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Abstract. We study the ground state which minimizes a Gross–Pitaevskii

energy with general non-radial trapping potential, under the unit mass con-
straint, in the Thomas–Fermi limit where a small parameter ε tends to 0. This

ground state plays an important role in the mathematical treatment of recent

experiments on the phenomenon of Bose–Einstein condensation, and in the
study of various types of solutions of nonhomogeneous defocusing nonlinear

Schrödinger equations. Many of these applications require delicate estimates

for the behavior of the ground state near the boundary of the condensate, as
ε → 0, in the vicinity of which the ground state has irregular behavior in the

form of a steep corner layer. In particular, the role of this layer is important
in order to detect the presence of vortices in the small density region of the

condensate, understand the superfluid flow around an obstacle, and also has a

leading order contribution in the energy. In contrast to previous approaches,
we utilize a perturbation argument to go beyond the classical Thomas–Fermi

approximation and accurately approximate the layer by the Hastings–McLeod

solution of the Painlevé–II equation. This settles an open problem (cf. [9,
pg. 13 or Open Problem 8.1]), answered very recently only for the special case

of the model harmonic potential [104]. In fact, we even improve upon previ-

ous results that relied heavily on the radial symmetry of the potential trap.
Moreover, we show that the ground state has the maximal regularity available,

namely it remains uniformly bounded in the 1
2
-Hölder norm, which is the exact

Hölder regularity of the singular limit profile, as ε → 0. Our study is highly

motivated by an interesting open problem posed recently by Aftalion, Jerrard,

and Royo-Letelier [10], and an open question of Gallo and Pelinovsky [103],
concerning the removal of the radial symmetry assumption from the potential

trap.
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1. Introduction

1.1. The problem. This paper is concerned with the analysis of the ε→ 0 limiting
behavior of the Gross-Pitaevskii energy

Gε(u) =
∫

R2

{
1
2
|∇u|2 +

1
4ε2

|u|4 +
1

2ε2
W (y)|u|2

}
dy, (1.1)

minimized in

H ≡
{
u ∈W 1,2(R2; C) :

∫
R2
W (y)|u|2dy <∞,

∫
R2
|u|2dy = 1

}
, (1.2)

where ε > 0 is a small parameter and, unless specified otherwise, the potential W
will satisfy:

W is nonnegative, W ∈ C1, (1.3)
and

there exist constants C > 1, p ≥ 2 such that
1
C
|y|p ≤W (y) ≤ C|y|p if |y| ≥ C,

(1.4)
(see also Remark 1.2 below). It is common to refer to the above problem as the
minimization of Gε under the unit mass constraint.

Let λ0 > infR2 W (y) be uniquely determined from the relation∫
R2

(λ0 −W (y))+ dy = 1, (1.5)

where throughout this paper we will denote f+ ≡ max{f, 0}. The choice of the
value one in the above relation is dictated by the constraint (1.2), see also (1.13)
below. We further assume that the region

D0 ≡ {y ∈ R2 : W (y) < λ0} (1.6)

is a simply connected bounded domain, containing the origin, with smooth boundary
∂D0, such that

∂W

∂n
> 0 on ∂D0, (1.7)

where n = n(y) denotes the outward unit normal vector to ∂D0. This last as-
sumption can be viewed as a non–degeneracy condition. We point out that these
hypotheses admit physically relevant examples, used to model certain experiments
(see the next subsection). We stress that the simply connectedness assumption is
assumed for convenience purposes only (see Remark 1.1 below), and so is the fact
that the setting is two-dimensional (see Remark 3.12 below).
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It follows from [186, Prop. 1] (see also [10], [125], [152]) that the functional Gε

has a unique real valued minimizer ηε > 0 in H (all complex valued minimizers are
of the form ηεe

iα, where α is a constant). The function ηε satisfies

−∆ηε +
1
ε2
ηε

(
W (y) + η2

ε

)
=

1
ε2
λεηε, ηε > 0 in R2, ηε → 0 as |y| → ∞, (1.8)

where 1
ε2λε is the Lagrange multiplier, which is also necessarily unique. The point

being that (1.4) ensures that minimizing sequences of Gε in H cannot have their
mass escaping at infinity (see also [178]); in fact the imbedding H ↪→ L2(R2,C) is
compact (see [125], [208], or more generally [27, Lemma 3.1]). (One can also ignore
the mass constraint, and instead minimize the functional Gε(u)− λ

2ε2 ‖u‖2L2(R), with
λ > minR2 W , in which case the minimizer would satisfy (1.8) with λε = λ).

The real issue is the study of the asymptotic behavior of the minimizer ηε (or more
generally of the critical points) of Gε as the parameter ε tends to zero. Following
Aftalion and Rivière [4], letting

A = λ0 −W, (1.9)

the functional Gε can be rewritten as

Gε(η) =
∫

R2

{
1
2
|∇η|2 +

1
4ε2

(η2 −A+)2 +
1

2ε2
A−η2

}
dy+

1
2ε2

(
λ0 −

1
2

∫
R2

(A+)2dy
)

(1.10)
if η ∈ H is real valued, where A+ ≡ max{A, 0} and A− ≡ −min{A, 0}. Let G1

ε(η)
denote the first integral above. Since ηε clearly minimizes G1

ε in H, by constructing
a suitable competitor based on

√
A+, it is easy to see that

G1
ε(ηε) ≤ C| ln ε|, (1.11)

for some constant C > 0, provided ε is small (see [8], [10], [130], and Remark 3.14
herein). (We remark that the logarithmic term appears because (1.6), (1.7) imply
that ∇

(√
A+
)

is not square–integrable near ∂D0). Hence, for small ε > 0, we have∫
R2

{
(η2

ε −A+)2 +A−η2
ε

}
dy ≤ Cε2| ln ε|, (1.12)

which suggests that η2
ε should be close, in some sense, to A+ as ε → 0. Indeed, it

can be shown that

ηε →
√
A+ uniformly in R2 as ε→ 0, (1.13)

see the references in Subsection 1.3 below. Therefore, loosely speaking, the min-
imizer ηε develops a steep corner layer along ∂D0, as ε → 0 (recall (1.6), (1.7)).
Note also that

√
A+ is the global minimizer of the “limit” functional

G0
ε(η) =

∫
R2

{
1

4ε2
η4 +

1
2ε2

W (y)η2

}
dy, (1.14)

among real functions such that ‖η‖L2(R2) = 1 and Wη2 ∈ L1(R2). In the context of
Bose-Einstein condensates, see the following subsection, the function

√
A+ is known

as the Thomas-Fermi approximation.
The estimates that are available in the literature for the convergence in (1.13),

see Subsection 1.3 below, fail to encapsulate important information which is often
required in interesting applications (see Section 1.2 below). As an illustrative ex-
ample, let us mention that a lower bound for ηε, sufficient to imply that the second
variation ∂2Gε(ηε) is coercive (this is easy to prove but hard to estimate), does not
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seem to be known (in Remark A.1 we will establish a spectral bound for ∂2Gε(ηε),
and as a matter of fact one may even calculate sharp constants). Our main goal in
this paper is to provide crucial details, missing from the known results that describe
the statement (1.13) quantitatively, placing special emphasis on how ηε converges
to the “singular limit”

√
A+ near ∂D0, as ε→ 0, and proving that it converges in a

self-similar fashion as conjectured in [9]. Although it is a variational problem, our
approach will be based more on partial differential equation and functional analysis
tools. Our treatment is concise and systematic, and can be used to treat in a unified
manner problems with similar features.

As will be apparent from one glance in the references of this paper and the
following discussion, the current interest in the minimizer ηε, and in problems that
have it on their background, is phenomenal.

1.2. Motivation for the current work. The motivation for the current work is
threefold:

1.2.1. Minimization of a Gross-Pitaevskii energy describing a Bose-Einstein con-
densate in a potential trap. Among the many experiments on Bose-Einstein con-
densates (which we abbreviate BEC), one consists in rotating the trap holding the
atoms in order to observe a superfluid behavior: the appearance of quantized vor-
tices (see the books [9], [176], [177] and the references that follow). This takes place
for sufficiently large rotational velocities. On the contrary, at low rotation, no vor-
tex is detected in the bulk of the condensate. In a BEC, all the atoms occupy the
lowest energy state so that they can be described by the same complex valued wave
function. The latter is at the same time the macroscopic quantum wave function
of the condensate and minimizes a Gross-Pitaevskii type energy. A vortex corre-
sponds to zeroes of the wave function with phase around it. In two dimensions, the
Gross-Pitaevskii energy considered in [5], [10], [125], [126] has the form:

Eε(v) =
∫

R2

{
1
2
|∇v|2 +

1
4ε2

|v|4 +
1

2ε2
W (y)|v|2 − Ωy⊥ · (iv,∇v)

}
dy, v ∈ H,

(1.15)
where Ω is the angular velocity, y = (y1,y2), y⊥ = (−y2,y1), ε > 0 is a small pa-
rameter that corresponds to the Thomas-Fermi approximation [93, 195], the trap-
ping potential W belongs in the class described in the previous subsection, and
(iv,∇v) = iv∇v∗− iv∗∇v. It is clear that ηε is the unique real valued minimizer of
Eε in H.

For mathematical studies in the case where the condensate has an annular shape,
we refer to [8] and [64], whilst for studies in a three-dimensional setting to [13], [25],
and [209]. For numerics we refer to the review article [30].

The density of the condensate is significant in D0 (keep in mind (1.13)), which is
typically a disc or an annulus, and gets exponentially small outside of this domain.
The case of harmonic trapping potential

W (y1,y2) = y2
1 + Λ2y2

2, (1.16)

for a fixed parameter 0 < Λ ≤ 1, has been considered in experiments in [158, 159]. In
recent experiments, in which a laser beam is superimposed upon the magnetic trap
holding the atoms, the trapping potential W is of a different type [181, 192, 204]:

W (r) = r2 + ae−br2
, r2 = y2

1 + y2
2, a, b > 0. (1.17)

(By choosing a, b accordingly, the domain D0 is either a disc or an annulus).
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The energy Eε bears a formal resemblance to the well-studied Ginzburg-Landau
functional

Jε(u) =
∫

R2

{
1
2
|∇u|2 +

1
4ε2

(
|u|2 − 1

)2 − Ωy⊥ · (iu,∇u)
}
dy,

used to model superconductivity [39] (with Ω = 0), and superfluidity [14], [188].
In their influential monograph [39], Bethuel, Brezis and Hélein have developed the
main tools for studying vortices in “Ginzburg-Landau type” problems. As we have
already pointed out, the singular behavior of

√
A+ near ∂D0 induces a cost of order

| ln ε| in the energy. This causes a mathematical difficulty in detecting vortices
by energy methods, since any vortex has precisely the same cost (see [39]). In
other words, the possible presence of vortices will be hidden by the energetic cost
of the corner layer. This difficulty is common in problems of Ginzburg-Landau
type when the zero Dirichlet boundary condition is imposed (see for instance [188]).
Fortunately, this difficulty can be surpassed in an elegant way by an idea that goes
back to the work of Lassoued and Mironescu [148], and André and Shafrir [23]. By
a remarkable identity, for any v, the energy Eε(v), for any Ω, splits into two parts,
the energy Gε(ηε) of the density profile and a reduced energy of the complex phase
w = v/ηε:

Eε(v) = Gε(ηε) + Fε(w), (1.18)

where

Fε(w) =
∫

R2

{
η2

ε

2
|∇w|2 +

η4
ε

4ε2
(
|w|2 − 1

)2 − η2
εΩy⊥ · (iw,∇w)

}
dy, (1.19)

(see also [125]). In particular, the potential W only appears in Gε. In (1.18),
the term Gε(ηε) carries the energy of the singular layer near ∂D0, and thus one
may detect vortices from the reduced energy Fε by applying the Ginzburg-Landau
techniques to the energy

F̃ε(w) =
∫

R2

{
η2

ε

2
|∇w|2 +

η4
ε

4ε2
(
|w|2 − 1

)2}
dy.

The difficulty will arise in the small density region of the condensate, namely R2\D0,
where ηε is small. This kind of splitting of the energy is by now standard in the
rigorous analysis of functionals such as Eε (see also [154]). It clearly brings out the
need for the study of the minimizer ηε ofGε, which is the subject of the current work.
In particular, as will also be apparent from the discussion in Subsection 1.3 below,
estimating ηε near ∂D0 is essential for adapting the powerful Gamma-convergence
techniques, developed for Jε (see [183] and the references therein), to the study of
Eε (concerning issues of vortices, vortex lines [14], etc). Obtaining these delicate
estimates, without imposing any symmetry assumptions on the trapping potential,
is the main contribution of the present paper.

1.2.2. Semi–classical states of the defocusing nonlinear Schrödinger equation. Ellip-
tic problems of the form (1.8) arise directly when seeking standing wave solutions

u(y, t) = e−iλt/εη(y), (1.20)

for the famous nonlinear Schrödinger equation (NLS):

iε
∂u

∂t
+ ε2∆u−W (y)u± |u|q−1u = 0, y ∈ RN , t > 0, u : RN → C, (1.21)
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where N ≥ 1 and q > 1 (in the plus sign case, the potential W may vary from that
described previously). (See also (6.4) below). For small ε > 0, these standing-wave
solutions are referred to as semi-classical states. The plus sign in (1.21) gives rise to
the focusing NLS (attractive nonlinearity), while the minus sign to the defocusing
NLS (repulsive nonlinearity) which is also known as the Gross–Pitaevskii equation
(GP). It is also quite common to use the name of the Gross-Pitaevskii equation
if (1.21) has a nonzero potential W , and the name of the nonlinear Schrödinger
equation if W ≡ 0. Keep in mind that potentials of quadratic growth, as |y| → ∞,
are the highest order potentials for local well-posedness of (1.21), see [169].

At low enough temperature, neglecting the thermal and quantum fluctuations, a
Bose condensate can be represented by a complex wave function u(y, t) that obeys
the dynamics of the NLS equation, see the excellent review article [56] and the
references that follow. In particular, solutions of (1.8) provide, via (1.20), standing
wave solutions for the GP equation with N = 2, q = 3. Let us mention that the
minimizer of Gε, considered in the entire space or in a bounded domain with zero
boundary conditions (as in Remark 3.13 below), also plays an important role in the
study of multi-component BECs (see [133], [155] and the references therein); in the
dynamics of vortices confined in D0 under the flow of the Gross-Pitaevskii equation
(see [138]); in the construction of traveling wave solutions with a stationary or
traveling vortex ring to the Gross-Pitaevskii equation (see [180], [202], [203]); in the
study of excited states of the GP equation (see [119], [174]), and in Bose-Einstein
condensates with weak localized impurities (see [100]).

In considering typical BEC experiments and in exploring the unprecedented con-
trol of the condensates through magnetic and optical “knobs”, a mean-field theory
is applied to reduce the quantum many–atom description to a scalar nonlinear
Schrödinger equation (see [152]). The NLS equation is a well established model in
optical and plasma physics as well as in fluid mechanics, where it emerges out of
entirely different physical considerations [1, 193]. In particular, for instance in op-
tics, it emerges due to the so-called Kerr effect, where the material refractive index
depends linearly on the intensity of incident light. The widespread use of the NLS
equation stems from the fact that it describes, to the lowest order, the nonlinear
dynamics of envelope waves.

Ground state solutions of the NLS are standing wave solutions, of the form (1.20),
such that η is positive, η ∈W 1,2(RN ), and satisfies

ε2∆η − (W (y)− λ) η ± |η|q−1η = 0 in RN , η → 0 as |y| → ∞. (1.22)

The condition u ∈W 1,2(RN ) is required to obtain solutions with physical interest.
(Sometimes we will refer to positive solutions η of (1.22) as ground states of (1.21)).
In the subcritical case where 1 < q < N+2

N−2 if N ≥ 3, q > 1 if N = 1, 2, ground states
of the defocusing equation (1.22)− correspond to global minimizers of G− (these are
nontrivial if ε > 0 is sufficiently small [125], see also [21, Example 5.11] and [82,
Lemma 2.1]), while ground states of the focusing equation (1.22)+ correspond to
mountain passes of G+, where

G±(η) =
∫

RN

{
ε2

2
|∇η|2 + (W (y)− λ)

η2

2
∓ |η|q+1

q + 1

}
dy, (1.23)

in W 1,2(RN ) with
∫

RN W (y)η2dy <∞ (see for instance [20], [178]).
In the focusing case, following the pioneering work of Floer and Weinstein [98],

there have been enormous investigations on spike layer solutions for problem (1.22)+,
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for small ε > 0, typically under the conditions λ < infRN W (y) < lim inf |y|→∞W (y),
and 1 < q < N+2

N−2 if N ≥ 3, q > 1 if N = 1, 2. The “critical” case, where
infRN W (y) = λ, has also received attention, see [47]. Actually, the latter case is
related to the discussion following Definition 1 below. We refer the interested reader
to [20], [78], and the references therein.

In the defocusing case (1.22)−, assuming that W satisfies the assumptions of
the previous subsection with λ in place of λ0, we see that the corresponding limit
algebraic equation, obtained by formally letting ε = 0 in (1.22)−, has the compactly
supported continuous solution

η0 =
[
(λ−W )+

] 1
q−1 . (1.24)

Obviously, there is also the solution −η0, and the trivial one. In fact, if q > 2 then
the “singular limit” η0 is merely Hölder continuous with exponent 1/(q − 1) (recall
(1.6), (1.7)). In particular, it is easy to see that if q ≥ 3 then ∇η0 is not square-
integrable near ∂D0. If q = 2 and η > 0, then (1.22)− becomes the well known
scalar logistic equation [55], and η0 is Lipschitz continuous. If 1 < q < 2, then η0 is
at least differentiable. In the language of bifurcation theory [128], the solution set
of the corresponding limit algebraic equation to (1.22)− undergoes a supercritical
pitchfork bifurcation at ∂D0 if q > 2; a transcritical bifurcation if q = 2; a subcritical
pitchfork bifurcation if 1 < q < 2. Notice also that η0 is asymptotically stable (as an
approximate equilibrium) with respect to the parabolic dynamics that correspond
to (1.22). The question whether η0 perturbs, for small ε, to a solution ηε of (1.22)−,
and keeping track of the maximal regularity available (to be defined in a moment),
is a source of current mathematical interest. Note that, if q ≥ 2, such a solution
would have a corner layer along ∂D0. The bifurcation that occurs at ∂D0 takes
the problem off from the classical setting, where the roots of the corresponding
algebraic equation (for fixed y) are non-intersecting (see [77]).

The following definition is adapted from [52]:

Definition 1. Let α ∈ (0, 1] be the largest number such that ‖η0‖C0,α(RN ) < ∞,
we say that a solution ηε has maximal Hölder regularity if ‖ηε‖C0,α(RN ) remains
uniformly bounded as ε→ 0.

If N = 1, problem (1.22)− can be rewritten as a homoclinic connection problem
for a 3-dimensional slow–fast system of ordinary differential equations [131]. At
the points that correspond to ∂D0 we have loss of normal hyperbolicity of the
corresponding slow manifold, due to a pitchfork or transcritical bifurcation. This
fact prohibits the use of standard geometric singular perturbation theory [92, 131]
in order to deduce the persistence of the “singular homoclinic orbit” η0, for small
ε > 0. At present, much work in geometric singular perturbation theory deals with
such situations, often using the “blowing-up” construction [145]. This approach
has been successfully applied recently in [190] in a heteroclinic connection problem
for a 4-dimensional slow-fast Hamiltonian system, sharing similar features with
(1.22)− with q = 3, arising from the study of crystalline grain boundaries (see also
[18, 97, 191]). Let us mention that there is an abundance of non-hyperbolic points
in applications, see for instance [145], that have been successfully treated using this
approach. In particular, singularly perturbed one-dimensional second-order elliptic
systems, involving loss of normal hyperbolicity, arise in the study of the Dafermos
regularization for singular shocks [66], [189]. Although elegant, the arguments of
this approach are intrinsically one-dimensional.
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Elliptic systems where the singular limit has merely Hölder or Lipschitz regular-
ity typically describe phase separation or spatial segregation, and have attracted a
lot of current mathematical research, see [52, 62, 199] and the references therein.
These type of problems have been tackled in the latter references either by weak
convergence arguments, yielding weak convergence in the Sobolev space W 1,2 and
strong in L2 (see also [69]), or the method of upper and lower solutions, yield-
ing uniform convergence (see also [46], [123], [127]), as ε → 0. The question of
maximal regularity of the convergence to the singular limit profile is then addressed
using a delicate analysis, based on monotonicity properties, blow-up techniques and
Liouville-type theorems (see also Remark 4.1 below). To the best of our knowledge,
for these systems, the maximal regularity property has only been proven in one–
dimensional cases, see [36]. In the case at hand, since ∇η0 is not square-integrable
near ∂D0 if q ≥ 3, it is not clear how to use standard weak convergence argu-
ments. Furthermore, it seems to be hard to construct a good pair of upper and
lower solutions (especially) near ∂D0. A motivation for the current work is to show
that the perturbation approach to such problems, we initiated in [134, 135], can be
adapted to treat problem (1.22)− with general potential. We emphasize that the
perturbation method seems to be the only one available at the moment that yields the
maximal regularity property in higher-dimensional singular perturbation problems.
(See the main theorem of [135], and Corollary 4.3 herein). Among other advantages
of the perturbation approach is that it provides finer estimates which, as we already
stated, imply the maximal regularity property, it be applied in the study of non-
minimizing solutions in systems of equations which in general lack the maximum
principle (see assumption (B4) in [45]), and in supercritical problems that cannot
be treated variationally (see for example Remark B.5). Most importantly, for the
problem at hand, it applies equally well without the assumption of radial symmetry
on the equation, see the discussion in the following subsection.

1.2.3. Applications to related problems. A strong motivation behind the current
work is the possibility of adapting our approach to treat other interesting problems
with similar features.

Variational problems of a similar type to (1.15), with spatially varying coeffi-
cients, have also been introduced to model vortex pinning due to material inho-
mogeneities in a superconductor (see the references in [12], [83, Sec. 6] and [183,
Subsec. 14.1.4, 14.3.5]). In [22], the authors considered the case where the corre-
sponding pinning potential W(y) is nonnegative but vanishes at a finite number of
points (see also [194]). Minimizers such that |vε| →

√
W in W 1,2, as ε → 0, were

analyzed by variational methods. In their result, it was important that
√
W is in

W 1,2, which is not the case here (also recall the previous discussion concerning weak
convergence methods). In that context, the minimizer has corner layer behavior at
points rather than curves. It would be of interest to study this type of problems
from the perturbation viewpoint of the present paper which, in particular, does not
require that the singular limit belongs in W 1,2.

A singularly perturbed elliptic equation of the form (1.50) below, considered in
a bounded domain with zero boundary conditions, where the corresponding limit
algebraic equation admits a fold bifurcation at the boundary of the domain, appears
in the proof of the Lazer–Mckenna conjecture for a superlinear elliptic problem of
Ambrosetti-Prodi type, see [71], [73]. In that case, the corresponding minimizer
(without the mass constraint) has a steep corner layer along the boundary of the
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domain, see also the old paper [197]. This situation is qualitatively similar to the
problem considered here. In [71], by adapting variational techniques from [70], the
behavior of the minimizer, as ε→ 0, was estimated in compact sets away from the
boundary of the domain. We believe that, employing the perturbation techniques of
the present paper, one can obtain fine estimates for the minimizer all the way up to
the boundary. In turn, these could potentially lead to the construction of new type
of solutions on top of the minimizer, for example solutions having small peaks near
the boundary, or bifurcating from symmetry (as in [134, 135]). Another reason for
developing perturbation arguments for these problems is that unstable solutions are
hard to find or describe accurately through purely variational methods, see Remark
B.5 for more details.

1.3. Known results. In this subsection we gather some known properties of the
real valued minimizer ηε of Gε in H, under the assumptions described in Subsection
1.1. These have been studied in various contexts (see for instance [8, 10, 64, 125,
163]). As we will see in this paper, some are actually far from optimal.

The corresponding Lagrange multiplier satisfies, for small ε > 0, the estimate:

|λε − λ0| ≤ C| ln ε| 12 ε. (1.25)

The real valued minimizer ηε satisfies the following estimates:

0 < ηε ≤
√
A+ + Cε

1
3 in R2, (1.26)

ηε(y) ≤ Cε
1
3 exp

{
−cε− 2

3 dist(y, ∂D0)
}

in R2\D0, (1.27)

where y 7→ dist(y, ∂D0) denotes the Euclidean distance in R2 from y to ∂D0,

|ηε −
√
A+| ≤ Cε

1
3
√
A+ if y ∈ D0 and dist(y, ∂D0) ≥ ε

1
3 , (1.28)

and
‖∇ηε‖L∞(R2) ≤ Cε−1, (1.29)

for some constants c, C > 0, if ε is sufficiently small. Relation (1.25) follows from
(1.11), see [10], [125]. Relations (1.26), (1.27) have been shown in [125] (see also
[163, Lemma B.1]) by constructing a suitable upper-solution of (1.8), and using
the uniqueness of positive solutions of the latter equation in bounded domains with
zero boundary conditions [43]. Relation (1.28) can be traced back to [8], and follows
from lower– and upper–solution arguments in equation (1.8) based on [23] (also keep
in mind Remark 3 in [8]). Note that, in particular, estimates (1.26)–(1.28) yield
(1.13). Lastly, estimate (1.29) on the gradient follows from the equation and a
Gagliardo-Nirenberg type inequality as in [38] (see Lemma 4.1 herein).

