CRANK-NICOLSON FINITE ELEMENT DISCRETIZATIONS
FOR A TWO DIMENSIONAL LINEAR SCHRODINGER-TYPE EQUATION
POSED IN A NONCYLINDRICAL DOMAIN
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ABSTRACT. Motivated by the paraxial narrow—angle approximation of the Helmholtz equation in do-
mains of variable topography, we consider an initial- and boundary- value problem for a general Schrodin-
ger-type equation posed on a two space dimensional noncylindrical domain with mixed boundary con-
ditions. The problem is transformed into an equivalent one posed on a rectangular domain and we ap-
proximate its solution by a Crank-Nicolson finite element method. For the proposed numerical method,
we derive an optimal order error estimate in the L2 norm and to support the error analysis we prove
a global elliptic regularity theorem for complex elliptic boundary value problems with mixed bound-
ary conditions. Results from numerical experiments are presented which verify the optimal order of
convergence of the method.

1. INTRODUCTION

1.1. The physical problem. The standard narrow-angle 3D Parabolic Equation (PE) is the Schrodinger-
type equation

(1.1) Orp = 5 (02 + L 0j0) +i% (n2, — 1) ¢
that is used in the context of underwater acoustics as a paraxial and far-field approximation of the
Helmholtz equation (see [9], [I1]). The unknown function ¢ = ¥ (r, z, ) depending on range, depth and

azimuth measures the acoustic pressure in inhomogeneous, weakly range-dependent marine environments.
Here, R > r > r¢ > 0 is the horizontal distance from a harmonic point source placed on the z axis and
emitting at a frequency fo. The depth variable z > 0 is increasing downwards while the azimuth 6 varies
in the interval [64,0;] with 0 < 6, < 05 < 27. Also, ko := % is a reference wave number where the
constant ¢y is a reference sound speed, and ng(r, z,0) := C(ngﬁ)
is the sound speed in the water column. The variable bottom topography is identified in cylindrical
coordinates by a positive surface z = s(r, ). Thus, the equation (1) is posed in a noncylindrical domain
S = U,cp,m§2(r) where

is the refraction index where ¢(r, z, 6)

Qr) == {(2,0) € R?*: 0 € [0, 5], 2 €[0,s(r,0)]}
is a range dependent domain with boundary 99Q(r) = él w;(r) with (cf. Fig. 0)

wi(r) :={(0,0) ER?: 0 € [04,05]}, walr):={(2,0.) ER*: z€[0,5(r,0,4)]},
w3(r) == {(s(r,0),0) €R*: 0 € [04,05]}, wi(r):={(z0s) €R*: z€0,5(r,0,)]}.

To formulate an initial and boundary value problem for the equation (), first we impose an initial
condition

(1.2) ¥(ro,z,0) = Po(z,0) V(z,0) € Q(ro),

where 1) is a representation of the harmonic point source and usually is a function with compact support
(see [9]). Then, we impose boundary conditions on 9(r) which depend on the physical assumptions
we make for the sea environment. In particular, the horizontal sea surface and the lateral boundaries are
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FIGURE 1. The range dependent domain Q(r).

assumed to be perfectly absorbing which is mathematically modeled by imposing the following pressure
release condition

(1.3) Y(r,z,0) =0 V(z,0) € wi(r) Uwa(r) Uws(r).

The bottom is assumed to be acoustically rigid that is mathematically modeled by imposing the Neumann

boundary condition g—lﬁ(r, ) =0 on ws(r), i.e.,

(1.4) D.1(r,2,0) — 5 Bps(r,0) Ogtp(r, z,0) = Ops(r,0) Oph(r, 2,0) VY (2,0) € ws(r).

