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Abstract. Gierer-Meinhardt system is a mathematical model to describe bi-
ological pattern formation due to activator and inhibitor. Turing pattern is
expected in the presense of local self-enhancement and long-range inhibition.
The long-time behavior of the solution, however, has not yet been clarified

mathematically. In this paper, we study the case when its ODE part takes
periodic-in-time solutions, that is, τ = s+1

p−1
. Under some additional assump-

tions on parameters, we show that the solution exists global-in-time and ab-
sorbed into one of these ODE orbits. Thus spatial patterns eventually dis-
appear if those parameters are in a region without local self-enhancement or

long-range inhibition.

1. Introduction. Several models in mathematical biology take the form of a reaction-
diffusion system

ut = ε2∆u+ f(u, v)

τvt = D∆v + g(u, v) in Ω× (0, T ) (1)

with
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω× (0, T ) (2)

where ε, τ , and D are positive constants, Ω is a bounded domain in Rn with
smooth boundary ∂Ω, and ν is the outer unit normal vector. One of them is the
Gierer-Meinhardt system in morphogenesis [2] which is the case of

f(u, v) = −u+
up

vq
, g(u, v) = −v +

ur

vs
(3)
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with

p > 1, q, r > 0, s > −1. (4)

It is concerned with pattern formations of spatial tissue structures of hydra, where
u = u(x, t) > 0 and v = v(x, t) > 0 stand for the activator and inhibitor, respec-
tively. Fundamental ideas of this model are from Turing [17], that is, instability of
constant stationary solutions is driven by diffusion terms (see also Murray [13]).

Mathematical study on Gierer-Meinhardt system, the reaction - diffusion system
(1)-(2) with the nonlinearity (3)-(4), has been done in details. “Turing pattern” is
observed as spiky stable stationary solutions [15, 6] in the case of

0 < ε ≪ 1, D ≫ 1, 0 < τ ≪ 1, (5)

and
p− 1

r
<

q

s+ 1
. (6)

See also Wei [18] and the references therein for later studies.
Condition (6) takes the following roles in the ODE system

du

dt
= −u+

up

vq
, τ

dv

dt
= −v +

ur

vs
. (7)

First, if (6) is the case, the ODE orbits near the equilibrium (u, v) = (1, 1) are
cyclic. Next, in the case of

0 < τ <
s+ 1

p− 1
(8)

the constant solution (u, v) = (1, 1) is stable as a steady state of (7) because the
linearized equation takes the form

d

dt

(
y
τz

)
=

(
p− 1 −q
r −(s+ 1)

)(
y
z

)
and the real parts of all the eigenvalues of the matrix

A =

(
p− 1 −q
r/τ −(s+ 1)/τ

)
are negative if and only if (8) is satisfied. Finally, if τ = 0 the ODE system (7) is
reduced to the single equation

du

dt
= −u+ uγ , γ = p− qr

s+ 1
.

Then condition (6) implies 0 < γ < 1 and hence global-in-time existence of the
solution of this reduced system.

In spite of such a stable profile of the stationary solution (u, v) = (1, 1) in ODE,
it becomes unstable as a steady state of

ut = ε2∆u− u+
up

vq

τvt = D∆v − v +
ur

vs
in Ω× (0, T ) (9)

with
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω× (0, T ) (10)
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if its linearized part

∂

∂t

(
w
τz

)
=

(
ε2∆+ p− 1 −q

r D∆− (s+ 1)

)(
w
z

)
in Ω× (0, T ) (11)

with
∂w

∂ν
=

∂z

∂ν
= 0 on ∂Ω× (0, T ) (12)

is unstable. This property arises if

λ

(
α
τβ

)
=

(
−µε2 + p− 1 −q

r −µD − s− 1

)(
α
β

)
(13)

has a positive eigenvalue λ, where µ is a positive eigenvalue of −∆ with ∂
∂ν · = 0 on

∂Ω. In fact, since

λ = −µε2 + (p− 1)− qr

µD + (s+ 1) + τλ

the instability λ = λ(ε,D, τ) > 0 occurs for D ≫ 1 and 0 < ε ≪ 1. Condition (6),
on the other hand, implies λ(ε,D, τ) < 0 for 0 < D ≪ 1 and 0 < τ ≪ 1. Thus, the
instability of (u, v) = (1, 1) as a stationary state of (9) with (10) arises if and only
if D ≫ 1, provided that (6) and 0 < ε, τ ≪ 1 are the cases.