In the special case where the potential trap W is additionally assumed to be
radially symmetric, it follows from its uniqueness that the real valued minimizer
ηε > 0 of Gε in H is also radially symmetric. In particular, if D0 is a ball of radius
R, it has been shown recently in [10] that

η′ε(r) ≤ 0 in (R− δ0, R+ δ0), (1.30)

for some small constant δ0 > 0, if ε is small. The radial symmetry was used heavily
by the authors of [10] in order to establish (1.30), using a maximum principle due to
Berestycki, Nirenberg, and Varadhan [35] (see also the discussion following (3.29)
herein) together with an intersection–comparison type of argument, mostly taking
advantage of (1.7). The importance of the positivity of ηε and the radial symmetry
of W in deriving (1.30) can be naively seen from the following consideration. If
W ′(r) ≥ 0 for all r > 0, using that ηε > 0 and the method of moving planes [108],
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we can infer that η′ε(r) ≤ 0 for all r > 0 (see also Proposition 2.1 in [152] for an
approach via a radially-symmetric rearrangement argument which takes advantage
of the minimizing character of ηε). We point out that it is not clear how the
aforementioned arguments apply in the case where W is radially symmetric but the
set {W − λ0 < 0} is an annulus, considered in [8], [13]. Relation (1.30) was used in
an essential way in [10] for estimating uniformly the auxiliary function

fε(r) ≡ ξε(r)/η2
ε(r), where ξε(r) ≡

∫ ∞

r

sη2
ε(s)ds, (1.31)

near the circle |y| = R. The function fε plays a crucial role in the study of the
functional Eε, see [10] and Section 5 below. (Actually, estimate (1.30) was needed
in a region of the form (R− δ,R+ Cε

2
3 ) for some constants δ, C > 0). Making use

of the previously mentioned estimates on fε near the boundary of D0, and of some
new estimates away from D0, the authors of [10] proved that if the angular velocity
Ω is below a critical speed

Ωc = ω0| ln ε| − ω1 ln | ln ε|,

for some constants ω0, ω1 > 0, and ε is sufficiently small, then the rotation has
absolutely no effect on the minimizer. In other words, all minimizers vε of Eε in
H are of the form vε = ηεe

iα in R2, where α is a constant. In particular, at low
velocity, there are no vortices in the condensate. We remark that this last assertion
was previously known to hold true only in the bulk of the condensate, see [125]. It
was left as an interesting open problem in [10] to see to what extent their analysis
continues to hold if the assumption of radial symmetry on W is dropped (see also
Open Problem 8.1 in [9], and the open questions in the presentation [103]). Our
results on the minimizer ηε, which hold without any symmetry assumption on W ,
may represent a major step in the answering of this question.

Let us close this subsection by mentioning that the case where the potential is
homogeneous of some order s > 0, i.e., W (λy) = λsW (y) for all λ > 0, y ∈ R2 (see
(1.16) for an example with s = 2), and locally Hölder continuous has been studied
in the work of E. H. Lieb and his collaborators in [152], [153]. By employing scaling
and variational arguments, it was shown in the latter references that, as ε→ 0, the
minimizer ηε converges to

√
A+ in the strong L2(R2) sense. In the special case of

the model harmonic potential, described by (1.16) with Λ = 1, a complete analysis
has been carried in [104] (see the discussion following the statement of our main
theorem for more details). By generalizing the divergence-free WKB method, a
uniformly valid approximation for the condensate density of an ultra-cold Bose gas
confined in a harmonic trap, that extends into the classically forbidden region (near
and outside of ∂D0), has been established very recently in [182].

1.4. Statement of the main result. In order to state our main result, we need
some definitions:

Let
aε(y) = λε −W (y), y ∈ R2. (1.32)

By virtue of (1.6), (1.7), (1.25), and the implicit function theorem [19], the domain
D0 perturbs smoothly, for ε ≥ 0 small, to a simply connected domain Dε such that

aε > 0 in Dε, aε < 0 in R2\D̄ε,
∂aε

∂νε
< −c on ∂Dε, (1.33)
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for some constant c > 0, where νε = νε(y) denotes the outward unit normal to ∂Dε.
Let Γε be the simple, smooth closed curve defined by ∂Dε, and let `ε = |Γε| denote
its total length. Note that Γε is inside of an O(| ln ε| 12 ε)–tubular neighborhood
of ∂D0. We consider the natural parametrization γε = γε(θ) of Γε with positive
orientation, where θ denotes an arc length parameter measured from a chosen point
of Γε. Slightly abusing notation, we let νε(θ) denote the outward unit normal to
Γε (as in (1.33)). Points y that are δ0-close to Γε, for sufficiently small δ0 > 0
(independent of small ε), can be represented in the form

y = γε(θ) + tνε(θ), |t| < δ0, θ ∈ [0, `ε), (1.34)

where the map y 7→ (t, θ) is a local diffeomorphism (see [109, Sec. 14.6]). Note that
t < 0 in Dε. Abusing notation, frequently we will denote points y near Γε plainly
by their image (t, θ) under the above mapping. From (1.32), (1.33), we have

−(aε)t(0, θ) = Wt(0, θ) ≥ c, θ ∈ [0, `ε) , (1.35)

for some constant c > 0 and small ε. We define

βε(θ) = (−at(0, θ))
1
3 > 0, θ ∈ [0, `ε). (1.36)

It might be useful to point out that for the harmonic potential, described in (1.16),
one can derive explicitly that

[βε(θ)]
3 = 2

√
λεΛ

√
Λ−2 cos2

(
2π
`ε
θ

)
+ sin2

(
2π
`ε
θ

)
, θ ∈ [0, `ε).

We will also make use of the Hastings-McLeod solution [113] of the Painlevé–II
equation [99], namely the unique solution V of the boundary value problem:

vxx−v(v2+x) = 0, x ∈ R, v(x)−
√
−x→ 0, x→ −∞; v(x) → 0, x→∞. (1.37)

It is useful, in relation with (1.30), to point out here that Vx < 0, x ∈ R. The
importance of the Hastings-Mcleod solution is that it will “lead” the minimizer ηε

across ∂D0.
We can now state our main result:

Theorem 1.1. If ε > 0 is sufficiently small, the unique real valued minimizer of
Gε in H satisfies

ηε(y) = ε
1
3βε(θ)V

(
βε(θ)

t

ε
2
3

)
+O(ε+ |t| 32 ) (1.38)

uniformly in {−d ≤ t ≤ 0, θ ∈ [0, `ε)},

ηε(y) = ε
1
3 βε(θ)V

(
βε(θ)

t

ε
2
3

)
+O(εe−cε−

2
3 t) (1.39)

uniformly in {0 ≤ t ≤ d, θ ∈ [0, `ε)}, where c, d > 0 are some small constants.
Given D > 0, if ε > 0 is sufficiently small, we have

ηε(y)−
√
λε −W (y) = O

(
ε2|t|− 5

2

)
(1.40)

uniformly in
{
−d ≤ t ≤ −Dε 2

3 , θ ∈ [0, `ε)
}
,

ηε(y)−
√
λε −W (y) = O(ε2) (1.41)

uniformly in Dε\ {−d < t < 0, θ ∈ [0, `ε)}, and

0 < ηε(y) ≤ Cε
1
3 exp{−cε− 2

3 dist(y, ∂D0)} (1.42)
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in R2\Dε, for some constants c, C > 0 independent of ε, where O(·) denotes Lan-
dau’s symbol (see Section 2 for the precise definition).

The potential of the associated linearized operator

Lε(ϕ) ≡ ε2∆ϕ−
(
3η2

ε(y) +W (y)− λε

)
ϕ, (1.43)

satisfies

3η2
ε(y) +W (y)− λε ≥

 cε
2
3 + c|t|, if |t| ≤ δ,

c+ c|y|p, otherwise.
(1.44)

The Lagrange multiplier ε−2λε satisfies

λε − λ0 = O(| ln ε|ε2), (1.45)

while the energy of ηε satisfies

Gε(ηε) =
(
λ0

2
− 1

4

∫
R2

(A+)2dy
)
ε−2 +

1
12

(∫ `0

0

β3
0(θ)dθ

)
| ln ε|+O(1), (1.46)

as ε→ 0.

The main highlight of our result is that we rigorously prove that, close to ∂D0,
the minimizer ηε behaves like (1.38). We emphasize that the rigorous derivation of
the Pailevé-II equation from (1.8) was an unsettled open problem, see [9, pg. 13]
(see also the discussion below on the recent paper [104]). In turn, as was noted
in Section 8.1.3 of the book [9], this information is required as a stepping stone
towards the open problem mentioned in Subsection 1.3 (see also Open Problem 8.1
in [10]), in order to obtain a lower bound for ηε in R2\D0. In the current paper,
under the additional assumption that Wtt is strictly positive on ∂D0, we contribute
towards this direction by obtaining a sharp lower bound in the strip-like domain of
R2\D0 described by dist(y, ∂D0) � ε

2
5 (see Remark 4.5 below).

We believe that our result opens the road for the rigorous description of the
Painlevé region in recent experiments on three-dimensional Bose-Einstein conden-
sates where a laser beam, modeled by a cylinder along the z direction, is translated
in the x direction along the condensate (see [6, 7]), and to understand the superfluid
flow around an obstacle (see [9] and the references therein).

As we have already mentioned, our proof is based on perturbation arguments
rather than variational ones or the method of upper and lower solutions (as was
hoped for in [9, Sec. 8.3.1]). It relies mainly on the existence and asymptotic
stability of the Hastings-McLeod solution (in the usual sense) in order to construct
a solution uε of problem (1.8), “close” to

√
A+, for small ε > 0 (with the Lagrange

multiplier λε treated as a known coefficient). Then, using the fact that the latter
problem has a unique solution which follows from ideas of Brezis and Oswald [43]
(see Remark 3.12 below), namely ηε, we infer that uε ≡ ηε. Actually, with the
obvious modifications, an analogous result holds true for the minimizer of Gε in
arbitrary dimensions. Furthermore, our method of proof can be adapted to treat
the case where Gε(u)− λ

2 ‖u‖
2
L2(R2) is minimized in W 1,2

0 (D), where D is a bounded
annular domain such that W = λ on the outer or inner part of its boundary, as in
[8], [13], see Remark 3.13 below. For further generalizations we refer to Remarks
1.1, 1.2 below.

It follows from the above estimates that the convergence of ηε to
√
A+ is the

most regular possible (see Corollary 4.3 below). If we assume that Wtt ≥ c > 0 on
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Γ, then we will show in Proposition 4.1 that bound (1.39) can be replaced by

ηε(y) = ε
1
3 βε(θ)V

(
βε(θ)

t

ε
2
3

)[
1 +O(ε

2
3 )
(
t

ε
2
3

) 5
2
]
.

Estimate (1.45) improves (1.25), and was previously established in [125] in the
special case of the model harmonic potential (1.16) by exploiting a scaling property
of the corresponding equation (1.8), see Remark 3.15 below, which is not available
under our general assumptions. The above theorem has some other interesting
consequences, which will be explored in Sections 4, 5: We can prove an analogous
monotonicity property to (1.30) for ηε near ∂D0 without the simplifying assumption
of radial symmetry on the potential W . We will see that estimates (1.28) and (1.29)
are actually far from optimal. In addition, restricting ourselves to the radially
symmetric case with D0 a ball, we can improve and sharpen the new estimates of
[10] for the important auxiliary function fε, as described in (1.31). In fact, we believe
that the estimates of Theorem 1.1 can be utilized in estimating the function fε in
the non-radial case, through equation (5.1) below, which may ultimately lead to
the resolution of the open problem raised in [10] (recall the discussion in Subsection
1.3).

To further illustrate the importance of our result, we emphasize that its method
of proof can be adapted to produce similar results for semiclassical standing wave
solutions of the defocusing NLS (1.21)−, with N ≥ 1 and q > 2, assuming that W
has the features described Subsection 1.1 with λ in place of λ0 and D0 a domain
with (N − 1)–dimensional boundary (see also Remark B.1 below). (Recall that the
minimizer ηε solves (1.8), and the discussion in the second part of Subsection 1.2).
We also emphasize that, when dealing directly with (1.22)−, our approach does not
make any use of the techniques of Brezis and Oswald [43], which were needed in
previous approaches for establishing (1.26). In fact, our approach may produce sign
changing solutions of (1.22)−, satisfying estimates analogous to those of Theorem
1.1 (see Remark 1.1 and Section 6 below).

A rigorous connection between semiclassical ground states of the defocusing non-
linear Schrödinger equation (1.21)−, in one space dimension, and solutions of the
Painlevé-II equation (1.37) has been established recently in [190, 191], for a related
Hamiltonian system. We refer to the physical works [26], [143], [156], [176] for for-
mal expansions in one space dimension or radially symmetric cases, and to [205]
for higher dimensions (see also [162]). In the case of the model harmonic potential
W (y) = |y|2, y ∈ RN , N ≥ 1, λ = 1, and q = 3, the problem of uniform asymp-
totic approximations of the ground state of the defocusing NLS (1.21)−, using the
Hastings-McLeod solution of the Painlevé-II equation, has been established on a
rigorous level very recently in [104]. However, the approach of [104] relies crucially
on the specific form of the model harmonic potential, which allows for a suitable
global change of independent variables in equation (1.22)− (see Remark 3.17 be-
low). The real delicacy of our result is not that it successfully connects ηε with V ,
but that we do so in a way that yields fine estimates, as can already be seen from
(1.46), and the proof of (1.45) (see also the detailed estimates of [104] in the case
of the model harmonic potential). The optimality of estimates (1.38), (1.40) is also
suggested by Remark 3.10 below.

The analog of relation (1.44) may be used to study the spectrum of the lineariza-
tion of the Gross–Pitaevskii equation (1.21)− at the corresponding standing wave



THE GROUND STATE OF A GROSS–PITAEVSKII ENERGY 14

solution (1.20), which is defined by the eigenvalue problem, in L2(RN )× L2(RN ), −ε2∆φ+ (W − λ+ q|ηε|q−1)φ = −µψ

−ε2∆ψ + (W − λ+ |ηε|q−1)ψ = µφ.
(1.47)

The above eigenvalue problem determines the spectral stability of the standing
wave, with respect to the time evolution of the GP equation, and gives preliminary
information for nonlinear analysis of orbital stability or more generally about the
flow of (1.21)− in a neighborhood of the standing wave (see [28], [106], [110], [164]).
More complex phenomena, such as those of pinned vortices (dark solitons) on top
of the ground state [56], [173], and the construction of traveling wave solutions
with a stationary or traveling vortex ring to the GP equation [202], [203], can
also be understood from the analysis of (1.47). In particular, relation (1.44) plays
an important role in the construction of excited states for (1.22)− (see [174] and
Section 6 herein). It seems that it was previously known only in the special case
of the model harmonic potential (see [104]). In fact, even under the assumption of
general radial symmetry, it does not follow from the recent estimates of [10].

Observe that the equation in (1.22)−, with q = 3, is equivalent, for ε > 0, to

∆u+ (λ−W (εy))u− u3, y ∈ RN , (1.48)

which when setting ε = 0, and re-scaling appropriately (we assume that λ > W (0)),
becomes the well known Allen-Cahn equation

∆v − v(v2 − 1) = 0, y ∈ RN . (1.49)

The above problem has received an enormous attention, see for instance [81] and
the references therein. It seems plausible that our result can be combined with
existing ones for the Allen-Cahn equation, and produce new interesting solutions
for the Gross-Pitaevskii equation (1.22)−. We will elaborate more on this in Section
6 below.

Remark 1.1. Analogous assertions to those of Theorem 1.1 hold true if D0 is
assumed to be the union of finitely many bounded smooth domains. In the latter
case, one may construct sign changing solutions of (1.22)−, whose absolute value
converges uniformly to

√
A+, as ε→ 0. The assumption that D0 is simply connected

plays an important role only in Section 5 below. The degenerate case where some
connected components of D0 “touch” is left as an open problem is Section 6.

Remark 1.2. With only minor modifications in the proof, all the assertions of
Theorem 1.1 remain true if (1.4) is replaced by 1

C ≤ W (y)− λ0 ≤ C|y|p, |y| ≥ C,
for some p > 0 (the second branch in (1.44) would have to be replaced by a constant).
The fact that p ≥ 2 in (1.4) plays an important role only in Proposition 5.1 below.

Remark 1.3. Let us keep in mind that |t| = dist(y, ∂D0) + O(| ln ε| 12 ε), wherever
defined, and a-posteriori |t| = dist(y, ∂D0) + O(| ln ε|ε2), as ε → 0 (recall (1.25),
(1.45)).

Remark 1.4. An analogous result continuous to hold for the singularly perturbed
elliptic equation

ε2∆u = F (u,y), (1.50)
considered in the entire space RN or in a bounded domain, where F is such that the
zero set of F (u,y) = 0 undergoes a supercritical pitchfork bifurcation as the variable
y crosses some surface (such conditions on F can be found in [190]). In order to
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bring out clearly the underline ideas we refrain from any such generalization. In
(1.39) the convergence is exponential because, in the case at hand, zero is a solution
of F = 0. However, there are no delay phenomena present, as y crosses ∂D0, in
contrast to the first order equation εu̇ = F (u, t), as t crosses the point corresponding
to ∂D0 (see [33]).

1.5. Outline of the proof and structure of the paper. The proof of Theo-
rem 1.1 consists in showing that there exists a genuine solution of (1.8) “near” a
suitably constructed smooth approximate solution, which in turn is “near”

√
A+,

provided the parameter ε is small enough. We emphasize that we will consider
the Lagrange multiplier ε−2λε, corresponding to the minimization of Gε in H, as a
known coefficient in (1.8) which, as we have already remarked, is known to satisfy
(1.25). Then, by uniqueness (see also Remark 3.12 below), we will conclude that
the obtained solution is actually the minimizer ηε. Actually, we will prefer to work
with the equivalent (for ε > 0) problem in stretched variables y = ε−

2
3 y, see (3.1)

below. The main steps of the proof are the following:

(i) Firstly, we construct a “good” smooth approximate solution for the (stretched)
problem which we call uap. The function uap is carefully built, along the
lines set in [135], throughout Subsections 3.1-3.3 in the following steps:
Starting from the Hastings-McLeod solution V , described above, we con-
struct an inner approximation uin that is valid only in a tubular neighbor-
hood of the (stretched) curve ε−

2
3 Γε. Then, we obtain the desired (global)

approximate solution uap by patching uin with a subtle modification of the

outer approximation
√
aε(ε

2
3 y)+. We emphasize that the use of this latter

modification seems to be a key point in the whole construction. In fact,
the matching of the inner approximation with the outer one is the major
difficulty in the current problem, mainly due to the algebraic decay of V to√
−x as x → −∞ (see (3.18) below). For more details on this point, see

the discussion in Subsection 3.2 and Remark 3.8 below. This difficulty was
not present in [104], where the case of the model harmonic potential was
considered, since in that case the special form of the equation allowed for
the inner solution to be used globally, and thus no matching was necessary.

(ii) Next, in Subsection 3.4, we study the linearized operator

Lε ≡ ∆− ε−
2
3

(
3u2

ap − a(ε
2
3 y)
)
,

about the approximate solution uap, and invert it in carefully chosen weighted
spaces. We exploit a recent observation, due to Gallo and Pelinovsky [104,
Lemma 2.2], which says that the potential 3V 2 + x of the linearization of
(1.37) about the Hastings-McLeod solution is bounded below by some pos-
itive constant. In turn, we will show that this latter property implies that
the same assertion holds true for the potential of −Lε, if ε > 0 is small.
In particular, for small ε, the operator Lε is invertible. We point out that
the previously mentioned lemma of [104] is of technical nature and can be
bypassed at the expense of a more involved, but rather standard, analysis
(see Remark 3.7 and Appendix A below). Our choice of weighted spaces,
a variant of those considered in [171], is mainly motivated from the error
term (3.38) below.
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(iii) Finally, in Subsection 3.5, we look for a genuine solution of the stretched
problem (3.1) in the form

uε = uap + ϕ,

where ϕ is a correction. At this stage, we show that we can rephrase the
problem as a fixed point problem for ϕ, which can easily be solved, if ε > 0
is sufficiently small, using the fixed point theorem for contraction mappings.
Then, in Subsection 3.6, taking advantage of the recent uniqueness result
of [125] for problem (3.1) (see also Remark 3.12 below), we infer that the
unique real valued minimizer of Gε in H satisfies ηε(y) = uε(ε−

2
3 y), y ∈ R2.

From this property, and the estimates derived from the construction of uε,
we can deduce the validity of Theorem 1.1. In particular, the proof of
estimate (1.45) builds on (1.25), and uses the fact that ‖ηε‖L2(R2) = 1.

The outline of the paper is the following: In Section 2 we will introduce notation
and standard concepts that we will use throughout the paper. In Section 3 we will
present the proof of our main result, as outlined above. In Section 4, as a byproduct
of our construction, we will establish an analogous monotonicity property to (1.30)
for the general case (with improvements), show that ηε has the maximal Hölder
regularity available, improve bound (1.29), and generalize and considerably improve
estimate (1.28). In Section 5, assuming that the potential W is radially symmetric
with D0 a ball, we will mainly rely on the results of Section 4 to refine and improve
the recent estimates of [10] for the important auxiliary function fε in (1.31). In
Section 6 we will present some interesting open problems that are related to the
current study. We will close the paper with two appendixes. In Appendix A we
will reprove our main result concerning the linearized operator Lε based on the
asymptotic stability of the Hastings-McLeod solution (in the usual sense), rather
than making use of the recent lemma of [104] which may not hold in other problems.
Lastly, in Appendix B we will provide a new more flexible and simple proof of the
existence, and related properties, of the Hastings-McLeod solution through the
study of problem (3.107) below. The results of the latter study seem to be new and
to have interesting applications (see Remark 3.13 below).

2. Notation

In the sequel, we will often suppress the obvious dependence on ε of various
functions and quantities. Furthermore by c/C we will denote small/large generic
constants, independent of ε, whose value will change from line to line. The value of
ε will constantly decrease so that all previous relations hold. The Landau symbol
O(1), ε → 0, will denote quantities that remain uniformly bounded as ε → 0,
whereas o(1) will denote quantities that approach zero as ε → 0. By Ck,α or
equivalently Ck+α, W k,p, k, p ∈ Z ∪ {∞}, α ∈ [0, 1), we will denote the usual
Hölder, and Sobolev spaces respectively (see for instance [109]). Frequently, we will
denote the minus case of (1.22) below plainly by (1.22)−, e.t.c.

We will identify the tubular neighborhood Bδ(Γε) = {y ∈ R2 : dist(y,Γε) < δ},
where δ < δ0 (recall (1.34)), with Ωδ(Γε) = {|t| < δ, θ ∈ [0, `ε)}, denoted simply by
{|t| < δ}, and y in Bδ(Γε) by the corresponding pair (t, θ) ∈ Ωδ(Γε) as determined
via (1.34).

3. Proof of the main result
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3.1. Setup near the Curve. In this subsection, suitably blowing up (1.8) around
the curve Γε, we will construct an inner approximation which is valid only near the
curve, for small ε > 0, whose profile normal to the curve will be that of a (scaled)
Hastings-McLeod solution (see also [205]). To this end, we will follow the general
lines set in [78] which dealt with the focusing case (1.22)+.

Formally neglecting the term ε2∆u in (1.8), we get the outer approximation√
aε(y)+. However, the Laplacian of the latter is not even bounded on the boundary

of Dε. Hence, the outer approximation fails in the vicinity of ∂D0. An inner
approximation is thus needed, playing the role of a “bridge” as y crosses that
boundary.

In the coordinates (t, θ), near Γε, the metric can be parameterized as

gt,θ = dt2 + (1 + kt)2dθ2,

and the Laplacian operator becomes

∆t,θ =
∂2

∂t2
+

1
(1 + kt)2

∂2

∂θ2
+

k

1 + kt

∂

∂t
− k′t

(1 + kt)3
∂

∂θ
,

where kε(θ) is the curvature of Γε (see for instance [17], [95]). Note that kε and its
derivatives depend smoothly on ε ≥ 0.

Remark 3.1. (t, γε(θ)) are known in the literature as Fermi coordinates, see for
instance [140], and are frequently employed in the study of perturbation problems
involving solutions concentrating on manifolds (see for example [78]). Interestingly
enough, they owe their name to the physicist E. Fermi in the title of the current
paper!