The boundary condition (IA) is a natural boundary condition for the Helmholtz equation but for the
Schrodinger-type equation (I) is a nonstandard dynamical boundary condition since it includes the
term 0,9 and r is a time-like variable. Abrahamsson and Kreiss consider the ibvp (ICI)-(4) in the axial
symmetric case (where there is no dependence on ) and prove that it is well-posed when the bottom
is strictly monotone (see [@]). Thus, the well-posedness of the problem in the general case of a smooth
bottom that changes slope is not guaranteed something indicated by systematic numerical simulations
reported in [2, [7] which show that significant instabilities may develop. Also, recent results in [21] show
that the heat equation in two space dimensions has no weak solution when the coefficient of the evolution
derivative in the dynamical boundary condition is positive. The authors of [0] and [?] also observed that
in certain downsloping environments the amplitude of higher order modes increases when range increases
instead of having a low contribution in the propagating sound. This is an evidence that () is not always
a physically correct boundary condition for equation (1) which gave them the motivation to derive an
alternative boundary condition that in axial symmetric environments simulates in a satisfactory way the
reflection of a plane wave over a rigid downsloping bottom with constant slope (see [2]). Sturm in [I¥]
extends the boundary condition of Abrahamsson-Kreiss for general 3D environments using the paraxial
assumption included in the derivation of (L) as an approximate equation to the Helmholtz equation.
This alternative boundary condition will be our bottom boundary condition and is formulated as follows

(15) 6z¢(7‘aZ79) - %898(7’, 9) 89¢(T7279) = 1k0 8T3(T7 9) ¢(T,Z,9) V(z,@) € CA)3(’I").
Remark 1.1. For r € [rg, R], let D(r) be a real, 2 x 2 diagonal matrix with Dy, (r) := ﬁ and Dag(r) :=

ﬁ. Observing that the outward-pointing unit normal vector on ws(r) is given by n,y(2,6)
MS(MDQ it is easily verified that the boundary condition (ICH) is written equivalently as
[1+(es(r,0))2] 2

T
HW3(T)

z,0)D(r)V r,z,@zng)l r,z,0) VY(z,0) € ws(r),
(50D V(r.2:6) = § 220 7, 2,0) ¥ (2.0) € wnlr)

which indicates that (IC3) is a Robin-type boundary condition for ().
Remark 1.2. Let 1 be the solution of the ibvp (I)-(IZ3) and (ICF). Multiplying both sides of (IT) with

1), and then integrating both sides on (r), taking real parts and using integration by parts we conclude
that [ |o(r,z,0)|* dzdf = [ |¢o(z,0)* dzdf for r € [ro, R].

Q(r) Q2(rg)
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1.2. A transformation of the physical problem. For ¢ being the solution of the ibvp (I)-(I3) and
(X), we introduce (cf. [ 2, IR, B, B]) the function

(16) aya V'S T 0 1/) 7y5 r, 9 ) V(T’ yao) [T()a } [ ] X [0A793]

and simplify the notation in (ITT) by setting o := ﬁ and Ve (1, 2,0) == %0 (n2,.(r, 2,0) — 1). Then, it is

easily seen that v is specified as the solution of the following ibvp:

Opv =1div(D(r,y,0) Vo) +y 6SS(T9 dyv +iv(r,y,0)v V(r,y,0) € [ro,R] x D

(L) v(r,y,0) =0 Y (r,y,0) € [ro, R] x 'y,
n” D(r,y,0) Vou(r,y,0) = ivsc(r,0) v(r,y,0) Y (r,y,0) € [ro, R] x T'g,
v(ro,y,0) = vo(y,0) V(y.0) €D,

where: D := (0,1) X (04,05), n:=(1,0)", Ty := {(1,6) e R*: 6 €[0,,0,] } and
Ip = {(0,0) eR*: 0€[0,,0,]}U{(y,0) €R*: ye{0,1} and 6 € [04,0,]},

_ 2
D : [ro, R XD — R**? with ©14(r,y,0) := =0 ) + 52 [82(57(7”0;9) } , Doa(r,y,0) := % and Dya(r,y,0) =

P 2
Dan(r,.0) = — & y 22D, vo(y,0) = /5(ro, 8) vy s(r0,6),0), mc(r.0) = i) +ig% (257
and

ST 2 ST ST ,,»ST,
Y (r,9,0) = Ve (r,y 5(r,0),0) + & HOON200)Bislrd) _; Gps(rd),

We note that, for (r,y,0) € [ro, R] x D, the matrix D(r,y,0) is positive definite since it holds that
"D (ry,0)x > # (331)2 + 3 [r+o yg?aes(rﬁ))2] ('rQ)Q Vo e R,

Remark 1.3. The transformation (ICH) we use here combines a change of variable with the multi-
plication with /s that makes the solution v of the problem L2-conservative (cf. Remark I2), i.e
Jo W(r,y, )% dydo = [ [vo(y, 0)]* dydd for r € [ro, R].

