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In this work, we consider the extension of linear eigenmodes of the harmonic oscillator potential
into nonlinear states, for the case of two-component Gross-Pitaevskii equations with a parabolic
potential, motivated by the context of two interacting hyperfine states of 87Rb in Bose-Einstein
condensates. In particular, we establish that nonlinear continuations of various eigenmode combi-
nations are possible and corroborate this analytical finding with numerical computations for the
lowest few eigenmode combinations involving the ground state and the first two excited states. A
multitude of nonlinear states can be constructed in this way, some of which spontaneously deform, as
the interactions become stronger, into previously obtained nonlinear eigenstates. The Bogolyubov-
de Gennes analysis of the linearization excitations on top of such states illustrates that some of
them may become unstable beyond a critical threshold (of the chemical potentials associated with
the states), while others may be stable within the entire range of chemical potentials considered
herein. When the modes are found to be unstable, their evolution is followed, leading to interesting
dynamical effects such as spontaneous symmetry breaking or oscillatory growth.

I. INTRODUCTION

The experimental realization of Bose-Einstein condensation (BEC) in the mid-1990s sparked an ever-
expanding interest in the study of both nonlinear wave and fundamental quantum phenomena that arise
in that setting [1, 2]. The existence of a mean-field model that accurately describes the BECs near zero
temperature was a source of an intense and wide range of investigations on coherent structures that
emerge in such BECs, due to the effective nonlinearity induced by the inter-particle interaction. Such
studies allowed to monitor macroscopic nonlinear matter waves including bright matter-wave solitons in
attractive BECs [3–5], as well as dark [6–9] and gap [10] matter-wave solitons in repulsive BECs (see also
the recent reviews [11]).

One of the particularly interesting aspects of BECs that has been a focal point of many investigations is
the statics and dynamics of binary mixtures [12–14]. The latter display rich phase separation phenomena
due to the nonlinear interactions between the different atomic species/states. The formation of robust
single- and multi-ring patterns [13, 15], the evolution of initially coincident triangular vortex lattices
through a turbulent regime into an interlaced square vortex lattice state [16] in coupled hyperfine states
of 87Rb, or the study in optical traps of different Zeeman levels of 23Na forming striated magnetic
domains [17, 18] are only a small sample among the many exciting possibilities that multi-component
BECs can offer. Such investigations are still very active presently, with an interesting recent example
being the examination of structural phase transitions from miscibility to immiscibility as a Feshbach
resonance [19–21] is crossed [22].

In parallel to the experimental developments, a large volume of theoretical studies were devoted to
an effort to understand the relevant phenomenology associated with phase separation. These studies
demonstrated that the stationary state of a BEC mixture depends critically on the intra- and inter-
species scattering lengths, as does its stability against excitations [23–26]. Additional aspects examined
involved the static and dynamic properties [27–31], including the excitation spectrum and the nature of
low-frequency simultaneous collective excitations, and solitary waves [32–36] (see also references therein).

Our purpose in the present paper is to revisit the topic of multi-component condensates but from a
point of view that has been recently particularly fruitful in obtaining existence (and stability) results for
single component condensates, namely that of the underlying linear limit; for single-component results,
see, e.g., the analysis of [37–42]. Here, we consider a two-component version of such considerations,
whereby each of the components can be initialized in each of the first few linear states. The theoretical
background of the existence analysis is given in section II, based on a small amplitude expansion near the
linear limit and deriving the corresponding persistence conditions (this is tantamount to a “tight-binding”
approximation). Then, in section III, we illustrate the relevant modes numerically, identifying them in



the vicinity of the linear limit and examining their linear stability (and dynamics, when they are found to
be unstable), as their intensity is increased, through an increase in the corresponding chemical potential.
Finally, in section IV, we summarize our findings and present our conclusions, as well as some possible
directions for future study.

II. TIGHT-BINDING APPROXIMATION

Consider the physically relevant system of 2 BEC’s as described in the mean field approximation by
two coupled Gross-Pitaevskii equations (GPEs):

i~ψ1T + ~2
2mψ1ξξ − (g11|ψ1|2 + g12|ψ2|2)ψ1 − V (ξ)ψ1 = 0

i~ψ2T + ~2
2mψ2ξξ − (g12|ψ1|2 + g22|ψ2|2)ψ2 − V (ξ)ψ2 = 0,

where ψ1, ψ2 are the two BEC components, τ and ξ are the temporal and spatial coordinates, ~ is reduced
Planck’s constant, gj,j are the cubic nonlinear coefficients, gj,k j 6= k are the nonlinear couplings between
the two components, and m is the mass for 87Rb (which is the case that we focus on herein, although

our considerations are fairly general). Setting t = T/~ and x = ξ/(~/
√

2m) along with gij = 4π~2aij/m,

u = (100a04π~2/m)1/2ψ1, v = (100a04π~2/m)1/2ψ2 we obtain the system under discussion

iut +
1
2
uxx −

(
a11

100a0
|u|2 +

a12

100a0
|v|2

)
u− V (x)u = 0,

ivt +
1
2
vxx −

(
a12

100a0
|u|2 +

a22

100a0
|v|2

)
v − V (x)v = 0.

