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Abstract

We give a new, elementary proof of the theorem, due to J. Escher and G. Simonett, that for the
initial conditions close to Eucleadian spheres the solutions of the volume-preserving mean curvature
flow converge to Eucleadian spheres (which, in general, differ from the initial spheres). Our result is
in the metric given by Sobolev norms. While the proof by J. Escher and G. Simonett uses extensively
rather involved results from the infinite-dimensional invariant manifold theory and quasilinear parabolic
differential equations, our main point is to use an orthogonal decomposition of the solutions near the
manifold of Euclidean spheres and differential inequalities for the Lyapunov functionals. Apart from
local well-posedness, which is proven along standard lines, our proof is completely self-contained.

1 Introduction

In this paper we study the long time behavior of volume preserving mean curvature flow (VPMCF). This
flow is a natural modification of the mean curvature flow (MCF) such that the volume enclosed by the
evolving surface is preserved. Besides of an interest on its own, such a flow appears in material sciences
as an interface dynamics in the case of the mass conservation (see e.g. [17, 5, 7] and was used recently in
Differential Geometry and General Relativity ([13, 11]). Given an initial simple, closed hypersurface S0 in
Rn+1 the latter flow determines a family {St; t ≥ 0} of smooth closed hypersurfaces in Rn+1 satisfying the
following evolution equation:

V = h−H, (1)

where V = V (t) denotes the normal velocity of St at time t and H = H(t) stands for the mean curvature of
St. Finally, h = h(t) is the average of the mean curvature on St, i.e.,

h :=

∫
St
Hdσ∫

St
dσ

, t ≥ 0. (2)

If x = σ(u, t) is a parametrization of St (or an immersion), then V = ∂tx · ν, where ν is the unit normal
vector field on St.
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Like the MCF, the VPMCF shrinks the area of the surfaces, is invariant under rigid motions (transla-
tions and rotations) and appropriate scaling, but, unlike the MCF, the VPMCF has stationary solutions -
Euclidean spheres (for closed surfaces) and cylinders for surfaces with flat boundaries.

The global well-posedness of VPMCF for smooth and uniformly convex initial conditions and for Hölder
continuous initial conditions close to spheres was proven in [12] and [9], respectively. Results of this paper
imply the global well-posedness for Sobolev initial conditions close to spheres.

G. Huisken ([12]), in the general case, and M. Gage ([10]), for curves, proved that the solution to (1) exists
globally and converges exponentially fast to a sphere, provided that the initial surface S0 is uniformly convex
and smooth. Moreover, it is shown in [12, 10] that St stays uniformly convex for all t ≥ 0. Athanassenas
[3, 4] has shown neckpinching of certain class of rotationally symmetric surfaces under the volume preserving
modification of the mean curvature flow. See also N. Alikakos and A. Freire [1]. Later J. Escher and G.
Simonett ([9]) proved, by means of a center manifold analysis, the asymptotic stability of spheres under
Hölder norm (see also [15]).

In this paper we give a new, elementary proof of this theorem, in the metric given by Sobolev norms.
(Though the proof in [9] is short and elegant it uses extensively rather involved results from the infinite-
dimensional invariant manifold theory and quasilinear parabolic differential equations). Our main point is
to use an orthogonal decomposition of the solutions near the manifold of Euclidean spheres and differential
inequalities for the Lyapunov functionals. Apart from local well-posedness, which is proven along standard
lines, see [12], our proof is completely self-contained. We believe our techniques can be extended to other
flows, such as anisotropic volume preserving mean curvature flow ([2]), Mullins-Sekerka and Hele-Shaw
models in the theory of phase transitions (see e.g. [8]).

Let Γ be the n−dimensional unit sphere in Rn+1, centered at the origin, and let Hk be the Sobolev
space over Γ. Our main result is as follows.

Theorem 1. For initial conditions in Hk, for some k > n/2 + 1, and close to Euclidean spheres, solutions
of (1) exist globally and, as t→∞, converge exponentially in Hk, k > n/2 + 1 to Euclidian spheres.

More precise formulation of Theorem 1 will be given in Section 2. Note that the initial conditions here
do not have to be convex (the principal curvatures could be of either sign and arbitrary large in absolute
value) and that the theorem implies that the VPMCF has no stationary solutions close to Euclidean spheres.

In Section 2 we give a precise formulation of Theorem 1 in terms of graphs over spheres. In Section 3
we find the equation for the graph function equivalent to (1). The proof of Theorem 1 is given in Sections
4-8, with some technical computations carried out in Appendices A-D. The latter appendices were worked
out jointly with Wenbin Kong and are used also in [14].
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2 Volume preserving flow for graphs

Let Γ be the n−dimensional unit sphere in Rn+1, centered at the origin, and let a hypersurface S be a graph
(in normal direction) over Γ, i.e. there exists a function ρ : Γ→ R such that

θρ : ω 7→ ρ(ω)ω (3)

is a diffeomorphism from Γ to S. We write S = graphΓρ.

Let SR,z denote the sphere of radius R, centered at z ∈ Rn+1, α = (R, z) and ρα be the map from Γ to
R such that θρα(ω) = ρα(ω)ω is a diffeomorphism from Γ to Sα. Let α′ = (1, 0), then ρα′ ≡ 1. We give a
more precise version to Theorem 1.

Theorem 2. If the initial datum S0 of equation (1) satisfies S0 = graphΓρ0, with ρ0 ∈ Hk(Γ) and ‖ρ0 −
1‖Hk � 1 for some k > n

2 + 1, then (1) has a unique global solution, St, which is a graph over Γ of
ρ(t) ∈ Hk(Γ) and which satisfies

‖ρ(t)− ρα(t)‖Hk . e−
θ
2 t

for some α(t) such that α(t)→ α∞ for some α∞. Here θ > 0 is the 3rd smallest eigenvalue of the negative
Laplace-Beltrami operator −∆ on L2(Γ).

3 Differential equation for ρ

In what follows gij is the metric induced on Γ by the inner product in Rn+1 and ∆ is the Laplace-Beltrami
operator in this metric. In the local coordinates u (with a local parametrization x = x(u)) we have gij :=
∂xk

∂ui
∂xk

∂uj . Let ∇ and Hess = ∇2 be the standard connection on Γ and the Hessian on Γ, respectively
(see e.g. [16]). In components, Hessρ(V,W ) = V iHessijρW

j , where Hessij = ∇i∇j and where the
summation over the repeated indices is assumed. In local coordinates on Γ, (Hessρ)ij = ∂2ρ

∂ui∂uj − Γkij
∂ρ
∂uk

,

where Γkij := 1
2g
kn(∂gjn∂ui + ∂gin

∂uj −
∂gij
∂un ). We also identify ∇ρ with the gradient of ρ, with the components

∇kρ = gkm ∂ρ
∂um .