1.3. A generalized problem. Motivated by the formulation of the physical problem (IZ2) and for the
sake of a more general mathematical setting, in the sequel we will work with the following ibvp:

Oru =i div(A(r,y,0)Vu) + b(r,y,0) Vu+iB(r,y,0) u+ f(r,y,0) ¥ (r,y,0) € [ro, R] x D,

g Cnwf)=0 ¥ (r,,6) € [ro, ] x T,
W8t Ary, 6)Tu(r,y.6) = i Anc(r. 6) u(r,y.6) ¥ (r,9.6) € [ro. B] X T,
u(ro,y,0) = uo(y,0) Y (y,0) € D.

Here, ug : D — C, B : [ro,R] x D — C, f : [ro,R] x D — C and Apc : [ro, R] X [04,05] — C are
smooth complex valued functions. Also, b : [rg, R] x D — R? is a real vector valued function with smooth
components satisfying

(1.9) b1(r,1,0) — 2Re(Agc(r,0)) <0 V(r,0) € [ro, R] x [0.4,05],

and A : [rg, R] x D — R?*? is a real matrix valued function with smooth components for which we assume
that A(r,y, 0) is symmetric for all (r,y,0) € [ro, R] x D and there exists positive constant C} such that

(1.10) T A(r,y, 0)x > O, |z|> Vo eR? V(ry,0) € [ro,R] x D.
Finally, we assume that there exists a function A € C([rg, R] x D;C) such that
(1.11) Ae(r,y,0) |FR = Asc(r,0) Y (r,y,0) € [ro, R] x I'x.

For the rest of the paper we make the general assumption that the data are smooth enough and compatible
so that (CR) admits a solution regular enough for our purposes.

Remark 1.4. The physical ibvp () is a special case of the problem (IR), where the equality holds in
().

Remark 1.5. The solution u of (V) is L2-conservative when f = 0, the equality holds in (I9) and
2Im(B) + div(b) = 0. All these conditions are satisfied by the data of the physical problem (IZ2).
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1.4. Function spaces and norms. We denote by L?(D) the space of the Lebesgue measurable, complex

valued functions which are square integrable on D with respect to Lebesgue’s measure, provided with the
1

standard norm ||g|| := ([, g(y,0)|* dydf)? for g € L*(D). The standard inner product in L?(D) that

produces the norm || - || is written as (-,-), i.e., (g1, 92) == [, 91(y,0) g2(y,0) dydb for g1, go € L*(D). Let

N be the set of all positive integers and Ny := NU {0}. For s € Ny, H*(D) will be the Sobolev space of

complex valued functions having generalized derivatives up to order s in the space L?(D), and by || - ||s

1
we denote its usual norm, i.e. ||g||s := (ZaeNg, ol <s ||8O‘g||%) “forge H*(D).

Let w be a piecewise Lipschitz subset of 9D. Then, we denote by L?(w) the space of complex valued
functions which are measurable and square integrable on w with respect to the 1-dimensional surface
measure induced by the Lebesgue measure, and is provided by the standard norm |g|, := ( fw lg|? dS)%
for g € L?(w). The standard inner product in L?(w) that produces the norm ||, is defined by (vg, vp),, ==

J., va Ty dS for vy, vy € L?(w). Also, we denote by 7,5, : H' (D) — L?(9D) the well-known trace operator
which is bounded, i.e. there exists a positive constant C} rr such that

(112) |TaDw|aD < Cl,TR Hw”l Vw e Hl(D)

By H'(D) we denote the subspace of H'(D) consisting of functions which vanish at I';, in the sense of
trace, i.e., H'(D) := {w € HY(D) : Topw|r, = 0}. Then, we set H*(D) := H'(D) N H*(D) for s € N. It
is well-known that there exists a positive constant C5 rr such that

(1.13) Toptlon < Caxn [|w][? [Vul|Z  Yw e HY(D).
Also, we define the space Hz (I'y) := {Topw by @ w € HY(D)} provided with the norm
19l1 = inf {|w]ly : w € H'(D) and 7opw|r, =g}
and, for g € L*(T'y), we define the negative norm
(g:ToDW) -

|g|7%7FR = sup{ Tl &l € HY(D) and w;«éO}.