In stretched variables

y = ε−
2
3 y,

problem (1.8) becomes

∆u− ε−
2
3u
(
u2 − aε(ε

2
3 y)
)

= 0, u > 0 in R2, lim
|y|→∞

u(y) = 0, (3.1)

where aε was defined in (1.32).
In the sequel we will denote

D̃ε = ε−
2
3Dε and Γ̃ε = ε−

2
3 Γε. (3.2)

Let

(s, z) = ε−
2
3 (t, θ) (3.3)

be natural stretched coordinates associated to the curve Γ̃ε, now defined for

s ∈
(
−δ0ε−

2
3 , δ0ε

− 2
3

)
, z ∈

[
0, ε−

2
3 `ε

)
. (3.4)

In the coordinates (s, z), near Γ̃ε, the metric can be written as

gs,z = ds2 + (1 + ε
2
3 ks)2dz2, (3.5)

and the Laplacian for u expressed in these coordinates becomes

∆u = uzz + uss +B1(u), (3.6)
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where

B1(u) = −

1− 1(
1 + ε

2
3 k(ε

2
3 z)s

)2

uzz+
ε

2
3 k(ε

2
3 z)

1 + ε
2
3 k(ε

2
3 z)s

us−
ε

4
3 sk′(ε

2
3 z)(

1 + ε
2
3 k(ε

2
3 z)s

)3uz.

(3.7)
Hence, equation (3.1) takes the form

R(u) ≡ uzz + uss +B1(u)− ε−
2
3u
(
u2 − a(ε

2
3 s, ε

2
3 z)
)

= 0, (3.8)

in the region (3.4). Observe that all terms in the operator B1 have ε
2
3 as a common

factor, more precisely we can write

B1(u) = ε
2
3 a0(ε

2
3 s, ε

2
3 z)us + ε

4
3 sa1(ε

2
3 s, ε

2
3 z)uz + ε

2
3 sa2(ε

2
3 s, ε

2
3 z)uzz, (3.9)

for certain smooth functions aj(t, θ), j = 0, 1, 2.
We now consider a further change of variables in equation (3.8) with the property

that it (roughly) replaces at main order the function a by one that has constant
gradient along Γ̃ε. Let β be as in (1.36), then we define v(x, z) by the relation u(s, z) = ε

1
3β(ε

2
3 z)v(x, z),

x = β(ε
2
3 z)s.

(3.10)

Choosing a smaller δ0, if necessary, we may assume that the coordinates (x, z) are
also defined for |x| ≤ δ0ε

− 2
3 , z ∈ [0, ε−

2
3 `ε). We want to express equation (3.8) in

terms of these new coordinates. We compute:

us = ε
1
3 β2vx,

uss = ε
1
3 β3vxx,

uz = εβ′v + ε
1
3βvz + εβ′xvx,

uzz = ε
5
3 β′′v + 2ε

5
3 (β′)2β−1xvx + 2εβ′vz + 2εβ′xvxz + ε

1
3 βvzz

+ε
5
3β′′xvx + ε

5
3 (β′)2β−1x2vxx.

(3.11)

In order to write down the equation, it is also convenient to expand

a(ε
2
3 s, ε

2
3 z) = at(0, ε

2
3 z)ε

2
3 s+ a3(ε

2
3 s, ε

2
3 z)ε

4
3 s2

(1.36)
= −β2ε

2
3x+ a3(ε

2
3 s, ε

2
3 z)ε

4
3 s2,

(3.12)
for some bounded function a3(t, θ). It turns out that u solves (3.8) if and only if v,
defined by (3.10), solves

S(v) ≡ ε−
1
3 β−3R(u) = vxx − v(v2 + x) +B2(v) = 0, (3.13)

where B2(v) is a differential operator defined by

B2(v) = ε
2
3 ã3x

2v + ε−
1
3β−3uzz + ε−

1
3 β−3B1(u), (3.14)

where the bounded function ã3(t, θ) is evaluated at (ε
2
3β−1x, ε

2
3 z), and B1 is the

differential operator in (3.7) where derivatives are expressed in terms of formulas
(3.11) and s replaced by β−1x. (Note that B2(v) = β−2vzz + B̃2(v), where all the
terms in the operator B̃2 carry ε

2
3 in front of them).
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Our first criterion for choosing an approximate solution v of (3.13) is that S(v)
is small. In view of (3.13), (3.14), it is natural to choose a v that depends only on
x, and solves the second–order non–autonomous ordinary differential equation:

vxx − v(v2 + x) = 0, x ∈ R, (3.15)

which is known as the Painlevé-II equation, a particular case of the second Painlevé
transcendent [99]. Then, keeping in mind that the inner profile ε

1
3 βv(βs) of (3.1)

should match [198, Chpt. 5] with the outer profile
√
a(ε

2
3 y)+, as s → ±∞, it is

easy to see that the appropriate asymptotic behavior of v should be

v(x)−
√
−x→ 0, x→ −∞; v(x) → 0, x→∞. (3.16)

(Observe that the s variable is defined in (−δ0ε−
2
3 , δ0ε

− 2
3 ), but the natural domain

for this variable is the infinite line). More precisely, recalling (3.12), we get that√
aε(ε

2
3 y)+ = ε

1
3 β
√
−βs+O(ε|s| 32 )

if −δ0ε−
2
3 ≤ s ≤ 0, as ε → 0, while on the other side it holds that aε(ε

2
3 y) = 0 if

0 ≤ s ≤ δ0ε
− 2

3 .
The following proposition holds:

Proposition 3.1. Problem (3.15)–(3.16) has a unique solution V , called Hastings-
McLeod solution. Furthermore, we have

Vx < 0 in R. (3.17)

The following estimates hold:

−C|x|− 5
2 < V (x)−

√
−x < 0, x→ −∞; 0 < V (x) < Cx−

1
4 e−

2
3 x

3
2 , x ≥ 1, (3.18)

for some constant C > 0, and
Vx = − 1

2 (−x)− 1
2 +O(|x|− 7

2 ), Vxx = − 1
4 (−x)− 3

2 +O(|x|− 9
2 ), x→ −∞,

VxV = − 1
2 +O(|x|−3), V 2 + x = O(|x|−2), x→ −∞,

|Vx|+ |Vxx| ≤ Ce−cx
3
2 , x > 0.

(3.19)
The potential of the associated linearized operator

M(ϕ) ≡ ϕxx −
(
3V 2(x) + x

)
ϕ (3.20)

satisfies
3V 2(x) + x ≥ c > 0, x ∈ R. (3.21)

Proof. We will provide a sketch of proof, underlining the main ideas, and refer the
interested reader to the original works.

Existence and uniqueness of a solution V of (3.15)–(3.16) have been shown by
Hastings and McLeod [113], [116] using a “shooting” technique (they also mention
an unpublished proof of Conley). Recently, a new proof of existence has been given
in [18] by the method of upper and lower solutions. Motivated from some problems
that we mentioned in Section 1.2 (see also Remark 3.13 below), we will provide
in Appendix B a new different proof of existence and uniqueness which seems to
be simpler and more flexible. Another different and rather short proof has been
given very recently in [202, Lemma 2.4]. Relation (3.17) has also been shown in the
aforementioned references, and in Appendix B herein. We note that, by looking at
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the equation for Z ≡ (−x)− 1
2V , one can show that V has a unique inflection point

(see [113]); notice also that V −
√
−x is convex whenever nonnegative.

The asymptotic behavior of V , as x → ±∞, is described in great detail in
Theorem 11.7 of [99] (see also [129]). In particular, it follows that relations (3.18)–
(3.19) hold true. Let us provide some intuition behind these, at first sight, complex
formulae. The first relation of (3.18) can be formally derived as follows: Assume
that V −

√
−x ∼ α(−x)−β as x → −∞, for some α ∈ R, β > 0; plugging this

ansatz in (3.15), keeping in mind that V +
√
−x ∼ 2

√
−x and (the expectation)

that Vxx ∼ − 1
4 (−x)− 3

2 as x → −∞, we readily find that α = − 1
8 , β = 5

2 (see also
[176, pg. 160]). A rigorous derivation can be given by simply writing down the
equation for the function V −

√
−x (or better yet for V −

√
−x + 1

8 (−x)− 5
2 ), and

then applying in the resulting identity the following simple lemma, which can be
proven by a standard barrier argument:

Lemma (cf. [104, Lemma 2.1] or [134, Lemma 3.10]) Suppose that φ ∈ C2, q ∈ C
satisfy

−φ′′ + q(x)φ = O(|x|−α),

φ→ 0, and q(x) ≥ c|x|, as x→ −∞, for some constants α, c > 0. Then we have

φ = O(|x|−α−1) as x→ −∞.

In passing, we note that the above lemma can also be proven by rewriting the
equation in terms of the new independent variable ξ = −(−x) 3

2 and then applying
a lemma of Hérve and Hérve [120, pg. 435], see also [117, Prop. 3.1]. On the other
side, because of the second condition in (3.16), the nonlinear term in (3.15) can be
(formally) neglected for x→∞, yielding Airy’s equation [32, pg. 100], namely

y′′ = xy, (3.22)

predicting that
V (x) ∼ γAi(x) as x→∞, (3.23)

for some constant γ > 0, where Ai(·) denotes the standard Airy’s function (see also
(3.24) below). For future reference, we recall from [32] that the two independent
solutions of Airy’s equation can be taken to have the asymptotic behavior

Ai(x) ∼ 1
2
π−

1
2x−1/4e−2x3/2/3 and Bi(x) ∼ π

1
2x−1/4e2x3/2/3, x→∞, (3.24)

see also the discussion leading to formulae (B.19) below. Relation (3.23), which
clearly implies the validity of the second estimate in (3.18), can be established
rigorously directly from the variation of constants formula

V (x) = γAi(x) + 2
∫ ∞

x

{Ai(x)Bi(t)− Bi(x)Ai(t)}V 3(t)dt, (3.25)

see also [16, Lemma B.1]. It is worthwhile to note that the exact value of γ was
determined to be

γ = 1 (3.26)

in [113], using an integral equation derived by inverse scattering techniques of
Ablowitz and Segur. An implication of this beautiful formula, for the physics of
Bose–Einstein condensation, has been pointed out in [161]. The estimates in (3.19)
can be established in a similar manner. For example, the asymptotic behavior of Vx

as x → −∞ follows by writing down the equation for the function Vx + 1
2 (−x)− 1

2

and then applying the above lemma.
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Finally, the lower bound (3.21) has been proven recently in [104, Lemma 2.2];
despite of its simple appearance, its proof takes almost three pages! Actually,
we were surprised to find that such an apparently simple relation proves to be so
recalcitrant. We emphasize that, for the purposes of the current paper, it can be
bypassed (something that we did not do) at the expense of some extra work (see
Remark 3.7 below). On the other side, it is quite painless to show that the operator
M still satisfies the maximum principle without knowledge of the latter lemma. In
other words:

“whenever w ∈ C2(R), M(w) ≤ 0, and lim inf
|x|→∞

w(x) ≥ 0, then necessarily w ≥ 0”.

(3.27)
For this, recall that the typical way towards establishing the maximum principle for
an elliptic operator L in an open set Ω is to first show that

“there exists a positive upper–solution φ of L(φ) = 0 in Ω”, (3.28)

see [51] for more details. If this holds, then adding one of various additional as-
sumptions on φ (the simplest one being φ ≥ c with c a positive constant), it does
guarantee the maximum principle to hold, see [35]. Indeed, in bounded domains,
(3.28) is a necessary and almost sufficient condition for the maximum principle to
hold, see Corollary 2.1 of [35]. However, in unbounded domains one has to be more
careful to deal with infinity. Having this in mind, firstly note that

M(−Vx) = −V < 0; M(V ) = −2V 3 < 0, (3.29)

and recall that −Vx > 0, V > 0 in R. So, condition (3.28), with L = −M, is
satisfied by either one of −Vx or V . Nevertheless, observe that one faces a difficulty
when proceeding as in [35], namely applying the standard maximum principle in the
equation satisfied by w

−Vx
or w

V (where w is as in (3.27)). This is because −Vx and V
vanish as x → ±∞ and x → ∞ respectively, making the signs of lim infx→±∞

w
−Vx

and lim infx→∞
w
V unclear (in the case where one of lim infx→±∞ w equals zero).

(This subtle point seems to have been overlooked in [202]). Instead, we consider
the function

ϕε =
w − εVx

V
, ε > 0,

noting that, thanks to (3.22)–(3.24) (see also (4.25) below), we have limx→−∞ ϕε ≥ 0
and limx→∞ ϕε = ∞. Using (3.27), (3.29), and applying the standard maximum
principle in the equation satisfied by ϕε, we obtain that ϕε > 0 in R, for every
ε > 0. Then, letting ε → 0 we infer that w ≥ 0 in R which is the desired assertion
in (3.27).

The sketch of the proof of the proposition is complete. �

We can now define the inner solution of problem (3.1), in the neighborhood of
Γ̃ε described by {|x| ≤ δ0ε

− 2
3 , z ∈ [0, ε−

2
3 `ε)}, as

uin(y) = ε
1
3 β(ε

2
3 z)V (x), (3.30)

(recall (3.10)).
Let L > 0 be a large constant to be determined independently of small ε > 0.

We consider the neighborhood of Γ̃ε described by

Uε = {−2L ≤ x ≤ δ0ε
− 2

3 , z ∈ [0, ε−
2
3 `ε)}. (3.31)

The following proposition contains the main estimate regarding uin.
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Proposition 3.2. If ε is sufficiently small, the inner approximation uin, defined
in (3.30), satisfies

‖∆uin − ε−
2
3uin

(
u2

in − a(ε
2
3 y)
)
‖L∞(Uε) ≤ Cε. (3.32)

Proof. From the calculation leading to (3.13), and (3.14), we find that∣∣∣∆uin − ε−
2
3uin

(
u2

in − a(ε
2
3 y)
)∣∣∣ = |R(uin)| = ε

1
3 β3|S(V )|

≤ Cε
[
(x2 + ε

2
3 )V + |Vx|+ |x||Vxx|

] (3.33)

pointwise in Uε. The desired estimate (3.32) now follows at once from the above
relation, via (3.18), (3.19) and (3.31).

The proof of the proposition is complete. �

Remark 3.2. From the geometric singular perturbation viewpoint [190], the Hastings-
McLeod solution corresponds to a special trajectory of the (de-singularized) blown-
up system that connects two equilibria on a sphere. The fact that this connec-
tion is transverse, which allows for a perturbation argument, follows from the non-
degeneracy of the Hastings-McLeod solution (as defined in Remark 3.7 below). In
this regard, see also Remark 3.5 below.

Remark 3.3. In the context of singular perturbation problems, the Hastings-McLeod
solution first served as a basis for an inner solution in plasma physics (see [76]).
Since then, it has been (formally) used to describe layered structures in problems
involving crystalline interphase boundaries [18, 190, 191], patterns of convection
in rectangular platform containers [75], self-similar parabolic optical solitary waves
[41], and the Navier-Stokes and continuity equations for axisymmetric flow [157].

Remark 3.4. In well known singularly perturbed elliptic problems, such as the
focusing NLS (recall the discussion in Subsection 1.2.2) or the spatially inhomoge-
neous Allen-Cahn equation (see for instance [86], [151], [201]), the corresponding
inner profile is determined by special solutions of autonomous second order elliptic
equations (posed in less or equal dimensions). In the former case the corresponding
equation is

∆u− u+ |u|q−1u = 0,
while in the latter it is equation (1.49). In contrast, in the problem at hand the
corresponding equation (3.15) is non-autonomous, as was the case in [47], [71],
[73], [134], and [135]. The interested reader can verify that similar situations also
occur in the singularly perturbed Fisher’s equation [118, Chpt. 10, Exc.3] (see also
[165]), and in the spatially inhomogeneous Allen-Cahn equation that we mentioned
previously, treated in [86], [151], if the spatial inhomogeneity is not strictly positive
but vanishes at certain points (or submanifolds) of the domain (have in mind the
first part of Subsection 1.2.3).

3.2. Set up away from the curve. In this subsection, adapting an idea of [134]
(see also [135]), we suitably perturb, in D̃ε, the outer approximation

uout ≡
√
a(ε

2
3 y)+ (3.34)

to an improved outer approximation ũout, which is closer to the inner approximation
uin near the curve Γ̃ε, for small ε > 0. We emphasize that this is a key step
in our construction of an approximate solution for (3.1). Our underlying plan,
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carried out in the following subsection, is to smoothly interpolate between ũout

and uin, and uin and zero (in R2\D̃ε), near the curve Γ̃ε, in order to obtain an
approximate solution uap of (3.1) that is valid in all of R2. Interpolating directly
between uout, as defined in (3.34), and uin in D̃ε is not standard due to the following
obstructions: The inner approximation uin leaves a remainder in (3.1) that grows
with respect to the (negative) distance from Γ̃ε, as can be seen from (3.18), (3.33); V
converges algebraically slowly to

√
−x as x→ −∞, recall (3.18). (For more details

on this subtle point we refer to Remark 3.8 below). In the one-dimensional case, an
elegant solution to this can be given by geometric singular perturbation theory, see
[190] and Remark 3.5 below. In contrast, thanks to the (super–) exponentially fast
convergence of V to zero, as x→∞, interpolating directly between uin and zero in
R2\D̃ε is rather standard. (This last situation occurs in the construction of spike-
layered solutions of the focusing (1.22)+, see [20], [78], [98], and transition-layered
solutions of Allen-Cahn type equations, see [79], [96]).

Let δ < δ0
100(1+max β) be a fixed number. We consider a smooth cutoff function

nδ(t) =

 1, |t| ≤ δ,

0, |t| ≥ 2δ.
(3.35)

Denote as well
χδ(x) = nδ(ε

2
3x), (3.36)

where x is the coordinate in (3.10).
We define our outer approximation in the domain D̃ε\{−L < βs < 0, z ∈

[0, ε−
2
3 `ε)} to be

ũout(y) ≡
{
a(ε

2
3 y) + ε

2
3β2χδ(βs)

[
βs+ V 2(βs)

]} 1
2
. (3.37)

Note that, thanks to (1.33), (3.19), if L is sufficiently large then ũout is well defined
for small ε.

The following proposition makes delicate use of estimates (3.18), (3.19), and
contains the main properties of ũout. In some sense, it is the “heart” of the present
paper.

Proposition 3.3. We have

∆ũout − ε−
2
3 ũout

(
ũ2

out − a(ε
2
3 y)
)

= O(ε|s|− 1
2 ) (3.38)

uniformly in {−δε− 2
3 ≤ βs ≤ −L, z ∈ [0, ε−

2
3 `ε)}, and

∆ũout − ε−
2
3 ũout

(
ũ2

out − a(ε
2
3 y)
)

= O(ε
4
3 ) (3.39)

uniformly in D̃ε\{−δε−
2
3 ≤ βs < 0, z ∈ [0, ε−

2
3 `ε)}, as ε → 0. Moreover, if ε > 0

is sufficiently small, we have

|ũout − uin| ≤ Cε|s| 32 , |∇(ũout − uin)| ≤ Cε|s| 12 , |∆(ũout − uin)| ≤ Cε|s|− 1
2

(3.40)
in {−δε− 2

3 ≤ βs ≤ −L, z ∈ [0, ε−
2
3 `ε)}, and∣∣∣∣ũout −
√
a(ε

2
3 y)
∣∣∣∣ ≤ Cε

1
3 |s|− 5

2 (3.41)

in {−2δε−
2
3 ≤ βs ≤ −L, z ∈ [0, ε−

2
3 `ε)}.
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Proof. In {−δε− 2
3 ≤ βs ≤ −L, z ∈ [0, ε−

2
3 `ε)}, we have χδ = 1 and we can compute

that

−ε− 2
3 ũout

(
ũ2

out − a(ε
2
3 y)
)

= −β2
[
a(ε

2
3 y) + ε

2
3 β3s+ ε

2
3 β2V 2

] 1
2 [
βs+ V 2(βs)

]
via (1.33), (1.36) = −β2

[
O(ε

4
3 s2) + ε

2
3 β2V 2

] 1
2 [
βs+ V 2(βs)

]
= −ε 1

3 β3V (βs)
[
1 + ε

2
3O(s2V −2)

] 1
2 [
βs+ V 2(βs)

]
via (3.18) = −ε 1

3 β3V (βs)
[
1 + ε

2
3O(|s|)

] [
βs+ V 2(βs)

]
via (3.18), (3.19) = −ε 1

3 β3V (βs)
[
βs+ V 2(βs)

]
+O(ε|s|− 1

2 ),
(3.42)

uniformly, as ε→ 0. Moreover, in the same region, we have:

(ũout)s =
ε

2
3

2

[
at(ε

2
3 s, ε

2
3 z) + β3 + 2β3Vx(βs)V (βs)

] [
a(ε

2
3 y) + ε

2
3 β3s+ ε

2
3β2V 2(βs)

]− 1
2
,

(3.43)

(ũout)ss = ε
2
3

2

[
ε

2
3 att(ε

2
3 s, ε

2
3 z) + 2β4(VxxV + V 2

x )
] [
a(ε

2
3 y) + ε

2
3β3s+ ε

2
3 β2V 2

]− 1
2

− ε
4
3

4

[
at(ε

2
3 s, ε

2
3 z) + β3 + 2β3VxV

]2 [
a(ε

2
3 y) + ε

2
3 β3s+ ε

2
3 β2V 2

]− 3
2
,

(3.44)

(ũout)z =
1
2

[
ε

2
3 aθ + 3ε

4
3 β′β2s+ 2ε

4
3 β′βV 2 + 2ε

4
3β′β2sVxV

] [
a+ ε

2
3 β3s+ ε

2
3β2V 2

]− 1
2
,

(3.45)
and

(ũout)zz = 1
2

[
ε

4
3 aθθ + 6ε2(β′)2βs+ 3ε2β′′β2s+ 2ε2V 2

(
β′′β + (β′)2

)
+ 8ε2(β′)2βsVxV

+2ε2β′′β2sVxV + 2ε2(β′)2β2s2(V 2
x + VxxV )

] [
a+ ε

2
3 β3s+ ε

2
3 β2V 2

]− 1
2

− 1
4

[
ε

2
3 aθ + 3ε

4
3 β′β2s+ 2ε

4
3 β′β(V 2 + βsVxV )

]2 [
a+ ε

2
3 β3s+ ε

2
3 β2V 2

]− 3
2
,

(3.46)
where the functions a, aθ aθθ are evaluated at ε

2
3 y, V at βs, and β at ε

2
3 z. Esti-

mating as in (3.42), we conclude that in the region described by {−δε− 2
3 ≤ βs ≤

−L, z ∈ [0, ε−
2
3 `ε)} we have:

(ũout)s = ε
1
3 β2Vx(βs) +O(ε|s| 12 ), (ũout)ss = ε

1
3 β3Vxx(βs) +O(ε|s|− 1

2 ),

(ũout)z = O(ε|s| 12 ), (ũout)zz = O(ε|s|− 1
2 ),

(3.47)
uniformly as ε → 0. We point out that, when estimating derivatives in z, we also
made use of the bound

|aθ(ε
2
3 s, ε

2
3 z)| ≤ Cε

2
3 |s|,
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which follows directly from (1.33). In order to elucidate the various cancelations of
powers of |s| involved, let us carefully present the proof of one of the estimates in
(3.47):

|(ũout)zz| ≤ C
(
ε

4
3 + ε2|s|+ ε2|s||s|− 1

2 |s| 12 + ε2s2(|s|−1 + |s|− 3
2 |s| 12 )

)
ε−

1
3 |s|− 1

2

+C
(
ε

4
3 |s|+ ε

4
3 |s||s|− 1

2 |s| 12
)2

ε−1|s|− 3
2

≤ C
(
ε

4
3 + ε2|s|

)
ε−

1
3 |s|− 1

2 + Cε
8
3 |s|2ε−1|s|− 3

2

≤ Cε|s|− 1
2 + Cε

5
3 |s| 12 ≤ Cε|s|− 1

2 + Cε
5
3 |s||s|− 1

2 ≤ Cε|s|− 1
2 .

In {−2δε−
2
3 ≤ βs ≤ −δε− 2

3 , z ∈ [0, ε−
2
3 `ε)}, making again use of (3.18), (3.19),

we can show that

ũ2
out − a(ε

2
3 y) = O(ε2), (ũout)s = O(ε

2
3 ), (ũout)ss = O(ε

4
3 ),

(ũout)z = O(ε
2
3 ), (ũout)zz = O(ε

4
3 ),

(3.48)

uniformly as ε→ 0. Estimate (3.38) now follows from (3.6), (3.9), the fact that V
solves (3.15), (3.19), (3.42), and (3.47); estimate (3.39) follows at once from (3.6),
(3.9), (3.37), and (3.48). The first relation in (3.40) can be shown by working as in
(3.42). The remaining estimates in (3.40) follow directly from (3.18), (3.19), (3.30),
(3.47), and the fact that

u2
y1

+ u2
y2

= u2
s + (1 + ε

2
3 ks)2u2

z, (3.49)

for y = (y1, y2) ∈ {(s, z) | |s| ≤ δ0ε
− 2

3 , z ∈ [0, ε−
2
3 `ε)}, and any smooth function

u defined in this region (recall (3.5)). Finally, estimate (3.41) follows readily from
(1.33), and (3.19).

