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Abstract

In this manuscript, we consider a Cahn-Hilliard/Allen-Cahn equation
is introduced in [19]. We give an existence of the solution, slightly im-
proved from [20]. We also present a stochastic version of this equation in

2].
1 Introduction
We consider a scalar Cahn-Hilliard/Allen-Cahn equation;
uy = —DA(Au — f'(u)) + (Au— f'(u)) in U x[0,T), (1)

with

{ u(z,0) = up(z) in U,

Qu_ 980 0 on U x [0,T), @)

v ov

where U is a smooth bounded domain in R¢, v is the unit normal on OU, D > 0
is a diffusion constant and f is a quartic bistable potential which has zeros at
+1. In this paper for simplicity, we set f(s) := (1 — s2)2.

We are interested in mathematical properties of (1) and we improve existence
of solution. Additionally, we consider a stochastic version of this equation and
also give an existence and regularity of solution for the stochastic problem.

This equation (1) is introduced by Karali and Katsoulakis [19] as a simpli-
fication of a mesoscopic model for multiple microscopic mechanism in surface
processes. Surface process had been modeled using continuum-type reaction
diffusion models. These modelings are under assumption of uniform adsorptive
layer in space. Even more, in natural phenomenon, it is necessary to con-
sider the detailed interactions between particles and treat them phenomenologi-
cally. In [21], they introduced a generalization of mesoscopic theory developed in



[17]. As a specific example, they dealt with a combination of Arrhenius adsorp-
tion/desorption dynamics, metropolis surface diffusion and simple unimolecular
reaction. For this phenomena, the mesoscopic equation is described by

uy— DV - [Vu—Bu(1—u)V Iy xu]—[kep(1—u) —kqu exp(—BJg*u)|+k.u =0 (3)

where u is a coverage, D > 0 is a diffusion constant, k. is a reaction constant,
kq is a desorption constant, k, is an adsorption constant, p (constant) is a
partial pressure of the gaseous species, J; and J,, are intermolecular potentials
for surface desorption and migration. Near critical temperature and in case
of k. = 0, by rescaling in space, identifying potentials J; and J,, as a radial
approximation of Dirac distribution and dropping down high order term of its
Taylar expansion, they derived the CH/AC equation (1), which still retains its
fundamental structure. For more details for the modeling, we refer to Sec 1.3
in [19].

2 Deterministic Problem

In [19] they considered the e-scaled problem;

ui = 2 DA(MwE — 7 /ge)) (-1 'g)) (4)

and studied the limit evolution as € tends to 0. For the Allen-Cahn equation
or the Cahn-Hilliard equation, respectively, there are several studies about the
singular limit as € tends to 0. It is well-known that the limit evolution of the
Allen-Cahn equation is a mean curvature flow, which is proved in the several
methods, formally by Fife in [10], Rubinstein, Sternberg and Keller in [27], from
the viscosity solution by Evans and Spruck in [9] and Chen, Giga and Goto in
[6], in the sense of Brakke’s motion [4] by Ilmanen in [18]. For the Cahn-Hilliard
equation, it is proved that the limit evolution (in different scaling from ours) is
the Mullins-Sekerka model, which was formally proved in [26] and rigorously in
[3].
For CH/AC equation (4), they showed that the limit evolution is also mean
curvature flow but with a different coefficient;

V = uok (5)

where V' is a normal velocity and « is a mean curvature of the limit interface, o
is a surface tension given by o = jjl v/ f(8)/2 ds and p is a mobility constant
given by

p= 2(/ xq' dz)~", (6)
R
where ¢ is a solution of the ODE;
—¢"+f(¢)=01in R and ¢(doo) = %1, (7)

which is known as a function used in order to describe a transition profile of the
Allen-Cahn equation and x is a solution of the ODE;

-Dx"+x=¢ in R and x(+o0)=0. (8)



We remark that the mobility is completely different from the one of the Allen-
Cahn equation (V = k), and it holds that puo > 1 by a simple calculation, which
implies that it speeds up the mean curvature flow.

Besides, focusing on a dependence of the diffusion constant D > 0, in [20]
they showed that solutions of (1) converge to a solution of the Allen-Cahn
equation as D tends to 0 under some technical assumptions.

