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Abstract. We consider the following singularly perturbed elliptic problem:

ε2∆u = (u− a(y)) (u− b(y)) in Ω,
∂u

∂n
= 0 on ∂Ω,

where Ω is a bounded domain in R2 with smooth boundary, ε > 0 is a small

parameter, n denotes the outward normal of ∂Ω, and a, b are smooth functions
that do not dependent on ε. We assume that the zero set of a− b is a simple

closed curve Γ, contained in Ω, and ∇(a − b) 6= 0 on Γ. We will construct

solutions uε that converge in the Hölder sense to max{a, b} in Ω, and their
Morse index tends to infinity, as ε → 0, provided that ε stays away from

certain critical numbers. Even in the case of stable solutions, whose existence

is well established for all small ε > 0, our estimates improve previous results.

1. Introduction

1.1. The problem and known results. In this paper we consider the following
elliptic problem:

ε2∆u− (u− a(y)) (u− b(y)) = 0 in Ω,
∂u

∂n
= 0 on ∂Ω, (1.1)

where Ω is a smooth bounded domain in R2, containing the origin, the functions
a, b are five times continuously differentiable in a tubular neighborhood of the curve
Γ, defined below, and two times in the complementary points of Ω̄. By n=n(y) we
denote the outward unit normal to ∂Ω, and ε > 0 is a small number. We assume
that there exists a simple, smooth and closed curve Γ ⊂ Ω which separates the
domain into two disjoint components, namely

Ω = Ω1 ∪ Γ ∪ Ω2, (1.2)

such that

a(y) > b(y) in Ω1, a(y) < b(y) in Ω2,
∂a

∂ν
<
∂b

∂ν
on Γ, (1.3)

where ν = ν(y) denotes the outward unit normal to ∂Ω1. The last assumption in
(1.3) be viewed as a non-degeneracy condition.

We are interested in solutions of (1.1) that converge to max{a, b}, as ε→ 0, uni-
formly in Ω̄. Note that, by assumption (1.3), the singular limit function max{a, b}
is merely continuous and not differentiable across the curve Γ. In other words, the
solutions we seek have a corner layer along the curve Γ. More precisely, our pur-
pose in this paper is to show, via a perturbation argument, the existence of highly
unstable solutions of this type. To the best of our knowledge, with the exception of
one-dimensional or radially symmetric cases, elliptic or parabolic problems involv-
ing corner layered solutions have been treated thus far only by constructing upper
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and lower solutions or by weak convergence arguments (see the discussion below).
The case where a, b do not intersect is by now standard, see [16].

Let us mention that, even if posed in a one–dimensional domain, problem (1.1)
(under (1.3)) is non-trivial. This is due to the fact that the solution set of the limit
algebraic equation

(u− a(y)) (u− b(y)) = 0 (1.4)

undergoes a transcritical bifurcation as y crosses the point corresponding to Γ. At
the bifurcation point, the two branches of solutions of (1.4), namely,

Ca = {(a(y),y) , y ∈ Ω} , Cb = {(b(y),y) , y ∈ Ω} ,
exchange stabilities with respect to the dynamics of

u̇ = − (u− a(y)) (u− b(y)) ,

see [25, pg. 29]. Equation (1.4) is frequently referred to as the outer problem and,
loosely speaking, determines the slow manifold of the slow-fast system corresponding
to the one-dimensional version of equation (1.1) (see [30]). As predicted by the above
discussion, the slow manifold looses its normal hyperbolicity, due to a transcritical
bifurcation, which prevents the use of standard geometric singular perturbation
theory [30] and one has to use a blow-up procedure (see [44]).

Motivated from reaction kinetics, it was shown in [9], by the method of upper
and lower solutions, that problem (1.1) (under (1.3)) has a solution such that

‖uε −max{a, b}‖L∞(Ω) = O(ε
2
3 ), ε→ 0, and uε > a on Γ. (1.5)

In the special case where b is identically zero, problem (1.1) becomes the well known
scalar logistic equation, see [12], and the existence of a positive solution which sat-
isfies (1.5) was shown in [26], using a different construction of upper and lower
solutions than [9]. In this context, relation (1.5) describes spatial segregation (see
also [34]). Furthermore, it was also shown there that uε is asymptotically sta-
ble (with respect to the parabolic dynamics), and the principal eigenvalue of the
associated linearized operator satisfies

λ1,ε ≥ cε
2
3 > 0,

for some constant c > 0 and all small ε > 0 (see also [10] for a different proof
of this lower bound in the one–dimensional case). Let us point out here that the
method of upper and lower solutions captures only stable solutions and, in general,
is not applicable to the study of systems (see [45]). The possibility of formulating a
theorem regarding the asymptotic behavior, as ε→ 0, of uniformly bounded stable
solutions of (1.1), with a, b as in the present paper, has been speculated in pg. 79
of the review article [15].

On the other hand, in the radially symmetric case (in N ≥ 2 dimensions), with
Γ = {|y| = r0}, it was shown in [32], by a perturbation argument, that problem
(1.1) (under (1.3)) has an unstable radial solution u−ε such that, in particular,

‖u−ε −max{a, b}‖L∞(Ω) = O(ε
2
3 ), ε→ 0, and u−ε < a on Γ. (1.6)

Furthermore, given m ∈ N, the first m eigenvalues of the linearized operator around
u−ε , restricted to the radial class of functions, satisfy

λi,ε = µiε
2
3 +O(ε

4
3 ), ε→ 0, i = 1, · · · ,m, (1.7)

where µi are the first m eigenvalues of a limit problem and satisfy

µ1 < 0, µ2 > 0.
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It was also shown, by expanding in polar coordinates, that the first K eigenvalues
(not counting multiplicities) of the linearized operator, in the general class, satisfy

Λi,ε = µ1ε
2
3 + r−2

0 τiε
2 +O(ε

4
3 ), i = 1 · · · ,K, ε→ 0, (1.8)

where τi = (i−1)(i+N−3), i = 1, · · · , are the eigenvalues of the Laplace–Beltrami
operator of SN−1, provided

µ1 + r−2
0 (K − 1)(K +N − 3)ε

4
3 ≤ µ2

4
.

As a consequence, it was shown that the Morse index Mε of u−ε , namely the number
of negative Λi’s (counting multiplicities), satisfies

lim
ε→0

Mε

/
ε−

2
3 (N−1) = µ∗, (1.9)

where µ∗ depends only on r0, µ1, and the dimension N . Moreover, it was proven
that bifurcations of non-radial solutions take place along a certain infinite discrete
set of values εj → 0. The goal of the present paper is to show that the perturbation
argument of [32], and the infinite–dimensional reduction of [17], can be adapted to
capture analogous solutions, in two dimensions, without the simplifying assumption
of radial symmetry.

Let us end this subsection by mentioning that, in the one–dimensional case,
solutions of (1.1), oscillating close to a, b or min{a, b}, have been investigated in
[24].

1.2. Motivation for the current work. Convergence, in the singular limit, to the
maximum or minimum of a family of functions, as in (1.5) or (1.6), typically occurs
in systems of nonlinear elliptic equations with competition, and describes phase
separation, as the repulsive interaction tends to infinity. These include systems
of Lotka-Voltera type [13], and systems arising in the Hartree-Fock theory of a
mixture of Bose-Einstein condensates [47]. Actually, the original problem that
led the authors of [9] to study (1.1) was a coupled system of this type. Elliptic
systems where the singular limit has Hölder or Lipschitz regularity also arise in
combustion theory [11]. Remarkably, unstable solutions with corner layer profile
of the same nature as those considered in the present paper can be found in [11]
(see Remark 3.1 below). In most cases, standard weak convergence arguments are
quite sufficient to pass to the singular limit in the pointwise and strong L2 sense.
An important question, treated in the previously mentioned references, is whether
families of bounded solutions converge in spaces of Hölder continuous (or Lipschitz)
functions and keeping track of the maximal global regularity available. For the
problem at hand we answer this question, for the solutions we construct, and we
hope that the perturbation approach of the current paper can be useful in the more
general situations mentioned above. We note that, in contrast to weak convergence
or upper and lower solution arguments, perturbation arguments can be applied to
general systems without special monotonicity properties.

Elliptic singular perturbation problems, where the singular limit is Hölder con-
tinuous, but not Lipschitz, appear frequently in applications. In these situations,
the limit algebraic equation (the analog of (1.4)) typically undergoes a pitchfork or
saddle–node bifurcation as the parameter y crosses a curve Γ. The case of pitchfork
bifurcation has received a lot of attention recently, as it occurs when minimizing
a Gross-Pitaevskii functional (see [1], [2], [3], [21], [27], and [40]). Due to the ir-
regular nature of the singular limit (it does not belong in the Sobolev space H1),



RESONANCE PHENOMENA IN THE CASE OF EXCHANGE OF STABILITIES 4

standard weak convergence arguments are not applicable. Furthermore, it seems
to be hard to construct a good pair of upper and lower solutions (especially). Ac-
tually, to the best of our knowledge, the behavior of solutions near Γ (estimates,
monotonicity properties, etc), as ε→ 0, is well understood only in the case of radial
symmetry1. Typically, the behavior of solutions can be satisfactory studied outside
of an ε-dependent tubular neighborhood of the bifurcation curve Γ, by constructing
suitable upper and lower solutions. Then, taking advantage of the radial symmetry,
one shows that positive solutions are monotone in this tubular neighborhood and,
therefore, is able to complete the picture (see [2]). A class of slow-fast Hamiltonian
systems, in which the slow manifold loses normal hyperbolicity due to a pitchfork
bifurcation, arises in the study of crystalline grain boundaries, see [4]. This prob-
lem has been treated successfully by a shooting argument in [20], geometric singular
perturbation theory in [44], and a perturbation argument, in the spirit of the cur-
rent paper, in [46]. A class of elliptic equations, where the corresponding limit
algebraic equation admits a saddle–node bifurcation, appear in the proof of the
Lazer–Mckenna conjecture for a superlinear elliptic problem of Ambrosetti-Prodi
type, see [14] (in this case we have Γ ≡ ∂Ω). We believe that the perturbation
approach we introduce in the current paper can be useful in these problems, since
it provides very accurate estimates up to the bifurcation curve Γ, of the form (1.17)
below. In turn, these are important for understanding interesting phenomena such
as the appearance of vortices (see [2]), or the existence of small peak solutions (see
[14]), close to Γ.

1.3. Statement of the Main Result. To state our main result, we feel that it is
useful to first make some definitions available, and formally review some arguments,
from the rest of the paper.

Let Γ be the closed smooth curve in (1.2), and let ` = |Γ| denote its total length.
We consider the natural parametrization γ = γ(θ) of Γ with positive orientation,
where θ denotes an arc length parameter measured from a fixed point of Γ. Let
ν(θ) denote the outer unit normal to Γ, as in (1.3). Points y that are δ0-close to Γ,
for sufficiently small δ0, can be represented in the form

y = γ(θ) + tν(θ), |t| < δ0, θ ∈ [0, `), (1.10)

where the map y 7→ (t, θ) is a local diffeomorphism. Note that t > 0 in Ω2.
Blowing up (1.1) around the curve Γ, via the rescaling (3.2), (3.11) below, and

keeping in mind that this inner blow up must match with the outer blow up of
max{a, b}, will lead us to the problem: vzz + vxx − v2 + x2 = 0, (x, z) ∈ R2,

v − |x| → 0, x→ ±∞,
(1.11)

with v being ˆ̀/ε
2
3 –periodic in the variable z, with ˆ̀ as in (7.21) below. A stable

one–dimensional solution V+, of the above equation, can be constructed by the
method of upper and lower solutions. We have that V+ is even, (V+)x > 0, x > 0,
and V+ > x, x ≥ 0. We then seek other solutions of (1.11) in the form v = V+−W,
and find that W has to satisfy:

1By adapting the approach of the current paper, we have recently removed this restrictive

assumption in [33].
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 Wzz + Wxx − 2V+(x)W + W2 = 0, (x, z) ∈ R2,

W→ 0, x→ ±∞,
(1.12)

with W being ˆ̀/ε
2
3 –periodic in z. We will show, in Proposition 3.1, that (1.12) has

a one–dimensional, positive, even solution w such that V (x) := V+(x) − w(x) <
|x|, x ∈ R, solves (1.11). Furthermore, the associated one-dimensional eigenvalue
problem

φxx − 2V φ = λφ, x ∈ R, φ(±∞) = 0, (1.13)

has eigenvalues λ0 > λ1 > · · · , with λ0 > 0 and λ1 < 0; we denote by Z > 0 the
L2-normalized eigenfunction corresponding to λ0.

We define the number λ∗ as

λ∗ = λ0
1

4π2

(∫ `

0

β(θ)dθ

)2

, (1.14)

where β as in (3.10) below.
Now we can state our main result:

Theorem 1.1. Given c > 0, there exists ε0 > 0 such that for all ε < ε0 satisfying
the gap condition

|ε 4
3 i2 − λ∗| ≥ cε

2
3 ∀ i ∈ N, (1.15)

where λ∗ > 0 is the number in (1.14), problem (1.1) has a solution such that

‖uε −max{a, b}‖L∞(Ω) = O(ε
2
3 ) and uε < a on Γ. (1.16)

More precisely, there exist constants δ > 0 (small) and D > 0 (large) such that the
following estimates hold: Near the curve Γ, for y given by (1.10),

uε(y) =


a(0, θ) + ε

2
3 β2(θ)V

(
β(θ) t

ε
2
3

)
+ at(0,θ)+bt(0,θ)

2 t+O
(
ε

4
3 + t2

)
, |t| ≤ δ,

max{a, b}(y) +O(ε
2
3 )G

(
β(θ) t

ε
2
3

)
+O(ε2)t−1, Dε

2
3 ≤ |t| ≤ δ,

(1.17)
where

G(r) ≡ r− 1
4 e−

2
√

2
3 r

3
2 , r > 0. (1.18)

Away from the curve Γ, we have

uε(y) =

 max{a, b}(y) +O(ε2), if dist(y,Γ) ≥ δ and dist(y, ∂Ω) ≥ δ,

max{a, b}(y) +O(ε), if dist(y, ∂Ω) ≤ δ.
(1.19)

Moreover, there exists a constant C > 0 such that

|∇uε(y)| ≤ C, y ∈ Ω̄, (1.20)

and uε → max{a, b} in C0,α(Ω̄) as ε → 0, satisfying (1.15), for every 0 < α < 1
but not for α = 1.

Let us briefly comment on our result, and in particular on the structure of the
set in which the parameter ε can be chosen. As will be apparent in the proof, our
construction does not hold for all values of the parameter ε close to zero. There
is a resonance phenomenon which prevents the construction to hold for any small
value of ε and which forces ε to be taken away from a set of critical numbers, as
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described in (1.15). The latter condition is called resonance. Such a phenomenon
is not new and, in the context of singularly perturbed semilinear elliptic equations,
was originally found by A. Malchiodi and M. Montenegro in [38]. Since this seminal
paper, this phenomenon has also been found in other instances, for example in
the study of other semilinear partial differential equations [17, 18, 35, 37, 42] or
in the study of constant mean curvature surfaces [36, 39]. Loosely speaking, it is
caused by the presence of the tangential dimension θ along the curve Γ and the fact
that the profile in the normal t direction in unstable (see the discussion in the next
paragraph). The significant difference of the problem at hand, with respect to those
in the aforementioned references, occurs in the normal direction t, where we have a
corner layer profile. This delicacy can already be seen from the fine estimate in the
second relation of (1.17).