Proposition 3. Let St be a graph in normal direction over Γ, determined by the function ρ(·, t) : Γ → R.
Then St satisfies the (1) if and only if ρ satisfies the equation

∂tρ = G(ρ) + g(ρ), (4)

with
G(ρ) =

1
ρ2

∆ρ− n

ρ
− 1
ρ2µ2(ρ)

(Hessρ(∇ρ,∇ρ)− ρ|∇ρ|2), (5)

and

g(ρ) := −µ(ρ)
ρ

∫
Γ

G(ρ)ρn/
∫

Γ

µ(ρ)ρn−1, (6)

where
µ(ρ) =

√
ρ2 + |∇ρ|2. (7)
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Proof. Assume St is a normal graph over Γ determined by the function ρ(·, t) : Γ → R. We extend ρ to
Rn+1 \ {0} by ρ̃(x, t) = ρ(x̂, t) = ρ(α(x), t), where x̂ = x

|x| and α : Rn+1 → Γ, α(x) := x̂ . Then we can write
St = {x ∈ Rn+1 : ϕ(x, t) = 0}, where ϕ(x, t) = |x| − ρ̃(x, t). (1) is equivalent to

∂tϕ = (H̃ − h)|∇xϕ| on St, (8)

where ∇x is the usual gradient in x and H̃ := div( ∇xϕ|∇xϕ| ) and his given in (2). We compute that ∂tϕ = −∂tρ̃,
∇xϕ = x

|x| −∇xρ̃ and

|∇xϕ| =
√

1 + |∇xρ̃|2 (9)

and therefore
∂tρ̃ = J̃(ρ̃) on St, (10)

where J̃(ρ̃) =
√

1 + |∇xρ̃|2(h− H̃) with H̃ = div(
x
|x|−∇xρ̃√
1+|∇xρ̃|2

). Since ρ̃(λx) = ρ̃(x), we have that x ·∇xρ̃ = 0.

Differentiating this equation with respect to xi we find that x ·∇x∂xi ρ̃ = −∂xi ρ̃, and therefore x ·∇x|∇xρ̃|2 =
2|∇xρ̃|2. Using this relation, we compute

H̃ =
n
|x| −∆xρ̃√
1 + |∇xρ̃|2

+
− 1
|x| |∇xρ̃|

2 +∇xρ̃ ·Hessx(ρ̃)∇xρ̃
(1 + |∇xρ̃|2)3/2

, (11)

where Hessx := (∂xi∂xj ), the standard Hessian in x. Let r = |x|. We note first that due to the well-known
representation (see [6])

∆x = r−n∂rr
n∂r +

1
r2

∆ on Rn+1, (12)

we have that ∆xρ̃ |St= 1
ρ̃2 ∆ρ. Next, we need the following lemmas which is proved in Appendices A and B,

respectively:

Lemma 4.
|∇xρ̃|2 =

1
|x|2
|∇ρ|2, (13)

∇xρ̃ ·Hessxρ̃∇xρ̃ =
1
|x|4

Hessρ(∇ρ,∇ρ). (14)

Lemma 5. Write s ∈ S as s = ρ(γ)γ, γ ∈ Γ. Then∫
St

f =
∫

Γ

f(ρ(·)·)µ(ρ)ρn−1. (15)

The first lemma and the equations H = H̃|St and (11) give

H(ρ) :=
−ρ√

ρ2 + |∇ρ|2
G(ρ). (16)

and therefore J̃(ρ̃)|St = µ(ρ)
ρ h + G(ρ). To compute h we use in addition, the second lemma to obtain (6).

This, together with (10), gives (4) - (6). Hence if St = graphΓρ satisfies (1), then ρ = ρ(t) satisfies (4) - (6).
Reversing the steps we see that if ρ satisfies (4) - (6), then St = graphΓρt satisfies (1).

In the following we will consider equation (4) instead of equation (1).
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4 Linearized map

In this section we study, on L2(Γ), the linear operator Lα = −∂J(ρα), which is the Gâteaux derivative of
the map

J(ρ) := G(ρ) + g(ρ), (17)

see (4), at the sphere ρα. We begin with the easiest case of the linearization on a sphere of radius R
centered at the origin: LR0 := −∂J(R) (ρR0 = R). Using the definition (7) and the elementary relations
µ |ρ=R= R, ∂ρµ |ρ=R= 1, G |ρ=R= − n

R and ∂ρG |ρ=R= n
R2 , we obtain (see [8])

LR0ξ = − 1
R2

(∆ + n)ξ +
n

|Γ|R2

∫
Γ

ξ. (18)

Proposition 6. LR0 is self-adjoint on L2(Γ) with discrete spectrum, σ(LR0), accumulating at +∞. More-
over, σ(LR0) ⊂ [0,+∞) and 0 is an eigenvalue of multiplicity n+2 with the eigenfunctions {1, x

1

|x| , · · · ,
xn+1

|x| }.

Proof. Since
〈
η,
∫
ξ
〉

=
∫
η
∫
ξ =

∫
(
∫
η)ξ =

〈∫
η, ξ
〉

and since ∆ is self-adjoint, we have that LR0 is self-
adjoint as well. By the general fact that Γ is compact, the spectrum of LR0 is discrete and accumulating at
+∞. Observe that LR01 = 0. Consider LR0 acting on 1⊥ = {ξ ∈ L2(Γ) :

∫
Γ
ξ = 0} and let L⊥R0 = LR0|(1⊥).

Then L⊥R0 = − 1
R2 (∆ + n). The spectrum of −∆ is well-known (see [18]): {l(l + n − 1), l = 0, 1, · · · },

with the corresponding eigenspaces Hl of the dimension dim Hl =
(
n+ l
n

)
−
(
n+ l − 2

n

)
. Moreover,

H0 = span{1} and H1 = span{ x
1

|x| , · · · ,
xn+1

|x| }. Hence the spectrum of LR0 is {0, 1
R2 (l(l + n − 1) − n) : l =

2, 3, · · · }, with the zero eigenvalue of multiplicity n+ 2 having the eigenfunctions {1, x
1

|x| , · · · ,
xn+1

|x| }. Hence
the proposition follows.

This proposition implies the estimate

〈ξ, LR0ξ〉 ≥
n+ 2
R2
‖ξ‖2 if ξ ⊥ 1,

x1

|x|
, · · · , x

n+1

|x|
. (19)

A key fact in understanding the spectrum of the operator Lα is that ∂αρα are zero modes of this operator:

Lα∂αρα = 0. (20)

Indeed, this equation is obtained by differentiating J(ρα) = 0 we find ∂J(ρα)∂αρα = 0. These zero modes
are related to the zero modes of the operator LR0 described in Proposition 6. The fact that Sα = graphρα
can be written as |ρα(x̂)x̂− z| = R implies that ρα(x̂)2 + |z|2 − 2ρα(x̂)z · x̂ = R2 and therefore

ρα(x̂) = z · x̂+
√
R2 − (z · x̂⊥)2, where (z · x̂⊥)2 := |z|2 − (z · x̂)2

and, recall, x̂ = x
|x| . Differentiating the former relation with respect to R and zj , we obtain

∂Rρα(x̂) =
R

ρα(x̂)− z · x̂
and ∂zjρα(x̂) =

ρα(x̂)x̂j − zj

ρα(x̂)− z · x̂
. (21)
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Hence we have that
∂Rρα(x̂) = 1 +O(|z|), ∂zjρα(x̂) = x̂j +O(|z|), (22)

which relates (20) to Proposition 6.