Henceforth we assume (6). Unique existence of the regular solution local-in-time
to (9) with (10) is standard, for given smooth initial values

u|t=0 = u0(x) ≥ 0, v|t=0 = v0(x) > 0 on Ω. (14)

Its global-in-time existence was studied by Masuda-Takahashi [12], and recently,
Jiang [7] has established this property for

p− 1

r
< 1. (15)

Condition (15) is almost optimal, regarding the work of Ni-Suzuki-Takagi [14] con-
cerning the ODE system (7). Namely, according to their classification of orbits,
there is fintie time blowup in (7) for

p− 1

r
> 1.

One of other mathematical results on the Gierer-Meinhardt system (9) is the
existence and non-existence of the global-in-time solution to the shadow system

ut = ε2∆u− u+
up

ξq
in Ω× (0, T )

∂u

∂ν
= 0 on ∂Ω× (0, T )

τ
dξ

dt
= −ξ +

1

|Ω|

∫
Ω

ur

ξs
dx in (0, T )

done by Li-Ni [11]. Yanagida [19, 20], on the other hand, formulated (9) as a
skew-gradient system

rut = rε2∆u+Hu(u, v)

τqvt = qD∆v −Hv(u, v) in Ω× (0, T )

with
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω× (0, T )
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in the case of
p+ 1 = r, q + 1 = s,

using

H(u, v) = −r

2
u2 +

q

2
v2 +

ur

vq
.

Consequently, any non-degenerate mini-maximizer of

E(u, v) =

∫
Ω

rε2

2
|∇u|2 − qD

2
|∇v|2 −H(u, v) dx

is linearly stable by general theory.
The asymptotic behavior of the solution as t ↑ +∞ of the Gierer-Meinhardt

system, however, has been studied mostly for the system with supplementary terms

ut = ε2∆u− u+
up

vq
+ σ1

τvt = D∆v − v +
ur

vs
+ σ2 in Ω× (0, T )

with
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω× (0, T )

where σi = σi(x) ≥ 0, i = 1, 2, are smooth functions satisfying σ1 + σ2 > 0 (see
[12, 7]). Technical difficulties to this problem lie on the uniform esitmate of v > 0
from below, and to our knowledge the present paper is the first challenge for the
case without supplementary terms.

Our result, however, is restrited to the special case

τ =
s+ 1

p− 1
(16)

where the ODE part takes the first integral (see [14])

H(u, v) =
vs+1

up−1
+

p− 1

r − p+ 1
ur−p+1 − s+ 1

s+ 1− q
vs+1−q. (17)

Thus, any solution (u, v) = (u(t), v(t)) to (7) with u(t), v(t) > 0 satisfies

d

dt
H(u(t), v(t)) = 0.

If
p− 1

r
≤ 1 ≤ q

s+ 1
, (18)

furthermore, all the level curves of H are closed in uv plane with u, v > 0. Con-
sequently, any solution (u, v) = (u(t), v(t)) to (7) is time-periodic with a period
determined by the first integral (or energy) H = H(u(t), v(t)), which is constant in
t.

Actually, periodic orbits to (7) arise if and only if (16) and (18) are the cases,
according to the classification of the ODE orbits done by [14]. Our result is now
stated as follows.

Theorem 1.1. Let
d1 = ε2, d2 = τ−1D, (19)

and assume

2
√
d1d2

d1 + d2
≥

√
(s+ 1)(p− 1)

sp
, s > 0. (20)
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Assume, furthermore, (16), that is,

τ =
s+ 1

p− 1

and
p

r
< 1 <

q

s+ 1
. (21)

Then, given a solution (u, v) = (u(·, t), v(·, t)) to the Gierer-Meinhardt system (9)

with (10), we have an ODE orbit Ô ⊂ R2 to (7) such that

lim
t↑+∞

distC2((u(·, t), v(·, t)), Ô) = 0. (22)

Furthermore, if this Ô is not composed of a single point there is ℓ > 0 such that

lim
t↑+∞

∥(u(·, t+ ℓ), v(·, t+ ℓ))− (u(·, t), v(·, t))∥C2 = 0. (23)

The proof is based on the theory of dynamical systems. We introduce a Lyapunov
function which has not been known so far. This Lyapunov function is valid only
in the case of (20) and (21). In spite of these additional restrictions, parameters
(p, q, r, s) satisfying all the requirements of Theorem 1.1 exist.