The fact that we are not able to construct the solutions for all values of ε close
enough to zero is also reflected in another important feature of our solutions, namely
that their Morse index (defined above (1.9)) tends to infinity as ε tends to zero.

Proposition 1.1. As ε in (1.15) tends to zero, the Morse index of uε tends to
infinity.

We feel that it will be helpful to the reader to present at this point a formal
argument that justifies part of (1.15): The linearization of the blown-up problem
(1.11) on V , namely Φzz + Φxx − 2V (x)Φ = λΦ, (x, z) ∈ R2,

Φ→ 0, x→ ±∞,
(1.21)

with Φ being 2π ˆ̀/ε
2
3 –periodic in the variable z, has functions of the form[
a sin

(
2πi

ˆ̀
ε

2
3 z

)
+ b cos

(
2πi

ˆ̀
ε

2
3 z

)]
Z(x)

as eigenvalues associated to eigenvalues

λ0 −
4π2

ˆ̀2
i2ε

4
3 , i ∈ N.

Hence, when ε hits the critical numbers εi, with

ε
4
3
i = λ0

1

4π2
ˆ̀2i−2 (7.21)

= λ∗i
−2,

we have the presence of a kernel. Thus ε should stay away from these numbers,
which motivates condition (1.15).

It is irresistible to relate our result to that of [17], where concentrating solutions
along closed geodesics for the nonlinear Schrödinger equation were constructed in
the semiclassical limit regime. There the blow up problem was (1.12) with constant
positive potential V+ and power nonlinearity of exponent p > 1. (Recall that in our
case the blow up problem is (1.11) and not the auxiliary problem (1.12)). In that
reference a similar resonance phenomenon was observed and treated successfully by
introducing an infinite dimensional Lyapunov-Schmidt reduction. The eigenvalues
of the linearization, corresponding to (1.13), were · · · < λ1 = 0 < λ0, and the fact
that λ1 = 0 caused a further difficulty that is not present in our case. An elliptic
problem, involving resonance, in which the corresponding eigenvalues are as in the
present situation, as described below (1.13), can be found in [42].
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Remark 1.1. The same result continuous to hold for the more general problem

ε2∆u = f(u,y) in Ω,
∂u

∂n
= 0 on ∂Ω,

as treated originally in [9]. In order to bring out clearly the underline ideas we
refrain from any such generalization.

Remark 1.2. Using the perturbation approach of the current paper, one can show
that all the assertions of Theorem 1.1, with the exception of (1.15), (1.16), hold
true for all small ε > 0 if V is replaced by the one-dimensional stable solution
V+ of (1.11). In this case, with the obvious notation, the same result continuous
to hold if Ω is a smooth domain in RN , N ≥ 1, and the zero set of a − b is an
(N − 1)-dimensional submanifold M of Ω such that ∇(a − b) 6= 0 on M. (One
could also formulate a theorem for the case where M is (N − m)–dimensional,
1 ≤ m ≤ N − 1). The corresponding estimates sharpen and are considerably more
elaborate than those of [9] or [26] (recall (1.5)). Furthermore, we believe that they
can be used in extending to arbitrary dimensions Theorem 1.5 in [34] which is proven
in one space dimension.

Non–degeneracy conditions, as the last assumption in (1.3), are common in the
study of transition layered solutions of elliptic equations with bistable nonlinearity
(see [37] and the references therein). In that context, the curve Γ represents the
interface of the layer. It turns out that, in some cases, the aforementioned con-
ditions can be removed completely (see [16]). In particular, the interface may be
non-smooth or intersect the boundary of the domain. Such generalizations may also
be possible for problem (1.1), at least for the case of stable solutions. In this regard,
we refer to [12, Prop. 3.16] for a related result.

1.4. Method of proof of the main theorem, and structure of the paper.
We briefly describe the reasons which cause the main difficulties in proving Theorem
1.1.

The proof of Theorem 1.1 consists in showing that there exists a genuine solution
near a suitably constructed approximate solution, provided the parameter ε is cho-
sen small enough and away from a set where resonance occurs. We find it convenient
to work exclusively with the equivalent formulation of (1.1) in stretched variables

y = ε−
2
3 y, see (3.1) below. The approximate solution uap is carefully built in sev-

eral steps throughout Sections 3-5. Using the one-dimensional solution V of (1.11),
described above, and a lower order correction φ1, determined by the inhomogeneous
linear problem (3.33)–(3.34) below, we construct an inner approximation uin. This
inner approximation is valid only near the (stretched) curve Γε, in the sense that it
leaves a remainder in the equation which grows with respect to the distance from
the curve. The next step is to match the inner approximation uin with the outer
u0 ≡ max{a(ε

2
3 y), b(ε

2
3 y)}, which is valid for y 6∈ Γε, in order to obtain a smooth

approximation uap that is valid in the whole (stretched) domain Ωε. The fact that
the inner approximation uin is valid only in a tubular neighborhood of Γε, makes
it already delicate to use a partition of unity type argument in order to smoothly
interpolate between uin and u0. Worse than this, the lower order inner blow up pro-
file φ1 converges algebraically slowly to the blow-up of the corresponding outer (see
Proposition 3.2). This difficulty is not present in other well known elliptic singular
perturbation problems such as the nonlinear Schrödinger or Allen-Cahn equation,
where the corresponding convergence is exponentially fast (see the references in the
discussion following Theorem 1.1). We overcome these difficulties by adapting to
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the general case a procedure we introduced for the radially symmetric case in [32]
(see Sections 4, 5 below). Actually, by suitably incorporating a partition of unity
type argument, we are able to considerably simplify some arguments of [32]. We
emphasize that we are able to apply the standard partition of unity argument only
after we carefully perturb, as in [32], the outer approximation u0 to an improved
outer approximation ũout. We refer the interested reader to Remark 5.1 for this
subtle point. Loosely speaking, the new outer approximation ũout is closer to uin,
and leaves a smaller remainder in the equation, than u0. Smoothly interpolating
between uin and ũout leads us to an approximation ũap which is valid in the entire
domain but is more accurate near the curve Γε. Finally, motivated from [32], we
iterate once, using a modified Newton’s method, to improve the accuracy of ũap
away from Γε, and obtain the desired approximation uap.

Once we have constructed our approximate solution, we look for a genuine solu-
tion in the form

u = uap + ϕ, (1.22)

hoping to find ϕ using the contraction mapping theorem. Therefore, in order to
proceed, we need to study the associated linearized operator around uap. Here one
faces a dramatically different situation compared to the radially symmetric case
(recall (1.7)). This is clearly seen already by linearizing around the corresponding
spherically symmetric approximate solution uap, since the eigenvalues closest to zero

are given by formulas (1.8) divided by ε
2
3 (due to the rescaling). These formulas

predict that the linearized operator around uap, in the general case at hand, will
also have an increasing number of negative eigenvalues, as ε → 0, many of which
accumulate to zero and sometimes, depending on the value of ε, we even have
the presence of a kernel. This clearly causes difficulties in applying local inversion
arguments to find ϕ, and ε must be taken away from these values. This kind
of phenomena have been dealt with in various problems, see the references below
Theorem 1.1. The scheme employed here follows the lines set in [17]. A difficulty
we had to face was that, as we discussed in the previous subsection, the limit
problem (1.12) in the present situation has a potential that grows, as x → ±∞,
in contrast to that in [17] which was a constant. The main steps of this scheme
are the following: In Section 6 we adapt a very nice trick, already used in [17],
in order to reduce the whole problem to a nonlocal problem in an infinite strip.
The main advantage of working in the strip is that we can perform a separation of
variables in order to study the associated linearized problem (see Section 7). Rather
than solving the problem in the strip directly, we first solve a natural projected
problem where the linear operator is uniformly invertible (see Section 8). Then,
the resolution of the full problem becomes reduced to a nonlinear, nonlocal, second-
order system of differential equations, which turns out to be directly solvable thanks
to the assumptions made (see Sections 9-11). We end this paper by presenting some
related open problems and conjectures in Section 12.

2. Notation

Throughout this paper, unless specified otherwise, we will denote by c/C positive
small/ large generic constants, independent of ε, whose values will change from line
to line. The value of ε will satisfy 0 < ε < ε0 with ε0 getting smaller at each step
(so that all previous relations still hold). Frequently we will suppress the obvious
dependence of quantities on ε. Moreover, Landaus symbols O(1), o(1), ε → 0, will
be understood in the sense that |O(1)| ≤ C for small ε > 0, and o(1)→ 0 as ε→ 0.
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Abusing notation, frequently we will denote points y simply by their image (t, θ)
under the mapping of (1.10). For some further notation, we will use in this paper,
see Remark 3.2 below.

3. Setup near the Curve

In this section we will construct an approximation for (1.1) which is valid only
near the curve Γ.

In the coordinates (t, θ), defined in (1.10), near Γ the metric can be parameterized
as

gt,θ = dt2 + (1 + kt)2dθ2,

and the Laplacian operator is

∆t,θ =
∂2

∂t2
+

1

(1 + kt)2

∂2

∂θ2
+

k

1 + kt

∂

∂t
− k′t

(1 + kt)3

∂

∂θ
,

where k(θ) is the curvature of Γ (see for instance [37]).

In stretched variables y = ε−
2
3 y, recall (1.10), problem (1.1) becomes

∆u− ε− 2
3

(
u− a(ε

2
3 y)
)(

u− b(ε 2
3 y)
)

= 0 in Ωε,
∂u

∂η
= 0 on ∂Ωε, (3.1)

where Ωε = ε−
2
3 Ω, and η = η(y) denotes the outward unit normal to ∂Ωε. For

future purposes, we denote Γε = ε−
2
3 Γ and Ωi,ε = ε−

2
3 Ωi, i = 1, 2 (recall (1.2)).

Let
(s, z) = ε−

2
3 (t, θ) (3.2)

be natural stretched coordinates associated to the curve Γε, now defined for

s ∈
(
−δ0ε−

2
3 , δ0ε

− 2
3

)
, z ∈

[
0, ε−

2
3 `
)
. (3.3)

Near Γε, the metric can be written as

gs,z = ds2 + (1 + ε
2
3 ks)2dz2,

and the Laplacian for u expressed in these coordinates becomes

∆u = uzz + uss +B1(u), (3.4)

where

B1(u) = −uzz

1− 1(
1 + ε

2
3 k(ε

2
3 z)s

)2

+
ε

2
3 k(ε

2
3 z)us

1 + ε
2
3 k(ε

2
3 z)s

− ε
4
3 sk′(ε

2
3 z)uz(

1 + ε
2
3 k(ε

2
3 z)s

)3 .

(3.5)
Hence, equation (3.1) takes the form

uzz + uss +B1(u)− ε− 2
3

(
u− a(ε

2
3 s, ε

2
3 z)
)(

u− b(ε 2
3 s, ε

2
3 z)
)

= 0, (3.6)

in the region (3.3). For further reference, it is convenient to expand the operator
B1 as

B1(u) =
(
ε

2
3 k(ε

2
3 z)− ε 4

3 k2(ε
2
3 z)s

)
us +B0(u), (3.7)

where

B0(u) = ε
4
3 sa1(ε

2
3 s, ε

2
3 z)uz + ε

2
3 sa2(ε

2
3 s, ε

2
3 z)uzz + ε2s2a3(ε

2
3 s, ε

2
3 z)us, (3.8)

for certain smooth functions aj(t, θ), j = 1, 2, 3. Observe that all terms in the

operator B1 have ε
2
3 as a common factor.
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We now consider a further change of variables in equation (3.6). Note that,
thanks to (1.3), we have

bt(0, θ)− at(0, θ) ≥ c, θ ∈ [0, `) . (3.9)

Letting

β(θ) =

(
bt(0, θ)− at(0, θ)

2

) 1
3

> 0, θ ∈ [0, `), (3.10)

we define v(x, z) by the relation

u(s, z) = a(0, ε
2
3 z) + ε

2
3 β2(ε

2
3 z)v(x, z) + ε

2
3
at(0,ε

2
3 z)+bt(0,ε

2
3 z)

2 β−1(ε
2
3 z)x,

x = β(ε
2
3 z)s.

(3.11)

Choosing a smaller δ0, if necessary, we may assume that the coordinates (x, z) are

also defined for |x| ≤ δ0ε
− 2

3 , z ∈ [0, ε−
2
3 `). We want to express equation (3.6) in

terms of these new coordinates. We compute:

us = ε
2
3 β3vx + ε

2
3
at(0,ε

2
3 z)+bt(0,ε

2
3 z)

2 ,

uss = ε
2
3 β4vxx,

uz = ε
2
3 aθ(0, ε

2
3 z) + 2ε

4
3 β′βv + ε

4
3 β′βxvx + ε

2
3 β2vz + ε

4
3
atθ(0,ε

2
3 z)+btθ(0,ε

2
3 z)

2 β−1x,

uzz = ε
4
3 aθθ(0, ε

2
3 z) + 2ε2(β′)2v + 2ε2β′′βv + 4ε2(β′)2xvx + 4ε

4
3 β′βvz + ε2β′′βxvx

+2ε
4
3 β′βxvxz + ε2(β′)2x2vxx + ε

2
3 β2vzz + ε2 atθθ(0,ε

2
3 z)+btθθ(0,ε

2
3 z)

2 β−1x.
(3.12)

In order to write down the equation, it is also convenient to expand

a(ε
2
3 s, ε

2
3 z) = a(0, ε

2
3 z) + at(0, ε

2
3 z)ε

2
3 s+

1

2
att(0, ε

2
3 z)ε

4
3 s2 + a4(ε

2
3 s, ε

2
3 z)ε2s3,

(3.13)

b(ε
2
3 s, ε

2
3 z) = b(0, ε

2
3 z)+bt(0, ε

2
3 z)ε

2
3 s+

1

2
btt(0, ε

2
3 z)ε

4
3 s2+a5(ε

2
3 s, ε

2
3 z)ε2s3, (3.14)

for some smooth functions ai(t, θ), i = 4, 5, satisfying

a4(ε
2
3 s, ε

2
3 z) =

1

6
attt(0, ε

2
3 z) + a6(ε

2
3 s, ε

2
3 z)ε

2
3 s, (3.15)

a5(ε
2
3 s, ε

2
3 z) =

1

6
bttt(0, ε

2
3 z) + a7(ε

2
3 s, ε

2
3 z)ε

2
3 s, (3.16)

for some smooth functions ai(t, θ), i = 6, 7. It turns out that u solves (3.6) if and
only if v, defined by (3.11), solves

S(v) ≡ β−2vzz + vxx − v2 + x2 +B3(v) = 0, (3.17)
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where B3(v) is a differential operator defined by

B3(v) = β−1(ε
2
3 k − ε 4

3 k2β−1x)vx + β−4(ε
2
3 k − ε 4

3 k2β−1x)at(0,ε
2
3 z)+bt(0,ε

2
3 z)

2

+ε
2
3 β−4aθθ(0, ε

2
3 z) + 2ε

4
3 (β′)2β−4v + 2ε

4
3 β′′β−3v + 4ε

4
3 (β′)2β−4xvx

+4ε
2
3 β′β−3vz + ε

4
3 β′′β−3xvx + 2ε

2
3 β′β−3xvxz + ε

4
3 (β′)2β−4x2vxx

+ε
4
3
atθθ(0,ε

2
3 z)+btθθ(0,ε

2
3 z)

2 β−5x+ ε
2
3
btt(0,ε

2
3 z)

2 β−4x2v + ε
2
3
btt(0,ε

2
3 z)

2 β−4x3

+ε
2
3
att(0,ε

2
3 z)

2 β−4x2v − ε 2
3
att(0,ε

2
3 z)

2 β−4x3 + ε
4
3
bttt(0,ε

2
3 z)

6 β−5x4 + ε
4
3
bttt(0,ε

2
3 z)

6 β−5x3v

−ε 4
3
att(0,ε

2
3 z)btt(0,ε

2
3 z)

4 β−8x4 + ε
4
3
attt(0,ε

2
3 z)

6 β−5x3v − ε 4
3
attt(0,ε

2
3 z)

6 β−5x4 +B2(v),
(3.18)

and

B2(v) = ε2a7β
−6x5 + ε2a7β

−6x4v + ε2a6β
−6x4v − ε2a6β

−6x5 − ε2 att(0,ε
2
3 z)

2 a5β
−9x5

−ε2 btt(0,ε
2
3 z)

2 a4β
−9x5 − ε 8

3 a4a5β
−10x6 + ε−

2
3 β−4B0(u),

(3.19)
where B0(u) is the operator in (3.8) with derivatives expressed in terms of formulas
(3.12) and s replaced by β−1x; the ai’s, i = 4, · · · , 7, are given by (3.13) through

(3.16) and are evaluated at (ε
2
3 β−1x, ε

2
3 z).