The proof of the proposition is complete. �

3.3. The approximate solution uap. In this subsection we will construct a smooth
approximate solution for problem (3.1) that is valid in all of R2. This will be
achieved by smoothly interpolating between ũout and uin in D̃ε, and between uin

and zero in R2\D̃ε.
To this end, we need to introduce one more smooth cutoff function:

ρL(x) =

 0, x ≥ −L,

1, x ≤ −2L.
(3.50)

We can now define our approximate solution for (3.1) as

uap =


ũout in D̃ε\{−2L < x < 0},

uin + ρL(x)(ũout − uin) in {−2L ≤ x ≤ δε−
2
3 },

χ10δ(x)uin everywhere else,

(3.51)

where uin, χδ, ũout were defined in (3.30), (3.36), and (3.37) respectively.
The following proposition contains the main estimates concerning uap.
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Proposition 3.4. The approximate solution uap satisfies

∆uap − ε−
2
3uap

(
u2

ap − a(ε
2
3 y)
)

= O
(
ε(|s|+ 1)−

1
2

)
(3.52)

uniformly in {−δε− 2
3 ≤ βs ≤ 0, z ∈ [0, ε−

2
3 `ε)},

∆uap − ε−
2
3uap

(
u2

ap − a(ε
2
3 y)
)

= O(ε
4
3 ) (3.53)

uniformly in D̃ε\{−δε−
2
3 ≤ βs < 0, z ∈ [0, ε−

2
3 `ε)},

∆uap − ε−
2
3uap

(
u2

ap − a(ε
2
3 y)
)

= O(εe−c|s|
3
2 ) (3.54)

uniformly in {0 ≤ βs ≤ 2δε−
2
3 , z ∈ [0, ε−

2
3 `ε)}, as ε→ 0, and

uap = 0 everywhere else. (3.55)

If ε > 0 is sufficiently small, we have

3u2
ap − a(ε

2
3 y) ≥

 cε
2
3 (1 + |x|), if |x| ≤ δε−

2
3 ,

c+ c|ε 2
3 y|p, otherwise.

(3.56)

Proof. We will first consider relations (3.52)–(3.55). In view of estimates (3.32),
(3.33), (3.38), (3.39), and recalling the super-exponential decay of V as x→∞, it
just remains to show the validity of (3.52) in the interpolating region described by
{−2L ≤ βs ≤ −L, z ∈ [0, ε−

2
3 `ε)}. There, we have

∆uap − ε−
2
3uap

(
u2

ap − a(ε
2
3 y)
)

= ∆uin − ε−
2
3uin

(
u2

in − a(ε
2
3 y)
)

+ (∆ρL)(ũout − uin)

+2∇ρL∇(ũout − uin) + ρL∆(ũout − uin)

−ε− 2
3uin

[
3ρ2

L(ũout − uin)2 + 2uinρL(ũout − uin)
]

−ε− 2
3 ρL(ũout − uin)

[
u2

in − a(ε
2
3 y) + ρ2

L(ũout − uin)2
]
,

and the desired estimate follows via (3.32), (3.40), noting that u2
in, a(ε

2
3 y) are of

order ε
2
3 in this region.

The proof of lower bound (3.56) proceeds as follows: In the neighborhood de-
scribed by {|x| ≤ 2L} of the curve Γ̃ε (with the obvious notation), by virtue of
(1.33), (1.36), (3.40), (3.51), we find that

3u2
ap − a(ε

2
3 y) = 3ε

2
3β2V 2(x) +O(ε

4
3 ) + ε

2
3 β2x+O(ε

4
3 )x2

= ε
2
3 β2

(
3V 2(x) + x

)
+O(ε

4
3 )

(3.57)

uniformly as ε → 0. In D̃ε\{−2L < x < 0}, we have uap = ũout and, by (3.19),
(3.37), we infer that

3u2
ap − a(ε

2
3 y) = 2a(ε

2
3 y) + 3ε

2
3 β2χδ(βs)

(
V 2(βs) + βs

)
= 2a(ε

2
3 y) + ε

2
3χδ(βs)O(|s|−2)

(3.58)

uniformly as ε→ 0. In points outside of the domain D̃ε ∪ {0 ≤ x < 2L}, we plainly
note that

3u2
ap − a(ε

2
3 y) ≥ −a(ε 2

3 y). (3.59)
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The desired lower bound (3.56) now follows readily from the above three relations,
via (1.4), (1.33), and (3.21), increasing L > 0 if necessary.

The proof of the proposition is complete. �

Remark 3.5. From the geometric singular perturbation viewpoint, recall Remark
3.2, matching is accomplished by employing a useful lemma on the flow past a “cor-
ner equilibrium” (see [189]). Manifolds of corner equilibria arise in blown–up geo-
metric singular perturbation problems precisely where the inner and outer solutions
must be matched. When such equilibria are normally hyperbolic, as in the one-
dimensional case of the problem at hand (see [190]), this lemma plays the same role
in tracking the flow past them that the Exchange Lemma [131] plays at certain other
manifolds of equilibria.

Remark 3.6. Our construction of uap should also be applicable to the homogenized
Gross-Pitaevskii equations considered in [162, Sec. 7].

3.4. Mapping properties of the linearized operator. In this subsection we
will invert the linearized operator

L(ϕ) = ∆ϕ− ε−
2
3

(
3u2

ap − a(ε
2
3 y)
)
ϕ (3.60)

in carefully chosen weighted spaces. The use of weighted spaces is a powerful tech-
nique in elliptic singular perturbation problems, and in many problems arising from
geometry, see [171]. To the best of our knowledge, they are used here for the
first time in singular perturbation problems involving corner layers. Actually, the
weighted spaces that we will use are a variant of those considered in [179], and are
motivated from relations (3.38), (3.56), keeping in mind that we ultimately wish to
find a true solution of (3.1) near uap via a perturbation argument.

Consider a smooth non-increasing function g such that

g(s) =



1, s ≥ 0,

(
max β

L

) 3
2
(

L
max β − s

) 3
2
, − 2δ

min β ε
− 2

3 ≤ s ≤ − L
max β ,

(
max β
min β

) 3
2
L−

3
2 ε−1, s ≤ − 3δ

min β ε
− 2

3 ,

(3.61)

and

0 ≤ −g′ ≤ CL−1, |g′′| ≤ CL−2, s ∈
[
− L

maxβ
, 0
]
, (3.62)

0 ≤ −g′ ≤ CL−
3
2 ε−

1
3 , |g′′| ≤ CL−

3
2 ε

1
3 , s ∈

[
− 3δ

minβ
ε−

2
3 ,− 2δ

minβ
ε−

2
3

]
, (3.63)

where the constant C is independent of small ε and large L. Recalling (3.56), it is
easy to check that we can fix an L0 > 0 such that∣∣∣∣g′′g

∣∣∣∣+ 2
∣∣∣∣g′g
∣∣∣∣2 ≤ Cε

4
3 + CL−2 ≤ ε−

2
3

2
min
R2

(
3u2

ap − a(ε
2
3 y)
)
, s ∈ R, if L ≥ L0,

(3.64)
provided ε is sufficiently small (C in the above relation is independent of ε, L).
Relations (3.57)–(3.59) imply that, for small ε, we have

g
2
3 (y) ≤ Cε−

2
3

(
3u2

ap − a(ε
2
3 y)
)

in R2, (3.65)
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(here g is viewed as a smooth function of y, which close to Γ̃ε, in coordinates (s, z),
is given by (3.61), and otherwise equals the constants in (3.61)).

For ϕ ∈ L∞(R2), we define the following weighted norms:

‖ϕ‖ 3
2
≡ ‖gϕ‖L∞(R2) and ‖ϕ‖ 1

2
≡ ‖g 1

3ϕ‖L∞(R2). (3.66)

(We utilized this notation because g behaves qualitatively like (−s) 3
2 for s < 0).

We also consider the Banach space

X ≡ {ϕ : ‖ϕ‖X ≡ ‖e|ε
2
3 y|ϕ‖L∞(R2)} <∞. (3.67)

The following proposition will be used essentially in the sequel.

Proposition 3.5. If ε is sufficiently small, given f ∈ X ∩ Cα(R2), 0 < α < 1,
there exists a unique ϕ ∈ X ∩ C2+α(R2) such that

L(ϕ) = f, (3.68)

where the linear operator L was defined in (3.60). Furthermore, we have

‖ϕ‖X ≤ C‖f‖X , (3.69)

and
‖ϕ‖ 3

2
≤ C‖f‖ 1

2
, (3.70)

for some constant C independent of f, ε.

Proof. The first assertion of the proposition, including estimate (3.69), follows in a
standard way: It follows from (3.56), the maximum principle, and elliptic regularity
theory [109], that there exists a solution ϕ ∈ C2+α(R2) of (3.68) such that

‖ϕ‖L∞(R2) ≤ C‖f‖L∞(R2), (3.71)

for some constant C independent of f, ε. This is easy to prove, though it is difficult to
find a good reference. (For example, one can first solve equation (3.68) in a ball BR

with Dirichlet boundary conditions to obtain a solution ϕR such that ‖ϕR‖L∞(BR) ≤
C‖f‖L∞(BR), for some C independent of f, ε, R, extend ϕR in L∞(R2) to be zero
outside of BR, and prove that ϕRi , for some Ri →∞, converge uniformly in compact
sets of R2 to a solution ϕ of (3.68) that satisfies (3.71)). Then, a standard barrier
argument, using as barrier the function

ϕ̄τ (y) = τe|ε
2/3y| + ‖ϕ‖L∞(R2)e

(R−|ε2/3y|), |y| ≥ R

ε2/3
, (3.72)

where R > 0 is chosen large, τ > 0 arbitrary, yields that |ϕ(y)| ≤ ϕ̄τ (y), |y| ≥
Rε−2/3, provided ε is small enough so that (3.56) holds. Lastly, letting τ → 0, and
recalling (3.71), we conclude that estimate (3.69) holds true (see also [80, Lemma
7.3]).

Let
ψ = gϕ, (3.73)

then, thanks to (3.6), (3.9), it is easy to see that, with the obvious notation, we
have

∆yψ−2
g′

g
ψs−ε−

2
3

(
3u2

ap − a(ε
2
3 y)
)
ψ− g′′

g
ψ+2

(
g′

g

)2

ψ−ε 2
3 a0

g′

g
ψ = gf, (3.74)

y ∈ R2. Since ψ → 0 as |y| → ∞, recalling (3.56), (3.64), (3.65), we can apply the
maximum principle to show that, for small ε,

|ψ(y)| ≤ C‖g 1
3 f‖L∞(R2), y ∈ R2,
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for some constant C independent of ε, f . We also used the fact that ψs = 0 whenever
∇yψ = 0, which follows immediately from relation (3.49). The desired bound (3.70)
now follows at once from (3.66), (3.73), and the above relation.

The proof of the proposition is complete. �

Remark 3.7. In the above proof, we made essential use of lower bound (3.56) whose
proof, we recall, relied crucially on lower bound (3.21) which was established recently
in [104]. However, as we have remarked in the proof of Proposition 3.1, its proof is
rather involved and technical. In Appendix A, we will provide a more natural and
flexible proof of Proposition 3.5 without assuming knowledge of (3.21). Instead,
we will make use of the asymptotic stability of the Hastings-McLeod solution V ,
namely the fact that the principal eigenvalue of the operator −M, defined in (3.20),
is strictly positive. This follows immediately by testing the corresponding eigenvalue
problem by Vx < 0, see [191] and Proposition B.1 herein. In other words, we will
rely on the lower bound:

−
∫ ∞

−∞
φM(φ)dx ≥ c

∫ ∞

−∞
φ2dx ∀φ ∈ C∞0 (R), (3.75)

for some constant c > 0, which clearly is much “softer” than (3.21). We point
out that the validity of (3.21) was not needed (nor known) in references [190], [191]
which dealt with related one-dimensional problems. Actually, in one–dimensional
or radially symmetric cases, for Proposition 3.5 to hold, it suffices to know that
zero is not in the kernel of M. However, this may not be true in general higher
dimensional problems due to a possible resonance phenomenon (see [78], [135]).

3.5. Existence of a solution. Here we will use the contraction mapping principle
in order to capture a genuine solution uε of (3.1) close to the approximate solution
uap, provided ε is sufficiently small.

Proposition 3.6. If ε is sufficiently small, then there exists a solution uε of (3.1)
such that

‖uε − uap‖X ≤ Cε, (3.76)

‖uε − uap‖ 3
2
≤ Cε, (3.77)

and

|uε(y)− uap(y)| ≤ Cεe−cs, y ∈ {0 ≤ βs ≤ 2δε−
2
3 , z ∈ [0, ε−

2
3 `ε)}, (3.78)

where the norms involved were defined in (3.66) and (3.67).

Proof. We seek a true solution of problem (3.1) in the form

u = uap + ϕ.

In order for u to satisfy the equation in (3.1), we readily find that the correction ϕ
has to solve

L(ϕ) = E +N(ϕ), (3.79)

where the linear operator L was defined in (3.60),

E = −∆uap + ε−
2
3uap

(
u2

ap − a(ε
2
3 y)
)
, (3.80)

and
N(ϕ) = 3ε−

2
3uapϕ

2 + ε−
2
3ϕ3. (3.81)
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Given M > 0 to be determined (independently of ε), we consider the closed
bounded subset of X defined by

Y = {ϕ ∈ X : ‖ϕ‖X ≤Mε, ‖ϕ‖ 3
2
≤Mε}. (3.82)

We will prove that, if M is chosen sufficiently large, the operator P, defined from
X ∩ C2+α(R2) into X ∩ C2+α(R2) by

P(ϕ) = L−1 (E +N(ϕ)) ,

maps Y into itself, and is a contraction with respect to the X -norm, provided ε is
sufficiently small. Note that L−1 is well defined by virtue of Proposition 3.5. In
view of the estimates of Proposition 3.4, (3.61), (3.66), and (3.67), for small ε > 0,
we have

‖E‖X ≤ Cε and ‖E‖ 1
2
≤ Cε. (3.83)

Furthermore, there exists a constant C > 0 such that, for all ϕ1, ϕ2, ϕ ∈ X , the
following relations hold pointwise:

|N(ϕ1)−N(ϕ2)| ≤ Cε−
2
3 (ϕ2

1 + ϕ2
2)|ϕ1 − ϕ2|+ Cε−

2
3 |uap|(|ϕ1|+ |ϕ2|)|ϕ1 − ϕ2|,

|g 1
3N(ϕ)| ≤ Cε−

2
3 |gϕ|3 + Cε−

2
3 |uap||gϕ|2,

(3.84)
for every y ∈ R2 (recall that g ≥ 1). If ϕ ∈ Y, by Proposition 3.5, (3.83), and
(3.84), we obtain that

‖P(ϕ)‖X ≤ C‖E‖X + C‖N(ϕ)‖X

≤ Cε+ Cε−
2
3 ‖ϕ‖3X + Cε−

2
3 ‖ϕ‖2X

≤ Cε+ CM3ε
7
3 + CM2ε

4
3 ,

and
‖P(ϕ)‖ 3

2
≤ C‖E‖ 1

2
+ C‖N(ϕ)‖ 1

2

≤ Cε+ Cε−
2
3 ‖ϕ‖33

2
+ Cε−

2
3 ‖ϕ‖23

2

≤ Cε+ CM3ε
7
3 + CM2ε

4
3 ,

where C is independent of ϕ,M and small ε. We conclude that, if M is chosen
sufficiently large, the operator P maps Y into itself, provided ε is sufficiently small.
We have to prove that P is a contraction from Y into itself with respect to the
X -norm. Let ϕ1, ϕ2 ∈ Y. As before, we have

‖P(ϕ1)− P(ϕ2)‖X ≤ C‖N(ϕ1)−N(ϕ2)‖X

≤ Cε
1
3 ‖ϕ1 − ϕ2‖X .

Hence, for small ε > 0, the operator P : Y → Y becomes a contraction with respect
to the X -norm. So, recalling that Y is closed in X , it has a unique fixed point
ϕ∗ ∈ Y, thanks to the contraction mapping theorem (see for instance [109]). It is
clear that the function uε ≡ uap + ϕ∗ satisfies the elliptic equation in (3.1), and
estimates (3.76)–(3.77).
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Next, we show that uε is positive, and consequently solves problem (3.1). In
the neighborhood described by {|x| ≤ 2L} of the curve Γ̃ε, recalling (3.30), (3.40),
(3.51), and that ϕ∗ ∈ Y, we have

uε = uin +O(ε) = ε
1
3 βV (x) +O(ε) ≥ cε

1
3

uniformly as ε → 0 . In the domain D̃ε\{−2L < x < 0}, thanks to (3.19), (3.37),
we have

uε = ũout +O(ε) =
[
a(ε

2
3 y) +O(ε

2
3L−2)

] 1
2

+O(ε)
(1.33)

≥ cε
1
3

uniformly as ε→ 0 (having increased L if necessary). It remains to consider points
outside of the domain D̃ε ∪ {0 ≤ x < 2L}, where u solves an equation of the form

∆u− p(y)u = 0, where p ≥ c, (3.85)

(recall (1.4), (1.33)). The positivity of u in this region follows directly from the
maximum principle, and the fact that we have already shown that u ≥ cε

1
3 on the

boundary described by the closed curve {x = 2L}.
It remains to establish the validity of (3.76)–(3.78). Since uε−uap = ϕ∗ ∈ Y, we

see that (3.76), (3.77) hold. Finally, we will show (3.78) by suitably modifying the
proof of Lemma 2 in [38] (see also [95, pg. 230] and [125, Lem. 2.2]). From (3.54),
(3.55), (3.56), (3.76), and (3.79), we find that ϕ∗ satisfies

∆ϕ∗ − P (y)ϕ∗ = O
(
εe−

√
c

2 s
)
, where P (y) ≥ c, (3.86)

uniformly in {0 ≤ βs ≤ 4δε−
2
3 , z ∈ [0, ε−

2
3 `ε)}, as ε→ 0. The reason for choosing,

in the righthand side, a decay rate strictly less than
√
c is to facilitate our next

argument. Let

ϕ̄(y) = M̄ε

{
e−

√
c

2 s + e
√

c
2 (s−4δε−

2
3 β−1)

}
,

y ∈ {0 ≤ βs ≤ 4δε−
2
3 , z ∈ [0, ε−

2
3 `ε)}, where the value of the large constant M̄ > 0

will soon be fixed independently of small ε. By virtue of (3.76), (3.86), we can
choose a large M̄ > 0 such that −∆(ϕ̄− ϕ∗) + P (y)(ϕ̄− ϕ∗) > 0, y ∈ {0 ≤ βs ≤ 4δε−

2
3 , z ∈ [0, ε−

2
3 `ε)},

ϕ̄− ϕ∗ > 0 on {s = 0} ∪ {βs = 4δε−
2
3 },

if ε is sufficiently small. Now, by the second estimate in (3.86), and the maximum
principle, we deduce that

ϕ̄− ϕ∗ > 0 if 0 ≤ βs ≤ 4δε−
2
3 .

In turn, the above estimate readily implies the validity of (3.78).
The proof of the proposition is complete. �

The following estimates hold:

Corrolarry 3.1. The solution uε of (3.1), constructed in Proposition 3.6, satisfies

uε = ε
1
3 β(ε

2
3 z)V

(
β(ε

2
3 z)s

)
+O(ε|s| 32 + ε) (3.87)

uniformly in {−δε− 2
3 ≤ βs ≤ 0, z ∈ [0, ε−

2
3 `ε)},

uε = ε
1
3 β(ε

2
3 z)V

(
β(ε

2
3 z)s

)
+O(εe−cs) (3.88)
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uniformly in {0 ≤ βs ≤ 2δε−
2
3 , z ∈ [0, ε−

2
3 `ε)},

uε =
√
a(ε

2
3 y) +O(ε

1
3 |s|− 5

2 ) (3.89)

uniformly in {−δε− 2
3 ≤ βs ≤ −2L, z ∈ [0, ε−

2
3 `ε)},

uε =
√
a(ε

2
3 y) +O(ε2) (3.90)

uniformly in D̃ε\{−δε−
2
3 < βs < 0, z ∈ [0, ε−

2
3 `ε)}, and

0 < uε ≤ Cε
1
3 exp{−cdist(y, D̃ε)} (3.91)

in R2\D̃ε, as ε→ 0.

Proof. Estimates (3.87), (3.88) follow readily from (3.30), the first relation in (3.40),
(3.51), (3.76), and (3.78). From (3.41), (3.51), (3.61), (3.77), for small ε > 0, we
have ∣∣∣∣uε −

√
a(ε

2
3 y)
∣∣∣∣ ≤ Cε|s|− 3

2 + Cε
1
3 |s|− 5

2 ≤ Cε
1
3 |s|− 5

2

in {−δε− 2
3 ≤ βs ≤ −2L, z ∈ [0, ε−

2
3 `ε)}, and estimate (3.89) follows immediately.

Estimate (3.90) follows at once from (3.37), (3.51), (3.61), and (3.77). Finally,
estimate (3.91) follows readily from (3.85), (3.88), arguing as we did for the proof of
(3.78) (but here we need to cover R2 by a finite number of disjoint annular domains,
surrounding D0, and the exterior of a large ball), see also [95, pg. 230].

The proof of the corollary is complete. �

Remark 3.8. Notice that the nonlinear terms in (3.79) are of cubic-like order.
Indeed, as in the proof of Proposition 3.5, using the maximum principle, (3.56),
and the easily derived bound

|uap| ≤ Cε−
1
3

(
3u2

ap − a(ε
2
3 y)
)
, y ∈ R2, (3.92)

we can show that, if ε is small, the unique solution ϕ ∈ X ∩ C2+α(R2) of

L(ϕ) = uapf, f ∈ X ∩ Cα(R2), 0 < α < 1, (3.93)

satisfies
‖ϕ‖X ≤ Cε

1
3 ‖f‖X . (3.94)

Therefore, in order to successfully apply the contraction mapping principle, as we
did in the proof of Proposition 3.6, it is enough to construct an approximate solution
vap supported in a ball of radius O(ε−

2
3 ) such that

E ≡ −∆vap +ε−
2
3 vap

(
v2

ap − a(ε
2
3 y)
)

= O(| ln ε|−γε
1
3 ), uniformly in R2, as ε→ 0,

(3.95)
for some constant γ > 0, and (3.56), (3.92) remain true, with vap in place of
uap, for sufficiently small ε (the logarithmic term in (3.95) is used for convenience
purposes only and has nothing to do with that appearing in (1.25)). This was the
main strategy followed in [191] for a related one-dimensional problem. Actually, one
can plainly define an approximate solution for (3.1) as

vap =


uout in D̃ε\{−2Mε < x < 0},

uin + ρMε(x)(uout − uin) in {−2Mε ≤ x ≤ δε−
2
3 },

χδ(x)uin everywhere else,

(3.96)
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where Mε is such that L ≤ Mε ≤ δ
10ε

− 2
3 , and uin, uout, ρM as in (3.30), (3.34),

(3.50) respectively. Working as in Proposition 3.3, we can verify that

|uout − uin|+ |s| |∇(uout − uin)|+ s2 |∆(uout − uin)| ≤ C
(
ε|s| 32 + ε

1
3 |s|− 5

2

)
,

in the region described by {−2δε−
2
3 ≤ βs ≤ −L}. Then, as in Proposition 3.4, we

can show that E, defined in (3.95), satisfies

|E| ≤ C



ε
4
3 , in D̃ε\{−δε−

2
3 < βs < 0},

ε
1
3 |s|− 3

2 , −δε− 2
3 ≤ βs ≤ −2Mε,

ε|s| 52 + ε
1
3 |s|− 3

2 , −2Mε ≤ βs ≤ −Mε,

M
5
2
ε ε+M

1
2
ε ε

5
3 , −Mε ≤ βs ≤ 0,

ε, everywhere else.

Consequently, we can achieve bound (3.95) by plainly choosing Mε = | ln ε|. Fur-
thermore, the approximation vap is sufficiently close to uap so that the estimates
(3.56) and (3.92) remain true with vap in place of uap. However, the correspond-
ing estimates for the solution of (3.1), obtained using this approximation, are far
from optimal. One can actually check that the above argument works because the
exponent 5/2 in (3.18) is strictly larger than one. It is worthwhile to mention that
the geometric singular perturbation approach in [190] required merely (3.16). In
[202], [203], for a closely related problem to (1.22)−, the authors made the choice
Mε = δ

10ε
− 2

3 (according to our notation) while at the same time not using any
convergence rate of V (x) to

√
−x as x→ −∞, something which is not yet clear to

us.