Actually, the set of the values of the left-hand of (20) is equal to [0, 1) as di,
i = 1, 2, varies. Hence inequality (20) requires

p− 1

s
≤ 1, (24)

which, however, is consistent to (21). The extremal value 1 of the left-hand side of
(20) is achieved if and only if d1 = d2. In other words the admissible parameter
region of (p, q, r, s) assumed in Theorem 1.1 is wider as two diffusion coefficients di,
i = 1, 2, are closer.

Since condition (21) is included by (15) and (18), in the parameter region treated
in Theorem 1.1 any solution (u, v) = (u(·, t), v(·, t)) to (9) with (10) and (14) exists
global-in-time, any solution to its ODE part (7) is time-periodic, and any PDE
orbit O = {(u(·, t), v(·, t))}t≥0 is absorbed into one of the periodic orbits of its ODE

part, denoted by Ô. In other words, any spatial patterns of the Gierer-Meinhardt
system eventually disappear in the parameter region (21) of (p, q, r, s) under the
assumptions of τ = (s + 1)/(p − 1) and d1 ≈ d2. These assumptions are far from
(5), the local self-enhancement 0 < ε ≪ 1 and the long-range inhibition D ≫ 1,
0 < τ ≪ 1. Thus Theorem 1.1 still supports the paradigm, Turing patterns expected
under such environments [9].

Assumption (16) may look restrictive. Here we emphasize again that this is the
only case that the ODE part of (9)-(10) takes peiodic-in-time orbits. The proof
of Theorem 1.1, furthermore, implies that the stationary state to (9)-(10) must be
spatially homogeneous without this condition.

Theorem 1.2. Let
p

r
< 1 <

q

s+ 1
,

p− 1

s
≤ 1 (25)

and d,D > 0 be in the region

2
√
dD√

s+1
p−1d+

√
p−1
s+1D

≥

√
(s+ 1)(p− 1)

sp
. (26)
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Then any solution to

d∆u− u+
up

vq
= 0, D∆v − v +

ur

vs
= 0 in Ω (27)

with
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω (28)

must be the constant (1, 1).

Theorem 1.1 of Jiang-Ni [8] is also concerned with the uniqueness of the solution
to (27)-(28). There, this property is established for

max{q, r} < s+ 1 (29)

and D/d ≤ k with k = k(p, q, r, s) calculated explicitly. We note that this case of
[8] is a counter part of the one treated in Theorem 1.2, comparing (25) and (29).
The other uniqueness result of [8] is Theorem 1.7, which is concerned with n = 2
and p−1

r < 1. Thus any D∗ > 0 admits d∗ > 0 such that there is no non-constant
solution to (27)-(28) if D ≥ D∗ and d ≥ d∗.

The same properties as in Theorems 1.1 and 1.2 are observed in the classical
prey-predator system

ut = ε2∆u+ u(a− bv)

τvt = D∆v + v(−c+ du) in Ω× (0, T ) (30)

with
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω× (0, T ), (31)

where a, b, c, d > 0 are constants (see [1, 10]), that is, the ODE part takes always
time-periodic orbits and the PDE solution is absorbed into one of them. We have,
actually, common mathematical structures between these two models. In fact, first,
any orbit of the ODE part of (30)

du

dt
= u(a− bv), τ

dv

dt
= v(−c+ du) (32)

with u = u(t) > 0 and v = v(t) > 0 is time-periodic. This property follows from
the fact that system (32) takes the first integral

H(u, v) = −a log v + bv − τ−1c log u+ τ−1du (33)

of which level curves are closed in uv plane, u, v > 0. Then,

H(u(·, t), v(·, t)) =
∫
Ω

H(u(x, t), v(x, t))dx (34)

casts a Lyapunov function to (30) with (31).
Although these structures are common to (7) for (16), here we use additional

technical ingredients. One is due to Masuda-Takahashi [12] estimating

d

dt

∫
Ω

uav−bdx, a, b > 0.

The other is the use of a comparison principle to v−a to derive the uniform estimate
of v = v(x, t) > 0 from below.

In the following sections, first, we confirm that H(u, v) defined by (17) is a
Hamiltonian of an ODE system associated with (7) for (16) and then show that
H(u(·, t), v(·, t)) defined by (34) and (17) acts as a Lyapunov function to (9) with
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(10). This propery implies Theorem 1.2 immediately. The proof of Theorem 1.1 is
given in the final section.

2. Preliminaries. The parabolic strong maximum principle to (9), (10), and (14)
guarantees u(·, t) > 0 in Ω × (0,+∞), provided that u0 ̸≡ 0 on Ω. Hence we shall
treat positive solutions to (9) with (10) and to (7), mostly.

