Jr Gp)p"

1 n n—1
B(p) == T a1 3B§=W/F(5’G(P)€P + G(p)np"1E)
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- ful ( / Glp)p" / (Ou(p)ep™ " + p(p) (n — 1>pn—25)) , (64)
“Ble.6) = T (L2000 +2 [ 06 e+ [ atn -6 )
fﬁ(i()i S 0 00 42 [ o) =1 [ n =) 2t )
W ( /F@G(p)fp” +Glpnp"'¢) /F (Or(p)ep™ " + plp)(n — 1)pn—2g))

+ 2W (/F(au(p)fp”‘l +u(p)(n — 1)p”‘2§)>2 /F G(p)p

2
with a'u(p)£: W’ 92 ( )(5 f) & +V§V§ (Pﬁ-‘rZSpVE) , and

A 2Ap né
9G(p)§ = 2B + pol

L 2VpVE |Vl 2|W|2(P5 +VpVe)
pH? p2u? put (66)

1 " 17

20 (2 (Vp, V&) +¢ (Vp,Vp))

€ pELVpvE
+2(p3u2+” Mp )0" (V0. V).

Proof. We write the nonlinearity N'(§) := J(pa + &) — J(pa) — 0J(pa)€ in the standard form

1 s
© = [ ds [ are2sien v, (67)
0 0
The definitions of the first and second Géteaux derivatives imply
9J(p)€ = 0rJ (p +78)|r=0, (68)
and
2J(p)(€,€) = 07T (p+ 7€) |r=0- (69)

Using the expressions above, we obtain the formula
1 s

— [as [ areraien +ro)(cc). (70)
0 0

We use 92J(p) = 8?G(p) + 0?g(p), and compute 9?°G(p) and 9%g(p) separately. Using the definition

Ap n Vo p'(Vp,Vp)
G = — - — 4+ - 9 71
(v) pP?p o pp? P2 (7D
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we find and .

Next, we use the definition of g(p), which can be rephrased as g(p) = —A(p)B(p), where A(p) := —) nd
B(p) := ffFMG(p £ as in the lemma. Using this representation and using 8%g = —9*AB — 20A0B — A82
and

onlp)e = LIIIVE
V=R
Puip)(e.6) = VL LTV
VR +IVpE (0P +IVpl?)¥
we obtain .
Finally, using the definition of B in , we find , and . O

D Appendix D: Proof of (36
Lemma 12. Let k > % + 1 and assume that || < 1po. Then
1L NI S (A2 + AL €]l (72)

k—1
Proof. Assume first that k is an integer. Then ||[Lz2 nl| = [[nl|%x-1 = [[9l|32 + [[V*"!5]|32. Now, by Lemma
|VE=IN(€)| is bounded above by terms of the form |¢1(VE)" (V1) - (V‘XS§)|, where

0<t,r<k+1,1<s<k t4+r+s>22<ay<---<a;<k—s+2, a1+ -+a;,<k+s. (73)
Note that the last two conditions in imply that s < k. Then by Hélder’s inequality we have

IVF NN < IVEIL< Vo - IV<€

|Lps s

1 _ 1
ps 27

where L + ... 4
P1

Since k > §+1, we have, by the Sobolev embedding theorem, that ||£||zee +||VE] e S [J€]| grr. Moreover,
we choose p; so that k —a; > § — > foralli=1,--- ,s—land k+1—as > 5 — p% (this choice implies
22:1 aj < g+1+(k—13)s, Wthh is compatlble with (73] . Then, using the Sobolev embedding theorem
again, we have |V*||r: < ||€]|gw, for i = 1,- — 1, and [|[V*=£ < ||€||g#+1. Combining these
estimates gives us

k—1
5 -1
ILgg NI S NENTE IEN zw-
Now from 1 <7+ s — 1 < 2k and Proposition [8| we obtain ([72]). Furthermore, one can easily check that k
can be taken arbitrary close to & + 1 (this means that one is able to satisfy 1 > a; — i, fori=1,---,s—1,
220zs—£andai227 Vi).