3.6. Proof of the main theorem. We are now ready for the
PROOF OF THEOREM 1.1: It follows from the definition of aε from (1.32) that

uε(y) ≡ uε

(
y

ε
2
3

)
, y ∈ R2, (3.97)

where uε is the solution of (3.1) as in Proposition 3.6, is also a solution of problem
(1.8) besides the minimizer ηε of Gε in H. On the other hand, we know from
Theorem 2.1 in [125] that (given λε) problem (1.8) has a unique solution (see also
Remark 3.12 below). Therefore, we conclude that uε ≡ ηε. Estimates (1.38)–(1.42)
for ηε follow readily from the corresponding estimates (3.87)–(3.91) for uε. Relation
(1.44) follows easily from (3.56) and (3.76).

Next, we will derive estimate (1.45) by building on estimates (1.25), (3.87)–
(3.91), and using that ‖ηε‖L2(R2) = 1. (For a self-contained proof of (1.8) we refer
to Remark 3.14 below). We consider the following annular regions of the plane:

S− = {−δε− 2
3 ≤ βs ≤ −2L, 0 ≤ z ≤ ε−

2
3 `ε},

S0 = {−2L ≤ βs ≤ 0, 0 ≤ z ≤ ε−
2
3 `ε},

S+ = {0 ≤ βs ≤ δε−
2
3 , 0 ≤ z ≤ ε−

2
3 `ε}.
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It follows from (3.51), and (3.77), that the solution of the stretched problem (3.1)
satisfies

uε = ũout +O(ε|s|− 3
2 ), uniformly in S−, as ε→ 0.

Furthermore, from (1.33), (3.19), and (3.37), if ε is small, we have

cε
1
3 |s| 12 ≤ ũout ≤ Cε

1
3 |s| 12 in S−.

So, from (1.9), (1.32), (3.37), and the above two relations, we find that

u2
ε −A(ε

2
3 y) = λε − λ0 + ε

2
3 β2[βs+ V 2(βs)] +O(ε

4
3 |s|−1),

uniformly in S−, as ε→ 0. Thus, via the identity∫
S−

f(y)dy =
∫ ε−

2
3 `ε

0

∫ −2Lβ−1

−δε−
2
3 β−1

f(ε
2
3 s, ε

2
3 z)
(
1 + ε

2
3 kε(ε

2
3 z)s

)
dsdz ∀f ∈ C(S̄−),

we obtain that∫
S−

(
u2

ε −A(ε
2
3 y)
)
dy = (λε − λ0)

∫
S−

1dy +
∫ `ε

0
βε(θ)dθ

∫ −2L

−δε−
2
3
[V 2(x) + x]dx

+
∫

S−
O(ε

4
3 |s|−1)dsdz

(3.19)
= (λε − λ0)

∫
S−

1dy +
∫ `ε

0
βε(θ)dθ

∫ −2L

−∞ [V 2(x) + x]dx+O(| ln ε|ε 2
3 ),

(3.98)
as ε→ 0. Similarly, recalling (1.36), (3.18), (3.87), and (3.88), we have∫

S0

(
u2

ε −A(ε
2
3 y)
)
dy = (λε−λ0)

∫
S0

1dy+
∫ `ε

0

βε(θ)dθ
∫ 0

−2L

[V 2(x)+x]dx+O(ε
2
3 ),

(3.99)
and ∫

S+

u2
εdy =

∫ `ε

0

βε(θ)dθ
∫ ∞

0

V 2(x)dx+O(ε
2
3 ), (3.100)

as ε→ 0. Moreover, thanks to (3.90), (3.91), we have∫
D̃ε\(S0∪S−)

(
u2

ε −A(ε
2
3 y)
)
dy = (λε − λ0)

∫
D̃ε\(S0∪S−)

1dy +O(ε
2
3 ), (3.101)

and ∫
R2\(D̃ε∪S+)

u2
εdy = O(e−cε−

2
3 ), (3.102)

as ε→ 0. Let us keep in mind that∫
R2
u2

ε(y)dy = ε−
4
3

∫
R2
η2

ε(y)dy = ε−
4
3 . (3.103)

Furthermore, recalling (1.6), (1.7), (1.9), and (1.25), for small ε, we can write∫
Dε

A+(y)dy =
∫
D0

A+(y)dy−
∫
Uε

A+(y)dy +
∫
Vε

A+(y)dy,

where Uε ⊆ D0, Vε ∩ D0 = ∅, |Uε| + |Vε| ≤ C| ln ε| 12 ε, and A+(y) ≤ C| ln ε| 12 ε if
y ∈ Uε ∪ Vε. Thus, via (1.5), (3.2), we infer that∫

D̃ε

A+(ε
2
3 y)dy = ε−

4
3 +O(| ln ε|ε 2

3 ) as ε→ 0. (3.104)
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By combining (3.98)–(3.104), we deduce that

(λε−λ0)|D̃ε|+

(∫ `ε

0

βε(θ)dθ

)(∫ 0

−∞
[V 2(x) + x]dx+

∫ ∞

0

V 2(x)dx
)

= O(| ln ε|ε 2
3 )

as ε → 0. Now, the validity of estimate (1.45) follows readily by noting that the
sum of the above two integral involving V is zero. This can be seen by multiplying
(3.15) by Vx, integrating the resulting identity by parts over (−∞, 0) and (0,∞)
respectively, and recalling (3.18).

To finish, utilizing all the above, we will establish the validity of estimate (1.46)
for the energy of ηε. It is straightforward to see that

Gε(ηε) =
∫

R2

{
1
2
|∇u|2 +

ε−
2
3

4
u4 +

ε−
2
3

2
W (ε

2
3 y)u2

}
dy,

where u(y) = ηε(ε
2
3 y) is the solutions of the stretched problem (3.1). Motivated

from (1.10), and recalling (1.5), it is easy to check that we can rewrite the above
relation as

Gε(ηε) = 1
2

∫
R2 |∇u|2dy + ε−

2
3

4

∫
D̃ε

(
u2 − a(ε

2
3 y)
)2

dy − 1
4

(∫
R2(A+)2dy

)
ε−2 + λ0

2 ε
−2

− (λε−λ0)
2

4 |D0|ε−2 + ε−
2
3

4

∫
R2\D̃ε

(
u2 − a(ε

2
3 y)
)2

dy − ε−
2
3

4

∫
R2\(ε−

2
3D0)

a2(ε
2
3 y)dy.

(3.105)
Similarly to the above proof of (1.45), keeping in mind the proof of Proposition 3.6,
(1.45), (3.18), (3.47), (3.49), (3.87), and relations (4.4), (4.8) below (whose proofs
do not require (1.46)), we get∫

R2 |∇u|2dy =
∫

S−

(
ε

2
3β4V 2

x (βs) +O(ε
4
3 )
)

(1 + ε
2
3 ks)dsdz +O(1)

=
(∫ `ε

0
β3

ε (θ)dθ
) ∫ −2L

−δε−
2
3
V 2

x (x)dx+O(1)

= 1
6

(∫ `0
0
β3

0(θ)dθ
)
| ln ε|+O(1),

as ε→ 0. Furthermore, as in the above proof of (1.45), we have

ε−
2
3

4

∫
D̃ε

(
u2 − a(ε

2
3 y)
)2

dy = O(1),

and

ε−
2
3

4

∫
R2\D̃ε

(
u2 − a(ε

2
3 y)
)2

dy − ε−
2
3

4

∫
R2\(ε−

2
3D0)

a2(ε
2
3 y)dy = O(ε

2
3 ),

as ε → 0. Now, the validity of (1.46) follows at once from (1.45), (3.105), and the
above three relations. Alternatively, we could have used the formula

Gε(ηε) =
1

2ε2
λε −

1
4ε2

∫
R2
η4

εdy,

which follows easily by testing equation (1.8) with ηε.
The proof of Theorem 1.1 is complete. �
We now outline a few remarks.
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Remark 3.9. The maximum principle yields the upper bound:

ηε(y) ≤ max
R2

√
a+

ε , y ∈ R2,

(see also (3.106) below).

Remark 3.10. As in [125], where the authors refer to an idea of Shafrir, we can
rewrite (1.8) in the form

−ε2∆(
√
aε − ηε) + ηε(ηε +

√
aε)(ηε −

√
aε) = −ε2∆(

√
aε) in Dε.

The above relation suggests the following, which can be proven similar to [150]: We
have

ηε(y) =
√
aε + ε2

∆(
√
aε)

2aε
+ o(ε2), (3.106)

where ε−2o(ε2) → 0 uniformly on any compact subset of D0 as ε → 0. Keeping in
mind (1.7) which implies that

ε2
∆(
√
aε)

2aε
= O

(
ε2|t|− 5

2

)
uniformly in D0 as ε→ 0,

and (1.40), we are tempted to believe that (3.106) can be extended to hold uniformly
in the domain Dε\{−Kε

2
3 < t < 0}, with K large, if ε → 0. A possible approach

could be by seeking a more refined inner solution with V +εφ in place of V in (3.30),
where φ is determined by solving a linear equation of the form M(φ) = f(x, z), x ∈
R, z ∈ [0, ε−

2
3 `ε) with f known (in terms of the curvature kε, V , aε and their

derivatives) and M as in (3.20); we refer to [135] for a related problem. Actually,
we have computed that in the radially symmetric case, in N ≥ 1 dimensions, we
have

M(φ) =
N − 1
Rε

β−1Vx −
1
2
arr(Rε)β−4x2V,

where Rε is the radius of Dε and β = [−ar(Rε)]
1
3 . Moreover, due to matching

conditions with aε(Rε + ε
2
3β−1x), we need that

φ(x) +
1
4
arr(Rε)β−4(−x) 3

2 → 0, x→ −∞; φ→ 0, x→∞.

In the special case of the model harmonic potential, this lower order term in the
inner solution has been formally derived in [94] and rigorously in [104]. It might
also be useful for the reader to take a look at (4.24) below.

Remark 3.11. As in [125, Prop. 2.1 e)] , it follows that

‖ηε −
√
aε‖C1(K) ≤ CKε

2 for any compact subset K ⊂ D0,

if ε is small.

Remark 3.12. Given λ > minRN W , problem (1.22)−, in N = 2 dimensions, has
a unique positive solution, for small ε, as has been proven recently in [125] by com-
bining ideas of Brezis and Oswald [43] (see also the uniqueness part of Proposition
B.2 herein) with those used in the proof of De Giorgi’s conjecture in low dimensions
[107]. This fact allows us to work exclusively with equation (1.8), since positive
solutions of the latter coincide with the unique real valued minimizer of Gε in H.
On the other hand, using (1.27), which holds for every positive solution of (1.22)−,
it is easy to see that the method of [125] can be extended to the case of arbitrary
N ≥ 1 dimensions. Hence, our Theorem 1.1 can be extended naturally to treat the
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case where the functional Gε is considered in arbitrary dimensions, with the analo-
gous conditions on the potential. In the radially symmetric case, uniqueness results
which allow the case where λ = infRN W may be found in [3] and [104].

Remark 3.13. One can also prove an analogous result to Theorem 1.1 for the real
valued minimizer of Gε in

J ≡
{
u ∈W 1,2

0 (D0; C) :
∫
D0

|u|2dy = 1
}
.

This problem has been studied in [130], in a three-dimensional setting, with potentials
of the form (1.16). The special property that ∆W > 0 in D0 was used in an essential
way in the latter reference for estimating the minimizer near the surface ∂D0, along
which it has a steep corner layer. We also refer the interested reader to [8] and [13]
for the case where D0 has annular shape. For a numerical treatment of the problem
we refer to [29]. As in Subsection 3.1 below, it is not hard to see that in this case
the layer profile near ∂D0 should be determined by the unique solution of vxx − v(v2 + x) = 0, x < 0,

v(x)−
√
−x→ 0 as x→ −∞; v(0) = 0.

(3.107)

We refer to Appendix B below for a treatment of the above problem in relation with
(1.37).

The minimization of the functional Gε in W 1,2(D0), subject to the mass con-
straint, leads to the equation in (1.22)− with Neumann boundary conditions. The
latter singular perturbation problem may be treated by using in place of V , in (3.30),
the (reflection of the) solution described in Remark B.6 below.

Remark 3.14. Identical estimates to (1.38)-(1.42) (with t replaced by the signed
distance from ∂D0) hold for the solution η̃ε of (1.22)− (with λ = λ0, q = 3). One
can use the function η̃ε

‖η̃ε‖L2(R2)
∈ H as a competitor in order to give a self-contained

proof of (1.11), from which (1.25) follows readily (see [10], [125]). (As in the proof
of (1.46), keeping in mind that ‖η̃ε‖2L2(R2) → ‖A+‖L1(R2), the main contribution
would be from the gradient term).

Remark 3.15. In the case where the potential W is of harmonic type, as in (1.16),
it was observed by the authors of [125] that

ηε(y) =
√
λ0 + λε√
λ0

η̃ε̃

( √
λ0y√

λ0 + λε

)
with ε̃ =

λ0ε

λ0 + λε
,

where η̃ε̃ was defined in Remark 3.14. This identity and a technique of Struwe [125,
Lemma 2.3] were used essentially in their proof of (1.45) for this special class of
potentials.

Remark 3.16. Relation (1.44) implies that, if ε is small, the linearized operator
Lε about uε is invertible. Hence, the implicit function theorem (see for instance
[19]) implies that there exists a small number ε0 > 0 such that, in addition to being
isolated (for each ε), the minimizers η(ε) ≡ ηε depend smoothly on ε ∈ (0, ε0) (in
all the usual function spaces). In particular, we have η : (0, ε0) →W 1,2(R2) is C1.
This last property yields at once the first part of Lemma 2.3 in [125], mentioned in
Remark 3.15 above.
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Remark 3.17. In the special case of the model harmonic potential W (y) = |y|2,
since ηε is radially symmetric [108], we can define νε : (−∞, λεε

− 2
3 ] → R by

ηε(y) = ε
1
3 νε

(
λε − |y|2

ε
2
3

)
, y ∈ R2.

Letting ξ =
(
λε − |y|2

)
/ε

2
3 , then the equation in (1.8) becomes equivalent to

4(λε − ε
2
3 ξ)∂ξξνε − 4ε

2
3 ∂ξνε + ξνε − ν3

ε = 0, ξ ∈ (−∞, λεε
− 2

3 ].

At first glance this might look rather counterintuitive but this strategy, already used

in [104], allows one to use directly (2λε)
1
3V

(
− ξ

(2λε)
2
3

)
as a global approximation

(recall (3.15)– (3.19)).

Remark 3.18. In the radially symmetric case, estimate (1.46) was formally pre-
dicted in [67, 68], and rigorously proven and extended very recently, for the case of
the harmonic potential, in [105] at the same time that the current paper was written.

4. Further properties of the ground state ηε

As a byproduct of our construction of the ground state ηε, we can extend to the
non-radial case relation (1.30), improve relation (1.29), show that ηε has maximal
Hölder regularity, and improve relation (1.28). Finally, under an additional but
natural non-degeneracy assumption on the potential, we can refine bound (1.39).

Corrolarry 4.1. There exist small constants c, d′ > 0 such that, given D > 0, we
have

(ηε)t ≤ −c(|t|+ ε
2
3 )−

1
2 (4.1)

in
{
−d′ ≤ t ≤ Dε

2
3 , θ ∈ [0, `ε)

}
, provided ε is sufficiently small.

Proof. We will present it for the solution uε of the stretched problem (3.1). It
follows from (3.79) that, if ε is small, the function ϕ∗ = uε − uap satisfies

|∆yϕ∗| ≤

 Cε(|s|+ 1)−
1
2 if − 10δε−

2
3 ≤ βs ≤ 0,

Cεe−c|s| if 0 ≤ βs ≤ 10δε−
2
3 .

(4.2)

In establishing the above estimate, the term that needed extra care was

ε−
2
3

(
3u2

ap − a(ε
2
3 y)
)
ϕ∗,

which can be estimated by noting that

u2
ap + |a(ε 2

3 y)| ≤ Cε
2
3 (|s|+1) and |ϕ∗| ≤ Cε(|s|+1)−

1
2 if {|βs| ≤ 10δε−

2
3 }, (4.3)

(recall (1.33), (3.57), (3.58), and (3.77)). Making (mild) use of (4.2) and the second
estimate in (4.3), via standard interior elliptic regularity estimates [109] (applied on
balls of radius one) or the interpolation-type inequality of Lemma A.1 in [38], the
statement of which is included below as Lemma 4.1 for the reader’s convenience,
we obtain that

|∇yϕ∗| ≤ Cε (4.4)

in the neighborhood of Γ̃ε described by {|βs| ≤ 5δε−
2
3 }, provided ε is sufficiently

small.
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By (3.17), (3.30), (3.49), (3.51), and (4.4), we deduce that, given D̃ > 0,

(uε)s = ε
1
3 β2Vx(βs) +O(ε) < −cε 1

3 , (4.5)

uniformly in the neighborhood of Γ̃ε described by {−L ≤ x ≤ D̃}, as ε→ 0. In the
same manner, recalling (3.19) and the second estimate in (3.40), we find that

(uε)s = ε
1
3 β2Vx(βs) +O(ε|s| 12 )

≤ −cε 1
3 |s|− 1

2 + Cε|s| 12

≤ − c
2ε

1
3 |s|− 1

2 ,

(4.6)

as long as −d̃ε− 2
3 < βs < −L, for some small constant d̃, provided ε is sufficiently

small. The corresponding assertion of the corollary, for the solution of the equivalent
stretched problem (3.1), follows readily from (4.5) and (4.6).

The proof of the corollary is complete. �

The following is Lemma A.1 in [38]:

Lemma 4.1. Assume that u satisfies

−∆u = f in Ω ⊂ RN .

Then

|∇u(y)|2 ≤ C

{
‖f‖L∞(Ω)‖u‖L∞(Ω) +

1
dist2(y, ∂Ω)

‖u‖2L∞(Ω)

}
∀ y ∈ Ω,

where C is some constant depending only on N .

We can also improve the bound (1.29):

Corrolarry 4.2. If ε > 0 is sufficiently small, we have

‖∇ηε‖L∞(R2) ≤ Cε−
1
3 .

Proof. We will prove the corresponding assertion for the solution uε of the stretched
problem (3.1). From the proof of Proposition 3.6, recalling (3.19), (3.47), (3.48),
(3.49), and (4.4), we find that

|∇u(y)| ≤ Cε
1
3 if y ∈ {|x| ≤ 3δε−

2
3 , z ∈ [0, ε−

2
3 `ε)}, (4.7)

if ε is small. Furthermore, recalling (3.77), we get

u2 − a(ε
2
3 y) = 2ϕ∗

√
a(ε

2
3 y) + ϕ2

∗ = O(ε2),

uniformly in D̃ε\{−2δε−
2
3 ≤ x ≤ 0}, as ε → 0. Hence, by the equation (3.1), we

obtain that
|∆u| ≤ Cε

4
3 in D̃ε\{−2δε−

2
3 ≤ x ≤ 0}.

Consequently, by the interpolation-type inequality of Lemma A.1 in [38] (see Lemma
4.1 above), we infer that

|∇u| ≤ Cε
2
3 in D̃ε\{−3δε−

2
3 ≤ x ≤ 0}. (4.8)

Similarly, recalling (1.4) and (1.41), we have

|∇u| ≤ Ce−cε−
2
3 outside of D̃ε ∪ {0 ≤ x ≤ 3δε−

2
3 }. (4.9)

The corresponding assertion of the corollary for u follows readily from (4.7)– (4.9).
The proof of the corollary is complete. �
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In the following corollary, we will show that ηε has the maximal Hölder regularity
available (recall Definition 1 from Subsection 1.2).

Corrolarry 4.3. If ε is sufficiently small, we have

‖ηε‖C1/2(R2) ≤ C. (4.10)

Proof. From (1.38), (1.39), (3.18), (3.19), (3.49), and (4.4), abusing notation, it
follows that 

c
(
|t|+ ε

2
3

) 1
2 ≤ ηε ≤ C

(
|t|+ ε

2
3

) 1
2
,

|(ηε)t| ≤ C
(
|t|+ ε

2
3

)− 1
2
,

|(ηε)θ| ≤ C
(
|t|+ ε

2
3

) 1
2
,

(4.11)

in the region described by {|t| ≤ 3δ}, if ε is small, having further decreased the
value of δ if necessary. Abusing notation once more, let yi = (ti, θi), i = 1, 2, with
|ti| ≤ 3δ and θi ∈ [0, `ε), be any two points in that region. We write

ηε(y1)− ηε(y2) = ηε(t1, θ1)− ηε(t2, θ1) + ηε(t2, θ1)− ηε(t2, θ2). (4.12)

Now, instead of considering the difference ηε(t1, θ1)−ηε(t2, θ1), we will first consider
the difference η2

ε(t1, θ1)− η2
ε(t2, θ1). We have

η2
ε(t1, θ1)− η2

ε(t2, θ1) = (t1 − t2)
∫ 1

0

2ηηt (t1 + r(t2 − t1), θ1) dr.

So, thanks to (4.11), we find that∣∣η2
ε(t1, θ1)− η2

ε(t2, θ1)
∣∣ ≤ C|t1 − t2|.

In turn, via the lower bound in (4.11), the above relation yields that

|ηε(t1, θ1)− ηε(t2, θ1)| ≤ C
|t1 − t2|

1
2

|t1|
1
2 + |t2|

1
2
|t1 − t2|

1
2 ≤ C (|t1 − t2|+ |θ1 − θ2|)

1
2 .

(4.13)
Similarly, we obtain that∣∣η2

ε(t2, θ1)− η2
ε(t2, θ2)

∣∣ ≤ C
(
|t2|+ ε

2
3

)
|θ1 − θ2|,

which, as before, implies that

|ηε(t2, θ1)− ηε(t2, θ2)| ≤ C
(
|t2|+ ε

2
3

) 1
2 |θ1 − θ2| ≤ C (|t1 − t2|+ |θ1 − θ2|)

1
2 .

(4.14)
Hence, by (4.12), (4.13), and (4.14) (also keeping in mind Remark (3.9)), we deduce
that

‖ηε‖C1/2(|t|≤3δ) ≤ C,

if ε is small. That was the hard part. In the remaining regions of the plane, by
virtue of (4.8) and (4.9), we see that |∇ηε| ≤ C which implies that, in those regions,
the family ηε is in fact uniformly Lipschitz continuous, as ε→ 0.

The proof of the corollary is complete. �
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Remark 4.1. Uniform Hölder C0,α, 0 < α < 1, bounds for Gross-Pitaevskii sys-
tems, where the singular limit functions have Lipschitz regularity (α = 1), have been
proven in [167] by blow-up techniques and the monotonicity formulae of Almgren
and Alt, Caffarelli, and Friedman (see also [53]). The importance of our result lies
in the fact that the Hölder exponent 1/2 in (4.10) equals to the exact maximal
Hölder regularity of the singular limit profile. To the best of our knowledge, this
property has been proven, in singular perturbation problems, only in one-dimensional
problems, see [36].

The following corollary answers a question posed to one of us by A. Tertikas in
relation with [191].

Corrolarry 4.4. Given α ∈ [0, 1
2 ), we have

ηε →
√
A+ in Cα(R2) as ε→ 0, (4.15)

but ηε does not converge to
√
A+ in C

1
2 (R2) as ε→ 0.

Proof. Given α ∈ [0, 1
2 ), in view of (1.13), Corollary 4.3, and the compactness of the

embedding C
1
2 ( ¯2D0) ↪→ Cα( ¯2D0) (see [109]), we find that ηε →

√
A+ in Cα( ¯2D0)

as ε→ 0. Now, the desired relation (4.15) follows via (1.42) and (4.9).
On the other hand, the following simple argument shows that we do not have

convergence in C
1
2 . Let {εn} be a decreasing sequence such that εn → 0, and,

abusing notation, consider the points yn = (tn, θn) = (−ε
2
3
n , 0). If n < m, thanks

to (1.36), (1.38), and (4.4), we get

‖ηεn
− ηεm

‖
C

1
2 (R2)

≥ |ηεn
(yn)− ηεm

(ym)|
|yn − ym|

1
2

≥ c

(
ε

1
3
n − ε

1
3
m

ε
1
3
n + ε

1
3
m

) 1
2

− Cε
2
3
n ,

where c, C are independent of n,m. Now, choosing for example εn = ( 1
n )3 and

m = 2n, we conclude that {ηεn
} is not Cauchy in C

1
2 .

The proof of the corollary is complete. �

Remark 4.2. We expect that there exists some constant C > 0 such that, for small
ε > 0, we have

‖ηε −
√
A+‖Cα(R2) ≤ Cε

2
3 ( 1

2−α), 0 ≤ α ≤ 1
2
,

see also Remark 4.4 below.