Writing (7) in the form of

u−p(ut + u) = v−q, vs(vt + τ−1v) = τ−1ur,

we introduce new variables,

ξ =
u−p+1

p− 1
, η =

vs+1

s+ 1
. (35)

Then it follows that

ξt = −utu
−p, ηt = vsvt (36)

and hence

ξt = u−p+1 − v−q = (p− 1)ξ − {(s+ 1)η}−
q

s+1

ηt = −τ−1vs+1 + τ−1ur = −τ−1(s+ 1)η + τ−1{(p− 1)ξ}−
r

p−1 .

It is not hard to formulate this system as a Hamilton system in the case of (16),
that is, p− 1 = τ−1(s+ 1). In fact, we have

dξ

dt
= Hη,

dη

dt
= −Hξ (37)

using

H(ξ, η) = (p− 1)ξη +

(
r

p− 1
− 1

)−1

A(ξ) +

(
q

s+ 1
− 1

)−1

B(η) (38)

and

A(ξ) = τ−1(p− 1)−
r

p−1 ξ1−
r

p−1

B(η) = (s+ 1)−
q

s+1 η1−
q

s+1 . (39)

This Hamiltonian is actually equivalent to the first integral defined by (17).
Here we assume

p− 1

r
< 1 <

q

s+ 1

and put

α =
r

p− 1
− 1 > 0, β =

q

s+ 1
− 1 > 0. (40)

Then it follows that

H(ξ, η) = (p− 1)ξη + (s+ 1)−1(p− 1)−αα−1ξ−α

+(s+ 1)−β−1β−1η−β , (41)

recalling (16).
Now we use (19) and (35). First, (36) implies

ξt = −d1u
−p∆u+ u−p+1 − v−q

ηt = d2v
s∆v − τ−1vs+1 + τ−1ur.
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Then, (9) and (10) read as

ξt = −d1(p− 1)ξ
p

p−1∆ξ−
1

p−1 +Hη, ξ > 0

ηt = d2(s+ 1)η
s

s+1∆η
1

s+1 −Hξ, η > 0 in Ω× (0, T )

and

∂ξ

∂ν
=

∂η

∂ν
= 0 on ∂Ω× (0, T ),

respectively. This formulation implies

d

dt

∫
Ω

H(ξ, η)dx =

∫
Ω

Hξξt +Hηηt dx

=

∫
Ω

−Hξd1(p− 1)ξ
p

p−1∆ξ−
1

p−1 +Hηd2(s+ 1)η
s

s+1∆η
1

s+1 dx,

while

Hξ = (p− 1)η − (s+ 1)−1(p− 1)−αξ−α−1

Hη = (p− 1)ξ − (s+ 1)−β−1η−β−1

holds by (41). Then it follows that

d

dt

∫
Ω

H(ξ, η)dx = (p− 1)

∫
Ω

−d1(p− 1)ηξ
p

p−1∆ξ−
1

p−1

+d2(s+ 1)ξη
s

s+1∆η
1

s+1 dx

+

∫
Ω

d1(s+ 1)−1(p− 1)−α+1ξ−α+ 1
p−1∆ξ−

1
p−1

−d2(s+ 1)−βη−β− 1
s+1∆η

1
s+1 dx. (42)

The last two terms of the right-hand side of (42) are treated by∫
Ω

ξ−α+ 1
p−1∆ξ−

1
p−1 dx =

(
−α+

1

p− 1

)
1

p− 1

∫
Ω

ξ−α−2|∇ξ|2dx∫
Ω

η−β− 1
s+1∆η

1
s+1 dx =

(
β +

1

s+ 1

)
1

s+ 1

∫
Ω

η−β−2|∇η|2dx

using (10), while for the first two terms we note∫
Ω

ηξ
p

p−1∆ξ−
1

p−1 dx =
1

p− 1

∫
Ω

∇(ηξ
p

p−1 ) · ξ−
p

p−1∇ξ dx

=
1

p− 1

∫
Ω

∇ξ · ∇η +
p

p− 1
ηξ−1|∇ξ|2 dx

and ∫
Ω

ξη
s

s+1∆η
1

s+1 dx = − 1

s+ 1

∫
Ω

∇(ξη
s

s+1 ) · η−
s

s+1∇η dx

= − 1

s+ 1

∫
Ω

∇ξ · ∇η +
s

s+ 1
ξη−1|∇η|2dx.
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Therefore, it follows that