Concerning the Allen-Cahn structure, we rewrite (1) with (2) to the following
form;

ug=(1—DA) in UxI[0,T),
v=Au— f'(u) in UxI[0,T

w(z,0) =ug(x) in U, 9)
Gu=9v=0  on OU.

For the diffused interface problem, we usually consider the free energy functional
given by

E(u) = /U @ + f(u) da. (10)

For a pair of solution (u,v) of (1) it holds that

d , B

aE(u) = —A(Au — f(u)u de = —/Uv(—DAv +v) dz )

= —/ D|Vv|? +v? dx <0,
U

and the equation (4) is a gradient flow for the free energy functional F(u) with
respect to the metric (f,g) = (f, (1 — DA) " g) 2.

Here we provide an existence of the solution, especially in dimension d =
1,2, 3, slightly improving the result obtained in [20].

Notation. We set the initial energy Ey := FE(ug), which is well-defined for
ug € HY(U) in d = 1,2, 3. We set

d
HE = {u € HY(U)| - =0 on 8U} (12)
and J JA
4 .- | & =82
Hy,. = {u e H*(U) o o 0 on aU} . (13)

We remark that norms on HZ, which is given by
1
{IlAullZ2 0y + nllull7qr}?  for any >0 (14)
are equivalent to H2-norm. Similarly, norms on H}} given by
1
{I8%ull72 ) +nllullfzqr}?  for any >0 (15)

are equivalent to H*-norm, referred to [25].

Theorem 2.1. Suppose the initial data ug € H'(U), then there exists a solution
w of the initial boundary problem (1) with (2) satisfying

uwe C([0,T]; HY(U)) N L*(0,T; HZ) N L*(U x (0,T)) for all T >0. (16)



Additionally, the function v satisfies v € L2(0,T; H*(U)).
Moreover if the initial data ug € H?(U), then

ue C([0,T]; HL) NL2(0,T; Hy) for all T > 0. (17)

Remark 1. The same claim also holds for a rectangular domain under a peri-
odic boundary condition for u and its derivatives up to the 3rd.

Proof. (STEP1) The proof is by a usual Galerkin method. First we consider
the case of the initial value ug € H'(U). Let {\; }sen be eigenvalues and {¢; }:en
be eigenfunctions of Laplacian under the Neumann boundary condition

9¢i

=X = A¢; in U,
ov

=0 on oU for i=1,2,---. (18)

We can assume that the first eigenvalue Ay = 0 and the normalization condition
(@i, ¢5) 2y = 65 for 0 = Ay < A < A3 < --- without loss of generality. For
every N € N we consider the following function u? defined by the Galerkin
ansatz

N
ul (z,t) = Zafv ()i (), (19)

/U u ¢; + DAUNA¢; — Df (uN)A¢; — AuN g + f/(uN)gj de =0 (20)

forj=1,---,N, and

N

uM (2,0) = > (uo, 6i) 12 () ¢i(®). (21)

i=1

This yields the following initial value problem of ODE for aj-v (t)forj=1,---,N

L (0) + DX (1) + DA (/) 6) 1200y + Nl + (), 67) 2 = 0,
(22)
with

a} (0) = (uo, d5)2()- (23)
By the standard argument of ODE; this initial value problem has a local solution.
We want to show that a global solution {a}’}}¥ exists on (0,T) for any T > 0.
By multiplying ¢;uY for each j = 1,---, N by both side of (22), taking

Z;-V:l and integrating, we have

d
@/ |uN\2 dm—f—/ D|AuN\2 dx + D(V(f’(uN)LVuN)LZ(U)
U U (24)
+/ (VulN |2 dz + (f (u™),u™) 2y = 0.
U
Since V(f'(u™)) = /(N )Vu" = 12(u’V)?Vu" — 4Vu", we have

DV (™)), Vu ) 2wy = 12D/U(UN)2|VUN\2 dm—4D/U|VuN|2 dz. (25)