(20) shows that Span{∂αρα} ⊂ Null Lα. We conjecture that

Span{∂αρα} = Null Lα. (23)

For |z(α)| sufficiently small, this conjecture follows from Proposition 6 by perturbation theory, using the
following decomposition, which can be easily seen from the definition of Lα,

Lα = LR0 +M, (24)

where α = (R, z) and where the 2nd order operator M satisfies the estimate ‖Mξ‖ ≤ c|z|‖LR0ξ‖.

5 Orthogonal decomposition of solutions

In what follows the inner product and orthogonality relation is understood in the sense of L2(Γ). We define
the manifold of spheres as M = {ρα : α ∈ R+ × Rn+1}. We have TραM = span{∂Rρα, ∂zjρα}. Thus
x̂j , j = 0, . . . , n + 1, where we denoted x̂0 ≡ 1, span an approximate tangent space TραM. Recall that
α′ = (1, 0) and ρα′ ≡ 1.

Proposition 7. There is δ > 0, s.t. if ‖ρ− ρα′‖ ≤ ε, then there exists α = α(ρ) so that

ρ− ρα ⊥ x̂j , j = 0, . . . , n+ 1, in L2(Γ, dγ).

Moreover, |α(ρ)− α′| . ‖ρ− ρα′‖ and ‖ρ− ρα(ρ)‖Hk . ‖ρ− ρα′‖Hk ∀k.

Proof. The orthogonality conditions on the fluctuation can be written as F (ρ, α) = 0, where F : L2(Γ) ×
R+ × Rn+1 → Rn+1 is defined as F (ρ, α) =

〈
ρ− ρα, x̂j

〉
. Here and in what follows, all inner products are

the L2 inner products.

Note first that the mapping F is C∞ and F (ρα, α) = 0, ∀α. We claim that the linear map ∂αF (ρ, α)|ρ=ρα
is invertible, provided |z|, where (R, z) = α, is sufficiently small. Indeed, let α0 = R, αj = zj , j = 1, . . . , n+1.
We compute using (22) that

∂αiF (ρ, α)|ρ=ρα = −
〈
∂αiρα, x̂

j
〉

= −
〈
x̂i, x̂j

〉
+O(|z|).

Since
〈
x̂i, x̂j

〉
is a diagonal matrix diag(−

∫
Γ

1,−
∫

Γ
(x̂1)2, · · · ,−

∫
Γ
(x̂n+1)2) we have that ∂αF (ρ, α)|ρ=ρα is

invertible, if |z| is sufficiently small. Recall that α′ = (R, 0). Hence, |z| ≤ |α− α′| and is small, if |α− α′| is
small. Thus, the first part of the proposition follows by the implicit function theorem.

Next we expand the function F (ρ, α) in α around α′:

F (ρ, α) = F (ρ, α′) + ∂αF (ρ, α′)(α− α′) +R(ρ, α),

where R(ρ, α) = O(|α − α′|2) uniformly in α and ρ for ρ in a small neighbourhood of ρα. Hence we have
|α−α′| . F (ρ, α′)+|α−α′|2. Since |F (ρ, α′)| . ‖ρ−ρα′‖ � 1, it follows that |α−α′| . |F (ρ, α′)| . ‖ρ−ρα′‖.
The latter estimate, the triangle inequality, ‖ρ− ρα(ρ)‖Hk . ‖ρ− ρα′‖Hk + ‖ρα′ − ρα(ρ)‖Hk and the estimate
‖ρα′ − ρα‖Hk . |α′ − α| imply the last inequality of the proposition.
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6 Reparametrization of solutions

Applying Proposition 7 to the solution ρ(t) we find α(t) s.t.

ρ(γ, t) = ρα(t)(γ) + ξ(γ, t), (25)

where ξ ⊥ x̂j , j = 0, . . . , n+ 1, , as long as ‖ρ(t)− ρα′‖ ≤ δ. Plug (25) into (4) to obtain

∂tξ = −Lαξ +N (ξ) + F , (26)

where
Lα = −∂J(ρα),
N (ξ) = J(ρα + ξ)− J(ρα)− ∂J(ρα)ξ,
F = −∂αρα · α̇.

(27)

Now, we project (26) onto span{x̂j , j = 0, . . . , n + 1}. By ξ⊥x̂j and LR0∂αj x̂
j = 0, j = 0, . . . , n + 1,

we have

•
〈
∂tξ, x̂

j
〉

= −
〈
ξ, ∂tx̂

j
〉

= 0,

•
〈
Lαξ, x̂

j
〉

=
〈
ξ, Lαx̂

j
〉

=
〈
ξ,Mx̂j

〉
,

•
〈
F , x̂j

〉
= −

∑
i α̇

i
〈
∂αiρα, x̂

j
〉
.

Then we obtain Ωα̇ = 〈N (ξ), ∂αρα〉 −
〈
ξ,Mx̂j

〉
, where Ω is the matrix with the entries Ωij =

〈
∂αiρα, x̂

j
〉
,

i, j = 0, 1, · · · , n+ 1. By (22), we know that Ωij =
〈
x̂i, x̂j

〉
+O(|z|). Assume |z| � 1. Then by the proof of

Proposition 7, we know that Ω is invertible. This gives us

α̇ = Ω−1(〈N (ξ), ∂αρα〉 − 〈ξ,Mx̂〉),

which implies
|α̇| . ‖N (ξ)‖1 + |z|‖ξ‖1. (28)

Next, we estimate N (ξ), defined in (27), with (17), (5) and (6). An explicit expression for N (ξ) is rather
long and is given in Appendix C. Here we write out only the worst term:

− Hess(ξ)(∇ξ,∇ξ)
ρ2(ρ2 + |∇ξ|2)

, (29)

where, recall, ρ = ρα + ξ. Hence, assuming that |ξ| ≤ 1
2ρα, we have that

‖N (ξ)‖1 . (‖∇ξ‖2L4 + ‖ξ‖L2)‖ξ‖H2 + ‖ξ‖2H1 . (30)

This together with (28) gives

|α̇| . (‖∇ξ‖2L∞ + ‖ξ‖H1)‖ξ‖H2 + |z|‖ξ‖1. (31)
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7 Lyapunov functional

In this section we assume that Proposition 7 holds and therefore the solution ρ can be written as ρ = ρα+ ξ,
with ξ ⊥ 1, x

1

|x| , · · · ,
xn+1

|x| in L2(Γ). Let α = (R, z). For k ≥ 1, we define the functional Λk(ξ) = 1
2

〈
ξ, LkR0ξ

〉
,

where LR0 is given by (18) (i.e. LR0ξ = − 1
R2 (∆ +n)ξ+ n

|Γ|R2

∫
Γ
ξ) and, recall, the inner product is taken in

L2(Γ). Since ξ ⊥ 1, x
1

|x| , · · · ,
xn+1

|x| , we have, by (19), that 〈LR0ξ, ξ〉 ≥ n+2
R2 ‖ξ‖2.

Proposition 8. There exist constants c > 0 and C > 0 such that

cR−2k‖ξ‖2Hk ≤ Λk(ξ) ≤ CR−2k‖ξ‖2Hk .

Proof. By a standard computation, we see that there exists a C > 0 such that
〈
ξ, LkR0ξ

〉
≤ CR−2k‖ξ‖2Hk .