Let V (x) be as in the following proposition, proven in [32].

Proposition 3.1. There exists a unique even solution V of vxx = v2 − x2, x ∈ R,

v(x)− |x| → 0, x→ ±∞,
(3.20)

satisfying Vx(x) > 0, x > 0, and

V (x) < |x|, x ∈ R. (3.21)

Furthermore, we have

|V (x)− |x|| ≤ C(|x|+ 1)−
1
4 e−

2
√

2
3 |x|

3
2 , x ∈ R, (3.22)

and |Vx − 1| ≤ Ce−c|x|
3
2 , x ≥ 0. Moreover, the spectrum of the linearized operator,

in L2(R),

L0(ψ) = ψxx − 2V ψ,

consists of simple eigenvalues λ0 > λ1 > · · · with λi → −∞, i→∞, and

λ0 > 0 > λ1. (3.23)

Proof. (Sketch) It is well known that problem (3.20) has an even solution V+ such
that V+(x) > |x|, x ∈ R, and (V+)x(x) > 0, x > 0. This can be proven by the
method of upper and lower solutions, see [13, 26, 28, 32, 44]. Actually, by a theorem
of [8], this is the unique non-negative solution in R2 of the elliptic equation of (1.11).
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We then seek another solution in the form v = V+ − w. In terms of w, problem
(3.20) is equivalent to wxx − 2V+w + w2 = 0, x ∈ R,

w(x)→ 0, x→ ±∞,
(3.24)

which describes ground states of a nonlinear Schrödinger equation with potential
2V+, see [43]. Existence of a positive solution w of (3.24) follows from a variational,
mountain pass type, argument which makes use of the positivity of V+ and the fact
that V+(x)→∞ as x→ ±∞, see [43]. This last fact also implies that w decays to
zero super-exponentially as x → ±∞. Hence, since V+ is even, and increasing for
x > 0, we can apply the method of moving planes [22] to show that w is even and
strictly decreasing for x > 0. Letting V ≡ V+ − w, it is clear that V solves (3.20),
is even, and strictly increasing for x > 0. Furthermore, we can write

−(V − x)xx + (V + x)(V − x) = 0, x > 0.

Now, relation (3.22) follows at once thanks to the asymptotic theory of linear differ-
ential equations [6] and the evenness of V . Relation (3.21) follows from a standard
maximum principle argument in the above equation. Again by the maximum prin-
ciple, recalling that V+ > 0, we deduce that any non-trivial solution of (3.24) is
strictly positive. Hence, adapting the arguments of [31] (using crucially that V+ is
even and (V+)x > 0, x > 0), we can show that w is the unique non-trivial solution
of (3.24). In turn, this implies that the only solutions of (3.20) are V+ and V .

Since V →∞ as x→ ±∞, the linearized operator, in L2(R),

M(ψ) = ψxx − 2V ψ,

has spectrum consisting only of simple eigenvalues λ0 > λ1 > · · · . The eigenfunction
associated to λi is even if i is even and vice versa. Testing the eigenvalue equation
by w yields that λ0 > 0; whereas testing by wx yields that λ1 < 0 (we make essential
use of the evenness and strict monotonicity of V+ at this point). �

Remark 3.1. The unstable solution V shares some similarities with the flame layer
solution found in the appendix of [11].

Then, taking V (x) as a first approximation in (3.17), the error produced is ε
2
3

times a function with polynomial growth. Let us be more precise. We need to
identify the terms of order ε

2
3 and those of order ε

4
3 :

S(V ) = B3(V ) = ε
2
3S1 + ε

4
3S2 +B2(V ) + ε

4
3 k′β−5xaθ + 2ε

4
3 kβ−5xaθθ, (3.25)

where

S1 = β−1kVx+
at + bt

2
β−4k+β−4aθθ+

btt
2
β−4x2V+

btt
2
β−4x3+

att
2
β−4x2V−att

2
β−4x3,

(3.26)

S2 = −β−2k2xVx − at+bt
2 β−5k2x+ 2(β′)2β−4V + 2β′′β−3V + 4(β′)2β−4xVx

+β′′β−3xVx + (β′)2β−4x2Vxx + atθθ+btθθ
2 β−5x+ bttt

6 β−5x4 + bttt
6 β−5x3V

−attbtt4 β−8x4 + attt
6 β−5x3V − attt

6 β−5x4 − k′β−5xaθ − 2kβ−5xaθθ.
(3.27)

Actually, it turns out that B2(V ) + ε
4
3 k′β−5xaθ + 2ε

4
3 kβ−5xaθθ is of size ε2 (more

precisely is bounded by Cε2(1 + |x|5)).
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Remark 3.2. Notation. In the above relation and throughout this paper, unless
specified otherwise, we will assume that ∂it∂

j
θu, u = a, b, i, j = 1, · · · , are evaluated

at (0, ε
2
3 z), whereas the ai i = 1, · · · , at (ε

2
3 β−1x, ε

2
3 z).

We now want to construct a further approximation to a solution that eliminates
the terms of order ε

2
3 in the error. We see that, for any smooth function φ(x, z),

S(V + φ) = S(V ) + L0(φ) +B4(φ) +N0(φ), (3.28)

where
L0(φ) = β−2φzz + φxx − 2V (x)φ, (3.29)

B4(φ) = B3(V + φ)−B3(V ), (3.30)

and
N0(φ) = −φ2. (3.31)

We write

S(V + φ) =
[
ε

2
3S1 + φxx − 2V φ

]
+ ε

4
3S2 +B2(V ) + ε

4
3 k′β−5xaθ + 2ε

4
3 kβ−5xaθθ

+β−2φzz +B4(φ) +N0(φ).
(3.32)

We choose φ = φ1 in order to eliminate the term between brackets in the above
expression. Namely, for fixed z, we need a solution of

−φxx + 2V φ = ε
2
3S1, −∞ < x < +∞. (3.33)

In order that the “inner” solution, described by (3.11) with v = V + φ1, matches

with the “outer” solution max
{
a(ε

2
3 y), b(ε

2
3 y)
}

at Ωε ∩ {x = ±L}, it is easy to

check that the desired asymptotic behavior of φ1 should be

φ−ε 2
3
att(0, ε

2
3 z)

2
β−4x2 → 0 as x→ −∞, φ−ε 2

3
btt(0, ε

2
3 z)

2
β−4x2 → 0 as x→∞,

(3.34)
(see [32] for detailed computations in the radial case).

Based on the invertibility of the linear operator in the lefthand side of (3.33)
(recall Proposition 3.1), we can show:

Proposition 3.2. There exists a smooth solution φ1(x, z), (x, z) ∈ (−∞,∞) ×
[0, ε−

2
3 `] of (3.33)–(3.34). Moreover, we have

φ1 = ε
2
3
btt(0, ε

2
3 z)

2
β−4x2 + ε

2
3O(x−1), x→ +∞, (3.35)

φ1 = ε
2
3
att(0, ε

2
3 z)

2
β−4x2 + ε

2
3O(x−1), x→ −∞,

φ1,x = ε
2
3 attβ

−4x+ε
2
3O(x−2), x→ −∞, φ1,x = ε

2
3 bttβ

−4x+ε
2
3O(x−2), x→∞,

φ1,xx = ε
2
3 attβ

−4 +ε
2
3O(x−3), x→ −∞, φ1,xx = ε

2
3 bttβ

−4 +ε
2
3O(x−3), x→∞,

uniformly in z ∈ [0, ε−
2
3 `], and

|φ1,z| ≤ Cε
4
3 (x2 + 1), |φ1,xz| ≤ Cε

4
3 (|x|+ 1), |φ1,zz| ≤ Cε2(x2 + 1),

for (x, z) ∈ (−∞,∞)× [0, ε−
2
3 `].
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Proof. Let

φ̃1 =


1
2ε

2
3 bttβ

−4x2, x ≥ 0,

1
2ε

2
3 attβ

−4x2, x < 0.

We seek a solution of (3.33), (3.34) in the form φ = φ̃1 +ϕ with lim|x|→∞ ϕ(x) = 0.
A direct calculation shows that ϕ should satisfy

−ϕxx + 2V ϕ = ε
2
3 f, (3.36)

where

f(x) =

 bttβ
−4 + β−1kVx + β−4k at+bt2 + β−4aθθ − btt−att

2 β−4x2(V − x), x ≥ 0,

attβ
−4 + β−1kVx + β−4k at+bt2 + β−4aθθ + btt−att

2 β−4x2(V + x), x < 0.

In view of the estimates of Proposition 3.1, we search a solution of (3.36) in the
form

ϕ =
1

2
n1|x|−1ε

2
3 f∞ + ψ,

where n1 is a smooth cutoff function (see (4.2) below), and

f∞(x) =

 bttβ
−4 + β−1k + β−4k at+bt2 + β−4aθθ, x ≥ 0,

attβ
−4 − β−1k + β−4k at+bt2 + β−4aθθ, x < 0.

We find that ψ should satisfy

−ψxx + 2V ψ = g, (3.37)

with g satisfying

|g|+ ε−
2
3 |gz|+ ε−

4
3 |gzz| ≤ C(|x|+ 1)−3ε

2
3 , −∞ < x <∞, 0 ≤ z ≤ ε− 2

3 `.

By Proposition 3.1, the linear operator in the lefthand side of (3.37) is invertible.
Note that, for fixed z, we have g ∈ L2(R). Hence, for fixed z, there exists a unique
solution of (3.37) such that ψ ∈ H2(R) and V ψ ∈ L2(R). This solution clearly
depends smoothly on z. This gives us the existence part of the proposition. The
desired bounds follow from a barrier argument (see [32]) applied to (3.37) and its
derivatives with respect to x, z.

The proof of the proposition is complete. �

Remark 3.3. If b is a harmonic function, then f∞, defined above (3.37), becomes
identically zero for x ≥ 0 (recall that a = b on Γ, (3.4), (3.5), and (3.10)). In
turn, this implies that the rate of decay in (3.35) is super–exponential as x → ∞.
A similar comment applies in case a is harmonic.

Substituting φ = φ1 into (3.32), we can compute the new error

S(V+φ1) = ε
4
3S2+B2(V )+ε

4
3 k′β−5xaθ+2ε

4
3 kβ−5xaθθ+β

−2φ1,zz+B4(φ1)+N0(φ1).
(3.38)

Observe that since φ1 is of size O(ε
2
3 ) (and has polynomial growth with respect

to x), all terms above carry ε
4
3 in front. Observe also that all functions involved

are expressed in (x, z)–variables, and the natural domain for those variables is the
infinite strip

S =
{
−∞ < x <∞, 0 ≤ z ≤ ε− 2

3 `
}
. (3.39)
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We now want to measure the size of the error in the L2(SL)–norm, where

SL = S ∩ {|x| ≤ L}, (3.40)

and L > 0 is a fixed number such that V (x) ≥ 1 for |x| ≥ L. It is easy to verify, via

(3.38) and the fact that |SL| ≤ Cε−
2
3 , that

‖S(V + φ1)‖L2(SL) ≤ Cε. (3.41)

At this point we can define the inner solution of (3.1), in Ωε ∩ {|x| ≤ δ0ε−
2
3 }, as

uin(x, z) = a(0, ε
2
3 z) + ε

2
3 β2(ε

2
3 z)(V + φ1) + ε

2
3
at(0, ε

2
3 z) + bt(0, ε

2
3 z)

2
β−1(ε

2
3 z)x,

(3.42)
(recall (3.11)).

The following proposition contains the main estimate regarding uin.

Proposition 3.3. The inner approximation uin, defined in (3.42), satisfies

‖∆uin − ε−
2
3

(
uin − a(ε

2
3 y)
)(

uin − b(ε
2
3 y)
)
‖L2(Ωε∩{|x|≤L}) ≤ Cε

5
3 . (3.43)

Proof. From (3.6) and (3.12), in Ωε ∩ {|x| ≤ L}, we have

∆uin − ε−
2
3

(
uin − a(ε

2
3 y)
)(

uin − b(ε
2
3 y)
)

= ε
2
3 β4S(V + ϕ1).

Now, the assertion of the proposition follows at once from (3.41).
The proof of the proposition is complete. �

4. Set up away from the curve

In this section we will suitably modify max
{
a(ε

2
3 y), b(ε

2
3 y)
}

in order to bring

it closer to uin, near the curve Γε, while at the same time improving the remain-
der it leaves in (3.1) (away from the curve). We accomplish this, loosely speak-
ing, by replacing the linear and quadratic order terms of the Taylor expansion of

max
{
a(ε

2
3 y), b(ε

2
3 y)
}

, near Γε, by the terms in uin having linear and quadratic

asymptotic behavior respectively.
For convenience purposes, we will additionally assume that

∂a

∂n
= 0 on ∂Ω1 ∩ ∂Ω and

∂b

∂n
= 0 on ∂Ω2 ∩ ∂Ω. (4.1)

The general case can be treated by simply adding a standard boundary layer cor-
rection, close to the boundary ∂Ω, to the outer approximation we will construct in
this section (see for instance [29]). (Under (4.1), the estimate in the first relation
of (1.19) holds all the way up to ∂Ω).