Similarly, since f'(u’V) = 4(u™)? — 4u”, we have
(P )y =4 [ )= 1 d (26)
U
Thus by (24), (25) and (26), we have

d

a/ |u™ |2 dx+/ D|AUN 2 4 |[VuN |2 + [uN [ da
U U (27)

§4/ [uV|? dx+4D/ |Vu® |2 da.
U U

For the second term of RHS of (27), by interpolation and the equivalence of the
norm (14), we have

4D/ ‘VUN|2 dxr S CDHUNHLQ(U)HUNHHz(U)
U
< Dl iz (| 18P do+ o e}t (29
D
< cD/ [u™|? dx + —/ |AuN|? de.
U 2 Ju
By (27) and (28), we have
d D
—/ [u™ % dx +/ AW+ VAN P+ [l de < c/ [u™* dz.  (29)
Thus by Gronwall’s inequality and by the definition of aj-v (0) in (23), we have

/ [uV|? dx < c(T)/ [u™ (x,0)|? dz < c/ [uo|? de. (30)
U U U

for an arbitrary fixed 7" > 0. Thus by (30) and (29), we obtain uniform bounds
L>=(0,T; L2(U)), L?(0,T; H2) and LY(U x (0,T)) norm of u™.

Since HUNHL2(U) = Zfil(afv(t))2, by the bound of HuNHLw(O’T;LQ(U)), we
obtain a priori bound of a}’ for j = 1,---, N. Thus the ODE (22) and (23) have
a global solution.

Next, we set bj-v(t) and v™ (x,t) such as

Y = —0ja (1) = (F (). 6)) 2w (31)
and
N
oV (z,t) = Z bév(t)% (z) (32)

By the definition of vV and b}, we have for ¢ € (0, 7]
t
/ / DIV P+ oV 2 de dt + BN (1) = E@™(0)) < Eo.  (33)
0 U

Thus we obtain uniform bounds of |[u® || 0,711 (1)) and VN || 20,701 (1))



Let Iy be a projection of L2(U) onto span{¢1,--- ,¢n}. Forall ¢ € L?(0,T; H(U))
by (22), (31) and (32) we have

\/ /Btu dedt|—|/ /atuNHNC dadt|
:|/0 /U—DVUNVHNC-i-/OT/UUNHNC dxdt] (34)

< clloM 2o,z @) €] 20,1511 (1) -

Thus we obtain a uniform bound of [|8;u™ || 20,7, {(H(U)"): Together with the
bounds of L*(U x (0,T)) and L2(0,T; H2) norm of 4", by compactness results
in [22], there exist (u,v) and a subsequence, which we denote {u™N} and {v™}
again, such that

uN —u  weak —x in L>(0,T; H (U)), (35)

u —u  weakly in L*(0,T;HZ) and L*((0,T) x U), (36)
uN —u  strongly in C([0,T); L*(U)), (37)

ul — uy weakly in L*(0,T;{H (U)}), (38)

uV —u  strongly in L2(U x (0,T)) and a.e. in U x (0,T) (39)

and
oV = weakly in LQ(O, T; Hl(U)) (40)

as N tends to oo.

Consequently, we can pass to the limit in (19), (20) and (21) and the pair
of (u,v) satisfies the equation. For the convergence of the initial value u™ (0),
by the strong convergence of vV in C([0,T]; L?(U)), u™ (0) converges to ug in
L?(U). Thus we have that u(0) = ug. Then the first claim of the theorem holds.

(STEP 2) Next we consider the case of the initial value ug € H?(U). Adding
to the previous calculation, we consider the bound of sup,¢ 1) ||AuN 2wy

By multiplying ¢;A%u® for j =1, , N by both side of (22), taking Z _, and
integrating, and by the Cauchy-Schwarz inequality, we have

;t/ |AuN|2dx+/ DIA2uN?2 1 DA 2 do
/D|Af |2da+c/ |AuN|? d.
For the first term of (41) we claim that
/D|Af M2 dx < = /|A2 N2 dx—l—c/ |AuN|? dz + c. (42)
Indeed, since Af/(u) = f"(uV)|VuN|? + f(u™N)AuY, we have
[ 1ar @) o
U

gc/ N 2|V dx+c/(1+|uN|4)\qu|2 dx
U U

(41)