We prove the lower bound below. Recall 〈ξ, LR0ξ〉 ≥ n+2
R2 ‖ξ‖2. From the definition of LR0 we also have

〈ξ, LR0ξ〉 = C1R
−2‖∇ξ‖2 − C2R

−2‖ξ‖2 for some C1 > 0 and C2 > 0. These two inequalities imply that

〈ξ, LR0ξ〉 = λ 〈ξ, LR0ξ〉+ (1− λ) 〈ξ, LR0ξ〉
≥ λC1R

−2‖∇ξ‖2 − λC2R
−2‖ξ‖2 + (1− λ)(n+ 2)R−2‖ξ‖2

= λC1R
−2(‖∇ξ‖2 + ‖ξ‖2),

provided that λ = C
C+C1+C2

, where C = n+ 2.

For the general case, observe that LR0 is a self-adjoint operator and LkR0 has the same eigenfunctions as
LR0 with eigenvalues { 1

R2k (l(l + n − 1) − n)k : l = 0, 1, · · · }. Hence, by (19),
〈
ξ, LkR0ξ

〉
≥ (n+2

R2 )k‖ξ‖2. On
the other hand, we have as before

〈
ξ, LkR0ξ

〉
≥ ( n

R2 )k[‖ξ‖2Hk − C‖ξ‖
2]. Then proceeding as before we find〈

ξ, LkR0ξ
〉

& R−2k‖ξ‖2Hk , which is the lower bound in the proposition.

Proposition 9. Let k > n
2 + 1, |z| � 1 and |ξ| ≤ 1

2ρα. Then there exists a constant C > 0 such that

∂tΛk(ξ) ≤ −n+ 2
R2

Λk(ξ)− [
1
3
− C(Λk(ξ)1/2 + Λk(ξ)k)]‖L

k+1
2

R0 ξ‖2. (32)

Proof. We have 1
2∂t
〈
ξ, LkR0ξ

〉
=
〈
∂tξ, L

k
R0ξ
〉

+ 1
2

〈
ξ, (∂tLkR0)ξ

〉
. Now, using (26), we obtain

1
2
∂t
〈
ξ, LkR0ξ

〉
= −

〈
Lαξ, L

k
R0ξ
〉

+
〈
N (ξ), LkR0ξ

〉
+
〈
F , LkR0ξ

〉
+

1
2
〈
ξ, (∂tLkR0)ξ

〉
. (33)

We consider each term on the right hand side. First, we observe that one can show readily that the operator
M in the decomposition (24), Lα = LR0 +M , satisfies the estimate

‖L
k−1

2
R0 Mξ‖ ≤ c|z|‖L

k+1
2

R0 ξ‖. (34)

Using this estimate and the lower bound (19), we obtain〈
Lαξ, L

k
R0ξ
〉

= 1
2‖L

k+1
2

R0 ξ‖2 + 1
2

〈
L
k
2
R0ξ, LR0L

k
2
R0ξ
〉

+
〈
L
k−1

2
R0 Mξ,L

k+1
2

R0 ξ
〉

≥ 1
2‖L

k+1
2

R0 ξ‖2 + n+2
2R2

〈
L
k
2
R0ξ, L

k
2
R0ξ
〉
− c|z|‖L

k+1
2

R0 ξ‖2

≥ 1
3‖L

k+1
2

R0 ξ‖2 + n+2
R2 Λk(ξ).

(35)
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To estimate the next term we need the following inequality proven in Appendix B:

‖L
k−1

2
R0 N (ξ)‖ . (Λ1/2

k (ξ) + Λkk(ξ))‖L
k+1

2
R0 ξ‖. (36)

This estimate implies that

|
〈
N (ξ), LkR0ξ

〉
| = |

〈
L
k−1

2
R0 N (ξ), L

k+1
2

R0 ξ
〉
|

≤ ‖L
k−1

2
R0 N (ξ)‖‖L

k+1
2

R0 ξ‖
≤ C(Λ1/2

k (ξ) + Λkk(ξ))‖L
k+1

2
R0 ξ‖2.

(37)

We have by (27),
|
〈
F , LkR0ξ

〉
| = |α̇||

〈
∂αρα, L

k
R0ξ
〉
| = |α̇||

〈
LkR0∂αρα, ξ

〉
|.

Next, we use (31), the relation LR0∂αρα = M∂αρα and (34) to obtain

|
〈
F , LkR0ξ

〉
| ≤ C(‖∇ξ‖2L∞ + ‖ξ‖H1 + |z|)‖ξ‖H2‖ξ‖1. (38)

Finally, using (18) and (31), we obtain

|
〈
ξ, (∂tLkR0)ξ

〉
| = |2kṘ

R

〈
ξ, LkR0ξ

〉
| ≤ C(‖∇ξ‖2L∞ + ‖ξ‖H1 + |z|)‖ξ‖H2‖L

k
2
R0ξ‖

2. (39)

Now, by the condition k > n
2 + 1 and Proposition 8 we have that ‖∇ξ‖L∞ , ‖ξ‖H2 , ‖ξ‖Hk ≤ CΛ1/2

k (ξ).
This, together with (33), (35), (37), (38) and (39) and the condition |z| � 1, gives (32).

8 Proof of Theorem 2

First, we note that we can either assume that the initial conditions are smooth and use the proof of [12] of
local well-posedness of (1) or we can adapt the latter proof to the Sobolev spaces used here.

We begin with an estimate of |z| and |α − α′| (recall, that α = (R, z) and α′ = (1, 0)) in terms of the
Lyapunov functionals Λk(ξ). Using the estimates |∂t|z|| ≤ |ż| ≤ |α̇| and ‖∇ξ‖L∞ , ‖ξ‖H2 , ‖ξ‖Hk ≤ C1Λ1/2

k (ξ)
and Eqn (31), we obtain

|∂t|z|| ≤ C2[Λk(ξ) + Λ1/2
k (ξ) + |z|]Λ1/2

k (ξ). (40)

By Gronwall’s inequality the equation (40) implies

|z(t)| ≤ C3e
C4

R t
0 Λ

1/2
k (ξ(s))ds(|z0|+

∫ t

0

max(Λ3/2
k (ξ(r)),Λk(ξ(r))dr). (41)

Finally, by (31) we have that |α̇| ≤ C5[Λk(ξ) + Λ1/2
k (ξ) + |z|]Λ1/2

k (ξ) and therefore

|α− α′| ≤ |α0 − α′|+ C5[Λk(ξ) + Λ1/2
k (ξ) + |z|]Λ1/2

k (ξ). (42)

Let δ be the same as in Proposition 7 and let ε be s.t. Proposition 9 holds for |z| ≤ ε. The initial
condition, ξ0, for ξ is given in Proposition 7 with ρ = ρ0. By the latter proposition we can take initial
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condition ρ0 such that Λk(ξ0)
1
2 + Λk(ξ0)k ≤ 1

10C , where the constant C is the same as in Proposition 9,
Λk(ξ0) + |z0| ≤ 1

4C′ ε, where C ′ = C3e
C4 , and |α0 − α′| + (1 + C5

2R2

n+2 )Λ1/2
k (ξ0) ≤ 1

4δ, with the constants
C3, C4 and C5, the same as in (41) and (42). Let

T = sup{t > 0 : Λk(ξ(t))
1
2 + Λk(ξ(t))k ≤ 1

5C
, |z(t)| ≤ 1

2
ε, Λk(ξ(t))

1
2 + |α(t)− α′| ≤ 1

2
δ}.