1

p− 1

d

dt

∫
Ω

H(ξ, η)dx = −
∫
Ω

d1

(
∇ξ · ∇η +

p

p− 1
ηξ−1|∇ξ|2

)
+d2

(
∇ξ · ∇η +

s

s+ 1
ξη−1|∇η|2

)
+d1(s+ 1)−1(p− 1)−α−1

(
α− 1

p− 1

)
ξ−α−2|∇ξ|2

+d2(s+ 1)−β−1(p− 1)−1

(
β +

1

s+ 1

)
η−β−2|∇η|2 dx

= −
∫
Ω

(d1 + d2)∇ξ · ∇η + d1 ·
p

p− 1
ξ−1η|∇ξ|2

+d2 ·
s

s+ 1
ξη−1|∇η|2

+d1(s+ 1)−1(p− 1)−α−1

(
α− 1

p− 1

)
ξ−α−2|∇ξ|2

+d2(s+ 1)−β−1(p− 1)−1

(
β +

1

s+ 1

)
η−β−2|∇η|2 dx.

Here, the inequality α− 1
p−1 > 0 is equivalent to p

r < 1 and the quadratic form

Q(X,Y ) = d1 ·
p

p− 1
X2 + d2 ·

s

s+ 1
Y 2 + (d1 + d2)XY

is non-negative definite if and only if (20). We thus end up with the following
lemma.

Lemma 2.1. Under the assumptions of Theorem 1.1, it holds that

d

dt

∫
Ω

H(ξ, η)dx ≤ −
∫
Ω

c1|∇ξ−α/2|2 + c2|∇η−β/2|2 dx (43)

where ci > 0, i = 1, 2, are constants.

Concluding this section, we note the following. First, by (35) and (40) it holds
that ∫

Ω

H(ξ, η)dx ≈
∫
Ω

u−p+1vs+1 + ur−p+1 + v−q+s+1 dx (44)

and ∫
Ω

|∇ξ−α/2|2 + |∇η−β/2|2 dx ≈
∫
Ω

|∇u
r−p+1

2 |2 + |∇v
−q+s+1

2 |2 dx,

where
r − p+ 1 > 0 > −q + s+ 1.

Next, Lemma 2.1 implies the following proof.

Proof of Theorem 1.2. Any solution (u, v) to (27)-(28) is regarded as a stationary
solution (u, v) to (9)-(10) for ε2 = d. This stationary system of (9)-(10) is indepen-
dent of τ , so that (u, v) may be regarded as a stationary solution to (9)-(10) for
τ = s+1

p−1 . Then, the left-hand side of (43) vanishes because this (u, v) is independent

of t. Therefore, it follows that that (ξ, η) and hence (u, v) are spatially homogeneous
under the assumptions of Theorem 1.1. Here, condition (20) for d1 = ε2 = d and
d2 = τ−1D = p−1

s+1D means (26). Thus (u, v) = (1, 1) follows if (25)-(26) are the
cases.
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3. Proof of Theorem 1.1. Henceforth, Ci, i = 1, 2, · · · , 13, denote positive con-
stants independent of t. To clarify their dependnce on parameters, say, a, b, · · · , we
sometimes write them as Ci(a, b, · · · ). Furthermore, we shall use standard semi-
group estimates (see, for instance, [4, 16] and the references in [5]).

First, we show the following lemma.

Lemma 3.1. Under the assumptions of Theorem 1.1, it holds that

∥v(·, t)−1∥∞ ≤ C1 (45)

for any t ≥ 0.

Proof. Given ℓ > max{n/2, 1}, we put a = ℓ
q−s−1 > 0 and v = w−a > 0. Then we

obtain

∥w(·, t)∥ℓ ≤ C2 (46)

by Lemma 2.1. It also holds that

wt = d2∆w − d2(a+ 1)w−1|∇w|2 + a−1τ−1(w − urwa(s+1)+1)

≤ d2∆w + a−1τ−1w

and hence

wt ≤ (d2∆− µ)w + (µ+ τ−1a−1)w in Ω× (0,+∞)

∂w

∂ν
= 0 on ∂Ω× (0,+∞),

where µ > 0. Then, the standard maximum principle guarantees

0 < w ≤ w on Ω× [0,+∞) (47)

using the solution w = w(x, t) to

wt = (d2∆− µ)w + (µ+ τ−1a−1)w in Ω× (0,+∞)

∂w

∂ν
= 0 on ∂Ω× (0,+∞)

w|t=0 = v0(x)
−a in Ω.