(II.1)

Notice that in the case of magnetic traps V (x) = Ω2x2/2. In the linear limit (aij = 0) both of the above
equations reduce to the linear eigenvalue problem of the Schrödinger equation

iqt +
1
2
qxx + V (x)q = 0

that supports Hermite polynomial solutions of the form qn = e−iEntfn(x) where

fn(x) = 2−
n
2 π−1/4(n!)−1/2e−

Ωx2
2 Hn(

√
Ωx).

and En = Ω(n + 1/2). In the nonlinear case, we apply a tight-binding approximation:

u = ε
1
2 A(tε)qm, v = ε

1
2 B(tε)qn.

where A,B are the time varying amplitudes of the two modes and qm, qn are described above. The
O(ε1/2) terms are identically satisfied. The next order O(ε3/2) terms satisfy

iAtqm − a11

100a0
|A|2Aq3

m − a12

100a0
A|B|2q2

nqmA = 0,

iBtqn − a12

100a0
|A|2Bq2

mqn − a22

100a0
B|B|2q3

n = 0.

(II.2)
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s11 s12 s21 s22 t/τ

|0, 0〉 1.004/(4
√

2π) 0.9766/(4
√

2π) 0.9766/(4
√

2π) 0.95/(4
√

2π) 4
√

2π

|0, 1〉 1.004/(4
√

2π) 0.9766/(2
√

2π) 0.9766/(2
√

2π) 3 · 0.95/(8
√

π) 4
√

2π

|1, 1〉 3 · 1.004
√

2/(8
√

π) 3 · 0.9766
√

2/(8
√

π) 3 · 0.9766
√

2/(8
√

π) 3 · 0.95
√

2/(8
√

π) 8
√

π/(3
√

2)

|1, 2〉 3 · 1.004
√

2/(8
√

π) 7 · 0.9766
√

2/(32
√

π) 7 · 0.9766/(32
√

π) 41 · 0.95/(32
√

π) 1

|2, 2〉 1.004/
√

2π 3 · 0.9766/(8
√

2π) 3 · 0.9766/(16
√

π) 41 · 0.95/(32
√

π) 1

TABLE I: Parameters of Eq. (II.3) some of the lower combinations |0, 0〉, |0, 1〉, |1, 1〉, |1, 2〉, |2, 2〉. For explanation
of the relevant notations, see the text.

We next project the equations (II.2) on qm, qn, and set s11 = σ(a11〈q3
m, qm〉)/(100a0〈qm, qm〉),

s12 = σ(a12〈q2
nqm, qm〉)/(100a0〈qm, qm〉), s21 = σ(a12〈q2

mqn, qn〉)/(100a0〈qn, qn〉), s22 =
σ(a22〈q3

n, qn〉)/(100a0〈qn, qn〉), where we use the braket notation < f, g >=
∫∞
−∞ f∗(x)g(x) dx. The

resulting system reads

iAτ − (s11|A|2 + s12|B|2)A = 0

iBτ − (s21|A|2 + s22|B|2)B = 0.
(II.3)

where for 87Rb atoms a11 = 100.40a0, a12 = 97.66a0, a22 = 95.00a0 (see e.g., [15]), and t/τ = σ. In
Table 1 the parameters for some of the prototypical combinations of the lowest condensate modes are
depicted. In the Table (and hereafter), we use the notation |m,n〉 for a state combining, in the linear limit,
an eigenmode of order m in the first component with an eigenmode of order n in the second component.
Stationary solutions of the previous system of equations are found by setting

A = αe−iµ1τ , B = βe−iµ2τ

where µ1 = s11α
2 + s12β

2, and µ2 = s21α
2 + s22β

2 are the chemical potentials. It is important to
point out that existence of solutions to this algebraic system of equations guarantees the presence of the
corresponding state near the linear limit.