Clearly, T > 0 while we assume T <∞. Then for any t ≤ T we get ∂tΛk(ξ) ≤ −n+2
R2 Λk(ξ). Integrate this:

Λk(ξ) ≤ Λk(ξ0)e−
n+2
R2 t, (43)

which implies

Λk(ξ(T ))
1
2 + Λk(ξ(T ))k ≤ Λk(ξ0)

1
2 + Λk(ξ0)k ≤ 1

10C
. (44)

and, together with (41),

|z(t)| ≤ C ′(|z0|+ Λk(ξ0)) ≤ 1
4
ε, (45)

uniformly in t. Finally, Eqns (42), (43) and (45) imply that

Λk(ξ(t))
1
2 + |α− α′| ≤ 1

4
δ. (46)

This, together with (44) and (45), contradicts the assumption T < ∞, so T = ∞ and (44), (45) and (46)
are valid for all t <∞.

By (31) and (43) we have that |α̇| . [Λk(ξ) + Λ1/2
k (ξ) + |z|]Λ1/2

k (ξ) . e−
n+2
2R2 tΛ1/2

k (ξ0). Hence there exists
α∞ > 0 such that |α(t) − α∞| . e−

n+2
2R2 tΛ1/2

k (ξ0). To sum up we have ρ(γ, t) = ρα(t)(γ) + ξ(γ, t) and, by

Proposition 8 and (43), ‖ξ(t)‖Hk . e−
n+2
2R2 t‖ξ(0)‖Hk and |α(t) − α∞| . e−

n+2
2R2 t‖ξ(0)‖Hk for some α∞ > 0.

Due to the definition (25), this proves Theorem 2.

A Appendix A: Proof of Lemma 4

Let β : U → Rn+1 be a local parametrization of Γ, and we denote ρ in the local coordinates, ρ ◦ β, again as
ρ : U → R. We write ρ̃ := ρ◦α = ρ◦β◦β−1◦α, which we rewrite as ρ̃ = ρ◦σ, where σ := β−1◦α : Rn+1 → U .
Now, writing u = u(x) ≡ σ(x), we define ∂uk

∂xi
∂ul

∂xi =: g̃kl, where we use the convention of summing over
repeated indices. We claim

g̃ij(x)gjk(u) =
1
|x|2

δik. (47)

Indeed, since β(σ(x)) = α(x), we have

(
∂xi

∂um
◦ σ)

∂um

∂xj
=
∂αi

∂xj
=

1
|x|

(δij −
xixj

|x|2
). (48)

Note that σ is homogeneous of degree 0, so x · ∇xσ = 0. This together with (48) implies that

g̃ij(x)gjk(u) = ∂ui

∂xm
∂uj

∂xm (∂x
n

∂uj ◦ σ)(∂x
n

∂uk
◦ σ)

= 1
|x|

∂ui

∂xm (δmn − xmxn

|x|2 )∂x
n

∂uk
= 1
|x|

∂ui

∂xm
∂xn

∂uk
.

(49)
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Since |x| ∂u
i

∂xm is homogeneous of degree 0, we have that |x| ∂u
i

∂xm = ∂ui

∂xm |Γ, and therefore ∂ui

∂xm = 1
|x| (

∂ui

∂xm |Γ).

Using σ ◦ β = 1U we compute that ( ∂σ
i

∂xj ◦ β) ∂β
j

∂uk
= δik, which is equivalent to ∂ui

∂xj |Γ( ∂x
j

∂uk
◦ σ) = δik. This

gives us
∂ui

∂xm
∂xm

∂uk
=

1
|x|

(
∂ui

∂xm
|Γ)

∂xm

∂uk
=

1
|x|
δik. (50)

From (49) and (50) we have the equation (47).

In what follows we use the relations ∂ρ
∂ui = gij∇jρ (this follows from the definition of ∇ρ) and ∂xi ρ̃ =

∂uj

∂xi
∂ρ
∂uj . Using these relations and (47) we can compute

|∇xρ̃|2 = ∂xi ρ̃∂xi ρ̃

= ∂uk

∂xi
∂ul

∂xi ∂uk ρ̃∂ul ρ̃ = g̃kl(x)∂ukρ∂ulρ
= g̃kl(x)gkm(u)∇mρgln(u)∇nρ = 1

|x|2∇
lρgln∇nρ

= 1
|x|2 |∇ρ|

2.

(51)

This gives (13).

Now we prove (14). We have

∇xρ̃ ·Hessx(ρ̃)∇xρ̃ = ∂xi ρ̃∂
2
xixj ρ̃∂xj ρ̃

= ∂um

∂xi
∂ρ
∂um

∂ul

∂xi
∂
∂ul

(∂u
k

∂xj
∂ρ
∂uk

)∂u
n

∂xj
∂ρ
∂un

= g̃ml ∂ρ∂um
∂
∂ul

(∂u
k

∂xj
∂ρ
∂uk

)∂u
n

∂xj
∂ρ
∂un

= g̃mlg̃kn ∂ρ
∂um

∂2ρ
∂uluk

∂ρ
∂un + g̃ml ∂ρ∂um

∂
∂ul

(∂u
k

∂xj ) ∂ρ
∂uk

∂un

∂xj
∂ρ
∂un

:= A+B.

(52)

Then

A = g̃mlg̃kngmp∇pρ
∂2ρ

∂ul∂uk
gnq∇qρ =

1
|x|4
∇lρ ∂2ρ

∂ul∂uk
∇kρ (53)

and
B = 1

2 g̃
ml ∂ρ

∂um
∂ρ
∂uk

∂ρ
∂un

∂
∂ul

(∂u
k

∂xj )∂u
n

∂xj + 1
2 g̃
ml ∂ρ

∂um
∂ρ
∂un

∂ρ
∂uk

∂
∂ul

(∂u
n

∂xj )∂u
k

∂xj

= 1
2 g̃
ml ∂ρ

∂um
∂ρ
∂uk

∂ρ
∂un

∂
∂ul

(∂u
k

∂xj
∂un

∂xj )
= 1

2 g̃
ml ∂ρ

∂um
∂ρ
∂uk

∂ρ
∂un

∂g̃kn

∂ul
.

Now B = B1 = B2 = B3, where

B1 = 1
2 g̃
mlgmrgks

∂g̃kn

∂ul
∂ρ
∂un∇

rρ∇sρ = 1
2|x|2 gks

∂g̃kn

∂ur
∂ρ
∂un∇

rρ∇sρ,
B2 = 1

2 g̃
mlgmsgnr

∂g̃kn

∂ul
∂ρ
∂uk
∇rρ∇sρ = 1

2|x|2 gnr
∂g̃kn

∂us
∂ρ
∂uk
∇rρ∇sρ,

B3 = 1
2 g̃
mlgkrgns

∂g̃kn

∂ul
∂ρ
∂um∇

rρ∇sρ.