Let δ < δ0/100 be a fixed number. We consider a smooth cutoff function

nδ(t) =

 1, |t| ≤ δ,

0, |t| ≥ 2δ.
(4.2)
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Motivated from the radial case [32], we define our first approximation in Ωε/{|x| <
L} to be

ũout(y) = a(ε
2
3 y) + nδ(ε

2
3x)

(
ε

2
3 β2V + ε

2
3
bt−at

2 β−1x+ ε
2
3 β2φ1 − 1

2ε
4
3 attβ

−2x2
)

(3.10)
= a(ε

2
3 y) + nδ(ε

2
3x)ε

2
3 β2

(
V + x+ φ1 − att

2 ε
2
3 β−4x2

)
,

(4.3)
for y ∈ Ω1,ε/{−L < x < 0}. Similarly we define ũout in Ω2,ε/{0 < x < L}.

The following lemma contains the main estimate regarding ũout.

Lemma 4.1. Let

Ẽout(y) ≡ ∆ũout − ε−
2
3

(
ũout − a(ε

2
3 y)
)(

ũout − b(ε
2
3 y)
)
,

then

Ẽout(y) =

 O(ε2|x|), y ∈ Ωε ∩ {L ≤ |x| ≤ δε−
2
3 },

O(ε
4
3 ), y ∈ Ωε/{|x| ≤ δε−

2
3 }.

Proof. Making use of the definitions of β(θ), V (x), φ1(x, z) (recall (3.10), and

equations (3.20), (3.33)), one can calculate that, in Ωε ∩ {−δε−
2
3 ≤ x ≤ −L}, we

have

∆ũout − ε−
2
3

(
ũout − a(ε

2
3 y)
)(

ũout − b(ε
2
3 y)
)

=

ε
4
3

(
att(ε

2
3 β−1x, ε

2
3 z)− att + aθθ(ε

2
3 β−1x, ε

2
3 z)− aθθ + kat(ε

2
3 β−1x, ε

2
3 z)− kat

)
−ε 2

3 β4φ1

(
φ1 − att

2 ε
2
3 β−4x2

)
+ ε

4
3
btt
2 x

2
(
φ1 − att

2 ε
2
3 β−4x2

)
− (a4 − a5)ε2β−1x3(V + x)

−(a4 − a5)ε2β−1x3
(
φ1 − att

2 ε
2
3 β−4x2

)
+ ε2

[
2(β′)2V + 2β′′βV + 4(β′)2xVx + β′′βxVx

+(β′)2x2Vxx + btθθ−atθθ
2 β−1x+ ε−

2
3 β3kφ1,x − kattβ−1x− β−1xk2at(ε

2
3 β−1x, ε

2
3 z)

−β2k2xVx − k2 bt−at
2 β−1x+ a1aθ(ε

2
3 β−1x, ε

2
3 z)β−1x+ a2aθθ(ε

2
3 β−1x, ε

2
3 z)β−1x

]
+ε

8
3

[
2ε−

2
3 (β′)2φ1 + 2ε−

2
3 β′′βφ1 + 4ε−

2
3 (β′)2xφ1,x + ε−

2
3 β′′βxφ1,x + ε−

2
3 (β′)2x2φ1,xx

−attθθ2 β−2x2 − ε− 2
3 β2k2xφ1,x + attβ

−2kx2 + a3at(ε
2
3 β−1x, ε

2
3 z)β−2x2

+a1x(2β′V + β′xVx) + a2β
−1x

(
2(β′)2V + 2β′′βV + 4(β′)2xVx + β′′βxVx + (β′)2x2Vxx

)
+a3βx

2Vx + btθ−atθ
2 a1β

−2x2 + btθθ−atθθ
2 a2β

−2x2 + bt−at
2 a3β

−2x2

+a1x(2β′φ1 + β′xφ1,x) + a2β
−1x

(
2(β′)2φ1 + 2β′′βφ1 + 4(β′)2xφ1,x + β′′βxφ1,x + (β′)2x2φ1,xx

)
+a3βx

2φ1,x

]
− ε 10

3

[
a1

attθ
2 β−3x3 + a2

attθθ
2 β−3x3 + a3attβ

−3x3
]
.

Hence, by the estimates of Propositions 3.1, 3.2, we infer that the assertion of the
lemma holds true in Ωε∩{−δε−

2
3 ≤ x ≤ −L}. The previously mentioned estimates,
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and (4.3), also imply that

ũout − a(ε
2
3 y) = nδ(ε

2
3x)ε

2
3 β2

(
V + x+ φ1 −

att
2
ε

2
3 β−4x2

)
= O(ε2), (4.4)

uniformly in Ωε ∩ {−2δε−
2
3 ≤ x ≤ −δε− 2

3 }. Similarly, one can check that

u(y) = u(s, z) = v(x, z) = ũout − a(ε
2
3 y)

satisfies

|vx| ≤ Cε
8
3 , |vz| ≤ Cε

2
3 , |vxx| ≤ Cε

10
3 , |vxz| ≤ Cε

4
3 , |vzz| ≤ Cε

4
3 ,

for x ∈ [−2δε−
2
3 ,−δε− 2

3 ], z ∈ [0, ε−
2
3 `]. In turn, via the relations

us = βvx,

uss = β2vxx,

uz = ε
2
3 β′β−1xvx + vz,

uzz = ε
4
3 β′′β−1xvx + ε

4
3 (β′)2β−2x2vxx + 2ε

2
3 β′β−1xvxz + vzz,

(4.5)

these estimates imply that

|us| ≤ Cε
8
3 , |uz| ≤ Cε

2
3 , |uss| ≤ Cε

10
3 , |uzz| ≤ Cε

4
3 ,

for s ∈ [−2δε−
2
3 β−1,−δε− 2

3 β−1], z ∈ [0, ε−
2
3 `]. These last estimates, by virtue of

(3.4), yield that

∆u = O(ε
4
3 ) uniformly in Ωε ∩ {−2δε−

2
3 ≤ x ≤ −δε− 2

3 }.

So,

∆ũout = ∆
(
a(ε

2
3 y)
)

+O(ε
4
3 ) = O(ε

4
3 ) uniformly in Ωε∩{−2δε−

2
3 ≤ x ≤ −δε− 2

3 }.

In view of (4.4), and the above relation, we find that the assertion of the lemma

holds true in Ωε ∩ {−2δε−
2
3 ≤ x ≤ −δε− 2

3 } as well. In the remaining region

Ω1,ε/{−2δε−
2
3 ≤ x < 0}, we have ũout = a(ε

2
3 y) and the assertion of the lemma

clearly holds. Identical calculations also apply in Ω2,ε/{0 < x < L}.
The proof of the lemma is complete. �

The following estimates will be useful in the sequel:

Lemma 4.2. We have

ũout − uin = O(ε2x3) in Ωε ∩ {L ≤ |x| ≤ δε−
2
3 }, (4.6)

and

|∇(ũout − uin)|+ |∆(ũout − uin)| ≤ Cε2 in Ωε ∩ {L ≤ |x| ≤ 3L}.

Proof. From (3.42), (4.3), we find that

(ũout − uin)(s, z) = a(ε
2
3 s, ε

2
3 z)− a− atε

2
3 s− 1

2
attε

4
3 s2, (4.7)

for y = (s, z) = (β−1x, z) ∈ Ωε ∩ {−δε−
2
3 ≤ x ≤ −L}. An analogous relation,

with a replaced by b, holds true in the corresponding region with x > 0. The first
assertion of the lemma now follows at once.
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Note that, from (4.7), we also get

(ũout − uin)s = O(ε2s2), (ũout − uin)ss = O(ε2s),

(ũout − uin)z = O(ε
8
3 s3), (ũout − uin)zz = O(ε

10
3 s3),

for y = (s, z) = (β−1x, z) ∈ Ωε ∩ {−δε−
2
3 ≤ x ≤ −L}. Analogous relations hold

true in the corresponding region with x > 0. The second assertion of the lemma
now follows readily, via (3.4), and the fact that there exist constants c, C > 0 such
that

c (|us|+ |uz|) ≤ |uy1 |+ |uy2 | ≤ C (|us|+ |uz|) , (4.8)

for y = (y1, y2) ∈ {(s, z) | |s| ≤ δ0ε
− 2

3 , z ∈ [0, ε−
2
3 `]}, and any smooth function

u defined in this region (recall that the mapping y → (t(y), θ(y)), defined below

(1.10), is a diffeomorphism close to the curve Γ, and (t(y), θ(y)) = ε
2
3

(
s(ε−

2
3 y), z(ε−

2
3 y)
)

).

The proof of the lemma is complete. �

5. The matching procedure

In this section we will carefully interpolate between uin and ũout in order to get
a smooth approximation ũap in Ωε, without affecting the order of remainder that
uin, ũout left in (3.1) separately. Then we will appropriately iterate once in (3.1) in
order to obtain an even better approximation uap.

5.1. The first global approximation ũap. Let

ũap = uin + (1− nL(x)) (ũout − uin), (5.1)

where the cutoff function nL is as in (4.2).

Lemma 5.1. If ε > 0 is sufficiently small, we have

∆ũap−ε−
2
3

(
ũap − a(ε

2
3 y)
)(

ũap − b(ε
2
3 y)
)

=

 O(ε2|x|+ ε2), y ∈ Ωε ∩ {|x| ≤ δε−
2
3 },

O(ε
4
3 ), y ∈ Ωε/{|x| ≤ δε−

2
3 },

(5.2)
and

ε−
2
3

(
2ũap(y)− a(ε

2
3 y)− b(ε 2

3 y)
)
≥

 c|x|, Ωε ∩ {L ≤ |x| ≤ δε−
2
3 },

cε−
2
3 , Ωε/{|x| < δε−

2
3 }.

(5.3)

Proof. In view of the proof of Proposition 3.3 and Lemmas 4.1, it remains to show
estimate (5.2) in the intermediate region Ωε ∩ {L ≤ |x| ≤ 2L}. There, we have

∆ũap − ε−
2
3

(
ũap − a(ε

2
3 y)
)(

ũap − b(ε
2
3 y)
)

= ∆uin − ε−
2
3

(
uin − a(ε

2
3 y)
)(

uin − b(ε
2
3 y)
)

−(∆nL)(ũout − uin)− 2∇nL∇(ũout − uin)

+(1− nL)∆(ũout − uin)− ε− 2
3 (1− nL)2(ũout − uin)2

−ε− 2
3 (1− nL)(ũout − uin)

(
2uin − a(ε

2
3 y)− b(ε 2

3 y)
)
.

The first line of the righthand side of the above relation can be estimated directly,
as before, from the proof of Proposition 3.3; the second and third by Lemma 4.2;



RESONANCE PHENOMENA IN THE CASE OF EXCHANGE OF STABILITIES 19

the fourth by Lemma 4.2 and (3.42) (recall that a = b on Γ). The desired estimate
(5.2), in the region Ωε ∩ {L ≤ |x| ≤ 2L}, follows at once.

The proof of the lower bound (5.3) proceeds as follows: In Ωε∩{−2L ≤ x ≤ −L},
recalling (3.42) and the definition of L (from (3.40)), we have

2uin(y)− a(ε
2
3 y)− b(ε 2

3 y) = 2ε
2
3 β2V +O(ε

4
3 ) ≥ cε 2

3 ≥ c

2L
ε

2
3 |x|.

In Ωε∩{−δε−
2
3 ≤ x ≤ −2L}, by the estimates of Propositions 3.1, 3.2, and (4.3),

we obtain that

2ũout(y)− a(ε
2
3 y)− b(ε 2

3 y) = a(ε
2
3 y)− b(ε 2

3 y) + 2ε
2
3 β2(V + x) + 2ε

2
3 β2

(
φ1 − att

2 ε
2
3 β−4x2

)
= (at − bt)ε

2
3 β−1x+O(ε

4
3x2) +O(ε

2
3 e−cL

3
2 ) +O(ε

4
3L−1)

(3.9)

≥ cε
2
3 |x| − Cδε 2

3 |x| − Cε 2
3L−1

≥ cε 2
3 |x| − Cδε 2

3 |x| − Cε 2
3L−2|x|

≥ cε 2
3 |x|,

(5.4)
where we have decreased δ0 > 0 and increased L > 0 if necessary (independently of

ε). Whereas, in Ω1,ε/{−δε−
2
3 < x < 0}, thanks to (1.3) and (4.4), we have

2ũout(y)− a(ε
2
3 y)− b(ε 2

3 y) = a(ε
2
3 y)− b(ε 2

3 y) +O(ε2) ≥ c.

The above estimates also hold true in Ω2,ε/{0 < x < L}. Hence, recalling Lemma
4.2 and (5.1), we conclude that relation (5.3) holds.

The proof of the lemma is complete. �

Remark 5.1. It is tempting to simply define a global approximation in the form

ṽap = uin + (1− nMε
(x)) (u0 − uin),

where u0 ≡ max
{
a(ε

2
3 y), b(ε

2
3 y)
}

, and L ≤Mε ≤ δε−
2
3 to be chosen. However, as

one can readily verify, we would get

∆ṽap − ε−
2
3

(
ṽap − a(ε

2
3 y)
)(

ṽap − b(ε
2
3 y)
)

= ε
2
3 G̃(Mε) +M−q1ε ε

4
3 +Mq2

ε ε
2,

in the region Mε ≤ |x| ≤ 2Mε, where G̃ is a positive super–exponentially decaying
function of the form (1.18), and q1, q2 are positive constants. The natural choice

Mε = | ln ε| leads to an estimate of order | ln ε|−q1ε 4
3 for the righthand side of the

above relation. This is much weaker than that provided by (5.2), for x in the same
region, which is of order | ln ε|ε2.

5.2. The improved global approximation uap. Starting from ũap, we will apply
one step of a modified Newton’s method in (3.1) in order to improve the accuracy
of ũap away from the curve Γε. (As one can check, iterating more than once does
not lead to further improvements).
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5.2.1. An approximate linearization. As we have discussed in the introduction, we
expect the linearized operator

−∆ + ε−
2
3

(
2ũap − a(ε

2
3 y)− b(ε 2

3 y)
)

(5.5)

to be near non-invertible. We will improve the approximate solution ũap using one
step of a modified Newton’s method where, instead of the linear operator (5.5), we
will use an invertible approximation which is obtained by suitably modifying the
potential in (5.5). This technique was already used in [32], for the radial case, but
for the purpose of matching a perturbation of ũout with uin. The issue in [32] was
that the potential in (5.5) becomes negative close to Γε (the radial operator (5.5)
is invertible, recall (1.7)).

Let

p(y) =


p(β−1L,z)−p(−β−1L,z)

2L (x+ L) + p(−β−1L, z), y = (β−1x, z) ∈ Ωε ∩ {|x| ≤ L},

ε−
2
3

(
2uap(y)− a(ε

2
3 y)− b(ε 2

3 y)
)
, y ∈ Ω̄ε/{|x| < L}.