The following result is motivated from (1.28):

Corrolarry 4.5. Given 0 < α ≤ 1, if ε is sufficiently small, and A as in (1.9),
there exists a constant C > 0 such that

|ηε −
√
A+| ≤ C

(
ε2−

5
3 α + ε−

1
3 α|λε − λ0|

)
≤ C(ε2−2α + ε

4
3−

2
3 α)
√
A+, (4.16)

at points in D0 whose distance from ∂D0 is greater than ε
2
3 α.

Proof. From (1.6), (1.7), (1.9), (1.25), and (1.40), it follows that in the region
D0\{− 1

2ε
2
3 α < t < 0} we have: √

A(y) ≥ cε
α
3 , (4.17)√

A(y)−
√
λε −W (y) = O(|λε − λ0|ε−

α
3 ), (4.18)
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and
ηε(y)−

√
λε −W (y) = O(ε2−

5
3 α), (4.19)

uniformly, as ε→ 0. Now, the assertion of the corollary follows readily by combining
(1.45), Remark 1.3, and the above three relations.

The proof is complete. �

Remark 4.3. Note that estimate (4.16), when α = 1
2 , considerably improves esti-

mate (1.28), which was originally proven in [8] (for solutions of (1.8) with λε = λ0)
and in the sequel used in [10], [13], and [125].

Remark 4.4. By (1.38)–(1.39), and (4.16) with α = 1, for small ε > 0, we obtain
that

‖ηε −
√
A+‖L∞(R2) ≤ Cε

1
3 .

Under an additional but natural non-degeneracy condition, satisfied by most
potentials used in physical applications (recall the discussion in Subsection 1.2), we
can improve estimate (1.39).

Proposition 4.1. If we assume that W ∈ C2 and

Wtt(0, θ) ≥ c > 0, θ ∈ [0, `), (4.20)

then

ηε(y) = ε
1
3 βε(θ)V

(
βε(θ)

t

ε
2
3

)[
1 +O(ε

2
3 )
(
t

ε
2
3

) 5
2
]
, (4.21)

uniformly in {0 ≤ t ≤ d, θ ∈ [0, `ε)}, as ε→ 0, where d > 0 is some small constant.

Proof. Once again, we will work with the equivalent problem in stretched variables.
Our aim is to estimate ϕ∗ = uε − uap using equation (3.79), as we did for estimate
(3.78). By virtue of (3.15), (3.23), (3.24), (3.33), and (3.51), for small ε, we get
that the remainder in (3.80) satisfies

|E| ≤ Cεx2Ai if x ∈ [1, 2δε−
2
3 ). (4.22)

In view of (1.32), (3.57), and (4.20), it is easy to see that, decreasing δ if necessary,
we have

ε−
2
3

(
3u2

ap − a(ε
2
3 y)
)
≥ β2x+ cε

2
3x2 if x ∈ [1, 2δε−

2
3 ), (4.23)

provided ε is sufficiently small. We point out that in the above relation the constant
c is independent of small δ, ε. Let Ψ > 0 be determined from

−Ψ′′ + xΨ = x2Ai; Ψ(1) = 1, Ψ(∞) = 0. (4.24)

In order to proceed, we need some estimates for Ψ. A short calculation shows that

Ψ = (Ai)h with h′ =

∫∞
x
t2(Ai)2dt
(Ai)2

.

Note that, from (3.22), (3.24), we have

Ai′ ∼ −x 1
2 Ai as x→∞. (4.25)

By the way, a neat way to show the above relation is to use L’hospital’s rule to find
that

lim
x→∞

x−1(Ai′)2

(Ai)2
= 1.
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Now, refereing to L’hospital’s rule once more, we get

h′ ∼ 1
2
x

3
2 and h ∼ 1

5
x

5
2 as x→∞.

Hence, we find that

Ψ ∼ 1
5
x

5
2 Ai and Ψ′ ∼ −1

5
x3Ai as x→∞. (4.26)

Keeping in mind that x = β(ε
2
3 z)s, via formulas (3.6)–(3.7), we get that

∆yΨ = β2Ψ′′ +O(ε
4
3 )xΨ′ +O(ε

4
3 )x2Ψ′′ +O(ε

2
3 )Ψ′, (4.27)

uniformly in
{

1 ≤ x ≤ 2δε−
2
3 , z ∈ [0, `εε−

2
3 )
}

, as ε → 0 (note that here O(·) is
bounded uniformly in small δ). Using (1.7), (3.60), (4.23)– (4.27), and further
decreasing δ, we readily find that

−Lε(Ψ) ≥ β2x2Ai + cε
2
3x2Ψ +O(ε

4
3 )x3Ψ +O(ε

4
3 )x4Ai +O(ε

2
3 )x3Ai

≥ β2

2 x
2Ai + cε

2
3x2Ψ

(4.28)

if x ∈ [1, 2δε−
2
3 ), provided ε is sufficiently small (c, O(·) independent of small δ).

It is nice to note that, in the above calculation, the cubic power in the second
asymptotic relation of (4.26) was “the most appropriate” one in order to absorb
the last term of (4.27) into the term β2x2Ai, by decreasing δ. Similarly, keeping in
mind (3.22)–(3.24), we find that the function

B(y) ≡ Bi(x− 2δε−
2
3 ), y ∈ {x ∈ [1, 2δε−

2
3 ), z ∈ [0, ε−

2
3 `ε)}, (4.29)

satisfies

−Lε(B) ≥ −β2B′′ + β2xB + cε
2
3x2B +O(ε

4
3 )x2(x− 2δε−

2
3 )B +O(ε

2
3 )B′

≥ 2δβ2ε−
2
3B + cε

2
3x2B + δ3O(ε−

2
3 )B +O(ε

2
3 )
(
|x| 12 + δ

1
2 ε−

1
3

)
B

≥ δβ2ε−
2
3B + cε

2
3x2B,

(4.30)
if ε is sufficiently small, having further decreased δ if necessary. From now on we
will fix δ. In view of (3.81), (4.22), (4.28), and (4.30), given M > 1, the function

Φ(y) ≡Mε
{

Ψ(x) + Bi(x− 2δε−
2
3 )
}

satisfies

−Lε(Φ) +N(Φ) + E ≥ M β2

2 εx
2Ai + cMε

5
3x2Ψ +Mδβ2ε

1
3B + cMε

5
3x2B

−Cεx2Ai− CM2ε
5
3x5V (Ai)2 − CM2ε

5
3x

5
2VAiB

−CM2ε
5
3V B2 − CM3ε

7
3x

5
2 Ai− CM3ε

7
3B

≥ M β2

4 εx
2Ai +Mδβ2ε

1
3B + c1Mε

5
3x

9
2 Ai− C2M

2ε
5
3x5V (Ai)2,

for some constants c1, C2 > 0 (independent of ε), if ε < ε(M) is sufficiently small.
Note that the seventh, eighth, and tenth term in the first inequality’s righthand
side were absorbed into the corresponding third term, whereas the ninth into the
first. What we want to do next is to somehow “get rid” of the last term in the
above relation, and end up with a positive righthand side. We will achieve this by
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absorbing that term into the one that proceeds it. By virtue of (3.23), (3.24), and
(4.25), if M is sufficiently large, there exists xM > 0 such that

C2Mx
1
2VAi < c1 if x > xM . (4.31)

(Note that xM →∞ as M →∞). Hence, it follows that

−Lε(Φ) +N(Φ) + E ≥Mδβ2ε
1
3B +M

β2

4
εx2Ai > 0 (4.32)

in the strip-like domain described by

Sε =
{
xM ≤ x ≤ 2δε−

2
3 , z ∈ [0, `εε−

2
3 )
}
.

Now, in view of (3.78), (4.26), and (4.31), we can fix a large M > 0 such that

ϕ∗ < Φ on {x = xM}; ϕ∗ < Φ on {x = 2δε−
2
3 }, (4.33)

if ε is small. By (4.32), (4.33), and a standard maximum principle argument, making
use of (3.56) and the property that

|N(Φ)−N(ϕ∗)| ≤ Cε
2
3 |Φ− ϕ∗| in Sε,

we deduce that ϕ∗ ≤ Φ in Sε, if ε is small. Similarly we can show that ϕ∗ ≤ −Φ
in Sε, if ε is small. The desired assertion of the proposition (for the equivalent
stretched problem) now follows via (1.39), (3.23), (4.26), and noting that

Bi(x− 2δε−
2
3 ) ≤ Bi(−δε− 2

3 )
(3.24)

≤ 2Ai(δε−
2
3 ) ≤ 2Ai(x)

if x ∈ [xM , δε−
2
3 ) with ε sufficiently small.

The proof of the proposition is complete. �

Remark 4.5. Note that the first term in the righthand side of (4.21) dominates
for 0 ≤ t� ε

2
5 .

Assuming additionally that W is radial and convex (outside of Dε), we can derive
an explicit global upper bound on the minimizer.

Proposition 4.2. Assume that the potential trap W is radially symmetric with

Wrr(Rε) > 0, and Wrr(r) ≥ 0 if r > Rε,

where Rε denotes the radius of Dε. Then, we have

ηε(s) ≤
Ai
(
βε

s−Rε

ε
2
3

)
Ai
(
βε

r−Rε

ε
2
3

)ηε(r) ∀ s ≥ r ≥ Rε. (4.34)

In particular, it holds that

ηε(s) ≤ ε
1
3 (βε + o(1))Ai

(
βε
s−Rε

ε
2
3

)
if s−Rε � ε

2
3 , (4.35)

as ε→ 0.

Proof. Since

−aε(r) = W (r)−W (Rε) ≥Wr(Rε)(r −Rε), r ≥ Rε,

we see that the minimizer ηε is a positive lower-solution of the linear equation

−ε2
(
ηrr +

1
r
ηr

)
+ β3

ε (r −Rε)η = 0, (4.36)
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if r ≥ Rε (recall that βε = [Wr(Rε)]
1
3 > 0). On the other side, making use of

(3.22) and the fact that (Ai)′ < 0, we readily find that Ai
(
βε

r−Rε

ε
2
3

)
is a positive

upper-solution of (4.36) if r ≥ Rε. Hence, by the maximum principle, we deduce
that relation (4.34) holds true. In turn, via (1.39), (3.23), (3.26), and Proposition
4.1, relation (4.34) implies the validity of relation (4.35).

The proof of the proposition is complete. �

Remark 4.6. It seems plausible that the techniques of the very recent paper [59]
can be extended to derive a WKB (Wentzel-Kramers-Brillouin) type estimate, in the
region (R,∞) (with the obvious notation), for the ground state solution of (1.22)
with q = 2 and N = 1.

5. Refined estimates for the auxiliary functions ξε, fε in the case of
radial symmetry

In this section, restricting ourselves to radial potentials with D0 a ball, building
on our previous results for the ground state ηε, we will improve upon the estimates
obtained recently in [10] for the auxiliary function fε in (1.31). As we have already
discussed in Subsection 1.3, the latter estimates were essential for the analysis of
[10] regarding the functional Eε, defined in (1.15). We believe that the improved
estimates herein may provide important intuition for the treatment of the general
case, which may ultimately lead to the resolution of the open problem raised in [10]
(recall the discussion in Subsection 1.3).

In the general case, for potentials as described in Subsection 1.1, we define ξε to
be the solution of

div
(

1
η2

ε

∇ξ
)

= −2, y ∈ R2, ξε(y) → 0, |y| → ∞, (5.1)

so that ∇⊥ξε = x⊥η2
ε . An integration by parts in (1.19) yields

Fε(w) =
∫

R2

{
η2

ε

2

(
|∇w|2 − 4Ωξε

η2
ε

Jw

)
+

η4
ε

4ε2
(
|w|2 − 1

)2}
dy, (5.2)

where Jw = 1
2∇× (iw,∇w) = (iwy1

, wy2
) is the Jacobian.

We recall that the function fε := ξε/η
2
ε , appearing in the functional Fε, is im-

portant since it is well known that vortices in the interior of D0 first appear near
where this function attains a local maximum [8, 9, 125, 126]; its importance is also
clear from (5.2), since it controls the relative strength of the positive and negative
contributions to Fε.

In the case where the potential W is radially symmetric, one can solve problem
(5.1) explicitly to find that the functions ξε, fε are given by relation (1.31). In
particular, if the domain D0 is a ball, it has been shown in [10] that, for small ε,
we have

fε(|y|) ≤

 Cdist(y, ∂D0) + Cε
2
3 if y ∈ D0,

Cε
2
3 if not,

and ‖fε−f0‖L∞(R) ≤ Cε
1
3 , (5.3)

where f0 is the function in (5.7) below, which solves the “limiting” problem corre-
sponding to (5.1):

div
(

1
A
∇ξ
)

= −2 in D0, ξε = 0 on ∂D0, (5.4)
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with A as in (1.9). Existence and properties of a positive solution ξ0 of (5.4) have
been established in [12].

The following proposition refines and improves relation (5.3).

Proposition 5.1. If the potential W is radially symmetric with D0 = {y ∈ R2 :
r = |y| < R}, then the function fε, defined in (1.31), satisfies

fε(r) = Rεβ
−1
ε ε

2
3V −2

(
βε
r −Rε

ε
2
3

)∫ ∞

βε
r−Rε

ε
2
3

V 2(σ)dσ + o(ε
2
3 ), (5.5)

uniformly in [R− o(ε 1
3 ),∞), as ε→ 0, where Rε denotes the radius of the ball Dε,

satisfying (5.8) below, and βε = [W ′(Rε)]
1
3 (recall (1.36)).

Moreover, if ε is small, it holds that

‖fε − f0‖L∞(R) ≤ Cε
1
2 , (5.6)

where

f0(r) =


1

A(r)

∫ R

r
sA(s)ds, 0 ≤ r < R,

0, r ≥ R.

(5.7)

(In view of (1.6), and (1.7), an application of L’hospital’s rule shows that f ′0(R
−) =

−R
2 ).

Proof. First of all note that, thanks to (1.45), we have

Rε = R+O(ε
4
3 ) as ε→ 0. (5.8)

By virtue of (1.4), (1.6), (1.7), and (1.45), there exists a constant c > 0 such
that, given K � 1, we have

η2
ε +W (r)− λε ≥W (r)− λε ≥ c(r −R)2 + cKε

2
3 , r ≥ R+Kε

2
3 ,

provided that ε is sufficiently small. (We note that K is considered fixed in the
corresponding relation in [10]). Then, by a standard barrier argument in equation
(1.8), we deduce that

ηε(s) ≤ ηε(r)e−K
1
3 ε−

2
3 (s2−r2), s ≥ r ≥ R+Kε

2
3 ,

if K is sufficiently large and ε sufficiently small. As a result, we get

fε(r) ≤
∫ ∞

r

se−2K
1
3 ε−

2
3 (s2−r2)ds =

1
4
K− 1

3 ε
2
3 , r ≥ R+Kε

2
3 , (5.9)

if ε is small.
If r ∈ [R− d′, R+Kε

2
3 ], in view of Corollary 4.1 and (5.9), for small ε, we have

fε(r) = 1
η2

ε(r)

∫ R+Kε
2
3

r
sη2

ε(s)ds+ η2
ε(R+Kε

2
3 )

η2
ε(r) fε(R+Kε

2
3 )

= 1
η2

ε(r)

∫ R+Kε
2
3

r
sη2

ε(s)ds+O(K− 1
3 ε

2
3 ),

(5.10)

uniformly as ε → 0. If r ∈ [R,R +Kε
2
3 ], from (1.39), (3.18), and (5.8), it follows

readily that

1
η2

ε(r)

∫ R+Kε
2
3

r
sη2

ε(s)ds = Rεβ
−1
ε ε

2
3V −2

(
βε

r−Rε

ε
2
3

) ∫∞
βε

r−Rε

ε
2
3

V 2(σ)dσ

+O
(
ε

2
3V −2(K)

∫∞
K
V 2(σ)dσ

)
+OK(ε

4
3 ),

(5.11)
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uniformly, as ε→ 0 (the constant OK(1) may diverge as K →∞). The second term
in the righthand side of the above relation can be estimated as before, by noting
that, thanks to (3.15), we find that

V (σ) ≤ V (K)e−K
1
3 (σ−K), σ ≥ K if K is large.

Thus, by (5.10), (5.11), we infer that relation (5.5) holds true in [R,R +Kε
2
3 ]. In

fact, by (5.9) and the above relation, we deduce that (5.5) holds true in [R+Kε
2
3 ,∞)

as well. If r ∈ [R − d,R], similarly as before, but this time using (1.38) instead of
(1.39), we arrive at

fε(r) = Rεβ
−1
ε ε

2
3V −2

(
βε

r−Rε

ε
2
3

) ∫∞
βε

r−Rε

ε
2
3

V 2(σ)dσ

+O
(
|r −Rε|2 + ε|r −Rε|

1
2 + ε

1
3 |r −Rε|

3
2

)
+ o(ε

2
3 ),

(5.12)

uniformly, as ε → 0. The above relation implies at once the validity of (5.5) in
[R− o(ε

1
3 ), R] as ε→ 0. Consequently, we have established the validity of (5.5).

Next, we will show the validity of estimate (5.6). If r ∈ [R − ε
2α
3 , R], with

1
2 < α ≤ 1, recalling (1.7), we have c(R − r) ≤ A(r) ≤ C(R − r). So, as in [10], we
obtain that

f0(r) ≤
C

R− r

∫ R

r

s(R− s)ds ≤ C(R− r) ≤ Cε
2α
3 . (5.13)

Furthermore, thanks to (3.18), (5.5), if ε is small, we find that

fε(r) ≤ Cε
2α
3 , r ∈ [R− ε

2α
3 , R]. (5.14)

If r ∈ [0, R− ε
2α
3 ], following [10], we write

fε(r)− f0(r) =
{

1
η2

ε(r)

∫ R−ε
2α
3

r
sη2

ε(s)ds− 1
A(r)

∫ R−ε
2α
3

r
sA(s)ds

}

+η2
ε(R−ε

2α
3 )

η2
ε(r) fε(R− ε

2α
3 )− A(R−ε

2α
3 )

A(r) f0(R− ε
2α
3 )

= I + II − III.

(5.15)

Using (1.6), (1.7), (1.40), Corollary 4.1, and our earlier estimates on fε, f0 for
r ≥ R− ε

2α
3 , we see that

|II| ≤ Cfε(R− ε
2α
3 ) ≤ Cε

2α
3 and |III| ≤ Cf0(R− ε

2α
3 ) ≤ Cε

2α
3 .

We further decompose the remaining term as

I =
(

1
η2

ε(r)
− 1
A(r)

)∫ R−ε
2α
3

r

sη2
ε(s)ds+

1
A(r)

∫ R−ε
2α
3

r

s
(
η2

ε(s)−A(s)
)
ds.

Using Corollary 4.5, if 1
2 < α < 1, for small ε, it follows that

|I| ≤ Cε2−2α

∫ R−ε
2α
3

r

s
η2

ε(s)
η2

ε(r)
ds+ Cε2−2α

∫ R−ε
2α
3

r

s
A(s)
A(r)

ds.

Due to Corollary 4.1, we have η2
ε(s)

η2
ε(r) ≤ 1 if R−d′ ≤ r ≤ s ≤ R−ε 2α

3 . If 0 ≤ r ≤ R−d′,

then η2
ε(r) ≥ c, and so η2

ε(s)
η2

ε(r) ≤ C. Thus, the first integral in the above relation is
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bounded by Cε2−2α. The second integral is estimated similarly, using (1.7) instead
of Corollary 4.1. Therefore, relation (5.15) implies that

|fε(r)− f0(r)| ≤ Cε2−2α, r ∈ [0, R− ε
2α
3 ],

provided that ε is sufficiently small. The validity of estimate (5.6) follows at once
by combining (5.13), (5.14), the above relation, and choosing α = 3

4 .
The proof of the proposition is complete. �

6. Open problems and future directions

What follows is a list of questions which are currently unresolved. These are
presented as an illustration of where our interests lie. No attempt is being made to
be precise in their formulation.

A question that comes naturally to mind is to examine whether the estimates of
Theorem 1.1, for the minimizer ηε of Gε in H, can be used to answer the interesting
open problem posed recently in [10]. As we have already mentioned in Subsection
1.3, the latter is to see to what extend the analysis of [10], for the functional Eε

in (1.15), continues to hold if one drops the assumption of radial symmetry on
the potential W . Hopefully, our estimates for ηε can be used in estimating the
corresponding auxiliary functions ξε, fε, arising in the functional Eε as in (5.2),
which for the radial case were given by (1.31). It seems that the elliptic problem
(5.1), which determines ξε, seems to be a singular perturbation problem of its own
independent interest.

In the special case of the model harmonic potential, an approximate solution for
(1.22)−, “close” to

√
(λ−W )+, of arbitrary order accuracy was constructed in [104]

(keep in mind Remark 3.17). We feel that it would be very interesting if one can
do the same thing for the case of general potential. A major difficulty (or problem)
is that each term of the inner expansion diverges polynomially in a complicated
manner as the distance from Γ increases (recall Remark 3.10), see also the appendix
in [54]. The construction of arbitrary order approximations is especially important
in the treatment of singularly perturbed elliptic problems involving resonance, where
the order of accuracy of the approximation is dictated by the space dimension, see
for instance [160]. Problems of these type which feature the presence of a corner
layer (similar to the problem at hand) have been studied recently in [135] (in two
dimensions), see also Remark [114] herein. It should be noticed that in Allen–Cahn
or (focusing) Schrödinger type equations, where its possible to construct arbitrary
order approximations (see [160] and the references therein), the phenomenon is
exponentially localized, i.e, the corresponding terms approach certain constants
exponentially fast.

Relation (1.44) implies that the spectrum, in L2(R2), of the operator Lε, defined
in (1.43), is bounded above by −cε 2

3 , for some constant c > 0, as ε→ 0. We expect
that, making further use of the estimates of Theorem 1.1, one can rigorously “link”
the spectrum of Lε to that of the one–dimensional “limit” operator M, defined in
(3.20), as ε → 0 (see also relations (6.1)–(6.2) below), and thus provide a valid
asymptotic approximation for the eigenvalues of Lε. In particular, the difference
between the first two eigenvalues, called the fundamental gap, is of importance since
it determines the rate at which positive solutions of the nonlinear heat equation,
corresponding to (1.22)−, approach the first eigenspace of Lε (see [28], [118], and
especially [44]). In the case where W is the harmonic potential, a rigorous con-
nection between the spectrum of Lε and that of M (see the discussion following
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relation (A.16) below), as ε→ 0, has been made recently in [104] (see also [134] for
a related radially symmetric problem). A possible approach for the general case,
where the potential is as in the present paper, could be by mixing techniques found
in the aforementioned references with those developed in [17, 58] for the study of
the spectrum of multi–dimensional Allen-Cahn and related phase-field operators for
generic interfaces. One could even carry out an analogous program for the spectrum
of the linearization of the defocusing nonlinear Schrödinger equation (1.21)− at the
corresponding ground state, recall (1.47). The latter problem is often referred to as
the Bogolyubov-de Gennes problem in the context of Bose–Einstein condensates,
see [103, 137] for recent studies specializing on the model harmonic potential. In the
latter references, for reducing the complexity of the problem, the authors linearized
at η0 (recall (1.24)) instead of the ground state ηε. In this case, the linear operator
defined by the lefthand side of the first equation in (1.47), with η0 in place of ηε,
has also been studied in [101], in relation with [191].