Hence
B = − 1

|x|4
Γprs

∂ρ

∂up
∇rρ∇sρ, (54)

where Γprs = − |x|
2

2 (gks ∂g̃
kp

∂ur +gnr ∂g̃
pn

∂us −|x|
2g̃plgkrgns

∂g̃kn

∂ul
). Using that ∂

∂ur (gksg̃kp) = ∂
∂ur ( 1

|x|2 δsp) = 0 (points

x ∈ Rn+1 are parameterized by β(u) and |x|), we compute gks ∂g̃
kp

∂ur = ∂
∂ur (gksg̃kp) − g̃kp ∂gks∂ur = −g̃kp ∂gks∂ur .
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This gives
Γprs = |x|2

2 (g̃kp ∂gks∂ur + g̃kp ∂gkr∂us − |x|
2g̃plgkr g̃

kn ∂gns
∂ul

)
= |x|2

2 (g̃kp ∂gks∂ur + g̃kp ∂gkr∂us − g̃
pk ∂grs

∂uk
).

Since |x| = 1, and therefore g̃pk = gkp, we have that on Γ

Γprs =
1
2
gkp(

∂gks
∂ur

+
∂gkr
∂us

− ∂grs
∂uk

),

which coincides with our definition for Γprs at the beginning of Section 3.

Equations (52), (53) and (54) and the relations Hessρ(V,W ) = V i(Hessρ)ijW j and (Hessρ)ij =
∂2ρ

∂ui∂uj − Γkij
∂ρ
∂uk

give (14). This finishes the proof of the lemma.

B Appendix B: Proof of Lemma 5

In this appendix we prove Lemma 5. In what follows we drop the subindex t in St, as well as the t−dependence
of ρ. First, we note that if β(u) is a local parametrization of Γ, then

β̃(u) = ρ(β(u))β(u) (55)

is a local parametrization of S. We denote metrics on Γ and S by gij := gΓ
ij and g̃ij := gSij , respectively. Let

g := det(gij) (not to be confused with the map g(ρ) defined in (6)) and g̃ := det(g̃ij).

The following lemma proves a simple formula estabilishing the relation between g and g̃.

Lemma 10.
g̃ = ρ2n−2g

(
ρ2 + |∇ρ|2

)
. (56)

Proof. The definitions g̃ij = ∂σ̃k

∂ui
∂σ̃k

∂uj and gij = ∂σk

∂ui
∂σk

∂uj , imply

g̃ij =
(∂σk
∂ui

ρ+ σk
∂ρ

∂ui

)(∂σk
∂uj

ρ+ σk
∂ρ

∂uj

)
. (57)

Since σ · σ = 1 on Γ and therefore σ · ∂σ
∂um = 0, (57) gives

g̃ij = gijρ
2 +

∂ρ

∂ui
∂ρ

∂uj
,

and hence
g̃ = det

(
gijρ

2 +
∂ρ

∂ui
∂ρ

∂uj

)
. (58)

Writing
(
gijρ

2 + ∂ρ
∂ui

∂ρ
∂uj

)
= ρ2G1/2

(
1 + ρ−2G−1/2( ∂ρ∂ui )(

∂ρ
∂uj )G−1/2

)
G1/2, where G := (gij), we compute

g̃ = ρ2ng det
(
1 + λP

)
, (59)

where λ := ρ−2|∇ρ|2 and P is the projection onto the vector G−1/2( ∂ρ∂uj ). Due to the relation det
(

1+λP
)

=
1 + λ, for any rank-one projection P , we arrive at (59).
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By the local definition of the integral over a surface, we have∫
S

f =
∫
U

f(ρ(β(u))β(u))
√
g̃dnu =

∫
Γ

f(ρ(·) ·)

√
g̃

g
. (60)

The last equation together with (59) and the definition (7) proves (15).

C Appendix C: Expression for N (ξ)

In this appendix we derive the explicit expression for the term N (ξ), defined in (27), with (17), (5) and (6).
Let ∂F (ρ) and ∂2F (ρ)) denote the first and second Gâteaux derivatives of F (ρ) evaluated at ρ, ∂F (ρ) : ξ →
∂F (ρ)ξ and ∂2F (ρ) : (ξ, η)→ ∂2F (ρ)(ξ, η) and at ξ and η. Recall the notation

µ(ρ) =
√
ρ2 + |∇ρ|2

and the definition (17) of the map J . In what follows we use the shorthand f
′′
(ξ, η) ≡ Hessf(ξ, η). We have

Lemma 11. The nonlinearity N (ξ) := J(ρα + ξ)− J(ρα)− ∂J(ρα)ξ can be written as

N (ξ) =
∫ 1

0

ds

∫ s

0

dr∂2J(ρα + rξ)(ξ, ξ), (61)

where ∂2J(ρ) = ∂2G(ρ) + ∂2g(ρ), with ∂2G(ρ) and ∂2g(ρ) given by

∂2G(ρ)(ξ, ξ) = −4ξ∆ξ
ρ3

+ 6
ξ2∆ρ
ρ4
− 2nξ2

ρ3

+
2|∇ξ|2

ρµ2
− 2∇ρ∇ξ(2ρξ + 5∇ρ∇ξ)

ρµ4
+

2|∇ρ|2ξ(ρξ + 2∇ρ∇ξ)
ρ2µ4

− 2∇ρξ∇ξ
ρ2µ2

+
2|∇ρ|2ξ2

ρ3µ2
+

8|∇ρ|2∇ρ∇ξ(ρξ +∇ρ∇ξ)
ρµ6

− 2
ρ2µ2

(
2ξ
′′
(∇ρ,∇ξ) + ρ

′′
(∇ξ,∇ξ)

)
− 2
( 3ξ2

ρ4µ2
+ 4

ξ(ρξ +∇ρ∇ξ)
ρ3µ4

+
4(ρξ +∇ρ∇ξ)ξ

ρ2µ6
− ξ2 + |∇ξ|2

ρ2µ4

)
ρ
′′
(∇ρ,∇ρ)

+ 2
( ξ

ρ3µ2
+
ρξ +∇ρ∇ξ

ρ2µ4

)(
2ρ
′′
(∇ρ,∇ξ) + ξ

′′
(∇ρ,∇ρ)

)

(62)

and

∂2g(ρ)(ξ, ξ) =
[−2µ
ρ3

ξ2 + 2
ρξ2 +∇ρξ∇ξ

ρ2µ
− ξ2 + ξ|∇ξ|

ρµ
+

(ρξ +∇ρ∇ξ)2

ρµ3

]
B

+ 2
(
µξ

ρ2
− ρξ +∇ρ∇ξ

ρµ

)
∂Bξ − µ(ρ)

ρ
∂2B(ξ, ξ), (63)

where

B(ρ) :=

∫
Γ
G(ρ)ρn∫

Γ
µ(ρ)ρn−1

, ∂Bξ =
1∫

Γ
µ(ρ)ρn−1

∫
Γ

(
∂G(ρ)ξρn +G(ρ)nρn−1ξ

)
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− 1
(
∫

Γ
µ(ρ)ρn−1)2

(∫
Γ

G(ρ)ρn
∫

Γ

(∂µ(ρ)ξρn−1 + µ(ρ)(n− 1)ρn−2ξ)
)
, (64)