III. NUMERICAL RESULTS

We now test the predictions of the previous section numerically, by identifying stationary states for
u(x) and v(x), the two BEC components, through fixed point iterations of Eq. (II.1). For definiteness,
these iterations have been performed with the values of the scattering lengths a11 = 100.4a0, a22 = 95a0

and a12 = 150a0. The first two are identical to the values used e.g., in the recent experimental and
numerical investigation of [15] (and also in the theoretical analysis above). The third one is assumed to
be tuned by employing either magnetic [19, 20] or optical Feshbach resonances [21]. The latter permits
the flexibility of tuning the s-wave scattering length of a particular type of interatomic interactions. This
particular set of aij ’s is placed well within the immiscible regime and permits us to compare our obtained
solutions with other phase-separated types of solutions which have been proposed within this regime;
see e.g., [32] where a similar choice of aij ’s was used. In this way, the relevant and interesting phase
separation dynamical phenomena are more pronounced and clearly observable in what follows.

In addition to the existence of the relevant nonlinear states, we perform a linear stability analysis (a
Bogolyubov-de Gennes analysis) to identify whether the obtained waveforms are stable or unstable. This
is done through the use of an ansatz:

ψ1 = exp(−iµ1t) [u(x) + δ (U1(x) exp(λt) + U2(x) exp(λ?t))] (III.4)
ψ2 = exp(−iµ2t) [v(x) + δ (V1(x) exp(λt) + V2(x) exp(λ?t))] , (III.5)

and the subsequent solution of the ensuing linear eigenvalue problem at O(δ) for λ and the corresponding
eigenvector [U1, U

?
2 , V1, V

?
2 ]T ; δ here is a formal small parameter. The existence of eigenvalues λ with
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non-zero real part corresponds to instability (given the symplectic Hamiltonian nature of the eigenvalue
problem, which necessitates that if λ is an eigenvalue, then so are −λ, λ? and −λ?).

Figure 1 shows the case of the |0, 0〉 state, illustrated through continuations as a function of the chemical
potential µ1; µ2 = µ1 + 0.022 is used in this set of results. This is a choice which is representative of the
results that can be obtained in the larger two-parameter space of (µ1, µ2); such typical choices (of mono-
parametric continuations) have been made in all the cases of the solution branches shown in what follows.
of the components. We can see that the |0, 0〉 branch is, in fact, stable sufficiently close to the linear
limit of the magnetic trap of Ω = 0.1 and it becomes unstable due to a real eigenvalue pair for µ1 > 0.22.
However, it should be noted that as the chemical potential is raised to large values, this instability
becomes weaker (its maximum growth rate occurs at µ1 = 0.34), until effectively the configuration can
be considered as stable for values of µ1 > 1. It is interesting to note also that for sufficiently large values
of the chemical potential, the repulsive interaction between the components enforces a phase separation,
which systematically modifies this state towards the type of waveform previously observed, e.g., in Fig.
2 (top panel) of [32] [notice that this eigenfunction for lower values of the chemical potential also relates
to waveforms of Fig. 1 (bottom panel) of [32]; our continuation illustrates how these two profiles may
correspond to different limits of the same branch]. Furthermore, we have examined the dynamics of
this branch, an example of which is shown in the bottom right panel of Fig. 1. What can be seen is
that the result of the instability is to induce a spontaneous symmetry breaking in the dynamics of the
multi-component condensate around t ≈ 300. This, in turn, seems to suggest that such destabilization
appears to favor the spontaneous formation of stable domain wall type states such as those considered in
the bottom panel of Fig. 2 in [32].
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FIG. 1: The two top left panels show a continuation of the two components (u(x) and v(x)) of the solution as a
function of the chemical potential µ1. The top right panel shows the most unstable eigenvalue of the configuration.
Notice that the instability of this |0, 0〉 mode disappears for µ1 ≤ 0.22 and becomes also very weak for sufficiently
large µ1. The bottom left four panels show the profiles (first row) and the corresponding stability (second row) of
such a mode for µ1 = 0.2 (left panels) and for µ1 = 0.5 (right panels). The profile of the first component is shown
by solid line, and of the second by dashed line, while the parabolic trap is shown by a dash-dotted line. The right
panel shows the dynamical evolution of the instability for µ1 = 0.35 in the form of a space-time contour plot of
the density of the respective components.
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However, a different type of waveform, which, in fact, turns out to be globally stable (in the parameter
range considered herein) is given by the |0, 1〉 branch of Fig. 2. In this case also, we can observe that the
two lobes of the anti-symmetric wavefunction are pushed away from the center, as the chemical potential
increases, as a result of the repulsive inter-species interaction and concomittant immiscibility between
the components. In the continuations shown in Fig. 2, µ2 = µ1 + 0.064 was used.
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FIG. 2: Same as in Fig. 1, but now for the |0, 1〉 mode. Since this waveform is always found to be stable, in the
right panel we do not show its largest real eigenvalue, but rather the mode (top) and its stability (bottom) for
µ1 = 0.3 (second column) and µ1 = 1 (third column).