It holds that

w(·, t) = et(d2∆−µ)v−a
0 + (µ+ a−1τ−1) ·

∫ t

0

e(t−s)(d2∆−µ)w(·, s)ds

with

∥et∆∥Lℓ(Ω)→Lℓ(Ω) ≤ C3(ℓ).

Therefore, we obtain

∥∆γw(·, t)∥ℓ ≤ C4(γ, ℓ)

by (46), where 0 < γ < 1. Then it follows that

∥w(·, t)∥W 2γ,ℓ ≤ C5(γ, ℓ)

which implies

∥w(·, t)∥∞ ≤ C6

by ℓ > max{n/2, 1} and Morrey’s theorem because 0 < γ < 1 is arbitrary. Hence
we obtain

∥v(·, t)−a∥∞ = ∥w(·, t)∥∞ ≤ C6

by (47). Since a > 0, the result follows with C1 = C
1/a
6 .
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Following [12], now we estimate

d

dt

∫
Ω

uav−bdx

from above, where a, b > 0. First, we have

d

dt

∫
Ω

uav−bdx =

∫
Ω

aua−1v−but − buav−b−1vt dx

=

∫
Ω

−d1a∇u · ∇(ua−1v−b)− auav−b + aua−1+pv−b−q

+d2b∇v · ∇(uav−b−1) + τ−1b(uav−b − ua+rv−b−1−s)dx

=

∫
Ω

−a(a− 1)d1u
a−2v−b|∇u|2

+ab(d1 + d2)u
a−1v−b−1∇u · ∇v − b(b+ 1)d2u

av−b−2|∇v|2

+(τ−1b− a)uav−b + aua+p−1v−b−q

−τ−1bua+rv−b−s−1 dx.

The following lemma is essentially obtained in the proof of Lemma 2 of [7].

Lemma 3.2. Let (6) and (15) be satisfied. Then, given a > 1 and b > 0 such that

2
√
d1d2

d1 + d2
≥

√
ab

(a− 1)(b+ 1)
, (48)

it holds that

d

dt

∫
Ω

uav−bdx ≤ (−a+ τ−1b)

∫
Ω

uav−bdx

+C7(a, b)

(∫
Ω

v−θ/εdx

)ε (∫
Ω

uav−bdx

)1−ε

(49)

with ε and θ defined by

θ =
r

r − p+ 1− δ

[
q − (p− 1)(s+ 1)

r
−
(
s+ 1

r
− b

a

)
δ

]
ε =

δ

a

(
r

r − p+ 1− δ

)
. (50)

Here we take 0 < δ ≪ 1 so that 0 < ε < 1 and θ > 0 are achieved, recalling (6).

Proof. By (48) the quadratic form

Q(X,Y ) = a(a− 1)d1X
2 + b(b+ 1)d2Y

2 − ab(d1 + d2)XY

is non-negative definite. Hence it holds that

d

dt

∫
Ω

uav−bdx ≤ (−a+ τ−1b)

∫
Ω

uav−bdx

+

∫
Ω

aua+p−1v−b−q − τ−1bua+rv−b−s−1 dx.

First, we use

ua+p−1v−b−q =
{
v−θ(uav−b)1−ε

}1− p−1+δ
r ·

(
ur+av−s−b−1

) p−1+δ
r (51)
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derived from (50). In fact, we have

a(1− ε) · {1− p− 1 + δ

r
}+ (r + a) · p− 1 + δ

r

= a(1− ε) + (r + aε) · p− 1 + δ

r

= a+ p− 1 + δ + aε · p− 1 + δ − r

r
= a+ p− 1

and

{θ + b(1− ε)}{1− p− 1 + δ

r
}+ (s+ b+ 1) · p− 1 + δ

r

= θ + b(1− ε) + {−θ + bε+ s+ 1} · p− 1 + δ

r

= θ · r − p+ 1− δ

r
+ bε · −r + p− 1 + δ

r
+ b

+(s+ 1) · p− 1 + δ

r

=

{
q − (p− 1)(s+ 1)

r
− (

s+ 1

r
− b

a
)δ

}
− b

a
δ + b+ (s+ 1) · p− 1 + δ

r
= q + b.

Hence (51) follows.
Next, we use Young’s inequality as

aua+p−1v−b−q

= a
{
v−θ(uav−b)1−ε

}1− p−1+δ
r ·

(
ur+av−s−b−1

) p−1+δ
r

=

{
p− 1 + δ

r
· τ−1b · ur+av−s−b−1

} p−1+δ
r

·
{[

a

(
τ−1b · p− 1 + δ

r

)− p−1−δ
r

](1− p−1+δ
r )−1

·v−θ(uav−b)1−ε
}1− p−1+δ

r

≤ τ−1b · ur+av−s−b−1 + C8(a, b) · v−θ · (uav−b)1−ε,

where

C8(a, b) = (1− p− 1 + δ

r
) ·

[
a

(
τ−1b · p− 1 + δ

r

)− p−1−δ
r

](1− p−1+δ
r )−1

.