If k is not integer, we proceed as follows. Let 3 =k — [k] € (0,1). We use the space H” with the norm

dh

1l s = 1F 122 + BT

AR e,
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where Ay, f(2) = f(z + h) — f(z). We have the embeddings
s S g S flpgors B < B (74)
Let us prove the first embedding:

(A + 1)P2f(x) = Caf(x) + / (f(x — 1) — F(2)Cs(y)dy,

where Cj3 is an analytic continuation of Cs := [ Gg(z)dx with Re(B) < n and G(y) := [ e¥*(|k|2+1)%/2dk.
Note that G(y) ~ |y|~"~” as |y| — 0 and is exponentially decaying at co. So

1£llzs = 1(=A+ 1) fllz2 < Call fll = + Iy |n+5||A yfllez Sl s

which proves the first embedding in .
For the second embedding, let ¢ = (—A + 1)5l/2f. Then

F=(A+1)"2p= /@a/ (x —y)p(y)dy,

where G/ (y) := [e¥*(|k|]> + 1)=%"/2dk. Note that Gs (y) ~ |y|~"+" as |y| — 0 and is exponentially
decaying at co. Let <3< . Then

f|h\<1 \h|n+ﬁ HAthL2 ~ ~ ~ ~

Sn<r ism | fiay <o (G (z +h—y) = Gar(x = y))pW)dy + [, 10(Gar (@ + h —y) = Gz — y)p(y)dyl| 2

< Jier o (R o ya b = 9177 =5 o)yl o + B Sy o 12— 91"~ o)y 22)
S lellee = 11flgs

(75)
and

dh ih
/h>1 WIIAthm < 2[[fllre /|h>1 e SF Nl -

This proves the second embedding in .
Using , we obtain

1MLz &illme S el An T, &l
i—1 s
—Ez:lf \h|n+ﬁ|| H] 15]Ah§z HJ =i+1 ThfjH2
S Z?:l(nj;éz HEJ

where Ty, f(z) = f(z + h), >.° =17 ) = % Using appropriate embeddings, we conclude finally that

I H&IIH@ S Z H & o (76)

i=1 j=1

where cg-i) > 5 — # V4 # i and cgi) — B3> & — . Similarly as before we know that ZJ 1 j —B>5(s—1),

which guarantees the existence of py).
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For k not an integer, we write

IVl e ~ (=2 + DPEVN(E)]| 2, (77)
where m = [k] — 1 and 8 =k — [k] € (0,1). VN (€) is treated as before to obtain
VN (€) ~ E(VE)TVHE - Vg, (78)

wheret <m+2,r<m+2,2<ao; <m-—s+3, Z‘;:laj§m+1—|—s,s§m+landt+r+522.

If a; < m+2 Vj, then, using (76) with & = V¢ Vi, ¢l +a; =k ¥j #i and ¢ +a; = k+1, we find

S
1" (Ve TT V€lms < €N €l sres- (79)
j=1
We use this estimate, together with and (78], to obtain
2(k]
IN N1 €N lE N s (80)

If g = m + 2 and therefore s = 1, then we let f = £4(VE)" and proceed as
(“A+ DV = f(-A+ )PPV [(-A+ 1), [V (81)
The first term on the r.h.s. is easy to estimate:

[f(=A+ 1)ﬁ/2vm+z§|| < [ ool 1€l e+
< el 8 s < 52y NENG 18] prasa

To estimate the second term in the r.h.s. we note that

(A + 1572, fln = [(f(z) — f(y))Gs(z — y)n(y)dy
[z —2)(f(z —2) — f(x))Gp(2)dz.
Using this representation we obtain for 8 > 3,
I[(=A 4+ 1)572, flnll
sup, [|n(- — ><f§f||m<dl> 127 1Ga(2)|dz
sup, ||n(- - z>%||mz>

||77||q sup, ||W”pa

(82)

IN A IN

where % + % = % Similar to , we have

sup || == Az fllme S I lgvears v >
z

||V

Using this estimate and Sobolev embedding theorem, we find

A.f
II(=A+1)%2, flnllz < lInll e sup IIWllm S lnllzell £l gover
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Whereﬁ”>ﬂ',a>%—%,b>g—

. Taking f = (V€)™ and n = V™ 2¢, a = 3, we find

n
P

(=2 + 172, [V 2] < 1€ (VE) | s 1€l s

Note that 8" +r>n— 5 = 5. Let 3” +r = j. As before, we estimate

T 1 jt jt+1 jt4r r ; n
IV s S D2 IV VIV Ve S g Vi > 5
Jit it r=j

Since k > § + 1, we can take j = k — 1 and so

I1(=A+1)%2, (V2| < (NG NE N rrwsr,

where, recall, f = £1(VE)". This inequality together with , and implies also in this case.

As was mentioned above implies (72]). O]
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