< el oo IV [0y + el [ /U AN di + ¢ /U AN de.
(43)



For the term || Vu!V||1, (7)» by the Sobolev inequality, interpolation and (15), we
have

1—4 d d
190 Naay < el vt g < el ey I gy < elA20 a0 + )%
(44)
For the term [, |AuN|? dx, by interpolation and (15) we have
2 1 1
1AwN| 2wy < N[u 2wy < el ol Gy < e+ A% 122 1r)5.
(45)
Thus by (43), (44) and (45) we have
a
[ 1AF )R do <l e 1+ 1A% )
o (L 18207 ) e [ 100 do.
(46)
For the norm [[uV||pe (1), in d = 1, we have
[uN |y < elle™ [y < el Lo o @y (47)

In d = 2, since H'*5(U) C L>*(U) for all € > 0, by taking ¢ = } and interpola-
tion, we have
e 1
NH11L[1(U)||uNH§I4(U) < C(1+||A2UNH2Lz(U))12-
(48)
In d = 3, since U is smooth we can use Agmon’s inequality and by (45) we
have

|\uN||L<><(U) < C”uNHHH'E(U) <cllu

1 1 a1
™l < ella™ 1 o 0 Wy < e+ AN Bag) 5. (49)
Thus together with (43), (44), (45), (46), (47) and (49) by the Cauchy-Schwarz
inequality, (42) holds. Thus by (41) and (42), we have
d D
@/ |AuN |2dx +/ Z|A2uN|2 + D|AUN|? dx < c/ |AuN |2 d 4. (50)
U U U
By applying Gronwall’s inequality again, we have

sup / |AuN|? dx < c/ |AuN (0)|? dx 4 ¢ < c/ |Aug|? dz + c. (51)
te(0,T)JU U U

By (50) and (51), we obtain uniform bounds of ||uN||Loc(07T;H’z.) and HuN||L2(07T;H}4V .
Thus we can take a subsequence satisfying ) 4

u —u  weak — % in L>(0,T; HZ) (52)
and
uN —u  weakly in L2(0,T; H}) (53)

adding to the previous convergence from (35) to (39) as N tends to co. There-
fore, all the claim of the theorem holds.
O

Remark 2. Even better estimates and regularity of the solutions will be ob-
tained by following up the semi-group theory. See the forthcoming paper [14].



3 Stochastic problem

Next, we discuss a stochastic version of this model. We consider the following
CH/AC equation with a multiplicative noise;

uy = —DA(Au — f'(u)) + (Au — f'(u)) + o(w)W in U x[0,T),

u(w, 0) = uo(a) n U &
271: — BgAVu =0 on OU x [(),T')7

where o(+) is a bounded and Lipschitz function and W is a space-time white
noise (for the noise we refer to [28]), ug is in LI(U) for ¢ € [4,+oc]. For the
class of U we will mention details in section 3.1.

The first motivation to consider this stochastic model is presented in [2].
Here we will explain the other interesting motivation, that is, a switching prob-
lem of a stochastically perturbed Allen-Cahn equation, which was studied in
[8], [15], [16] and etc.. For a deterministic Allen-Cahn equation, there are two
stable states £1. If we consider the Allen-Cahn equation with a white noise (re-
mark that it is with an additive noise), it is known that the switching between
deterministic two stable states +1 rarely occurs with a small probability by the
influence of the noise. The probability is determined through the minimization
problem of its action functional within the Wentzell-Freidlin theory of large
deviations [13] in [11]. The mathematical analysis of the singular limit of the
action functional is also an interesting topic from view of calculus of variation
and there are several analysis in [16], [30], [23], [24] and etc..

Since the singular evolution in a deterministic CH/AC equation is a mean
curvature flow (of course, the mobility constant is different) similarly to the
one for the Allen-Cahn equation, we can expect the same terminology and also
analogy holds for a stochastic CH/AC equation. Also from the other aspect,
it seems possible to consider the action functional from relation to the optimal
control theory [12]

Here, we concentrate on discussing the existence of the solution of (54). For
a stochastic Cahn-Hilliard equation, the existence of solution was proved in
[7] with an additive noise (¢ = 1). In [5], they proved it for a multiplicative
noise and also proved the existence of density within Malliavin calculus. In [1],
they proved the existence for a generalized stochastic Cahn-Hilliard equation in
general convex or Lipschitz domains.