We thus end up with

d

dt

∫
Ω

uav−bdx ≤ (−a+ τ−1b)

∫
Ω

uav−bdx

+C8(a, b)

∫
Ω

v−θ(uav−b)1−εdx.
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Since ∫
Ω

v−θ(uav−b)1−εdx ≤
{∫

Ω

uav−bdx

}1−ε

·
{∫

Ω

v−θ/εdx

}ε

,

we obtain (49) with C7(a, b) = C8(a, b).

Now we show the following lemma.

Lemma 3.3. Under the assumptions of Theorem 1.1, any a > 1 admits 0 < b ≪ 1
such that ∫

Ω

uav−bdx ≤ C9, t ≥ 0. (52)

Proof. If a > 1 and b > 0 satisfy (48), we have

d

dt

∫
Ω

uav−bdx ≤ (−a+ τ−1b)

∫
Ω

uav−bdx+ C10

{∫
Ω

uav−bdx

}1−ε

by Lemmas 3.1 and 3.2. Given a > 1, on the other hand, we can take 0 < b ≪ 1
satisfying (48) and a > τ−1b. Then inequality (52) follows from Lemma 2.2 of [12]
or Lemma 3 of [7].

We proceed to the following lemma.

Lemma 3.4. Under the assumptions of Theorem 1.1, it holds that

lim
t↑+∞

∥(u(·, t), v(·, t))− (u(t), v(t))∥C2 = 0, (53)

where

u(t) =

∫
Ω

u(x, t) dx, v(t) =

∫
Ω

v(x, t) dx. (54)

Proof. Lemmas 3.1 and 3.3 guarantee∥∥∥∥up

vq
(·, t)

∥∥∥∥
ℓ

+

∥∥∥∥ur

vs
(·, t)

∥∥∥∥
ℓ

≤ C11

for ℓ > max{n/2, 1}. Then we obtain

∥u(·, t)∥∞ + ∥v(·, t)∥∞ ≤ C12 (55)

similarly to the proof of Lemma 3.1. The orbit

O = {(u(·, t), v(·, t)}t≥0

is thus compact in C2(Ω)×C2(Ω) by the parabolic regularity using inequalities (45)
and (55).

From the classical theory of dynamical systems (see [3], for example), ω-limit set
of the above O is defined by

ω(u0, v0) = {(u∗, v∗) | ∃tk ↑ +∞
s.t. ∥(u(·, tk), v(·, tk))− (u∗, v∗)∥C2 = 0}.

It is compact and connected in C2(Ω)× C2(Ω). On the other hand, we have

v∗ > 0 on Ω (56)

by (45) and therefore, a semi-flow is well-defined on ω(u0, v0) using (9) and (10).
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The set ω(u0, v0), furthermore, is invariant under this flow, and the solution
(ũ, ṽ) = (ũ(·, t), ṽ(·, t)) to (9), (10), and

ũ|t=0 = u∗ ≥ 0, ṽ|t=0 = v∗ > 0 on Ω

satisfies
d

dt

∫
Ω

H(ξ̃(·, t), η̃(·, t)) dx = 0, t > 0, (57)

where

ξ̃ =
ũ−p+1

p− 1
, η̃ =

ṽs+1

s+ 1
.

In fact, Fatou’s lemma guarantees∫
Ω

u−p+1
∗ vs+1

∗ + ur−p+1
∗ + v−q+s+1

∗ dx < +∞,

recalling (44). Since v∗ > 0 on Ω, it holds that∫
Ω

u−p+1
∗ dx < +∞

and hence u∗ ̸≡ 0. Then we obtain ũ(·, t) > 0 on Ω for t > 0 by the parabolic strong
maximum principle to (9) with (10).

Consequently, the value H(ξ̃(·, t), η̃(·, t)) is well-defined for t > 0, which is invari-
ant from the LaSalle principle. This property implies (57). Then, it holds that∫

Ω

c1|∇ξ−α/2|2 + c2|∇η−β/2|2 dx ≤ 0

by (43). Hence this (ũ, ṽ) = (ũ(·, t), ṽ(·, t)), t > 0, is a pair of spatially homogeneous
functions. Namely, the above (u∗, v∗) must be a pair of positive constant functions.