1.5. A weak formulation of (). Taking formally the L?(D) inner product of both sides of the
partial differential equation in (IZ8) by ¢ € H!(D), and then integrating by parts and using the boundary
conditions we arrive at

(1.14) (Oru(r), @) = =1G(r;u(r), ¢) +i(B(r)u(r),¢) + (f(r),¢) Vr € [ro, R,
where, for r € [ro, R], G(r;-,+) : HY(D) x H(D) — C is a sesquilinear form given by
(1.15) G(r;v,w) :==(A(r)Vv, Vw) =1 (Agc(r) v, w). +1(b(r)Vo,w) Vov,we H' (D).

Proposition 1.6. The weak problem (IIA) has at most one solution in C*([rg, R]; H'(D)).

Proof. Let u € C1([rg, R]; H!(D)) be a solution of (IId) and r € [rg, R]. Since the variable r does not
intervene in the computation we can set ¢ = u(r) in (IId). Then, take real parts and use that A is a
family of real, symmetric matrices, to obtain

3 [u(r)|* = —Re </\Bc(T)U(7‘)7U(T)>FR} + Re [(b(r)Vu(r), u(r))]
— (Im(B(r)) u(r), u(r)) + Re(f(r), u(r)).

Since b(r) is a real, vector function, by integration by parts we get

(1.16)

(1.17) Re [(b(r)Vu(r), u(r))] = =3 (div(b(r)) u(r), u(r)) + 3 (br(r)u(r), u(r)),, -
Combining (ICIH) and (CTA) and using the condition (IT9) and the Cauchy-Schwarz inequality, we have
(1.18) arlu()? < Cllu@)l* + 21 @) lu()])

Integrating both sides of (ITIR) with respect to r we get

lu(r)]* < IIU(To)HQJr/T lu() [C lu(s) +21[f ()] ds V7 € [ro, R],



which yields

e I < o)+ [ uls)] 1€ u(s)] +2 5] ds
< max o)) (o)l + [ (Ol + 20701 ds ) ¥r € fro. ).

The latter inequality obviously yields that

[u(r)] < flu(ro)ll +/T[CHU(S)|I +2[f ()] ds V€ [ro, B,

70

from which, after applying the Gronwall lemma, we obtain the following stability estimate

(119 ot < € [l + [ s as| vr e o,
To
From (ICT9) we arrive at the uniqueness of the solution w since (ITd) has linear homogeneous part. [

1.6. Finite element spaces. Let m € N and SJ" be a finite dimensional subspace of C(D) N H'(D)
consisting of complex-valued functions that are polynomials of degree less than or equal to m in each
element (e.g. triangle or rectangle) of a non-uniform partition of D with maximum diameter h € (0, h,].
It is well-known, [I2], that the following approximation property holds:

(1.20) inf o —xlh < Ch\vlleyr, €=1,...,m, YveH™ D), Vhe(0h,]
XE2p

Also, we assume that the following inverse inequality holds
(1.21) Ixlh < Ch~Y x| Vx €S, Vhe(0,h],
which is valid when, for example, the partition of D is quasi-uniform (see e.g. [12]).

1.7. Crank-Nicolson finite element approximations. For N € N, we consider a uniform partition of

[ro, R] with meshlength k := %, nodes (r"™)N_ given by " :=nk for n =0,..., N, and intermediate
nodes (r"t2)¥=! defined by r"tz .= % forn = 0,...,N — 1. Also, for given M € N and
(VmyM_ - C L?*(D) we define 0y V™ := Vm“% and AV™ := Vm“%vm form=0,...,M — 1.
For { = 0,..., N, the numerical method derives an approximation U*(-) € ST of u(r,-) as follows:
Step 1. Set
(1.22) U° = ugp,

where ug ;, € S}* is an approximation of the initial value ug which will be specified later.
Step 2. Forn =0,...,N — 1, find U""! € S such that

(1.23) (DU, y) = —iG (W%; AU",X) +i (ﬁ(r"+%)AU",x) + (f(?“"+%)7x) Vx € S

1.8. An overview of the paper. In the paper at hand, we focus on the convergence analysis of the
Crank-Nicolson finite element method defined by (IZ22)-(I"Z3), proving in Section B an optimal order
error estimate in the L?(D) norm. The convergence analysis is facing technical difficulties because the
sesquilinear form G is (in general) not Hermitian with evolutionary dependent coefficients and the dif-
ferential operator in (/) is of Schrodinger-type resulting the lack of strong stability results available in
parabolic problems. The authors are not aware of any scientific work analyzing finite element approxi-
mations of the solution to a multidimensional ibvp for a Schréodinger-type equation with mixed boundary
conditions and coefficients depending on the evolutionary variable.