For a mathematical formulation, let us define a weak solution u of the equa-
tion (54), if u satisfies the following;

[ e t) — wo(@)e(w) s
= [ [ ~DA%eta)utes) + Ap@HD (ula ) + )} = p(o)f (ule. ) dods

t
+/ / p(z)o(u(z,s)) W(dz,ds)
o Ju
(55)
for all p € C*(U) with %cp = %Acp =0 on JU.

Notation. For the stochastic integral fg fU -+ W(dy,ds), we use the same
notation in [1]. The measure W (dz,ds) induced by the one-dimensional (d+ 1)-
parameter Wiener process (d for space variables and 1 for time variable) W :=



{W(z,t)|t €[0,T], x € U} on the probability space (2, F, P) in the set of the
Fi-adapted processes {W (x,s)|s < t,z € U}.

3.1 Green’s function

We use Green’s function for operator — DAZ2, referred to [7] and [1]. First we con-
sider the Neumann Laplacian operator A = —A on D(A) := {u € H*(U)|Lu =
0 on AU }, which we introduced in the proof of theorem 2.1 for a smooth domain.
The eigenvalue problem for A, that is,

0
Au=>u im U =0 ondU (56)
ov
admits a countable set of eigenvalues as U is open, bounded and connected. As a
property, any eigenvalues are real and non-negative. There exists an orthonomal
basis in L2(U) consisting on Cigcnfunctions {b1, P2, ¢3,- -+ } corresponding to
eigenvalues 0 = \; < Ay < /\3 < -+ of A. ¢g related to \g = 0 is obviously a
constant function ¢ = |U|~2. As a fact, \; — +00 as i — oc.
Let S(t) := e~ DA™ e g semi-group generated by the operator A2u :=
g:fiZ )\?uigbi, where u := Zil u;¢;. Then the convolution semigroup is defined
Y

oo

Ze DAY t u s @i Lzﬁbz( )

i=2

for any u(z) in L2(U) with the associated Green’s function given by

1 y7 Ze_D/\ t@ 1( ) (57)

We remark that if we consider only existence of solution, we can extend the
class of U to a more general domain as far as if some estimates of Green’s func-
tion for —DA? hold, since the geometry of the boundary is related to Green’s
function. More specifically, when U is an arbitrary rectangle for d = 1,2, 3, or
more generally for d = 1,2 when U is a piece-wise smooth convex domain or a
smooth Lipschitz domain, we can extend the existence result. In d = 3, U must
satisfy also the minimum eigenfunctions growth, which is true for rectangles.

For more analysis of a density within Malliavin calculus, we need more de-
tailed information of Green’s function, namely, we have to restrict U = (0, 7)?
and use an explicit form of GP.



3.2 Mild solution

By using the Green’s function GP, we can write down the equation as integral
form,;

u(z,t) = /Uuo(y)GD(x,y,t) dy
+ / /U AGP (2, y,t — $){Df (u(y, s)) + uly, s)} dyds
- / /U G (a,y,t — ) (uly, s)) dyds

+/0 /UG (z,y,t — s)o(u(y, s)) W(dy,ds)

for x € U and t € [0, T]. We remark that a solution of (58), which is so-called a
mild solution, is equivalent to a weak solution of (55).

As a recent progress, we obtained the following existence of solution and its
regularity in [2];

Theorem 3.1. There exists a unique process u = {u(z,t); (x,t) € Ux[0,T]} in
L ([0,T], LY (U)) which is Fi-measurable for (z,t) in U x [0,T] and satisfies the
equation (58). Moreover, if ug is continuous, then the solution of (58) has almost
surely continuous trajectories. If ug is a-Hélder continuous for 0 < o < 1, then
the trajectories of the solutions (58) are almost surely [1-continuous in space
and almost surely Ba-continuous in time, with 81 < a, B < (2— %) and B2 < §,

o< 3(1=9).
Proof. See [2]. O
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