We have proven that ω(u0, v0) is contained in the set of pairs of positive constants.
Then it holds that

lim
t↑+∞

{∥∇u(·, t)∥C1 + ∥∇v(·, t)∥C1} = 0 (58)

and hence (53) with (54).

We show the first part of Theorem 1.1.

Lemma 3.5. Under the assumptions of Theorem 1.1 there is an ODE orbit Ô ⊂ R2

satisfying (22).

Proof. Given the solution (u, v) = (u(·, t), v(·, t)) to (9), (10), and (14) with u0 ̸≡ 0,
the orbit O = {(u(·, ), v(·, t))}t≥0 exists global-in-time and is compact in C2(Ω) ×
C2(Ω). By (43) the value

H∞ = lim
t↑+∞

∫
Ω

H(ξ(x, t), η(x, t))dx (59)

exists, where (ξ, η) = (ξ(·, t), η(·, t)) is defined by (35). Furthermore, any (u∗, v∗) ∈
ω(u0, v0) is a pair of positive constants.

Since the set ω(u0, v0) is invariant under the flow defined by (9) and (10), this
(u∗, v∗) lies on one of the ODE orbit of (7) which is always time-periodic in the
case of τ = (p − 1)/(s + 1). Since this ODE system takes the Hamilton formalism
(37), the above orbit is detemined by the first integral, that is, H∞ defined by (59).

Hence ω(u0, v0) is contained in a definite ODE orbit denoted by Ô, and then it
holds that (22).
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The following lemma is used for the proof of the second part of Theorem 1.1.

Lemma 3.6. Under the assumptions of Theorem 1.1 each tk ↑ +∞ admits {t′k} ⊂
{tk} and an ODE solution (û(t), v̂(t)) such that Ô = {(û(t), v̂(t))}t∈R and

lim
k→∞

sup
t∈[−T,T ]

∥(u(·, t+ t′k), v(·, t+ t′k))− (û(t), v̂(t))∥C2 = 0 (60)

for any T > 0.

Proof. Inequalities (45) and (55) imply

∥ut(·, t)∥C2 + ∥vt(·, t)∥C2 ≤ C13, t ≥ 1

by the parabolic regularity. Hence by the Ascoli-Arzelá theorem tk ↑ +∞ admits
{t′k} ⊂ {tk} and a solution (û, v̂) = (û(·, t), v̂(·, t)) to (9)-(10) such that

lim
k→∞

sup
t∈[−T,T ]

∥(u(·, t+ t′k), v(·, t+ t′k))− (û(·, t), v̂(·, t))∥C2 = 0 (61)

for any T > 0. Since (58) implies

∇û(·, t) = ∇v̂(·, t) = 0, t ∈ [−T, T ]

this (û, v̂) = (û(·, t), v̂(·, t)) must be spatially homogeneous, denoted by (û, v̂) =
(û(t), v̂(t)). Consequently, it is a solution to (7), and then (60) follows from (61).

We are ready to complete the following proof.

Proof of Theorem 1.1. It remains to show (23). Let ℓ ≥ 0 be the time period of the

solution to (7) on Ô in Lemma 3.6. Unless Ô is composed of a single point, it holds
that ℓ > 0. Then we take T > 2ℓ.

By Lemma 3.6, any tk ↑ +∞ admits {t′k} ⊂ {tk} and a solution (û(t), v̂(t)) to

(7) such that Ô = {(û(t), v̂(t))}t∈R and (60). Let t ∈ [−ℓ, ℓ] be fixed. Then it holds
that

(û(t+ ℓ), v̂(t+ ℓ)) = (û(t), v̂(t)) (62)

and therefore,

lim sup
k→∞

∥(u(·, t+ ℓ+ t′k), v(·, t+ ℓ+ t′k))

−(u(·, t+ t′k), v(·, t+ t′k))∥C2

≤ lim
k→∞

∥(u(·, t+ ℓ+ t′k), v(·, t+ ℓ+ t′k))− (û(t+ ℓ), v̂(t+ ℓ))∥C2

+ lim
k→∞

∥(u(·, t+ t′k), v(·, t+ t′k))− (û(t), v̂(t))∥C2 = 0.

This property means

lim
s↑+∞

∥(u(·, t+ ℓ+ s), v(·, t+ ℓ+ s))− (u(·, t+ s), v(·, t+ s))∥C2 = 0

and in particular, (23) follows.
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