(5.6)
Note that p ∈ C(Ω̄ε). Furthermore, in view of (5.3), we have

p(y) ≥


c, y = (β−1x, z) ∈ Ωε ∩ {|x| ≤ L},

c|x|, y = (β−1x, z) ∈ Ωε ∩ {L ≤ |x| ≤ δε−
2
3 },

cε−
2
3 , y ∈ Ωε/{|x| < δε−

2
3 },

(5.7)

and, recalling (3.42) and the first part of (5.4),

∣∣∣p(y)− ε− 2
3

(
2ũap(y)− a(ε

2
3 y)− b(ε 2

3 y)
)∣∣∣ ≤

 C, in Ωε ∩ {|x| ≤ L},

0, in Ω̄ε/{|x| < L}.
(5.8)

Remark 5.2. This type of modification was originally used in the matching pro-
cedure performed in [46]. However, in light of Lemma 2.2 of the recent paper [21],
it turns out that the potential of the linear operator in [46] is positive. Therefore,
there is no need for using this modification in [46].

5.2.2. A modified Newton’s method. We define a new approximate solution for (3.1)
as

uap = ũap + σ, (5.9)

where σ is determined from the following modified Newton’s method:
−∆σ + pσ = ∆ũap − ε−

2
3

(
ũap − a(ε

2
3 y)
)(

ũap − b(ε
2
3 y)
)

in Ωε,

∂σ
∂η = 0 on ∂Ωε.

(5.10)

Lemma 5.2. If ε > 0 is sufficiently small, there exists a unique solution of (5.10),
and satisfies

‖σ‖L∞(Ωε) ≤ Cε
2. (5.11)

Proof. By virtue of (5.7), the linear operator in the lefthand side of (5.10) is invert-
ible, and existence and uniqueness of σ follow immediately.
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Let yε ∈ Ω̄1,ε/{−L < x ≤ 0} be such that

σ(yε) = max
Ω̄ε

σ.

Without loss of generality we may assume that σ(yε) ≥ 0. Three possibilities can
occur:

(1) If yε ∈ Ωε ∩ {|x| ≤ L}, then ∆σ(yε) ≤ 0. Thus, by (5.2), (5.7), and (5.10),
we deduce that

cσ(yε) ≤ Cε2,

i.e., σ(yε) = O
(
ε2
)
.

(2) If yε =
(
β−1(ε

2
3 zε)xε, zε

)
∈ Ωε ∩ {L < |x| ≤ δε−

2
3 }, we have ∆σ(yε) ≤ 0,

and we obtain as before that

c|xε|σ(yε) ≤ Cε2|xε|,
i.e., σ(yε) = O

(
ε2
)
.

(3) If yε ∈ Ω̄ε/{|x| ≤ δε−
2
3 }, we have ∆σ(yε) ≤ 0 (if yε ∈ ∂Ωε we have to use

the strong maximum principle), and as before we get

cε−
2
3σ(yε) ≤ Cε

4
3 ,

i.e., σ(yε) = O
(
ε2
)
.

Hence, we have maxΩ̄ε σ = O(ε2). Similarly we can show that minΩ̄ε σ = O(ε2).
The proof of the lemma is complete. �

The following proposition contains the fundamental estimates regarding the ap-
proximation uap, and will be used in an essential way in the next sections.

Proposition 5.1. The approximate solution uap, defined in (5.9), satisfies

‖∆uap − ε−
2
3

(
uap − a(ε

2
3 y)
)(

uap − b(ε
2
3 y)
)
‖L2(Ωε) ≤ Cε

5
3 , (5.12)

∂uap
∂η

= 0 on ∂Ωε, (5.13)

and

(uap − uin)(y) = O(ε2x3 + ε2) if y = (β−1x, z) ∈ Ωε ∩ {|x| ≤ δε−
2
3 }, (5.14)

as ε→ 0, where uin is the inner solution as defined in (3.42).

Proof. By (5.10), we find that

∆uap − ε−
2
3

(
uap − a(ε

2
3 y)
)(

uap − b(ε
2
3 y)
)

=
[
p− ε− 2

3

(
2ũap − a(ε

2
3 y)− b(ε 2

3 y)
)]
σ

−ε− 2
3σ2.

Thus, by (5.8), (5.11), we infer that

∆uap − ε−
2
3

(
uap − a(ε

2
3 y)
)(

uap − b(ε
2
3 y)
)

=


O(ε2), y ∈ Ωε ∩ {|x| ≤ L},

O(ε
10
3 ), y ∈ Ωε/{|x| < L}.

(5.15)

Now, estimate (5.12) follows by simply noting that |Ωε ∩ {|x| ≤ L}| = O(ε−
2
3 ) and

|Ωε/{|x| < L}| ≤ Cε− 4
3 . Relation (5.13) follows at once from (4.1), (4.3) and (5.10).

Finally, relation (5.14) follows readily from Lemma 4.2, (5.1), and (5.11).
The proof of the proposition is complete. �
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5.3. Further improved approximation close to the curve Γε. To further
improve the approximation for a solution, we need to introduce a parameter e.

We let (λ0, Z(x)) be the principal eigenvalue- eigenfunction pair of the problem

φxx − 2V φ = λφ, φ(±∞) = 0. (5.16)

Then, from Proposition 3.1, we know that λ0 > 0 and Z(x) is one signed and
even in x. Furthermore, the eigenfunction Z decays super-exponentially to zero, as
x → ±∞, with the same rate as the righthand side of (3.22). Moreover, without
loss of generality, we may assume that ‖Z‖L2(R) = 1.

Let e(θ) be a twice differentiable, `–periodic, function which will be determined
later. We define our basic approximation to a solution to the problem, near the
curve Γε, to be

w = uap + ε
2
3 e(ε

2
3 z)Z, |x| ≤ δ0ε−

2
3 , z ∈ [0, `ε−

2
3 ]. (5.17)

In all that follows, we will assume the validity of the following constraint:

‖e‖b := ε
4
3 ‖e′′‖L2(0,`) + ε

2
3 ‖e′‖L2(0,`) + ‖e‖L∞(0,`) ≤ ε

2
3 . (5.18)

In reality, a posteriori, this parameter will turn out to be smaller than stated here.
The new error of approximation is

E1 = ∆w − ε− 2
3

(
w − a(ε

2
3 y)
)(

w − b(ε 2
3 y)
)

= E0 + ε
2
3 ∆(eZ)−

(
2uap − a(ε

2
3 y)− b(ε 2

3 y)
)
eZ − ε 2

3 e2Z2,

(5.19)

where

E0 = ∆uap − ε−
2
3

(
uap − a(ε

2
3 y)
)(

uap − b(ε
2
3 y)
)
. (5.20)

Let us recall that, thanks to (3.4), (4.5), the Laplacian of u(y) = u(s, z) = v(x, z),
in coordinated (x, z), becomes

∆u = vzz + β2vxx + B̃1(v), (5.21)

where

B̃1(v) = ε
4
3 β′′β−1xvx + ε

4
3 (β′)2β−2x2vxx + 2ε

2
3 β′β−1xvxz +B1(u), (5.22)

and B1 is the differential operator in (3.5) with derivatives expressed by (4.5) and
s replaced by β−1x. Note also that from (3.42), (4.6), and (5.11), we obtain that

2uap − a(ε
2
3 y)− b(ε 2

3 y) = 2ε
2
3 β2V + ε

4
3O(x2 + 1), |x| ≤ δ0ε−

2
3 . (5.23)

A short calculation, using (5.21), (5.22), and the above relation, shows that

ε
2
3 ∆(eZ)−

(
2uap − a(ε

2
3 y)− b(ε 2

3 y)
)
eZ = ε2e′′Z+λ0ε

2
3 β2eZ+ε

2
3 B̃1(eZ)+ε

4
3O(x2+1)eZ.

(5.24)
We write

E11 = ε2e′′Z + λ0ε
2
3 β2eZ and E12 = E1 − E11 (recall (5.19)). (5.25)

We set up the full problem, close to the curve, in the form

∆(w + φ)− ε− 2
3

(
w + φ− a(ε

2
3 y)
)(

w + φ− b(ε 2
3 y)
)

= 0,

which can be expanded in the following way:

∆φ−ε− 2
3

(
2w − a(ε

2
3 y)− b(ε 2

3 y)
)
φ−ε− 2

3φ2+∆w−ε− 2
3

(
w − a(ε

2
3 y)
)(

w − b(ε 2
3 y)
)

= 0.
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In summary, near the curve, the problem takes the form:

β2L1(φ) + B̃1(φ) +N1(φ) + E1 = 0,

where E1, B̃1 are described in (5.19), (5.22) respectively, and

L1(φ) = β−2φzz + φxx − ε−
2
3 β−2

(
2w − a(ε

2
3 y)− b(ε 2

3 y)
)
φ, N1(φ) = −ε− 2

3φ2.

(5.26)

We recall that the description made here is only local (for |x| ≤ δ0ε
− 2

3 ). We will
be able however to reduce the problem to one qualitatively similar to that of the
above form in the infinite strip S (recall (3.39)).

6. The gluing procedure

Let us first define some useful cutoff functions

χεδ(x) := nδ(ε
1
3x), δ > 0, (6.1)

where nδ is the smooth cutoff function defined in (4.2). The choice of the power 1/3
will become clear in the proof of Proposition 7.1 below (in particular, see relation
(7.28)).

We define our new global approximation to be simply

w = uap + ε
2
3χε30γ(x)eZ, (6.2)

recall (5.17), where γ > 0 is a small constant, independent of ε, to be chosen (until
then, unless specified otherwise, all the following constants will implicitly depend
on γ). Then, the function w + φ̃ solves (3.1) if and only if

L̃(φ̃) = Ñ(φ̃) + Ẽ in Ωε,
∂φ̃

∂η
= 0 on ∂Ωε,

where

L̃(φ̃) = ∆φ̃− ε− 2
3

(
2w− a(ε

2
3 y)− b(ε 2

3 y)
)
φ̃, (6.3)

Ñ(φ̃) = ε−
2
3 φ̃2 and Ẽ = −∆w + ε−

2
3

(
w− a(ε

2
3 y)
)(

w− b(ε 2
3 y)
)
.

We now use a very nice trick which was already used in [17]. This trick amounts to

decompose the function φ̃ into two functions, one of which is supported in a tubular
neighborhood of Γε and the other one being globally defined in Ωε. Therefore, we
decompose φ̃ in the following form:

φ̃ = χε3γφ+ ψ,

where, in coordinates (x, z), we assume that φ is defined in the whole strip S. We
want

L̃(χε3γφ) + L̃(ψ) = Ẽ + Ñ(χε3γφ+ ψ) in Ωε,
∂ψ

∂η
= 0 on ∂Ωε.

We achieve this if the pair (φ, ψ) satisfies the following nonlinear coupled system:

χε3γL̃(φ) = χεγẼ + χεγÑ(φ+ ψ) + 2χεγε
− 2

3 (w− ǔ)ψ in S, (6.4)

∆ψ−Qψ−2(1−χεγ)ε−
2
3 (w−ǔ)ψ = (1−χεγ)Ẽ+(1−χεγ)Ñ(χε3γφ+ψ)−2∇(χε3γ)∇φ−∆(χε3γ)φ

(6.5)
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in Ωε, and ∂ψ
∂η = 0 on ∂Ωε, where

ǔ = max

{
a(ε

2
3 y),

a(ε
2
3 y) + b(ε

2
3 y)

2
+ ε

2
3 , b(ε

2
3 y)

}
and Q = ε−

2
3

(
2ǔ− a(ε

2
3 y)− b(ε 2

3 y)
)
.

(6.6)

Notice that the operator L̃ in the strip S may be taken as any compatible extension
outside the {|x| ≤ 6γε−

1
3 }–neighborhood of the curve. For future reference, it is

useful to note at this point some properties of ǔ and Q: Recalling (1.3), it is easy
to see that there exists an O(1) neighborhood Uε of the curve Γε such that

ǔ(y) =



a(ε
2
3 y), y ∈ Ω1\Uε,

a(ε
2
3 y)+b(ε

2
3 y)

2 + ε
2
3 , y ∈ Uε,

b(ε
2
3 y), y ∈ Ω2\Uε.

(6.7)

Furthermore, observe that relation (3.9) implies that

Q(y) ≥

 c, y = (β−1x, z) ∈ Ωε ∩ {|x| ≤ γε−
1
3 },

cε−
1
3 , y ∈ Ωε\{|x| ≤ γε−

1
3 }.

(6.8)

Moreover, recalling (4.4), (5.1), (5.9), (5.11), (5.18), and the super-exponential
decay of Z, we find that∣∣∣(1− χεγ)ε−

2
3 (w− ǔ)

∣∣∣ ≤ Cε in Ω̄ε. (6.9)

Remark 6.1. Everything in this paper, except from relation (6.8), still holds with

the choice ǔ(y) = max{a(ε
2
3 y), b(ε

2
3 y)}.

What we want to do next is to reduce the problem to a problem in the strip.
To do this, we solve, given a small φ, problem (6.5) for ψ. This can be done in a
straightforward manner. Assume that φ satisfies the following conditions:

|φ(x, z)| ≤ Mε
5
3 , |x| ≥ γε− 1

3 and |∇φ(x, z)|+|φ(x, z)| ≤ exp{−ε− 1
3 }, |x| ≥ 3γε−

1
3 ,

(6.10)
for a certain constant M > 0. Firstly, we can use (6.8), (6.9), and a maximum
principle argument to bound the inverse of the operator in the lefthand side of (6.5)

(one obtains better estimates if the righthand side has support in |x| ≤ 2γε−
1
3 ).