∂2B(ξ, ξ) =
1∫

Γ
µ(ρ)ρn−1

(∫
Γ

∂2G(ρ)(ξ, ξ)ρn + 2
∫

Γ

∂G(ρ)ξnρn−1ξ +
∫

Γ

n(n− 1)G(ρ)ρn−2ξ2

)
−

∫
Γ
G(ρ)ρn

(
∫

Γ
µ(ρ)ρn−1)2

(
∫

Γ

∂2µ(ρ)(ξ, ξ)ρn−1 + 2
∫

Γ

∂µ(ρ)ξ(n− 1)ρn−2ξ +
∫

Γ

(n− 1)(n− 2)µ(ρ)ρn−3ξ2)

− 1
(
∫

Γ
µ(ρ)ρn−1)2

(∫
Γ

(∂G(ρ)ξρn +G(ρ)nρn−1ξ)
∫

Γ

(∂µ(ρ)ξρn−1 + µ(ρ)(n− 1)ρn−2ξ)
)

+ 2
1

(
∫

Γ
µ(ρ)ρn−1)3

(∫
Γ

(∂µ(ρ)ξρn−1 + µ(ρ)(n− 1)ρn−2ξ)
)2 ∫

Γ

G(ρ)ρn,

(65)

with ∂µ(ρ)ξ = ρξ+∇ρ∇ξ
µ , ∂2µ(ρ)(ξ, ξ) = ξ2+∇ξ∇ξ

µ − (ρξ+∇ρ∇ξ)2

µ3 , (62) and

∂G(ρ)ξ =
∆ξ
ρ2
− 2∆ρ

ρ3
ξ +

nξ

ρ2

+
2∇ρ∇ξ
ρµ2

− |∇ρ|
2ξ

ρ2µ2
− 2
|∇ρ|2

(
ρξ +∇ρ∇ξ

)
ρµ4

− 1
ρ2µ2

(
2ρ
′′
(∇ρ,∇ξ) + ξ

′′
(∇ρ,∇ρ)

)
+ 2
( ξ

ρ3µ2
+
ρξ +∇ρ∇ξ

ρ2µ4

)
ρ
′′
(∇ρ,∇ρ).

(66)

Proof. We write the nonlinearity N (ξ) := J(ρα + ξ)− J(ρα)− ∂J(ρα)ξ in the standard form

N (ξ) =
∫ 1

0

ds

∫ s

0

dr∂2
rJ(ρα + rξ). (67)

The definitions of the first and second Gâteaux derivatives imply

∂J(ρ)ξ = ∂rJ(ρ+ rξ)|r=0, (68)

and
∂2J(ρ)(ξ, ξ) = ∂2

rJ(ρ+ rξ)|r=0. (69)

Using the expressions above, we obtain the formula

N (ξ) =
∫ 1

0

ds

∫ s

0

dr∂2J(ρα + rξ)(ξ, ξ). (70)

We use ∂2J(ρ) = ∂2G(ρ) + ∂2g(ρ), and compute ∂2G(ρ) and ∂2g(ρ) separately. Using the definition

G(ρ) :=
∆ρ
ρ2
− n

ρ
+
|∇ρ|2

ρµ2
− ρ

′′
(∇ρ,∇ρ)
ρ2µ2

, (71)
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we find (66) and (62).

Next, we use the definition of g(ρ), which can be rephrased as g(ρ) = −A(ρ)B(ρ), where A(ρ) := µ(ρ)
ρ and

B(ρ) :=
R
Γ G(ρ)ρnR

Γ µ(ρ)ρn−1 , as in the lemma. Using this representation and using ∂2g = −∂2AB − 2∂A∂B −A∂2B

and
∂µ(ρ)ξ =

ρξ +∇ρ∇ξ√
ρ2 + |∇ρ|2

,

∂2µ(ρ)(ξ, ξ) =
ξ2 + |∇ξ|2√
ρ2 + |∇ρ|2

− (ρξ +∇ρ∇ξ)2

(ρ2 + |∇ρ|2)3/2
,

we obtain (63).

Finally, using the definition of B in (64), we find (64), and (65).

D Appendix D: Proof of (36)

Lemma 12. Let k > n
2 + 1 and assume that |ξ| ≤ 1

2ρα. Then

‖L
k−1

2
R0 N (ξ)‖ . (Λ1/2

k (ξ) + Λkk(ξ))‖L
k+1

2
R0 ξ‖. (72)

Proof. Assume first that k is an integer. Then ‖L
k−1

2
R0 η‖ ' ‖η‖2Hk−1 ' ‖η‖2L2 + ‖∇k−1η‖2L2 . Now, by Lemma

11, |∇k−1N (ξ)| is bounded above by terms of the form |ξt(∇ξ)r(∇α1ξ) · · · (∇αsξ)|, where

0 ≤ t, r ≤ k + 1, 1 ≤ s ≤ k, t+ r + s ≥ 2, 2 ≤ α1 ≤ · · · ≤ αs ≤ k − s+ 2, α1 + · · ·+ αs ≤ k + s. (73)

Note that the last two conditions in (73) imply that s ≤ k. Then by Hölder’s inequality we have

‖∇k−1N (ξ)‖ ≤ ‖∇ξ‖rL∞‖∇α1ξ‖Lp1 · · · ‖∇αsξ‖Lps ,

where 1
p1

+ · · ·+ 1
ps

= 1
2 .

Since k > n
2 +1, we have, by the Sobolev embedding theorem, that ‖ξ‖L∞+‖∇ξ‖L∞ . ‖ξ‖Hk . Moreover,

we choose pi so that k − αi > n
2 −

n
pi

for all i = 1, · · · , s − 1 and k + 1 − αs > n
2 −

n
ps

(this choice implies∑s
j=1 αj <

n
2 + 1 + (k − n

2 )s, which is compatible with (73) ). Then, using the Sobolev embedding theorem
again, we have ‖∇αiξ‖Lpi ≤ ‖ξ‖Hk , for i = 1, · · · , s − 1, and ‖∇αsξ‖Lps ≤ ‖ξ‖Hk+1 . Combining these
estimates gives us

‖L
k−1

2
R0 N (ξ)‖ . ‖ξ‖r+s−1

Hk
‖ξ‖Hk .

Now from 1 ≤ r + s − 1 ≤ 2k and Proposition 8 we obtain (72). Furthermore, one can easily check that k
can be taken arbitrary close to n

2 + 1 (this means that one is able to satisfy 1 ≥ αi− n
pi

, for i = 1, · · · , s− 1,
2 ≥ αs − n

ps
and αi ≥ 2, ∀i).

If k is not integer, we proceed as follows. Let β = k − [k] ∈ (0, 1). We use the space H̃β with the norm

‖f‖H̃β = ‖f‖L2 +
∫

dh

|h|n+β
‖∆hf‖L2 ,
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where ∆hf(x) = f(x+ h)− f(x). We have the embeddings

‖f‖Hβ . ‖f‖H̃β . ‖f‖Hβ′ , β < β′. (74)

Let us prove the first embedding:

(−∆ + 1)β/2f(x) = Cβf(x) +
∫

(f(x− y)− f(x))Gβ(y)dy,

where Cβ is an analytic continuation of Cβ :=
∫
Gβ(x)dx with Re(β) < n and Gβ(y) :=

∫
eiy·k(|k|2+1)β/2dk.