On the other hand, the |1, 1〉 branch turns out to have a somewhat similar stability picture to that
of the |0, 0〉 solution. In particular, while for small values of µ1, the branch is stable sufficiently close
to the linear limit, as µ1 increases past the value of µ1 > 0.31, the solution becomes unstable due to a
real eigenvalue pair which becomes maximal for µ1 = 0.48 and then decreases for larger values of the
chemical potential; µ2 = µ1 − 0.01 was used here. As the chemical potential increases, the lobes of the
wavefunctions of the two components once again grow further apart, showcasing the phase separation
between the two states. Another element of similarity between this branch and the |0, 0〉 case can be found
in connection to their dynamical evolution. It can be seen from the typical time-stepping example shown
in the bottom right panel of Fig. 3 for the case of µ1 = 0.5 that once again a spontaneous symmetry
breaking emerges for times t ≈ 200, although the dark soliton-type structure centered at x = 0 in each of
the components appears to persist for considerably longer times. Similarly to what was seen in the case
of |0, 0〉, the symmetry breaking appears to have a recurrent emergence in the dynamics, presumably due
to the Hamiltonian nature of the model.

We also examined the mixed modes involving the second excited state. As such an example, in Fig. 4,
we illustrate the |0, 2〉 mode, initialized for µ1 close to the linear limit (and µ2 = µ1 + 0.2) and continued
over µ1 up to values of O(1). In this case also, we find, similarly to the setting of |0, 1〉 that the branch is
stable for all values of the parameters, as is also shown in the case example of the right panels of the figure.
It is interesting to note here that the strong cross-repulsion between the components, in combination with
the peak of the |2〉 branch at x = 0 lead to the splitting of the |0〉 branch into a two-hump structure,
similarly to what was observed in the |0, 0〉 case.

Finally, we also show the |1, 2〉 branch in Fig. 5. As can be seen in the top row’s right panel of the
figure (as well as at the case examples of the bottom row), this branch may, in fact, be unstable for the
parameter range examined due to an oscillatory instability. In the case examined, where µ2 = µ1 + 0.1,
the instability exists for µ1 < 0.47 and for 1.1 < µ1 < 1.16. In this case, the example of instability
demonstrated in the bottom panel of Fig. 5 is due to a complex eigenvalue quartet with a very weak
growth rate (i.e., with a very small real part). For this reason, the eventual manifestation of the instability
arises for much longer times than in the earlier examples i.e., for t > 1500, for the value of µ1 = 0.4
shown in the figure. Interestingly, the oscillatory growth of the two components leads to a destruction of
the waveform of the first component and to apparently irregular dynamics. It should be noted here that
the second instability window mentioned above is of similar type as the first one. In particular, as µ is
increased, the two pairs whose resonance gave rise to the first instability window no longer resonate for
µ > 0.47. Further increase of the chemical potential leads one of these pairs to move along the imaginary
axis of eigenvalues and eventually collide with another pair of opposite signature (which was originally
at a higher frequency), thus giving rise to the second instability window.
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FIG. 3: Same as in the case of Fig. 1, but now for the |1, 1〉 mode. The bottom left two rows show the mode
and its stability for µ1 = 0.2 (left panels) and for µ1 = 1 (right panels), while the bottom right panels show the
dynamical evolution of the two components for this mode with µ1 = 0.5.
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FIG. 4: Same as in the case of Fig. 2, but now for the |0, 2〉 branch. It is interesting to note that in this case the
branch is found to always be linearly stable analogously to what we found for the |0, 1〉 case. The right panels
are for µ1 = 0.1 and µ1 = 1 respectively; µ2 = µ1 + 0.2 here.

IV. CONCLUSIONS

In this paper we showed that two-component condensates have a wealth of states that have not been
previously explored (or have only partially been explored in the strongly nonlinear limit e.g. in [32]).
Such states can be generated from the underlying linear limit of the system with the parabolic potential
through a combination of different eigenfunctions (indexed by the order of the corresponding Hermite
mode) in each component. The existence of such states can be established in the vicinity of the linear
limit, through a small amplitude expansion and demonstration of the solvability of the ensuing persistence
conditions. The waveforms have also been identified numerically and their linear stability has been
explored. It has been observed that they may undergo instabilities (through the bifurcation of “symmetry
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FIG. 5: Same as in the case of Fig. 1, but now for the |1, 2〉 branch. The right panel shows the maximal growth
rate of the instability revealing the potential presence of oscillatory instabilities. The bottom left panel profiles
and their corresponding spectral planes are shown for µ1 = 0.25 and µ1 = 1; µ2 = µ1 + 0.1. The bottom right
panel shows the dynamical evolution for the case of µ1 = 0.4.