Then, a direct application of the contraction mapping principle , recalling (5.15),
(5.18), and the super-exponential decay of Z, yields that problem (6.5) has a unique
(small) solution ψ = ψ(φ) with

‖ψ(φ)‖L∞(Ωε) ≤ CM
2ε3, (6.11)

if ε < ε(M), with C independent of ε,M. Furthermore, the nonlinear operator ψ
satisfies a Lipschitz condition of the form

‖ψ(φ1)−ψ(φ2)‖L∞(Ωε) ≤ Cε‖φ1−φ2‖
L∞

(
|x|≥γε−

1
3

)+Cε
2
3 ‖∇(φ1−φ2)‖

L∞
(
|x|≥3γε−

1
3

),
(6.12)

(C independent of ε,M) where, with some abuse of notation, by {|x| ≥ rε−
1
3 },

r > 0, we denote the complement of the {|x| < rε−
1
3 }–neighborhood of Γε. For
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future reference, note that from (6.5), thanks to (6.8) and (6.9), we have

‖ψ(φ1)− ψ(φ2)‖H1(Ωε) ≤ Cε
1
3 ‖φ1 − φ2‖H1(S), ε < ε(M), (6.13)

with C independent of ε,M.
The full problem has thus been reduced to solving the (nonlocal) problem in the

infinite strip S:

L2(φ) = χεγẼ + χεγÑ(φ+ ψ(φ)) + 2χεγε
− 2

3 (w− ǔ)ψ(φ) (6.14)

for a φ ∈ H2(S) satisfying condition (6.10). Here L2 denotes a linear operator that

coincides with L̃ on the region {|x| ≤ 10γε−
1
3 } (then we can multiply both sides of

(6.14) by χε3γ and get (6.4)). We shall define this operator next. The operator L̃

for |x| ≤ 10γε−
1
3 , in coordinates (x, z), is given by β2L1 + B̃1 (recall (5.17), (5.21),

(5.26), (6.2), and (6.3)). We extend it for functions φ defined in the entire strip S,
in terms of coordinates (x, z), as follows:

L2(φ) := β2L0(φ) + χε10γB̃1(φ)− χε10γ

[
ε−

2
3

(
2w − a(ε

2
3 y)− b(ε 2

3 y)
)
− 2β2V

]
φ,

(6.15)
where, we recall,

L0(φ) = β−2φzz + φxx − 2V φ. (6.16)

Rather than solving problem (6.14) directly, we shall do it in steps. Firstly, we
consider the following projected problem in H2(S): given e satisfying bound (5.18),
find functions φ ∈ H2(S), d ∈ L2(0, `), `–periodic, such that

L2(φ) = −χεγE1 +N2(φ) + d(ε
2
3 z)χεγZ in S, (6.17)

φ(x, 0) = φ(x, `/ε
2
3 ), φz(x, 0) = φz(x, `/ε

2
3 ), −∞ < x <∞, (6.18)∫ ∞

−∞
φ(x, z)Z(x)dx = 0, 0 < z <

`

ε
2
3

. (6.19)

Here

N2(φ) = χεγÑ (φ+ ψ(φ)) + 2χεγε
− 2

3 (w − ǔ)ψ(φ), (6.20)

(recall that w = w and Ẽ = −E1 for |x| ≤ 30γε−
1
3 ). We will prove that this

problem has a unique solution whose norm is controlled by the L2–norm of E12,
and not by that of the whole E1 (recall (5.25)). After this has been done, our
task is to adjust the parameter e in such a way that d is identically zero. As we
will see, this turns out to be equivalent to solving a nonlocal, nonlinear second-
order differential equation for e under periodic boundary conditions. We will deal
with this next. We will carry out this program in the following sections. To solve
(6.17)-(6.19), we need to investigate the invertibility of L2 in an L2 − H2 setting
under periodic boundary and orthogonality conditions. Let us mention that such
infinite dimensional Lyapunov-Schmidt reduction arguments were first introduced
by Pacard and Ritoré [41] in the context of the Allen-Cahn equation.

7. Invertibility of L2

Let L2 be the operator defined, in H2(S), by (6.15). In this section we study the
linear problem

L2(φ) = h+ d(ε
2
3 z)χεγZ in S, (7.1)

φ(x, 0) = φ(x, `/ε
2
3 ), φz(x, 0) = φz(x, `/ε

2
3 ), −∞ < x <∞, (7.2)
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−∞

φ(x, z)Z(x)dx = 0, 0 < z <
`

ε
2
3

, (7.3)

for given h ∈ L2(S).
Our main result in this section is the following:

Proposition 7.1. There exist constants γ∗, ε0, C > 0 such that, for all ε ∈ (0, ε0)
and h ∈ L2(S), problem (7.1)-(7.3), with γ = γ∗, has a unique solution φ = T (h).
Furthermore, we have the estimate

‖T (h)‖H2(S) ≤ C‖h‖L2(S).

For the proof of this result, we need to show the validity of the corresponding
assertion for a simpler operator that does not depend on ε. Let us first consider the
problem:

L(φ) = −∆φ+ 2V φ = χεγh in S, (7.4)

φ(x, 0) = φ(x, `/ε
2
3 ), φz(x, 0) = φz(x, `/ε

2
3 ), −∞ < x <∞, (7.5)∫ ∞

−∞
φ(x, z)Z(x)dx = 0, 0 < z <

`

ε
2
3

. (7.6)

The following a-priori estimate holds:

Lemma 7.1. There exists a constant C > 0, independent of ε, γ, h, such that
solutions of (7.4)-(7.6), with h ∈ L2(S) and γ > 0, satisfy the a–priori estimate

‖φ‖H2(S) ≤ C‖h‖L2(S).

Proof. Let us consider Fourier series decompositions for φ and h of the form

φ(x, z) =
∑∞
k=0

[
φ1k(x) cos

(
2πk
` ε

2
3 z
)

+ φ2k(x) sin
(

2πk
` ε

2
3 z
)]
,

h(x, z) =
∑∞
k=0

[
h1k(x) cos

(
2πk
` ε

2
3 z
)

+ h2k(x) sin
(

2πk
` ε

2
3 z
)]
.

Then we have the validity of the equations

4π2k2

`2
ε

4
3φlk − L0(φlk) = χεγhlk, x ∈ R, (7.7)

with the orthogonality condition∫ ∞
−∞

φlkZdx = 0, (7.8)

for k = 0, 1, · · · , l = 1, 2, where L0 is the linear operator described in Proposition
3.1. Since the righthand side of (7.7) has compact support, and V (x) → ∞ as
x → ±∞, a rather standard barrier argument can be used to show that each φlk
decays super–exponentially to zero as x→ ±∞. The same property also holds true
for φlk,x. Let us consider the bilinear form associated to the operator −L0, namely

B(ψ,ψ) =

∫ ∞
−∞

(
ψ2
x + 2V ψ2

)
dx, ψ ∈ H1(R) with

∫ ∞
−∞

V ψ2dx <∞.

Since (7.8) holds, recalling the spectral properties of L0 from Proposition 3.1, we
conclude that

c
(
‖φlk‖2L2(R) + ‖φlk,x‖2L2(R)

)
≤ B(φlk, φlk). (7.9)
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Here, and throughout this proof, by c/C we denote positive generic constants,
independent of ε, γ, k, whose value will decrease/increase from line to line. Using
this fact, and testing equation (7.7) by φlk, we find that

‖φlk‖2L2(R) + ‖φlk,x‖2L2(R) ≤ C‖χ
ε
γhlk‖2L2(R). (7.10)

Testing (7.7) once again, this time by φlk,xx, we arrive at

c

∫ ∞
−∞

(φlk,xx)2dx ≤ 2

∫ ∞
−∞

V φlkφlk,xxdx+ C

∫ ∞
−∞

(χεγhlk)2dx. (7.11)

An integration by parts, which is possible by the super-exponential decay of φlk, φlk,x,
yields ∫ ∞

−∞
V φlkφlk,xxdx = −

∫ ∞
−∞

V (φlk,x)2dx−
∫ ∞
−∞

Vxφlkφlk,xdx. (7.12)

By Proposition 3.1,

−V ≤ C, |Vx| ≤ 1, x ∈ R,
and, taking into account (7.10), (7.11), (7.12), we arrive at

‖φlk,xx‖2L2(R) ≤ C‖χ
ε
γhlk‖2L2(R). (7.13)

Adding up estimates (7.10) and (7.13) in k and l, we conclude that

‖D2φ‖2L2(S) + ‖Dφ‖2L2(S) + ‖φ‖2L2(S) ≤ C‖χ
ε
γh‖2L2(S) ≤ C‖h‖

2
L2(S),

which ends the proof. �

Next, we consider the following problem: given h ∈ L2(S), find functions φ ∈
H2(S), d ∈ L2(0, `), `–periodic, such that

L(φ) = χεmh+ d(ε
2
3 z)χεγZ in S, (7.14)

φ(x, 0) = φ(x, `/ε
2
3 ), φz(x, 0) = φz(x, `/ε

2
3 ), −∞ < x <∞, (7.15)∫ ∞

−∞
φ(x, z)Z(x)dx = 0, 0 < z <

`

ε
2
3

, (7.16)

where m ∈ N. Note that, for large m > 0, the righthand side of (7.14) approximates,
in some sense, that of (7.1).

The following lemma provides us with existence of solutions as well as estimates
that will be used in the sequel for passing to the limit m→∞.

Lemma 7.2. Problem (7.14)-(7.16) possesses a unique solution φ = T̃m(h). More-
over, there exists a constant C > 0, and an ε0(γ) > 0, such that

‖T̃m(h)‖H2(S) ≤ C‖h‖L2(S),

for all ε ∈ (0, ε0(γ)) , γ > 0, h ∈ L2(S), m ∈ N.

Proof. To establish existence, we assume that

h(x, z) =

∞∑
k=0

[
h1k(x) cos

(
2πk

`
ε

2
3 z

)
+ h2k(x) sin

(
2πk

`
ε

2
3 z

)]
,

and consider the problem of finding φlk ∈ H2(R) and constants dlk such that

4π2k2

`2
ε

4
3φlk − L0(φlk) = χεmhlk + dlkχ

ε
γZ, x ∈ R,
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and ∫ ∞
−∞

φlkZdx = 0, k = 0, 1, · · · , l = 1, 2.

This problem is solvable provided

dlk = −
∫∞
−∞ χεmhlkZdx∫∞
−∞ χεγZ

2dx
.

Observe in particular that
∞∑
k=0

|dlk|2 ≤
C(∫∞

−∞ χεγZ
2dx
)2 ε

2
3 ‖χεmh‖2L2(S) ≤

4C(∫∞
−∞ Z2dx

)2 ε
2
3 ‖h‖2L2(S), (7.17)

if ε ∈ (0, ε0(γ)), for some ε0(γ) → 0 as γ → 0, and constant C > 0 independent of
ε, γ,m, h.

Finally, define

φ(x, z) =

∞∑
k=0

[
φ1k(x) cos

(
2πk

`
ε

2
3 z

)
+ φ2k(x) sin

(
2πk

`
ε

2
3 z

)]
, (x, z) ∈ S,

and correspondingly

d(θ) =

∞∑
k=0

[
d1k cos

(
2πk

`
θ

)
+ d2k sin

(
2πk

`
θ

)]
, θ ∈ [0, `].

Estimate (7.17) implies that d(ε
2
3 z)Z has its L2(S) norm controlled by that of

h. The a–priori estimates of the previous lemma tell us that the series for φ is
convergent in H2(S), and defines a unique solution for the problem that satisfies
the desired bound (with constant independent of ε, γ,m, h).

The proof of the lemma is complete. �

We consider now the following problem: given h ∈ L2(S), find functions φ ∈
H2(S), d ∈ L2(0, `), `–periodic, such that

L(φ) = h+ d(ε
2
3 z)χεγZ in S, (7.18)

φ(x, 0) = φ(x, `/ε
2
3 ), φz(x, 0) = φz(x, `/ε

2
3 ), −∞ < x <∞, (7.19)∫ ∞

−∞
φ(x, z)Z(x)dx = 0, 0 < z <

`

ε
2
3

. (7.20)

Letting m→∞ in (7.14)-(7.16), we can obtain the following:

Lemma 7.3. Problem (7.18)-(7.20) possesses a unique solution φ = T̃ (h). More-
over, there exists a constant C > 0, and an ε0(γ) > 0, such that

‖T̃ (h)‖H2(S) ≤ C‖h‖L2(S),

for all ε ∈ (0, ε0(γ)) , γ > 0, h ∈ L2(S).

Proof. From Lemma 7.2, given m ∈ N, problem (7.14)-(7.16) possesses a unique

solution φm = T̃m(h), if 0 < ε < ε0(γ). Furthermore, the sequence {φm} is bounded
in H2(S). Hence, passing to a subsequence, we may assume that

φm ⇀ φ weakly in H2(S).

Keeping everything fixed and letting m → ∞ in the weak form of (7.14)–(7.16),

we find that T̃ (h) := φ solves (7.18)–(7.20), and satisfies the desired bound (by the
weak lower semi–continuity of the H2–norm).
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The proof of the lemma is complete. �

We can now give the
PROOF OF PROPOSITION 7.1: We will reduce problem (7.1)-(7.3) to a small per-

turbation of a problem of the form (7.18)-(7.20) in which Lemma 7.3 is applicable.
We will achieve this by introducing a change of variables that eliminates the weight
β−2 in front of φzz (recall (6.15), (6.16)).

We let

φ(x, z) = ϕ(x, α(z)), α(z) = ε−
2
3

∫ ε
2
3 z

0

β(r)dr.

The map α : [0, `/ε
2
3 )→ [0, ˆ̀/ε

2
3 ) is a diffeomorphism, where

ˆ̀=

∫ `

0

β(r)dr. (7.21)

We denote then

φz = βϕz′ , φzz = β2(ε
2
3 z)ϕz′z′ + ε

2
3 β′(ε

2
3 z)ϕz′ , (7.22)

while differentiation in x does not change. Recalling the definition of L2 from (6.15),
the equation in terms of ϕ now reads

−∆ϕ+ 2V ϕ = β−2χε10γB̂1(ϕ)− χε10γ

[
ε−

2
3 β−2

(
2w − a(ε

2
3 y)− b(ε 2

3 y)
)
− 2V

]
ϕ

+ε
2
3 β′β−2ϕz′ − β−2ĥ− d̂(ε

2
3 z′)β−2χεγZ,

(7.23)

for (x, z′) ∈ Ŝ := {x ∈ R, z′ ∈ [0, ˆ̀/ε
2
3 ]}, together with the conditions

ϕ(x, 0) = ϕ(x, ˆ̀/ε
2
3 ), ϕz′(x, 0) = ϕz′(x, ˆ̀/ε

2
3 ), −∞ < x <∞, (7.24)∫ ∞

−∞
ϕ(x, z′)Z(x)dx = 0, 0 < z′ <

ˆ̀

ε
2
3

. (7.25)

Here ĥ(x, z′) = h
(
x, α−1(z′)

)
, d̂(ε

2
3 z′) = d

(
ε

2
3α−1(z′)

)
, and the operator B̂1 is

defined by using formulas (7.22) to replace the z-derivatives by z′-derivatives, and

the variable z by α−1(z′), in the operator B̃1. We set

B̂2(ϕ) = β−2χε10γB̂1(ϕ) and B̂3(ϕ) = −χε10γ

[
ε−

2
3 β−2

(
2w − a(ε

2
3 y)− b(ε 2

3 y)
)
− 2V

]
ϕ.