Note that Gβ(y) ∼ |y|−n−β as |y| → 0 and is exponentially decaying at ∞. So

‖f‖Hβ = ‖(−∆ + 1)β/2f‖L2 ≤ Cβ‖f‖L2 +
∫

dy

|y|n+β
‖∆yf‖L2 . ‖f‖H̃β ,

which proves the first embedding in (74).

For the second embedding, let ϕ = (−∆ + 1)β
′/2f . Then

f = (−∆ + 1)−β
′/2ϕ =

∫
G̃β′(x− y)ϕ(y)dy,

where G̃β′(y) :=
∫
eiy·k(|k|2 + 1)−β

′/2dk. Note that G̃β′(y) ∼ |y|−n+β′ as |y| → 0 and is exponentially
decaying at ∞. Let β < β′′ < β′. Then∫

|h|≤1
dh
|h|n+β ‖∆hf‖L2

=
∫
|h|≤1

dh
|h|n+β ‖

∫
|x−y|≤2

(G̃β′(x+ h− y)− G̃β′(x− y))ϕ(y)dy +
∫
|x−y|≥2

(G̃β′(x+ h− y)− G̃β′(x− y))ϕ(y)dy‖L2

.
∫
|h|≤1

dh
|h|n+β (|h|β′′‖

∫
|x−y|≤2

|x− y|−n+β′−β′′ |ϕ(y)|dy‖L2 + |h|‖
∫
|x−y|≥2

|x− y|−n+β′−1|ϕ(y)|dy‖L2)
. ‖ϕ‖L2 = ‖f‖Hβ′

(75)
and ∫

|h|≥1

dh

|h|n+β
‖∆hf‖L2 ≤ 2‖f‖L2

∫
|h|≥1

dh

|h|n+β
. ‖f‖Hβ′ .

This proves the second embedding in (74).

Using (74), we obtain

‖
∏s
j=1 ξj‖Hβ .

∫
dh
|h|n+β ‖∆h

∏s
j=1 ξj‖2

≤
∑s
i=1

∫
dh
|h|n+β ‖

∏i−1
j=1 ξj∆hξi

∏s
j=i+1 Thξj‖2

≤
∑s
i=1(

∏
j 6=i ‖ξj‖p(i)

j
)
∫

dh
|h|n+β ‖∆hξi‖p(i)

i
,

where Thf(x) = f(x+ h),
∑s
j=1

1

p
(i)
j

= 1
2 . Using appropriate embeddings, we conclude finally that

‖
s∏
j=1

ξj‖Hβ .
s∑
i=1

s∏
j=1

‖ξj‖
H
c
(i)
j
, (76)

where c(i)j > n
2 −

n

p
(i)
j

∀j 6= i and c(i)i −β > n
2 −

n

p
(i)
i

. Similarly as before we know that
∑s
j=1 c

(i)
j −β > n

2 (s−1),

which guarantees the existence of p(i)
j .
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For k not an integer, we write

‖N (ξ)‖Hk−1 ∼ ‖(−∆ + 1)β/2∇mN (ξ)‖L2 , (77)

where m = [k]− 1 and β = k − [k] ∈ (0, 1). ∇mN (ξ) is treated as before to obtain

∇mN (ξ) ∼ ξt(∇ξ)r∇α1ξ · · · ∇αsξ, (78)

where t ≤ m+ 2, r ≤ m+ 2, 2 ≤ αj ≤ m− s+ 3,
∑s
j=1 αj ≤ m+ 1 + s, s ≤ m+ 1 and t+ r + s ≥ 2.

If αj < m+ 2 ∀j, then, using (76) with ξj = ∇αjξ ∀j, c(i)j +αj = k ∀j 6= i and c(i)i +αi = k+ 1, we find

‖ξt(∇ξ)r
s∏
j=1

∇αjξ‖Hβ . ‖ξ‖r+s−1
Hk

‖ξ‖Hk+1 . (79)

We use this estimate, together with (77) and (78), to obtain

‖N (ξ)‖Hk−1 .
2[k]∑
i=1

‖ξ‖iHk‖ξ‖Hk+1 . (80)

If αs = m+ 2 and therefore s = 1, then we let f = ξt(∇ξ)r and proceed as

(−∆ + 1)β/2f∇m+2ξ = f(−∆ + 1)β/2∇m+2ξ + [(−∆ + 1)β/2, f ]∇m+2ξ. (81)

The first term on the r.h.s. is easy to estimate:

‖f(−∆ + 1)β/2∇m+2ξ‖ ≤ ‖f‖∞‖ξ‖Hk+1

≤ ‖ξ‖t+r
Hk
‖ξ‖Hk+1 ≤

∑2
p=1 ‖ξ‖

p
Hk
‖ξ‖Hk+1 .

(82)

To estimate the second term in the r.h.s. we note that

[(−∆ + 1)β/2, f ]η =
∫

(f(x)− f(y))Gβ(x− y)η(y)dy
=

∫
η(x− z)(f(x− z)− f(x))Gβ(z)dz.

Using this representation we obtain for β′ > β,

‖[(−∆ + 1)β/2, f ]η‖2
≤ supz ‖η(· − z) f(·−z)−f(·)

|z|β′ ‖L2(dx)

∫
|z|β′ |Gβ(z)|dz

. supz ‖η(· − z) f(·−z)−f(·)
|z|β′ ‖L2(dx)

≤ ‖η‖q supz ‖
∆zf

|z|β′ ‖p,

where 1
p + 1

q = 1
2 . Similar to (75), we have

sup
z
‖ 1
|z|γ

∆zf‖Hb . ‖f‖Hb+γ′ , γ
′ > γ.

Using this estimate and Sobolev embedding theorem, we find

‖[(−∆ + 1)β/2, f ]η‖2 . ‖η‖Ha sup
z
‖∆zf

|z|β′
‖Hb . ‖η‖Ha‖f‖Hb+β′′ ,
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where β′′ > β′, a > n
2 −

n
q , b > n

2 −
n
p . Taking f = ξt(∇ξ)r and η = ∇m+2ξ, a = β, we find

‖[(−∆ + 1)β/2, f ]∇m+2ξ‖ ≤ ‖ξt(∇ξ)r‖Hr+β′′ ‖ξ‖Hk+1 .

Note that β′′ + r > n− n
2 = n

2 . Let β′′ + r = j. As before, we estimate

‖ξt(∇ξ)r‖Hj .
∑

j1+···+jt+r=j

‖∇j1ξ · · · ∇jtξ∇jt+1+1ξ · · · ∇jt+r+1ξ‖2 . ‖ξ‖t+rHj+1 ∀j >
n

2
.

Since k > n
2 + 1, we can take j = k − 1 and so

‖[(−∆ + 1)β/2, f ]∇m+2ξ‖ ≤ ‖ξ‖t+r
Hk
‖ξ‖Hk+1 ,

where, recall, f = ξt(∇ξ)r. This inequality together with (77), (81) and (82) implies (80) also in this case.
As was mentioned above (80) implies (72).
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