Excited states are solutions of (1.22)− with zero set inside the domain Dλ ≡
{y : W (y) < λ}. In the Thomas–Fermi limit, ε → 0, the Bose–Einstein con-
densate is a nearly compact cloud, which may contain localized dips of the atomic
density. The nearly compact cloud is modeled by the ground state of the defocusing
nonlinear Schrödinger equation (1.21)−, whereas the localized dips are modeled by
the excited states. In the one–dimensional case, with W the harmonic potential,
excited states of (1.22)− which are approximated, as ε → 0, by a product of the
ground state and m dark solitons (localized waves of the defocusing NLS equation
with nonzero boundary conditions at respective infinities, which after a re-scaling
solve the one-dimensional (1.49)) were constructed in [174] by a finite–dimensional
Lyapunov–Schmidt reduction (for the latter see for instance the book [20]). Loosely
speaking, these solutions have a corner layer at the points corresponding to ∂Dλ,
and m (clustering) transition layers in (−C| ln ε|ε, C| ln ε|ε), as ε → 0 (see also
[61]). Studies in the case of radial symmetry have been conducted in [119]. We
believe that, at least in two space dimensions, analogous excited states can still
be constructed without any symmetry assumptions on the potential, by employing
the estimates of Theorem 1.1 (in particular (1.44)) and the infinite dimensional
Lyapunov-Schmidt reduction of [79] (see also [201]). In this context, the dimension
N = 2 plays an important role for the solvability of a Toda system, periodic orbits of
which determine, up to principal order, the location of m closed curves in Dλ where
the excited state changes sign. These curves should collapse, as ε→ 0, to a closed
curve in Dλ that may be determined by the arguments in [86], [151], [166] (if N = 1,
the interfaces collapse at critical points of W ). We expect that, in the case at hand,
the reduction procedure is more delicate than [79] because the corresponding lin-
ear operator Lε has small eigenvalues (see also [71] for a related finite-dimensional
reduction). If N = 1 or W is radial, one could also try to construct “high energy”
excited states of (1.22)−, having an increasing number of layers of order 1/ε, as
ε → 0, in the spirit of [88], [89] and the references therein. We remark that the
result of [89] relied on ODE techniques, but it is expectable that a similar result
could be proven for higher–dimensional problems. On the other hand, in the one-
dimensional case, solutions of (1.22)− bifurcating from the trivial branch have been
studied in [146], [187], and [196] (see also [139] and the references therein). Let us
make a formal connection between these two different types of solutions (layered
and small amplitude respectively). Consider the one-dimensional case with poten-
tial W having a global minimum which is attained at a unique point, say at y = 0,
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and satisfying
W (y) = W (0) + c|y|α + o(|y|α) as y → 0,

for some constants α, c > 0. Arguing as in [134, Prop. 3.25], it is not hard to
establish that, given m ∈ N, the first m eigenvalues of the linear operator

−ε2∂yy + (W (y)− λ) I, (6.1)

which corresponds to the linearization of (1.22) about the trivial solution, are of
the form

W (0)− λ+ µiε
2α

α+1 + o
(
ε

2α
α+1

)
as ε→ 0, i = 1, · · · ,m, (6.2)

where {µi} are the eigenvalues of the “limit” operator

−∂yy + c|y|αI,
(these exist by [121, Thm. 10.7], and µi → ∞ as i → ∞). In passing, we not
that formulas (6.2) improve the corresponding lower bounds found in Theorem
1.4 of [101]. Hence, we see that the number of negative eigenvalues (counting
multiplicities), namely the Morse index of the trivial solution of (1.22)− (see [134]
for the precise definition), diverges as ε→ 0 (recall that λ > W (0)). From a variant
of Weyl’s asymptotic formula, see for example [32, pg. 521], it turns out that one
has

µi ∼ ci
2α

α+2 as i→∞,

for some constant c > 0. We expect that, by refining the above argument, one
can prove that the Morse index of the trivial solution is of order greater than or
equal to 1/ε, as ε → 0 (keep in mind that Landau’s symbol in (6.2) may depend
on m � 1). On the other side, it seems plausible that the operator in (6.1) does
not have any negative eigenvalues if ε is sufficiently large (by Poincaré’s inequality,
this is certainly true when considered in a fixed interval with Dirichlet boundary
conditions). Consequently, since the eigenvalues are smooth functions of ε (by virtue
of their simplicity [60, Th. 3.1, p. 482], see also [160]), we expect that there exists
a sequence {εi} with ε1 > ε2 > · · · > εi → 0 as i → ∞ such that, for each ε = εi,
zero is an eigenvalue of the linearized operator described in (6.1). This suggests
that the aforementioned local bifurcation of solutions of (1.22)−, from the trivial
branch, takes place at each ε = εi. We further expect that, using global bifurcation
techniques [178] (see also [2]), one can show that these solution branches reach, as
ε→ 0, the layered solutions of (1.22)− that we discussed previously. (We point out
that solutions belonging to the i-th branch have exactly i− 1 zeros). We note that
analogous eigenvalues of the form (6.2), with the obvious modifications, also exist
in the multi-dimensional case, and existence of many solutions for the nonlinear
problem may follow by adapting Theorem 10.22 in [21]. Moreover, in the “flat”
case (motivated from a definition in [47], see also [147]), where the potential W
attains its minimum value over a domain Ω0, we expect that the multi-dimensional
operator, corresponding to (6.1), has eigenvalues of the form

W (0)− λ+ µi(Ω0)ε2 + o(ε2) as ε→ 0,

where {µi(Ω0)} are the Dirichlet eigenvalues of −∆ in Ω0. We believe that the
eigenfunctions associated to the above eigenvalues and the corresponding eigen-
functions of the Laplacian share the topology of their level sets, as in [90]. In any
case, motivated from results in [11], we believe that the existence and multiplicity
of solutions to (1.22)−, is strongly associated to the number of negative eigenvalues
(counting multiplicities) of the corresponding linearized operator about the trivial
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solution. In the radially symmetric case, the topological approaches of [111], [187],
for constructing nodal standing wave solutions of the focusing NLS, should also
be applicable to the defocusing case with a trapping potential, see also a related
remark in [162].

It would also be interesting if one can find an asymptotic expansion, as ε→ 0, of
the energy E1 of the first excited state (with least energy), as we did for the energy
Eg of the ground state in Theorem 1.1. The difference E1−Eg is of importance since
it represents the “excitation energy” required to reach the first excited state from the
ground state; it thus determines in some sense the stability of the ground state. (In
the case of a convex bounded domain with Dirichlet boundary conditions, with the
obvious modifications, this would provide evidence on the validity of a “nonlinear
fundamental gap conjecture”, see [24], [31]).

If in addition the potentialW is assumed to be even with respect to the coordinate
axis, we have observed that one can construct a sign changing solution of (1.22)−,
whose nodal set is the union of the coordinate axis, using the following strategy:
Firstly, by minimizing the functional G−, described in (1.23), over η ∈ W 1,2

0 (R2
+)

such that Wη2 ∈ L1(R2
+), where R2

+ ≡ {y = (y1,y2) : y1 > 0, y2 > 0}, for small
ε > 0, we obtain a positive solution in R2

+ of the equation in (1.22)− which is zero on
the coordinate axis and approaches zero as |y| → ∞ (we can see that the minimizer
is nontrivial, if ε is small, by adapting Example 5.11 in [21] or Lemma 2.1 in [82]).
A solution u2 defined in the entire space is then obtained using odd reflections
through the lines y1 = 0 and y2 = 0. The function u2 is a solution of (1.22)−,
whose 0-level set is the union of the two axis. Our construction parallels that of the
well known saddle solution of the Allen-Cahn equation (1.49), see [74]. The problem
of existence and qualitative properties of saddle type solutions for the Allen-Cahn
equation (not necessarily in two dimensions) has received a considerable amount of
attention in recent years, see [49], [50], [51], [144]. We wonder if an analogous study
can be conducted for the saddle type solutions of (1.22)− that we just described.
Can one rigorously verify the formal prediction that

u2 → sign{y1y2}
√

(λ−W )+,

say in L2(R2), as ε → 0? The finer structure at the junction points on the axis,
whereW = λ, may be demonstrated by a solution v of the following elliptic problem:

vxx + vzz − (x+ v2)v = 0, x ∈ R, z > 0,

v −
√
−x→ 0 as x→ −∞; v → 0 as x→∞,

v = 0 if z = 0; v − V (x) → 0 as z →∞,

(6.3)

where V denotes the Hastings-McLeod solution as usual, which seems to be of
independent interest. The above can be generalized to the case of arbitrary even
space dimensions. Let us also note that, if the potential trap W is radial and two-
dimensional, our construction can easily be generalized to obtain solutions uk of
(1.22)− with N = 2, for small ε > 0, whose zero level set has the symmetry of a
regular 2k-polygon and consists of k straight lines passing through the origin (see
[15] for the corresponding solutions of (1.49)).

In the case where the potential W is, say, two-dimensional and symmetric with
respect to the coordinate axis (as in the above paragraph) but the equation of
(1.22)− is posed in R3, motivated from a definition in [102], we can also consider
“tick” saddle solutions: As before, minimizing the functional G− over η ∈ W 1,2

0 (Ω)
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such that Wη2 ∈ L1(Ω), where Ω ≡ {y1 > 0, y2 > 0, −D < y3 < D)}, D > 0,
for ε < ε(D) sufficiently small, yields a positive solution of the equation which
vanishes on ∂Ω = {y1 = 0, y2 = 0, y3 = ±D}. By odd reflection with respect
to {y1 = 0, y2 = 0, y3 ∈ (−D,D)}, and then with respect to the planes y3 =
(2k + 1)D, k ∈ Z, that solution can be extended to the whole of R3, yielding an
entire solution of the equation in (1.22)− which has a saddle structure on each plane
y3 = constant and is periodic of period 4D in the y3 variable.

Very recently, del Pino, Musso, and Pacard [82] studied entire solutions of the
Allen-Cahn equation (1.49) which are defined in 3–dimensional Euclidean space and
which are invariant under screw-motion. In particular, their nodal set is a helicöıd
of R3. We believe that, for sufficiently small ε > 0, similar solutions exist for the
3-dimensional defocusing Gross-Pitaevskii equation in (1.22)− with a 2-dimensional
radial potentialW (λ, W satisfying our usual assumptions). What is the asymptotic
behavior of these solutions as ε→ 0? Can some results of [82] be generalized in our
context?

We believe that, if the potential W is restricted to the radial class, the approach
of the current paper can also be applied to the study of the ε→ 0 limiting behavior
of vortex solutions of the NLS equation (1.21)−, see [142] or [185], namely solutions
of the form  un(y, t) = Un(r)ei(nθ−λt/ε), n = ±1,±2, · · · ,

Un(0) = 0, Un(∞) = 0,
(6.4)

where (r, θ) denote the polar coordinates in R2. Hopefully, the obtained estimates
could be used to prove the, indicated by numerical evidence [137] (for the case of
the model harmonic potential), orbital stability of u1 in the time evolution of the
Gross-Pitaevskii equation, and thus answering the question raised in the end of the
recent paper [175].

Non-degeneracy conditions of the form (1.7) are common in the study of transi-
tion layered solutions of elliptic equations with bistable nonlinearity, see [96], [201].
In that context, the surface ∂D0 represents the interface of the layer. It turns out
that, in some cases, the aforementioned conditions can be removed completely (see
[70], [77]). In particular, the interface may be non-smooth or intersect the boundary
of the domain. Motivated from this, we believe that one can show that ηε →

√
A+

uniformly in R2, or at least in compact subsets of R2\∂D0, as ε → 0, without as-
suming condition (1.7). (Here ηε denotes the minimizer of Gε or the ground state of
(1.21)−). In this regard, we refer to [55, Prop. 3.16] for a related result (for (1.22)−
with q = 2).

Is there a “Γ-Convergence” theory [141] for (1.1), relating local minimizers of the
limit functional (1.14) to local minimizers of (1.1), as ε→ 0?

We wonder if, besides the one-dimensional profile V (x), there is a (genuine) two-
dimensional one v(x, z) that could be used in (3.10). In view of (3.11), (3.13), (3.14),
and the matching conditions with

√
A+, the profile v should satisfy β−2vzz + vxx − v(v2 + x) = 0, (x, z) ∈ R2,

v −
√
−x→ 0 as x→ −∞, v → 0 as x→∞,

with v being `ε/ε
2
3 -periodic in z. As in [78] (see also [135]), after a simple transfor-

mation of the z independent variable (the x variable remains unchanged), abusing
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notation, we are led to the problem:

vzz + vxx − v(v2 + x) = 0, (x, z) ∈ R2, (6.5)

v −
√
−x→ 0 as x→ −∞, v → 0 as x→∞, (6.6)

with v being ˆ̀
ε/ε

2
3 -periodic in z, where ˆ̀

ε =
∫ `ε

0
βε(θ)dθ. Uniqueness of positive

solutions to the above problem does not seem to follow from the approach of Brezis
and Oswald, as in [125], since solutions are unbounded (compare with (6.3)). In fact,
we believe that entire solutions of the equation in (6.5) should satisfy the growth
estimate v(x, z) = O(|x| 12 ). Moreover, it is not clear how to adapt the uniqueness
result of Brezis [42]. On the other hand, motivated from (1.30), it is natural to seek
solutions such that

vx < 0, (x, z) ∈ R2. (6.7)
It is irresistible to compare problem (6.5), (6.7) with the famous De Giorgi conjec-
ture for the Allen-Cahn equation (1.49), see for instance [87], [107]. In this regard,
it is interesting to investigate whether there are genuine two-dimensional solutions
v of problem (6.5), (6.7) or not. Note that solutions of the latter problem could be
unbounded and, in particular, so could be vz (see [36, 37] where a similar difficulty
arises). We point out that the space dimension usually plays a very important role
in these type of problems. Another direction could be to investigate the same ques-
tion for stable solutions of (6.5), in the sense of (3.75), see also a remark in pg. 79
of the review article [72]. Actually, using the method of [87], one can show that any
solution of (6.5), (6.7) is stable. A variation of these questions could be to consider
problem (6.5)-(6.6), with the asymptotic behavior in (6.6) being uniform in z ∈ R,
along the lines of the so called Gibbons conjecture (see also [36]). We remark that
in this case, as in [107], the method of moving planes [108] can be applied to show
that (6.7) holds.

Many recent papers deal with the study of semiclassical ground states for the
focusing (1.22)+, where the potential W (y) − λ is positive but decays to zero, as
|y| → ∞, at most like |y|−2 (see for instance [207] and the references therein). Can
one study the defocusing case under analogous conditions? For ε fixed, a related
existence result may be found in [3].

Suppose, for simplicity purposes, thatW is an even, double-well, one-dimensional
potential (for example as in [124] or [139]), say W (y) = (y2 − 1)2. What happens
in the “degenerate case” when λ equals the local maximum of W? Assuming that
W ′′(0) < 0, suitably blowing up at the origin, we expect that the fine behavior
of solutions, as ε → 0, near the origin should be determined by a solution of the
problem: 

v′′ = v(v2 + W ′′(0)
2 x2) = 0, x ∈ R,

v −
√

−W ′′(0)
2 |x| → 0 as |x| → ∞.

Notice the similarities of the above problem with (B.2) below. Note also that in
the case of a symmetric double-well potential (for any λ) formulas (6.2) do not hold
due to tunneling effects, see for instance [104], [121].

Finally, we believe that similar studies can be conducted in the case of the “ex-
terior” problem, where λ > W outside of a bounded domain and λ < W in its
interior. It is natural to assume that λ −W → c > 0 as |y| → ∞, and consider
the Gross-Pitaevskii equation (1.21)− with boundary conditions |u(y, t)| → c

1
q−1

as |y| → ∞. The approach of [43] does not yield uniqueness of bounded ground
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states, namely solutions of the equation in (1.22)− coupled with the aforementioned
boundary conditions, if N ≥ 3 (compare with Remark 3.12), and one has to apply
a sophisticated “squeezing” argument (see [84]). Let us mention that the stability
of standing wave solutions of Gross-Pitaevskii equations, considered with nonzero
boundary conditions at infinity, is a very active field of current research, see for
instance [40].

Remark 6.1. It is worthwhile to mention that if 0 ≤W (y)−λ ≤ c(1+ |y|)2+d, y ∈
RN , N ≥ 3, for some positive constants c, d, then (1.22)− has infinitely many
bounded solutions with positive lower bounds (see [136]).

Appendix A. A-priori estimates for the linearized operator based on
the non-degeneracy of the inner profile

Here we will provide an alternative, more natural, proof of the important Proposi-
tion 3.5 that does not require knowledge of lower bound (3.21), whose proof is rather
technical (recall Remark 3.7), but instead relies merely on the non-degeneracy of the
Hastings-McLeod solution V . This proof has the flexibility to deal with problems
where the corresponding inner profile V is non-degenerate but the corresponding
lower bound (3.21) may be hard to establish or fails (see Remark B.4 below for an
example where the latter case occurs). The latter situation certainly occurs when
trying to construct unstable solutions (with respect to the parabolic dynamics) in
related problems, see [134, 135]. Let us also point out that it is not clear to us how
to generalize the last part of the proof of (3.21) in [104] to the case of arbitrary
power nonlinearity, as in Proposition B.1 below (see also Remark B.1 below).

PROOF OF PROPOSITION 3.5: Observe that it suffices to show the following a-
priori estimate: There exists a constant C such that if ε is sufficiently small, ϕ ∈
X ∩ C2+α(R2), and f ∈ X ∩ Cα(R2), 0 < α < 1, satisfy

L(ϕ) = f, (A.1)

then

‖ϕ‖L∞(R2) ≤ C‖f‖L∞(R2). (A.2)

To this end, as in the one-dimensional related problem treated in [191, Prop. 5.2],
we will argue by contradiction. We remark that this indirect method has been
used extensively in the study of elliptic singular perturbation problems involving
transition and spike layers, see [20].

Firstly, note that without knowledge of the validity of (3.21), relation (3.56)
would be

3u2
ap − a(ε

2
3 y) ≥

 cε
2
3 |x|, if L ≤ |x| ≤ δε−

2
3 ,

c+ c|ε 2
3 y|p, otherwise,

(A.3)

for small ε > 0, having increased the value of L if necessary.
Suppose now that there exist sequences εn → 0, ϕn ∈ X ∩ C2+α(R2), fn ∈

X ∩ Cα(R2) such that
L(ϕn) = ∆ϕn − ε

− 2
3

n

(
3u2

ap − a(ε
2
3
ny)
)
ϕn = fn

‖ϕn‖L∞(R2) = 1 and ‖fn‖L∞(R2) → 0.
(A.4)
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Keeping in mind that ϕn → 0 as |y| → ∞, we may assume that there exist yn ∈ R2

such that, without loss of generality, we have

ϕn(yn) = 1, ∇ϕn(yn) = 0, ∆ϕn(yn) ≤ 0, n ≥ 1. (A.5)

From (A.3)–(A.4), we obtain that

dist(yn, Γ̃εn
) ≤ C, n ≥ 1, (A.6)

for some (generic) constant C independent of n ≥ 1. Thus, abusing notation, we

can write yn =
(
β−1(ε

2
3
nzn)xn, zn

)
with |xn| ≤ C, zn ∈ [0, ε−

2
3

n `εn
). Therefore,

passing to a subsequence, we may assume that

xn → x∗ and ε
2
3
nzn → z∗ ∈ [0, `0]. (A.7)

Recalling (3.6), (3.10), in terms of coordinates (x, z), the equation in (A.4) takes
the form

(ϕn)zz + β2(ε
2
3
nz)(ϕn)xx + B̃1(ϕn)− ε

− 2
3

n

(
3u2

ap − a(ε
2
3
ny)
)
ϕn = fn, (A.8)

in the neighborhood of the curve Γ̃εn
described by

{
|x| ≤ δ0ε

− 2
3

n , z ∈
[
0, ε−

2
3

n `εn

)}
,

where B̃1 is the differential operator:

B̃1(ϕ) = ε
4
3 β′′β−1xϕx + ε

4
3 (β′)2β−2x2ϕxx + 2ε

2
3 β′β−1xϕxz +B1(ϕ), (A.9)

and B1 is the differential operator in (3.7) where derivatives are expressed in terms
of formulas (3.11) and s replaced by β−1x. By (3.18), the first relation in (3.40),
and working as in (3.57), we obtain that

3u2
ap − a(ε

2
3
ny) = ε

2
3
nβ

2(ε
2
3
nz)

(
3V 2(x) + x

)
+O(ε

4
3
n )(x2 + 1) (A.10)

uniformly in the region described below (A.8), as n → ∞. Making use of (A.4)–
(A.10), and a standard compactness argument, passing to a subsequence, we find
that

ϕn → φ in C2
loc(R2),

where φ satisfies

φzz + β2
0(z∗)φxx − β2

0(z∗)
(
3V 2(x) + x

)
φ = 0, (x, z) ∈ R2, (A.11)

‖φ‖L∞(R2) = 1 (φ(x∗, z∗) = 1) . (A.12)

Since
3V 2(x) + x→∞ as x→ ±∞, (A.13)

a standard barrier argument, as in (3.72), and elliptic estimates [109], yield that
there exists a constant C such that

|∇φ(x, z)|+ |φ(x, z)| ≤ Ce−|x|, (x, z) ∈ R2, (A.14)

(see also Lemma 7.3 in [80]). Let (µ1, ψ1) denote the principal eigenvalue-eigenfunction
pair of

−M(ψ) = −ψ′′ +
(
3V 2(x) + x

)
ψ = µψ, ψ(±∞) = 0. (A.15)

Without loss of generality, we may assume that ψ1 is positive. Furthermore, we
have

µ1 > 0, (A.16)
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as testing against Vx < 0 readily shows (see [191]). (By virtue of (A.13) and
Theorem 10.7 in [121], the spectrum of −M, in L2(R), consists of simple eigenvalues
µ1 < µ2 < · · · with µi →∞). Now let

Φ(z) =
∫ ∞

−∞
φ(x, z)ψ1(x)dx,

where φ is as in (A.11). From (A.11), (A.14), and (A.15) with ψ = ψ1, µ = µ1, we
calculate that

Φ′′ =
∫∞
−∞ φzz(x, z)ψ1(x)dx

= β2
0(z∗)

∫∞
−∞

[
−φxx +

(
3V 2(x) + x

)
φ
]
ψ1(x)dx

= β2
0(z∗)

∫∞
−∞ φ

[
−ψ′′1 +

(
3V 2(x) + x

)
ψ1

]
dx

= µ1β
2
0(z∗)Φ,

and
|Φ| ≤ C, z ∈ R.

From (A.16), and the above two relations, it follows at once that Φ is identically zero,
which contradicts the previous relation (A.12). Consequently, we have established
the validity of the desired a-priori estimate (A.2).

The proof of the proposition is complete. �

Remark A.1. By adapting Lemma 5.3 of [191], we can show that relation (A.1)
implies that ‖ϕ‖L2(R2) ≤ C‖f‖L2(R2) for some constant that is independent of ϕ, f
and small ε > 0. In fact, as in [101, Thm. 1.2], we expect that more general a-priori
estimates of the form ‖ϕ‖Lp(R2) ≤ Cp,qε

αp,q‖f‖Lq(R2) hold true.

Appendix B. Around the Hastings-McLeod solution of the
Painlevé-II equation

In this appendix we will provide a new proof of the existence of the Hastings-
McLeod solution V of the Painlevé-II equation (3.15). Moreover, we will establish
various qualitative properties of the solution that are required for the singular per-
turbation analysis. In contrast to the original proof of Hastings and Mcleod [113]
(see also [116]), where a shooting argument was employed, here we will use an upper
and lower solution argument, which in principle is not restricted to ODE problems.
Even though such an approach was successfully applied to this problem recently
in [18], and very recently in [202], in our opinion our construction is more flexible
and intuitive. The main advantage of our proof, compared to those of the latter
references, is that, in the process, we also establish existence and uniqueness of a so-
lution of problem (3.107), which seems to be a new and useful result (recall Remark
3.13). Although a sizable literature has been devoted to the study of the Painlevé
equation (see [99, 129, 149]), we understand that the solution of this problem was
not previously known.

Our choice of lower–solution is motivated from [71] where, in particular, the
authors treat the problem

u′′ = |u|p − x, x > 0, u(0) = 0, x−
1
pu(x) → 1 as x→∞, (B.1)

where p > 1 (recall the discussion in the third part of Subsection 1.2), see also [116,
Sec. 3.2] and [122] for the case p = 2 which is the Painlevé-I equation. On the other
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hand, our choice of upper–solution is motivated from [190] where, in particular, the
authors treat the problem

u′′ = u2 − x2, x ∈ R, u(x)− |x| → 0 as |x| → ∞, (B.2)

see also Remark B.8 below.
The notation in this appendix is independent of the rest of the paper.
As in [113], see also [32, pg. 200], we will prove the following more general result:

Proposition B.1. Given p > 1, there exists a unique nonnegative solution U of

−u′′ − xu+ |u|pu = 0, x ∈ R, (B.3)

such that
u(x) → 0 as x→ −∞; u(x)− x

1
p → 0 as x→∞. (B.4)

Furthermore, we have that U ′ > 0 in R, and

U(x) = O
(
|x|− 1

4 e−
2
3 |x|

3
2

)
as x→ −∞; U(x)− x

1
p = O

(
x

1−3p
p

)
as x→∞.

(B.5)
The solution U is non-degenerate in the sense that there are no nontrivial bounded

solutions of the problem

φ′′ − [(p+ 1)Up − x]φ = 0, x ∈ R.

Note that (1.37) falls in the above class of problems by means of the transforma-
tion x→ −x.

Remark B.1. The results of this appendix can be used in extending the results of
the current paper, and treat the defocusing (1.22)− with arbitrary nonlinearity ex-
ponent q > 2. In particular, the considered model of the latter equation, with non-
linearity exponents 7/3 < q < 3 (in one space dimension and the model harmonic
potential), is particularly relevant to the physics of BEC-BCS (Bardeen-Cooper-
Schrieffer) transition in ultracold Fermi gases (see [206]).

As a stepping stone towards the proof of the above proposition, we will first prove
the following result which, as we have already mentioned, is of interest in its own
right. In particular, the solution U+ below will form the basis for our construction
of a lower-solution to problem (B.3)–(B.4).

Proposition B.2. Given p > 1, there exists a unique solution U+ of the problem
−u′′ = xu− up+1, x > 0,

u(0) = 0,

0 ≤ u(x) ≤ x
1
p , x ≥ 0.