From Lemma 7.3, we know that equations (7.23)–(7.25) are equivalent to a fixed
point problem

ϕ = T̃
(
B̂2(ϕ) + B̂3(ϕ) + ε

2
3 β′β−2ϕz′ − β−2ĥ

)
. (7.26)

Notice that the operator B̂2 is small in the sense that

‖B̂2(ϕ)‖L2(Ŝ) ≤ C(γε
1
3 + ε

2
3 )‖ϕ‖H2(Ŝ), (7.27)

for some constant C independent of ϕ and small ε, γ > 0. This last estimate is a
rather straightforward consequence of the fact that ε

2
3 |x| ≤ 20γε

1
3 whenever the

operator B̂2 is supported, and relations (5.22), (7.22). Furthermore, from (5.18),
(5.23), we have∣∣∣χε10γ

[
ε−

2
3 β−2

(
2w − a(ε

2
3 y)− b(ε 2

3 y)
)
− 2V

]∣∣∣ ≤ Cε 2
3χε10γ(x2+1) ≤ C(γ2+ε

2
3 ), (x, z) ∈ S,
(7.28)
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where C is independent of small ε, γ > 0. Hence, it follows that

‖B̂3(ϕ)‖L2(Ŝ) ≤ C(γ2 + ε
2
3 )‖ϕ‖L2(Ŝ),

with C independent of ϕ and small ε, γ > 0. Let’s recall at this point that the
constant in the estimate of Lemma 7.3 does not depend on γ (nor on ε, h). This
means that we can fix a small γ∗ > 0, and find an ε0 > 0, so that we can apply
the contraction mapping principle in (7.26), with γ = γ∗ and ε ∈ (0, ε0). Thus,

if ε ∈ (0, ε0), equations (7.23)-(7.25), with γ = γ∗, have a unique solution ϕ(ĥ),

satisfying the estimate ‖ϕ(ĥ)‖H2(Ŝ) ≤ C‖ĥ‖L2(Ŝ) for some constant C independent

of ε, ĥ.
The result now follows by transforming the estimate for ϕ into a similar one for

φ via a change of variables. This concludes the proof. �

Remark 7.1. From now on γ will be fixed equal to γ∗.

8. Solving the nonlinear intermediate problem

In this section we will solve the nonlinear problem (6.17)–(6.19), i.e.,

L2(φ) = −χεγE1 +N2(φ) + d(ε
2
3 z)χεγZ, (8.1)

under periodic boundary and orthogonality conditions in S. Here N2 is as in (6.20),
whenever this operator is well defined, namely, for φ satisfying (6.10). A first
elementary but crucial observation is that the term

E11 = (ε2e′′ + λ0ε
2
3 β2e)Z,

in the decomposition of E1 (recall (5.25)), has precisely the form d(ε
2
3 z)Z and can

therefore be absorbed for now in that term. Thus, the equivalent problem we will
look at is

L2(φ) = −χεγE12 +N2(φ) + d(ε
2
3 z)χεγZ, (8.2)

under periodic boundary and orthogonality conditions in S. The big difference
between the terms E11 and E12 is their sizes. Notice that, by Proposition 5.1, and
(5.18),

‖χεγE12‖L2(S) ≤ Cε
5
3 , (8.3)

while χεγE11 is a–priori only of size O(ε) in L2(S). We call

E2 = χεγE12. (8.4)

For future reference, it is useful to point out the Lipschitz dependence of the term
of error E2 on the parameter e for the norm defined in (5.18). One can readily
check that we have the validity of the estimate

‖E2(e1)− E2(e2)‖L2(S) ≤ Cε‖e1 − e2‖b. (8.5)

Let T be the operator defined in Proposition 7.1. Then, the equation (8.2) is
equivalent to the fixed point problem

φ = T (−E2 +N2(φ)) ≡ A(φ). (8.6)

The operator T has a useful property: Assume that h has support on |x| ≤ 2γε−
1
3 ,

then φ = T (h) satisfies the estimate

|φ(x, z)|+ |∇φ(x, z)| ≤ ‖φ‖L∞(S)e
−2µε−

1
2 for |x| ≥ 3γε−

1
3 , (8.7)
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for some constant µ > 0 independent of ε, h. Indeed, since the term involving d
is supported on |x| ≤ 2γε−

1
3 , recalling the comments below (7.27), and (7.28), it

follows that φ satisfies, for |x| ≥ 2γε−
1
3 , an equation of the form

β−2φzz+φxx−2V φ+O(1)φ+χε10γO
(
ε

1
3 (|φx|+ |φz|+ |φxx|+ |φxz|+ |φzz|)

)
= 0, ε→ 0,

uniformly in x, z. Then, for x ≥ 2γε−
1
3 , we can use a barrier of the form

φ̄(x, z) = ‖φ‖L∞(S) exp
{
−D(x− 2γε−

1
3 )

3
2

}
, D > 0,

(recall that V − |x| → 0 as x→ ±∞) to conclude that

φ(x, z) ≤ ‖φ‖L∞(S) exp
{
−2µε−

1
2

}
, x ≥ 3γε−

1
3 ,

for some constant µ > 0 independent of ε, h. The remaining inequalities for φ are
found in the same way. The bound for ∇φ follows simply by local elliptic estimates.

Now we recall that, for every φ fulfilling (6.10), the operator ψ(φ) satisfies re-
lations (6.11), (6.12), and (6.13). These facts will allow us to construct a region
where the contraction mapping principle applies to (8.6). We consider the following
closed, bounded, subset of H2(S):

B =

{
φ ∈ H2(S) : ‖φ‖H2(S) ≤Mε

5
3 , ‖|∇φ|+ |φ|‖

L∞
(
|x|≥3γε−

1
3

) ≤ ‖φ‖H2(S)e
−µε−

1
2

}
,

where µ > 0 is as in (8.7), and M a constant to be determined (independently of
ε). Note that, thanks to Sobolev’s imbedding

‖φ‖L∞(S) ≤ C‖φ‖H2(S) (C independent of ε, φ), (8.8)

functions φ in B fulfill condition (6.10) provided ε is sufficiently small.
We claim that if the constantM is fixed sufficiently large, then the mapA, defined

in (8.6), is a contraction from B into itself for all small ε > 0. For functions φ in B,

we have the following estimate forN2(φ) = ε−
2
3χεγ (φ+ ψ(φ))

2
+2χεγε

− 2
3 (w−ǔ)ψ(φ):

‖N2(φ)‖L2(S) ≤ CM2ε
5
2 , ε < ε(M). (8.9)

(Here, and throughout this section, by C > 0 we denote a generic constant that is
independent of M and all small ε > 0; by ε(M) we denote a generic small constant
that depends only on M such that ε(M) → 0 as M → ∞). To see the above

estimate, let Sγ = S ∩ {|x| ≤ 2γε−
1
3 }. Then, for φ ∈ B, we have that

‖N2(φ)‖L2(S) ≤ Cε−
2
3

[
‖φ‖2L4(S) + ‖ψ(φ)‖2L4(Sγ)

]
+ C‖ψ(φ)‖L2(Sγ),

where we also used the easily derived estimate w− ǔ = O(ε
2
3 ), ε→ 0, uniformly in

Ωε. Using Sobolev’s imbedding, we get

‖φ‖2L4(S) ≤ C‖φ‖
2
H1(S) ≤ C‖φ‖

2
H2(S) ≤ CM

2ε
10
3 .

From (6.11), and the fact that the area of Sγ is O(ε−1), we obtain that

ε−
2
3 ‖ψ(φ)‖2L4(Sγ) + ‖ψ(φ)‖L2(Sγ) ≤ CM2ε

5
2 , ε < ε(M).

Hence, estimate (8.9) holds true.
We claim that a Lipschitz property holds for N2. More precisely, there exists a

constant C such that

‖N2(φ1)−N2(φ2)‖L2(S) ≤ Cε
1
3 ‖φ1 − φ2‖H2(S) ∀ φ1, φ2 ∈ B, (8.10)



RESONANCE PHENOMENA IN THE CASE OF EXCHANGE OF STABILITIES 32

provided ε < ε(M). Indeed, by direct computations, we obtain that

‖φ2
1 − φ2

2‖L2(Sγ) ≤
(
‖φ1‖L4(Sγ) + ‖φ2‖L4(Sγ)

)
‖φ1 − φ2‖L4(Sγ) ∀ φ1, φ2 ∈ H2(Sγ).

Therefore, we have

‖N2(φ1)−N2(φ2)‖L2(S) ≤ ε−
2
3 ‖ (φ1 + ψ(φ1))

2 − (φ2 + ψ(φ2))
2 ‖L2(Sγ)

+C‖ψ(φ1)− ψ(φ2)‖L2(Sγ)

≤ (A1 +A2)
(
‖φ1 − φ2‖L4(Sγ) + ‖ψ(φ1)− ψ(φ2)‖L4(Sγ)

)
+C‖ψ(φ1)− ψ(φ2)‖L2(Sγ),

where Ai = ε−
2
3

(
‖φi‖L4(Sγ) + ‖ψ(φi)‖L4(Sγ)

)
, i = 1, 2. Arguing as before, and

recalling relation (6.13), we deduce that (8.10) holds.
Now, for φ ∈ B, it follows from Proposition 7.1, (8.3), (8.4), (8.6), and (8.9), that

‖A(φ)‖H2(S) ≤ C∗ε
5
3 + CM2ε

5
2 ,

for some constants C∗, C independent of M and all small ε. Thus, choosing any
number M > C∗, we have

‖A(φ)‖H2(S) ≤Mε
5
3 ,

provided ε is sufficiently small. On the other hand, the function ϕ = A(φ) satisfies

an equation of the form L2(ϕ) = h with h compactly supported on |x| ≤ 2γε−
1
3 .

Hence, by the discussion leading to (8.7), and Sobolev’s imbedding (8.8), we in-
fer that ϕ belongs to B, provided ε is sufficiently small. Furthermore, thanks to
Proposition 7.1, and (8.10), the map A is a contraction. We conclude that (8.6)
has a unique fixed point in B. In turn, this fixed point supplies us with the desired
solution of (8.2).

We recall that the operator A carries the function e as a parameter. Hence,
the fixed point φ of A depends on e, and we can write φ = φ(e). A tedious but
straightforward analysis of the terms involved in the differential operator L2, the
nonlinear operator N2, and in the error E2, yields that this dependence is indeed
Lipschitz with respect to the H2-norm (for each fixed ε). Indeed, from (5.19),
(5.25), (6.5), (6.11), (8.4), and the super-exponential decay of Z, in the same way
as (6.13), we get that, for φ ∈ B,

‖ψe1(φ)− ψe2(φ)‖H1(Ωε) ≤ e
−cε−

1
3 ‖e1 − e2‖b,

where we have emphasized the dependence of the operator ψ on functions e1, e2

satisfying (5.18). Now, arguing as before, we can show that, for φ ∈ B,

‖N2,e1(φ)−N2,e2(φ)‖L2(S) ≤ Cε
8
3 ‖e1 − e2‖b. (8.11)

Notice that in view of φ(ei) = A (φ(ei)), i = 1, 2, we can write

L2,0 (φ(ei)) = −E2(ei) +N2,ei (φ(ei)) + 2χε10γZeiφ(ei) + dei(ε
2
3 z)χεγZ, i = 1, 2,

where L2,0 is the linear operator described in (6.15) with e = 0. So,

L2,0 (φ(e1)− φ(e2)) = −E2(e1) + E2(e2) +N2,e1 (φ(e1))−N2,e2 (φ(e2))

+2χε10γZ (e1φ(e1)− e2φ(e2)) + d̃(ε
2
3 z)χεγZ,
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where d̃(θ) = de1(θ) − de2(θ). Finally, by (5.18), Proposition 7.1, (8.5), (8.10),
(8.11), and the above relation, we infer that

‖φ(e1)− φ(e2)‖H2(S) ≤ Cε‖e1 − e2‖b. (8.12)

We summarize the results we have obtained in this section in the following:

Proposition 8.1. There are numbers µ,M > 0 such that for all sufficiently small
ε > 0 and all e satisfying (5.18), problem (6.17)–(6.19) has a unique solution
φ = φ(e) that satisfies

‖φ‖H2(S) ≤Mε
5
3 ,

and

‖|∇φ|+ |φ|‖
L∞

(
|x|≥3γε−

1
3

) ≤ ‖φ‖H2(S)e
−µε−

1
2 .

Besides, φ depends Lipschitz-continuously on e in the sense of estimate (8.12).

Next, we carry out the second part of the program, which is to set up an equation
for e that is equivalent to making d identically zero. This equation will be obtained
by simply integrating (only in x) equation (8.1) against Z. It is therefore of crucial
importance to carry out computations of the term

∫∞
−∞ χεγE1Zdx. We do that in

the next section.

9. Estimates for projections of the error

In this section we carry out estimates for the term
∫∞
−∞ χεγE1Zdx, where E1, we

recall, was defined in (5.19).
The main component in this expression is given by

(ε2e′′ + λ0ε
2
3 β2e)

∫ ∞
−∞

χεγZ
2dx = (ε2e′′ + λ0ε

2
3 β2e)

(
1 +O(e−cε

− 1
3 )

)
,

where we used that
∫∞
−∞ Z2dx = 1, and the (super) exponential decay of Z.

By relations (5.15), (5.20), we infer that∫ ∞
−∞

χεγE0Zdx = ε2a1(ε
2
3 z),

for some smooth, uniformly bounded (in ε), function a1 of θ = ε
2
3 z.

We will estimate the remaining terms coming from (5.19), (5.24). In view of
(5.22), the evenness and decay of Z, and recalling the normalization ‖Z‖L2(R) = 1,
we can show that

ε
2
3

∫ ∞
−∞

χεγB̃1(eZ)Zdx = ε
10
3 a2e

′′ − ε2
(
β′β−1 + ε

4
3 a3

)
e′ + ε2a4e,

for some smooth, uniformly bounded (in ε), functions ai, i = 2, 3, 4, of θ = ε
2
3 z.

Combining (5.19), (5.24), and the above relations, we conclude that∫∞
−∞ χεγE1Zdx = ε2(1 + ε

4
3 b1)e′′ − ε2(β′β−1 + ε

4
3 b2)e′

+ε
2
3 (λ0β

2 + ε
2
3 b3)e+ ε

2
3 b4e

2 + b5ε
2,

(9.1)

for some smooth, uniformly bounded (in ε), functions bi, i = 1, · · · , 5, of θ = ε
2
3 z. In

particular, we have that bi are independent of e, and actually b4 = −
∫∞
−∞ χεγZ

3dx.
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10. Projections of terms involving φ

We will estimate next the terms that involve φ in (8.1) tested against Z. We call

the sum of them ϕ(φ) (recall (6.15)), which can be decomposed as ϕ =
∑3
i=1 ϕi

below.
Firstly, note that∫ ∞

−∞
L0(φ)Zdx = β−2 d

2

dz2

(∫ ∞
−∞

φZdx

)
+ λ0

∫ ∞
−∞

φZdx = 0,

thanks to (6.19).
Let

ϕ1(ε
2
3 z) =

∫ ∞
−∞

χε10γB̃1(φ)Zdx.

We make the following observation: all terms in B̃1(φ) carry ε
2
3 and involve powers

of x times derivatives of zero, one, or two orders of φ. Since Z has super-exponential
decay, the conclusion is that∫ `

0

|ϕ1(θ)|2dθ ≤ Cε2‖φ‖2H2(S).

Hence, by Proposition 8.1, we get

‖ϕ1‖L2(0,`) ≤ Cε
8
3 . (10.1)

In ϕ1 we single out a less regular term, arising from a second order derivative in z
for φ, namely

ϕ1∗ := −
∫ ∞
−∞

χε10γ

[
1− (1 + ε

2
3 kβ−1x)−2

]
φzzZdx.

Emphasizing the dependence on e, we readily see that

|ϕ1∗(e1)− ϕ1∗(e2)|2 ≤ Cε 4
3

∫ ∞
−∞
|φzz(e1)− φzz(e2)|2 dx.