broken”, domain-wall type states), or in fact, as is the case especially for mixed modes, combining different
linear eigenstates, may be stable in wide parametric intervals. This suggests the potential experimental
realizability of such states. In fact, for some of these coherent structures, one may argue that they
(or higher dimensional analogs thereof) have already been experimentally observed. For instance, the
|0, 1〉 state is tantamount to the bright-dark soliton that was recently experimentally identified in the
work of [36]. In that experiment, a phase mask was applied to an elongated 87Rb BEC in the F = 1
hyperfine state, to produce a dark soliton. At the same time, a fraction of atoms within the phase mask
were transfered to the F = 2 hyperfine state, creating a bright soliton therein, thus giving rise to the
first experimental realization in the two-component system of a bright-dark soliton. On the other hand,
higher dimensional (rotationally symmetric) forms of e.g. the |0, 2〉 state may be associated with the
experimental observations of [15]. In the latter setting, a three-dimensional condensate consisting of half
the atoms in each of the two initally identical hyperfine states (F = 1 and F = 2 of 87Rb) was allowed
to evolve, giving rise to phase separation phenomena and the spontaneous emergence of recurrent single-
and multi-ring patterns during the time span monitored experimentally.

It is important here to highlight the physical context in which our findings above may be relevant.
To that effect, we use the theoretical work of [43], setting the stage for the validity of the reduction
of the BEC dynamics to a quasi-1d setting, as well as the very recent experimental work of [44]. A
key diagram to use in this regard is Fig. 1 of [43]. According to that, the ideal gas regime (which is

tantamount to our linear regime) is relevant for α⊥/α > 102; here α⊥ =
√
~/(mω⊥), where ω⊥ is the

transverse trapping frequency of the cloud and a is a typical value of the scattering length (say, a11 for
our purposes). As one increases the number of atoms (for a fixed Ω) one passes from the ideal gas regime
to the one-dimensional (1D) mean field regime (when crossing an appropriate curve). In our case we
used a typical Ω = 0.1. Assuming a transverse trapping frequency of about 2π × 100 Hz (which is fairly
reasonable in experimental settings such as that of [44]), we obtain that α⊥/α ≈ 193 > 102. Then as
the number of atoms increases, we start from the linear state and can get to numbers of atoms of up to
a few hundred (which is feasible in the experiment of [44]) and in fact up to 1000–1500. For N = 1000,
NΩ = 100, which according to Fig. 1 of [43] is still within the 1D mean-field regime. In fact, this
is precisely the point of our numerical simulations, as well. We do not mean to imply that our linear
states will be observable since states with that few atoms may indeed be hard to monitor; what we argue
instead is that, within the context of the two-component GPE model with the parabolic potential, these
are legitimate starting points for identifying states that will survive in the 1D mean-field limit (that can
realistically be described by the partial differential equations used here) even for numbers of atoms which
are relevant to physical experiments such as those reported in [44]. This continuation to experimentally
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relevant and observably high numbers of atoms is a principal contribution of the numerical part of this
work.

These results suggest a number of potential future directions. On the one hand, it would be particularly
interesting to quantify theoretically both the number of unstable eigendirections of the multi-component
problem, similarly e.g. to the corresponding single-component analysis of [39]. Another direction of inter-
est would be to generalize the present results to the higher dimensional case; while quasi-one-dimensional
experimental settings for multi-component mixtures are presently being studied [36], most of the earlier
experiments have been realized in the three-dimensional context (see e.g. [15] and references therein).
Finally, yet another vein of recent studies concerns the study of spinor condensates [45, 46] where the
corresponding mean-field model consists of a three-component system in the F = 1 case (see e.g., [47] and
references therein). An even more complex possibility consists of the five-component setting of the F = 2
spinor condensate [48]. Extending the present considerations in such settings would be a challenging, yet
relevant task.
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[28] T. Busch, J.I. Cirac, V.M. Pérez-Garćıa and P. Zoller, Phys. Rev. A 56, 2978 (1997).
[29] R. Graham and D. Walls, Phys. Rev. A 57, 484 (1998).
[30] B.D. Esry and C.H. Greene, Phys. Rev. A 57, 1265 (1998).
[31] H. Pu and N.P. Bigelow, Phys. Rev. Lett. 80, 1134 (1998).
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