(B.6)

Furthermore, we have that U ′+(x) > 0, x ≥ 0, and

U+(x)− x
1
p = O

(
x

1−3p
p

)
as x→∞. (B.7)

Proof. It is easy to check that x
1
p is an upper-solution of (B.6), while δχ[K,K+π] sin(x−

K) is a (weak) lower-solution provided that K ≥ 2 and 0 < δ ≤ 1 (here χ denotes
the characteristic function). (We refer the reader to [34] for more information on
piecewise smooth weak upper/lower-solutions). From now on we fix such a K, say
K = π. Then, by a well known theorem [34], for every 0 < δ ≤ 1, there exist
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solutions u1, u2 of (B.6) such that δχ[π,2π] sin(x − π) ≤ u1 ≤ u2 ≤ x
1
p , with the

property that any solution of (B.6) such that δχ[π,2π] sin(x− π) ≤ u ≤ x
1
p , satisfies

u1 ≤ u ≤ u2. (Note that u1, u2 depend on δ).
For any nontrivial solution of (B.6) we have u′′ = u(up − x) ≤ 0, x > 0. Thus

u′ is non-increasing. As a result, u′ → a as x→∞. Here a may be minus infinity.
We claim that a = 0. In fact, if a < 0, then u(x) < 0 for x large, which is a
contradiction to u ≥ 0. If a > 0, then u(x) ≥ a

2x for x > 0 large, which is a
contradiction to u(x) ≤ x

1
p . Thus a = 0. Consequently u′ ≥ 0. Actually, since u′

cannot be constant over a nontrivial interval, we find that u′ is decreasing and thus
u′ > 0.

In order to proceed further, we will show that problem (B.6) has a unique so-
lution. Inspired by the work by H. Brezis and L. Oswald in [43] (see also [171,
Sec. 8.5.2]), we will study the quotient of two solutions (for a different approach
see Remark B.2 below). Suppose that (B.6) has two solutions ũ1, ũ2. Then, we can
find 0 < δ ≤ 1 small such that δχ[π,2π] sin(x − π) ≤ ũi ≤ x

1
p , i = 1, 2. Thus, from

the previous discussion, we infer that u1 ≤ ũi ≤ u2, i = 1, 2. We only need to prove
that u1 = u2. From (B.6), we find that

u′′2
u2

≥ u′′1
u1
.

The above inequality implies that the function u′2u1 − u2u
′
1 is non-decreasing, and

so
(u′2u1 − u2u

′
1)(x) ≥ (u′2u1 − u2u

′
1)(0) = 0, x > 0,

which in turn implies that the function u2
u1

is non-decreasing. Therefore, we get

u2(x)
u1(x)

≥ lim
x→0+

u2(x)
u1(x)

=
u′2(0)
u′1(0)

, x > 0,

by L’Hospital’s rule (recall that u′1(0) > 0). From u2 ≥ u1 and u1(0) = u2(0) = 0,
we know that u′2(0) ≥ u′1(0). Suppose that u′2(0) > u′1(0). We have

u1 ≤
u′1(0)
u′2(0)

u2 ≤
u′1(0)
u′2(0)

x
1
p , x > 0.

So

u′′1 = u1(u
p
1 − x) ≤ u1

[(
u′1(0)
u′2(0)

)p

− 1
]
x ≤ −cx

for x > 0 large, and some constant c > 0, since u′1(0) < u′2(0) and u′1 > 0. It follows
that u′1 < 0 for x > 0 large. This is a contradiction to u′1(x) > 0, x ≥ 0. We
conclude that u′1(0) = u′2(0), which gives u1 = u2.

Let u denote the unique solution of (B.6). Adapting an argument from [71], we
will show that

x−
1
pu(x) → 1 as x→∞. (B.8)

From u′(∞) = 0, we obtain∫ ∞

0

u(x) (x− up(x)) dx = −
∫ ∞

0

u′′(x)dx = u′(0).

Hence, we can choose xi → ∞ such that u(xi) (xi − up(xi)) → 0 as i → ∞, and
recalling that u′ > 0, we find that

xi − up(xi) → 0 as i→∞. (B.9)
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Now, for any small θ > 0, we claim that

u(x) ≥ (1− θ)x
1
p ,

for x > 0 large. Suppose that the claim is not true. Then, there are 0 < θ < 1 and
x̃i →∞ such that

u(x̃i) < (1− θ)x̃
1
p

i . (B.10)

It is easy to check that there is a T > 0 large such that, for x > T , we have

−
(
(1− θ)x

1
p

)′′
< x(1− θ)x

1
p −

(
(1− θ)x

1
p

)p+1

. (B.11)

By (B.9), we can choose a constant T̄ > T , such that u(T̄ ) > (1 − θ)T̄
1
p . Define

v(x) = u(x) if x ∈ [0, T̄ ]; v(x) = max
(
u(x), (1− θ)x

1
p

)
if x ∈ [T̄ ,∞). Then v is

continuous, 0 ≤ v ≤ x
1
p , and is a (weak) lower-solution of (B.6), in view of (B.11)

and [34]. As a result, from [168, Thm. 2.10], problem (B.6) has a solution u∗ with
v ≤ u∗ ≤ x

1
p . On the other hand, since v ≥ u, and u 6= v (by (B.10)), we find that

u∗ 6= u. This contradicts the uniqueness of the solutions of (B.6).
It remains to show the validity of estimate (B.7). We have

u′′ = u
(up − x)

u− x
1
p

(u− x
1
p ) = q(x)(u− x

1
p ), x > 0, (B.12)

with
q(x)
x

→ p as x→∞, (B.13)

by (B.8). (Note that, by the maximum principle, we get u(x) < x
1
p , x > 0). Let

w = u− x
1
p , x > 0.

Then, from (B.12), we obtain that

−w′′ + q(x)w − 1
p

(
1
p
− 1
)
x

1
p−2 = 0, x > 0. (B.14)

We claim that there exist L, M > 0 sufficiently large such that, for every δ ∈ (0, 1),
the function

w(x) = −Mx
1
p−3 − δx

1
p ,

is a lower-solution of (B.14) in [L,∞). Indeed, thanks to (B.13), for every δ ∈ (0, 1),
we find that

−w′′ + q(x)w − 1
p

(
1
p − 1

)
x

1
p−2 ≤

M
(

1
p − 3

)(
1
p − 4

)
x

1
p−5 + δ 1

p

(
1
p − 1

)
x

1
p−2 − p

2Mx
1
p−2 − p

2δx
1
p +1 − 1

p

(
1
p − 1

)
x

1
p−2 ≤

Mx
1
p−5

[(
1
p − 3

)(
1
p − 4

)
+
(

1
M − p

2

)
x3
]
< 0,

for x > L, provided M > 4
p and L is sufficiently large (independently of M). We

fix such an L > 0, and choose M > 4
p large, depending only on L, such that

w(L) < w(L) for every δ ∈ (0, 1). In view of (B.8), for every δ ∈ (0, 1), we have

w(x)− w(x) = −Mx
1
p−3 − δx

1
p − (u− x

1
p ) ≤ x

1
p

(
−δ − (x−

1
pu− 1)

)
→ −∞
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as x→∞. Thus, by the maximum principle, we deduce that w(x) ≤ w(x), x ≥ L,
i.e.,

u(x)− x
1
p ≥ −Mx

1
p−3 − δx

1
p , x ≥ L, 0 < δ < 1.

By letting δ → 0, we deduce that u(x) − x
1
p ≥ −Mx

1
p−3, x ≥ L. The validity of

(B.7) follows at once from this lower bound and the upper bound u ≤ x
1
p .

The proof of the proposition is complete. �

Remark B.2. An alternative way to establish uniqueness for (B.6) is the following:
Suppose that V+ solves (B.6). Then, it is easy to see that λV+, λ ≥ 1, is a family
of upper solutions of (B.6) such that λV+(0) = U+(0) = 0, and λV+ − U+ →∞ as
x → ∞ if λ > 1. Moreover, since V ′+(0) > 0, we have that λV+ > U+ in (0,∞)
if λ � 1. Therefore, by Serrin’s sweeping technique (see [184, pg. 40]), we get
V+ ≥ U+ in [0,∞). Similarly, we can show that V+ ≤ U+ in [0,∞). Consequently,
we get that V+ ≡ U+.

Remark B.3. In relation with the problems mentioned in the third part of Sub-
section 1.2, it would be of interest to generalize Proposition B.2 in the following
direction: Study solutions u : R2 → C (if they exist) of the problem

∆u+ (|y| − |u|p)u = 0, y ∈ R2,

u(0) = 0; |y|−
1
p |u| → 1 as |y| → ∞.

We cannot resist to compare the above problem with the well known ∆u+
(
1− |u|2

)
u = 0, y ∈ R2,

u(0) = 0; |u| → 1 as |y| → ∞,

see [120], [170], and the references in the research monographs [39], [171], [183].

The following proposition plays an important role in relation with Remark 3.13.

Proposition B.3. The solution U+ of (B.6) is non-degenerate in the sense that
there are no nontrivial bounded solutions of the problem

φ′′ −
[
(p+ 1)Up

+ − x
]
φ = 0, x > 0, φ(0) = 0. (B.15)

Proof. Suppose that there exists a nontrivial bounded solution φ of (B.15). The fact
that (p+1)Up

+−x→∞ as x→∞, easily implies that φ has a finite number of zeros
in [0,∞), all of them simple, and that |φ|, |φ′| decay to zero super–exponentially
as x→∞. Let r0 ≥ 0 be the largest zero of φ. Without loss of generality, we may
assume that φ′(r0) > 0. Differentiating (B.6), multiplying the resulting identity
by φ, then multiplying (B.15) by U ′+, subtracting, and integrating by parts over
(r0,∞), we readily arrive at

U ′+(r0)φ′(r0) = −
∫ ∞

r0

U+φdx.

However, this is a contradiction to U ′+ > 0, φ′(r0) > 0, and φ(x) > 0, x > r0.
The proof of the proposition is complete. �

Remark B.4. Note that, since U+(0) = 0 and p > 1, the potential (p + 1)Up
+ − x

of the linear operator in the righthand side of (B.15) is negative for small x > 0.
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We can now give the
PROOF OF PROPOSITION B.1: Let U+ be as in Proposition B.2, it is clear that

u(x) =

 U+(x), x ≥ 0,

0, x ≤ 0,
(B.16)

is a (weak) lower-solution of (B.3)-(B.4).
Next we will construct an upper-solution of (B.3)–(B.4), for a different construc-

tion we refer the interested reader to Remark B.10 below. Let

u0(x) =

 x
1
p , x ≥ 0,

0, x ≤ 0.
(B.17)

Then, fix a continuous function φ ≥ 0 such that u0 + φ ∈ C2(R) and φ(x) = 0 if
|x| ≥ 1. Let µ1 > 0, ψ1 > 0 denote the principal eigenvalue and the corresponding
L∞-normalized eigenfunction of

−ψ′′ + ((p+ 1)up
0 − x)ψ = µψ, ψ ∈ L2(R).

Such µ1, ψ1 exist, since the potential

Q(x) ≡ (p+ 1)up
0 − x =

 px, x ≥ 0,

−x, x ≤ 0,
(B.18)

clearly satisfies infx∈R Q(x) < lim infx→±∞Q(x), see [178] (see also [121, Thm.
10.7]). Furthermore, ψ1, |ψ′1|, |ψ′′1 | decay to zero super-exponentially as |x| → +∞.
More precisely, there exist constants c± and x− < 0, x+ > 0 such that

ψ1(x) ∼ c±
exp

{
−
∣∣∣∫ x

x±

√
Q(t)− µ1dt

∣∣∣}
[Q(x)− µ1]

1
4

as x→ ±∞, (B.19)

see [63, Chap. IV, Thm. 14] and [16, Appx. A]. We can now define our upper
solution for (B.3)–(B.4) as

ū = u0 + φ+MζDψ1

with M, D > 1 large constants to be chosen, and ζD(x) = z(x − D), where z ∈
C∞(R) is such that z = 1, t ≤ 0; z = 0, t ≥ 1; z′ < 0, t ∈ (0, 1) . We proceed in
verifying that ū is indeed an upper solution. In [0, 1], ū = (u0 + φ) +Mψ1 and

−ū′′ − xū+ ūp+1 ≥ −CM + cMp+1 > 0,

provided M > 0 is sufficiently large (C, c > 0 are independent of large M). We fix
such an M > 0. In [1, D], we have ū = u0 +Mψ1 and

−ū′′ − xū+ ūp+1 = −u′′0 −Mψ′′1 − xu0 −Mxψ1 + (u0 +Mψ1)p+1

≥ −Mψ′′1 − xu0 −Mxψ1 + up+1
0 + (p+ 1)up

0Mψ1 = Mµ1ψ1 > 0.
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In [D,D + 1], we have ū = u0 +MζDψ1 and

−ū′′ − xū+ ūp+1 = −u′′0 −M (ζDψ1)
′′ − xu0 −MxζDψ1 + (u0 +MζDψ1)

p+1

≥ −1
p

(
1
p
− 1
)
x

1
p−2 − Ce−x − xu0 + up+1

0

= −1
p

(
1
p
− 1
)
x

1
p−2 − Ce−x > 0, (B.20)

provided D is chosen large (C > 0 is independent of D). In [D + 1,+∞), we
plainly have ū = x

1
p . Analogous calculations also hold in (−∞, 0]. Consequently,

the function ū is an upper-solution of (B.3)-(B.4).
It follows from [168, Thm. 2.10] as before that there exists a solution of (B.3)

such that u ≤ u ≤ ū. The second estimate in (B.5) follows at once from (B.7) and
(B.16); the first one follows from the fact that, for every solution of (B.3) that tends
to zero as x→ −∞, there exists some constant c > 0 such that

u(x) ∼ cAi(−x) as x→ −∞, (B.21)

(recall the discussion leading to (3.25)), and (3.24).
We will show that u′ > 0. We follow [18]. Since 0 ≤ u ≤ x

1
p for x ≥ D+ 1, as in

the proof of Proposition B.2, we obtain that u′ → 0 as x→∞. Moreover, it is easy
to show that u′ → 0 super-exponentially as x → −∞. Since u is strictly positive
(by the maximum principle), in view of (B.3), we can write(

u′′

u
− up

)′
= −1,

i.e.,

v′′ − 1
u
vv′ − pupv = −u, where v = u′. (B.22)

Since v → 0 as |x| → ∞, it follows that if v is not strictly positive, then there exists
x0 such that

v(x0) ≤ 0, v′(x0) = 0, v′′(x0) ≥ 0,
but this is impossible because (B.22) implies

v′′(x0)− pup(x0)v(x0) = −u(x0) < 0,

and therefore we conclude that u′ is strictly positive. The same conclusion can
also be derived by adapting an argument from [202], i.e., applying the maximum
principle to the function u′

u (keep in mind the second identity in (3.29)). A more
PDE approach is to apply the moving plane method [108], starting from −∞, as in
[107].

Uniqueness (of nonnegative solutions) for the problem (B.3)–(B.4) can be estab-
lished in a similar manner as we did in Proposition B.2 for the problem (B.6): Again
we suppose that there exist two distinct non-negative solutions u1, u2 of (B.3)–(B.4).
By the strong maximum principle, we deduce that both are strictly positive. Hence,
there is some small δ > 0 such that ui(x) ≥ δχ[π,2π] sin(x − π), i = 1, 2, for every
x ∈ R. Recall that the function in the righthand side is a lower-solution of (B.3)–
(B.4). Moreover, both ui, i = 1, 2, will eventually lie below the graph of x

1
p (note

that u−x
1
p is strictly convex as long as it is nonnegative). Thus, by virtue of (3.24),

(B.18), (B.19) and (B.21), we can choose sufficiently large numbers D,M such that
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ui(x) ≤ ū(x), i = 1, 2, for every x ∈ R. (This is a fine point that was not present in
the uniqueness proof for (B.6)). Recall that the function in the righthand side is an
upper-solution of (B.3)–(B.4). Consequently, we may assume that u1(x) ≤ u2(x),
x ∈ R, and it is easy to see that u2

u1
is non-decreasing in R. On the other hand, it

follows from the second relation in (B.4) that u2
u1
→ 1 as x → ∞. So, we get that

u2 ≤ u1 in R which is a contradiction.
Finally, the non-degeneracy of U can be derived as in Proposition B.3 for the

non-degeneracy of U+.
The proof of the proposition is complete. �

Remark B.5. The fact that problem (B.3)–(B.4) has a unique solution, which is
a stronger result, has been proven in [113].

In contrast, problem (B.1) with p = 2, has exactly two solutions. Existence of two
solutions has been established by Holmes and Spence [122] by a shooting argument
(and in [71] for any p > 1, via the method of upper/ lower solutions and variational
arguments, perhaps unaware of [122]), where the authors also conjectured that these
solutions were indeed the only ones. Their conjecture was settled, to the affirmative,
by Hastings and Troy [114]. However, their proof was, as we discover now ( almost
25 years later!), much more complicated than necessary, and relied on some four
decimal point numerical calculations. Motivated by an idea of ours from [135], where
problem (B.2) was shown to have exactly two solutions, we can give a truly simple
proof of the uniqueness result of [114] as follows. We know from [71], [122] that
problem (B.1) with p = 2 has a unique increasing solution U+. Let Ũ be any other
solution, and let η = U+ − Ũ . By an easy calculation, and the maximum principle,
we find that η has to be a positive solution of

η′′ − 2U+(x)η + η2 = 0, x > 0, η(0) = 0, η(x) → 0 as x→∞. (B.23)

The key observation now is that the solution η furnishes an odd standing wave
solution of a focusing NLS equation of the form (1.21)+, with N = 1, q = 2.
Thankfully, in the last years a lot of research and efforts of many authors have been
devoted to the uniqueness of ground states of radially symmetric focusing nonlinear
Schrödinger equations with non-decreasing potential (in r > 0) and power nonlin-
earity, considered in the whole space, in a ball, or an annulus (see [48] for the state
of the art). The problem of uniqueness of η resembles more the case of the annu-
lus and, having all those tools at our disposal which were not available at the time
that [114] was written, we can infer that uniqueness as well as non-degeneracy of
a positive solution η of (B.23) follow directly from [91, Thm. 1.2]. (In the latter
reference, it was assumed that the potential is strictly positive but it is easy to check
that their proof works equally well for the case at hand, see also [48], [132]). The
non-degeneracy property of the solution Ũ , which follows readily, is a new result
and, in the context of the original singular perturbation problem [197] (see also [71],
[73]) is more useful than uniqueness (recall Remark 3.7).

To the best of our knowledge, the similarities between the singularly perturbed
(multi-dimensional) elliptic problem in [71], arising from the study of the Lazer-
Mckenna conjecture, and the one-dimensional one in [114], [122], [197], arising from
the problem of vertical flow of an internally heated Boussinesq fluid with viscous
dissipation and pressure work, were previously unknown.

The proof of the Lazer-Mckenna conjecture in [71] consists of constructing so-
lutions of the problem with arbitrary many (clustering) sharp downward spikes on
top of a positive minimizer of the corresponding energy functional, as the small
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parameter ε > 0 tends to zero. The aforementioned minimizer has a corner layer,
along the boundary of the domain, whose profile is described by the positive solu-
tion of (B.1). It is our hope that the techniques of the present paper, together with
those already developed in [78], [160], can be used to construct new solutions, having
corner layer profile described by the unstable solution of (B.1) (is this unique and
non-degenrate for p 6= 2?), at least when ε stays away from certain critical values
ε1 > ε2 > · · · > εi → 0 (see [135] for a related problem). These solutions would
be slightly negative in a small (ε-dependent) neighborhood of the boundary, with
their Morse index diverging as ε→ 0 (away from the critical numbers). Then, one
could use the techniques of [85], [200] in order to add downward spikes on top of that
unstable solution. One may even be able to prove the existence of arbitrary many so-
lutions, as ε→ 0, which was the original assertion of the Lazer-Mckenna conjecture
settled in [71], just by the fact that the solution’s Morse index diverges (recall also
the discussion following (6.2)). This would constitute a proof of the Lazer-Mckenna
conjecture, as treated in [71], [73], that is valid even for supercritical exponents.

Remark B.6. The related boundary value problem

uxx = u(u2 − x), x > 0; ux(0) = 0, u−
√
x→ 0 as x→∞, (B.24)

arises in the study of the superheating field attached to a semi-infinite supercon-
ductor, for the construction of a family of approximate solutions of the Ginzburg-
Landau system via the procedure of (formally) matching inner and outer solutions
(see [57, 117]). Existence for the problem (B.24) has been established by shooting
arguments in [117], and by topological ones in [172]. We can give a new proof of
their results, valid for any power nonlinearity (as in Proposition B.2), by slightly
modifying the above proof of Proposition B.1 as follows: One still uses U+ as a
lower solution of (B.24) (it is a solution and U ′+(0) > 0, see [34]); however in the
construction of the upper solution we have to be careful to chose the function φ
such that (u0 + φ)x(0) ≤ 0 (and afterwards the principal eigenfunction subject to
Neumann boundary conditions at x = 0). It was shown in [112] that, without any
assumptions at infinity, problem (B.24) has exactly one global positive solution. As
a matter of fact, we expect that an analogous property holds true for the problem
(B.6), see also [42] for a related result concerning (B.2).

Remark B.7. Since p > 1, the solutions that we have constructed in Proposi-
tions B.1, B.2 have infinite energy (more precisely, their derivative does not belong
in L2(0,∞)). Nevertheless, we believe that one can also establish existence (and
further characterize the solutions) for problems (B.3)–(B.4), (B.6), and (B.24) by
minimizing a suitable re-normalized energy functional, as in [170], or minimizing
the standard energy functional of (B.3) in a large interval [−R,R] with boundary
conditions u(−R) = 0; u(R) = R

1
p , and then letting R→∞ (see [37], [49], [82] for

some related situations). Similarly for the other cases.

Remark B.8. If 0 < p ≤ 1, then there exists a unique solution of (B.3)–(B.4) such
that u > u0, where u0 is as in (B.17). We cannot resist to give a short proof of
this, based on [134]. If 0 < p < 1, it is easy to see that u0 is a lower solution, while
u0 + ϕ, with ϕ > 0 defined by

−ϕxx + [(p+ 1)up
0 − x]ϕ = (u0)xx ≥ 0, ϕ(±∞) = 0,
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is an upper solution of (B.3)–(B.4). If p = 1, then u0 is a weak lower solution,
while u0 + φ, with φ > 0 the unique continuous solution of

−φxx + [(p+ 1)up
0 − x]φ = 0, φx(0−)− φx(0+) = 1, φ(±∞) = 0,

is an upper solution of (B.3)–(B.4) (recall (B.18)). Existence of the desired solution
follows at once. Uniqueness follows simply by taking the difference of the equations
satisfied by two pairs of solutions.

The case p = 1, which is equivalent to (B.2), has received considerable atten-
tion lately, mainly since it appears in the study of the spatial segregation limit of
competitive systems [62], [127] (see also [123], [190]). Interestingly enough, we have
noticed that problem (B.2) also describes the corner layer profile of solutions in the
paper [115] by Hastings and McLeod, in the case where the constant c therein, which
arises from an integration, is chosen to be zero rather than strictly positive.

Remark B.9. Similar results should also hold true for the equation

u′′ + x|x|su− |u|pu = 0, x ∈ R,

where p, s > 0.

Remark B.10. As we have already seen in Remark B.8, there exists a unique
solution U > max{0, x} of the problem

u′′ = pu(u− x) = 0, x ∈ R, (B.25)

such that U → 0 as x→ −∞; U − x→ 0 as x→∞. (We have found out in [135],
by arguing as in Remark B.5 above, that there exists exactly one more solution U−
of (B.25) which satisfies the boundary conditions, and in fact U− < max{0, x}).
Actually, the solution U is the unique (global) solution of (B.25) such that u ≥
x
2 , x ∈ R. This follows at once from the fact that the equation in (B.2) has a
unique nonnegative solution, see [42]. Moreover, since p > 1, it is easy to see that
the function U

1
p is an upper-solution of (B.3)–(B.4).
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[38] F. Béthuel, H. Brezis, and F. Hélein, Asymptotics for the minimization of a Ginzburg–

Landau functional, Calc. Var. Partial Differential Equations 1 (1993), 123-148.
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equations, Zürich lectures in advanced mathematics, Europ. Math. Soc., 2011.

[165] K. Nakashima, W-M. Ni, and L. Su, An indefinite nonlinear diffusion problem in population
genetics, I: existence and limiting profiles, Discrete Cont. Dyn. Syst. 27, (2010), 617-641.

[166] N. N. Nefedov, and K. Sakamoto, Multi–dimensional stationary internal layers for
spatially inhomogeneous reaction–diffusion equations with balanced nonlinearity, Hiroshima
Math. J. 33 (2003), 391-432.

[167] B. Noris, S. Terracini, H. Tavares, and G. Verzini, Uniform Hölder bounds for nonlinear
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