So, we get

‖ϕ1∗(e1)− ϕ1∗(e2)‖2L2(0,`) ≤ Cε
2‖φ(e1)− φ(e2)‖2H2(S)

(8.12)

≤ Cε4‖e1 − e2‖2b ,

i.e,

‖ϕ1∗(e1)− ϕ1∗(e2)‖L2(0,`) ≤ Cε2‖e1 − e2‖b. (10.2)

The remainder ϕ1 − ϕ1∗ actually defines, for fixed ε, a compact operator of e into
L2(0, `). This is a consequence of the fact that weak convergence in H2(S) im-
plies local strong convergence in H1(S), and the same is the case for H2(0, `) and
C1[0, `]. If ej is a weakly convergent sequence in H2(0, `), then clearly the func-
tions φ(ej) constitute a bounded sequence in H2(S). In the above remainder, one
can integrate by parts if necessary once in x. Averaging against Z, which decays
super-exponentially, localizes the situation and the desired fact follows.

Let us now consider the term

ϕ2(ε
2
3 z) := −

∫ ∞
−∞

χε10γ

[
ε−

2
3

(
2w − a(ε

2
3 y)− b(ε 2

3 y)
)
− 2β2V

]
φZdx.

By the first inequality in (7.28), the decay of Z, and Proposition 8.1, we obtain that

‖ϕ2‖L2(0,`) ≤ Cε‖φ‖L2(S) ≤ Cε
8
3 . (10.3)
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Finally, let

ϕ3(ε
2
3 z) = −

∫ ∞
−∞

N2(φ)Zdx.

By (8.9), we deduce that

‖ϕ3‖L2(0,`) ≤ Cε
1
3 ‖N2(φ)‖L2(S) ≤ Cε

17
6 . (10.4)

The term ϕ2 + ϕ3 defines a compact operator for e similarly as the remainder
ϕ1 − ϕ1∗.

11. Solving the reduced problem for e

In this section we set up an equation for e such that, for the solution φ of (6.17)-

(6.19), predicted by Proposition 8.1, one has that the coefficient d(ε
2
3 z) is identically

zero. To achieve this, we multiply the equation against Z and integrate only in x.
The equation d = 0 is then equivalent to the relation

ϕ(φ) = −
∫ ∞
−∞

χεγE1Zdx.

Using the estimates of the previous sections, we then find that the above relation
is equivalent to the following nonlinear, nonlocal differential equation for e:

L(e) ≡ ε 4
3 (β−2e′′−β′β−3e′)+λ0e = ε

8
3 b̃1e

′′+ε
8
3 b̃2e

′+ε
2
3 b̃3e+b̃4e

2+ε
4
3 b̃5−ε2β−2Mε.

(11.1)
The operator Mε = Mε(e) can be decomposed in the following form:

Mε(e) = Aε(e) +Kε(e),

where Kε = ε−
8
3 (ϕ1−ϕ1∗+ϕ2+ϕ3) is uniformly bounded in L2(0, `) for e satisfying

constraint (5.18), recall (10.1), (10.3), (10.4), and is also compact. The operator

Aε = ε−
8
3ϕ1∗ is also uniformly bounded in L2(0, `), and, due to (10.2), satisfies the

Lipschitz condition:

‖Aε(e1)−Aε(e2)‖L2(0,`) ≤ Cε−
2
3 ‖e1 − e2‖b. (11.2)

The functions b̃i = −β−2bi, i = 1, · · · , 5, are smooth, uniformly bounded (in ε),
and independent of e (recall (9.1)).

We now use assumption (1.15) to deal with the invertibility of L. We have the
following:

Lemma 11.1. Assume that condition (1.15) holds. If f ∈ L2(0, `), then there is a
unique solution e ∈ H2(0, `) of L(e) = f that is `-periodic and satisfies

ε
4
3 ‖e′′‖L2(0,`) + ε

2
3 ‖e′‖L2(0,`) + ‖e‖L∞(0,`) ≤ Cε−

2
3 ‖f‖L2(0,`),

with C independent of ε, f . Moreover, if f is in H2(0, `), then

ε
4
3 ‖e′′‖L2(0,`) + ‖e′‖L2(0,`) + ‖e‖L∞(0,`) ≤ C‖f‖H2(0,`),

with C independent of ε, f .

Proof. By setting ε = ε
2
3 , this is exactly Lemma 8.1 in [17]. �

We are now ready for the
PROOF OF THEOREM 1.1: We first solve L(e0) = ε

4
3 b̃5, and replace e = e0 + ẽ.

By the second assertion of Lemma 11.1, we have

ε
4
3 ‖e′′0‖L2(0,`) + ‖e′0‖L2(0,`) + ‖e0‖L∞(0,`) ≤ Cε

4
3 .



RESONANCE PHENOMENA IN THE CASE OF EXCHANGE OF STABILITIES 36

The resulting equation for ẽ has the same form as (11.1) except that now the term

ε
4
3 b̃5 disappears. Let us observe that, by the first assertion of Lemma 11.1, the

linear operator L is invertible with bounds for L(e) = f given by

‖e‖b ≤ Cε−
2
3 ‖f‖L2(0,`).

It then follows from the contraction mapping principle, and (11.2), that the problem[
L+ ε2β−2Aε

]
(e) = f

is uniquely solvable for e satisfying (5.18) if ‖f‖L2(0,`) ≤ Cε
4
3 +ρ for some ρ > 0.

The desired result for the full problem (11.1) then follows directly from Schauder’s
fixed point theorem. In fact, refining the fixed-point region, we can actually get

‖e‖b = O(ε
4
3 ) (11.3)

for the solution.
The corresponding estimates (1.17), (1.19) for the solution uε we constructed

for the stretched problem follow readily by combining (5.1), (5.11), the asymptotic
behavior of V, φ1 from Propositions 3.1, 3.2 respectively, Proposition 8.1, and (6.11).
By elliptic regularity [23], or the interpolation-type inequality of Lemma A.1 in [7],
it follows that

|∇σ|+ |∇φ(e)|+ |∇ψ(φ)| ≤ Cε 4
3 , (11.4)

and the corresponding estimate (1.20) follows by noting that |∇uin| ≤ Cε
2
3 in

Ωε ∩ {|x| ≤ δε−
2
3 } whereas |∇ũout| ≤ Cε

2
3 in the remaining domain, Lemma 4.2,

and (5.18). Finally, scaling back to the original variables yields (1.17), (1.19),
(1.20). The first assertion below (1.20) follows by the compactness of the imbed-
ding C1(Ω̄) ⊂ C0,α(Ω̄), 0 < α < 1 and (1.16); the second follows by noting that

the error term in (1.17) is of order ε
2
3 in the C1 sense (by Lemma 4.2, (11.4), and

(11.3)).�

Next we present the
PROOF OF PROPOSITION 1.1: For convenience, we will continue working in stretched

variables. Let

ψ(y) = Z(x)Θ(ε
2
3 z),

be a function defined in the tubular neighborhood of Γε described by

Uε = Ωε ∩ {|x| ≤ δε−
2
3 },

where Z was defined in (5.16), and Θ any smooth, `-periodic function. Making use
of (5.16), (5.21), a direct calculation shows that

∆ψ−ε− 2
3

(
2uε − a(ε

2
3 y)− b(ε 2

3 y)
)
ψ = (ε

4
3 Θθθ+λ0β

2Θ)Z+
(
ε

2
3 Θ + ε

4
3 Θθ + ε2Θθθ

)
F (x, z),

in Uε, with |F (x, z)| ≤ Ce−c|x|. Testing the above equality by ψ, recalling the
super–exponential decay of Z, the fact that ‖Z‖L2(R) = 1, and using the elementary
inequalities

2|Θ||Θθ| ≤
(
ε−

2
3 Θ2 + ε

2
3 Θ2

θ

)
, 2|Θ||Θθθ| ≤

(
ε−

4
3 Θ2 + ε

4
3 Θ2

θθ

)
,

we infer that ∫
Uε

[
−∆ψ + ε−

2
3

(
2uε − a(ε

2
3 y)− b(ε 2

3 y)
)
ψ
]
ψdy =
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ε−
2
3

∫ `

0

(ε
4
3 Θ2

θ − λ0β
2Θ2)dθ +O(1)

∫ `

0

(
Θ2 + ε

4
3 Θ2

θ + ε
8
3 Θ2

θθ

)
dθ.

(To be more accurate, the righthand side is multiplied by 1 +O(δ) arising mainly
from the Jacobian of the transformation y → (x, z)).

The above relation motivates us to consider the following geometric eigenvalue
problem:  −ε

4
3 Θθθ − λ0β

2(θ)Θ = ΛΘ in (0, `),

Θ(0) = Θ(`), Θθ(0) = Θθ(`).
(11.5)

It’s well known that the above problem has a sequence of different eigenvalues
Λ1 < Λ2 < · · · with corresponding eigenfunctions Θ1,Θ2, · · · . It is obvious that
Λ1 < 0 because of the positivity of λ0β

2 and Θ1 can be chosen positive. Moreover,
by adapting the proof of Lemma 2.4 in [48], all critical eigenvalues of (11.5) have
good estimates: If ε is small then we have, as i→∞,

Λi =
4π2

λ0
ˆ̀2

(i2ε
4
3 − λ∗) +O

(
ε

4
3

i2

)
, (11.6)

where λ∗, ˆ̀ as defined in (1.14), (7.21) respectively.
Recalling the definition of the cutoff function nδ from (4.2), let us define the

function ψi ∈ H1(Ωε) as

ψi(y) = Θi(ε
2
3 z)Z(x)nδ(ε

2
3x).

In view of the calculation above (11.5), and the super-exponential decay of Z,

given C > 0, if 1 ≤ i ≤ [Cε−
2
3 ], we have

ε
2
3

∫
Ωε

[
|∇ψi|2 − ε−

2
3

(
2uε − a(ε

2
3 y)− b(ε 2

3 y)
)
ψ2
i

]
dy =

4π2

λ0
ˆ̀2

(i2ε
4
3 −λ∗)+O

(
ε

2
3

)
,

provided ε is sufficiently small and (1.15) holds. Finally, noticing that∫
Ωε

ψiψj = O(e−
c
ε ), i 6= j,

we conclude that the Morse index of the solution uε is greater than
[√

λ∗
2 ε−

2
3

]
as

ε→ 0 and (1.15) holds. (This is in agreement with the asymptotic formula (1.9) in
the radial case).

The proof of the proposition is complete. �

12. Open problems

An interesting question is whether one can remove the resonance condition (1.15)
in Theorem 1.1. In problems of constructing solutions concentrating on curves for
the nonlinear Schrödinger equation, this has been achieved (in some cases) very
recently in [5], [19] by constructing approximate solutions from two dimensional
solutions of the corresponding blown up problem, which roughly was (1.12) with
constant positive potential. Let us point out that, in the current situation, solutions
W ∈ H1(R2) of the equation (1.12) are not radial and, to the best of our knowledge,
their non-degeneracy is not known. Here, by non-degeneracy, we mean that the
kernel in H1(R2) of the linearized operator −∆ + 2(V+ −W) is spanned by ∂W

∂z .
(Existence of such W can be established by the same arguments used for the solution
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w ∈ H1(R) in Proposition 3.1 and noting that (1.12) is translation invariant in the
direction z).

Naturally, an interesting open problem is to prove an analog of Theorem 1.1 for
problem (1.1) posed in any dimension N ≥ 2, where the zero set of a − b would
be an (N − 1)-dimensional submanifold M of Ω and ∇(a − b) 6= 0 on M. (One
could also formulate a theorem for the case where M is (N − m)–dimensional,
1 ≤ m ≤ N − 1). The same question has been the subject of a lot of recent
research in other semilinear elliptic problems involving resonance. If N is arbitrary,
instead of the infinite dimensional reduction of [17], which we use in the present
paper, the preferred approach seems to be that of [38] (see [35, 37, 42]). Let us
briefly discuss this point and what are the difficulties in employing the scheme of
[38] in the present situation. Our construction of the approximate solution can
easily be adapted to problem (1.1) posed in N dimensions. Based on the radially
symmetric case, we expect that the eigenvalues of the linearization of (1.1) around
this approximation should behave qualitatively as Λi described in (1.8) where τi now
are the eigenvalues of the Laplace-Beltrami operator of the manifold M. (Instead
of expanding in polar coordinates, one can use (naively) a Fourier decomposition
with respect to the eigenfunctions of the Laplace-Beltrami operator and the normal
Laplacian on the manifold M, see [35] for a related result). Assuming that this
expectation holds, by Weyl’s asymptotic formula, the eigenvalues that are closest
to zero should behave qualitatively like

Λi = −ε 2
3 + i

2
N−1 ε2. (12.1)

Notice that in this way the average distance between two consecutive Λi’s (when
they are close to zero) is of order εN−1 so, even if we have invertibility, the distance
of the spectrum to zero is (in the best cases) of order εN−1. Therefore, the inverse
operator is always large in norm. By this reason, to apply a nonlinear scheme to
perturb the approximate solution into a genuine solution of (1.1), we need first to
find very good approximate solutions, with a precision depending on N , and then
prove that the linearized operator is invertible for suitable values of ε. This is indeed
a rather delicate issue: for reasons of brevity we do not discuss it here but we refer
directly to [37]. Improving inductively the accuracy of the approximation by adding
lower order terms, determined from linear inhomogeneous problems of the form
(3.33)-(3.34), seems to be difficult and complicated because each inhomogeneous
term and boundary condition grows polynomially instead of decaying exponentially
to zero as was the case in [37] or [38], where arbitrarily high-order approximations
for other equations were constructed in this manner. Unlike the previous references,
the problem at hand has in common with [42] the fact that the linearization of the
profile normal to Γ is invertible (recall Proposition 3.1), and another possibility for
improving the approximate solution could be to adapt the iteration scheme of that
paper.

Problem (1.1) posed in N dimensions, as in the previous paragraph, has varia-
tional structure, and the stable solution satisfying (1.5) is a local minimizer of the
corresponding functional. So, it is easy to see that (1.1) has a mountain–pass solu-
tion. Motivated from [14], we conjecture that, for all small ε > 0, a mountain–pass

solution satisfies the first inequality of (1.5), and the second outside of an O(ε
2
3 )–

neighborhood of a point P on Γ where the function ∂b
∂ν −

∂a
∂ν attains its global

minimum value (recall (1.3)). The profile of a mountain–pass solution should be
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that of a stable solution with the addition of a small downward peak near P (the
point P depends on the family of solutions).

In view of hypothesis (1.3), the function a − b attains its maximum value at
a point Q in Ω1. Motivated from [48], we conjecture that one can add a sharp
downward spike near Q to the solution of Theorem 1.1 (at least in two dimensions)
or to the stable solution found in [9] and construct highly or not too unstable
solutions respectively with both corner layer and spike.

Based on the two conjectures we formulated above, and motivated from Remark
3.10 in [14], and [15], we further conjecture that, if N = 2, solutions of uniformly
bounded Morse index, for small ε > 0, are a superposition of a stable solution, as
described in (1.5), and a finite number of sharp downward spikes in Ω̄\Γ and small
downward peaks close to Γ.
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