Let us give an overview of the contain of the paper.

In Section B, we define an elliptic projection operator based on a modification B of the sesquilinear
form G and provide some a priori bounds for it in Lemma Bl Then, in Section ETl we analyze its
approximation properties proving optimal order error estimates in the H'(D) and the L?(D) norm,
which are accomplished by using an elliptic regularity result for two-dimensional complex boundary
value problems with mixed Dirichlet and Robin boundary conditions proved in Section B. The analysis
is technical since to prove optimal order error estimate in the L?(D) norm for the evolution derivative of
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the error we, first, derive an optimal order error estimate on I'y for the elliptic projection error in the
| -3 rg nOrm.

In Section B, we focus on the Crank—Nicolson finite element method defined in Section 4. First
we discuss its well-posedness and stability, and then analyze its convergence in the L?(D) norm. Even
though that the numerical method is a combination of standard techniques to discretize an evolution
problem with respect to the space and evolution variable, the error analysis developed in this section is
non-standard. This is due mainly to the fact that the sesquilinear form and the elliptic projection are
r-dependent and calculated at the mid-points of a uniform range partition. To derive an optimal error
estimate in the L?(D) norm first we define properly auxiliary test functions involving elliptic projections
of the solution and its range derivatives (see (833)) and then use the projection estimates of Section .

In Section B we report on the results of some numerical experiments performed with our method,
verifying experimentally the optimal order of convergence.

A general complex elliptic boundary value problem posed on a two-dimensional rectangular domain
with mixed boundary conditions is analyzed in the independent Section B. If Dirichlet or Neumann
conditions hold along the boundary, then in the weak formulation of the boundary value problem the
trace integral terms vanish. A general approach of proving global regularity, [I5], is to prove this estimate
for half-balls, and then by change of variables, stretch the compact boundary locally and cover it by a
finite union of half-balls. In our case, we analyze a complex elliptic problem posed on a rectangular
domain of R2. The boundary is compact and consists of four linear segments along which Dirichlet and
Robin conditions are imposed. We apply directly on this domain the half-balls technique without change
of variables as the boundary is already stretched locally. Further, we define appropriate test functions,
in order to eliminate the trace terms from the weak formulation of the problem and prove the regularity
estimate in Theorem BTl. The result is extended in Theorem BZ3. Our proof covers a class of Robin
conditions related to the coefficients of the pde of the boundary value problem, a special case of which is
the bottom boundary condition in (IR).

Let us close the introduction by exposing some related bibliography. In [I¥], Sturm proposes and
analyzes a finite element method for equation () using the boundary condition (IH) as an interface
condition over a variable bottom in the case of a multilayered fluid medium. We refer to [6] for the
formulation and the convergence analysis of a Crank-Nicolson finite element method to approximate the
solution to the ibvp (IW)-(CA). Also, we refer to [5] and [R] for the construction and the convergence
analysis of a Crank-Nicolson finite difference or finite element method for the ibvp (ICN)-(IA) and the
ibvp (ICM)-(I=3), () in the axial symmetric case, proving optimal order error estimates in various norms.
The approximation of the solution to the problem (II) with Dirichlet boundary conditions over a sloping

bottom has been considered in [3, P2, [0]. In particular, the authors of B, P2] work with the axial
symmetric case constructing and analyzing Crank-Nicolson finite difference methods providing optimal
order error estimates. The authors of [I0] consider a linear Schrédinger equation in non-cylindrical

domains of R? (with d € N) formulating a Discontinuous Galerkin method for which a sharp error
estimate is provided. The wide-angle parabolic equation consists an alternative approximate model for
the Helmholtz equation in underwater acoustics, the investigation of which over sloping domains faces
the challenging question of what is the correct set of boundary conditions that one has to impose on the
bottom given its physical properties (see e.g. [4, @, I3, G]).

2. AN ELLIPTIC PROJECTION

Let § > 1+ ﬁ [Sup,,, mywp Bl + Coor SUD(, 0 Rix[0.4.05] |Im()\BC)|]2 where C, is the constant in (II)
and Co rx the constant in (CI3). Then, for r € [ry, R], we define an auxiliary sesquilinear form B(r;-,-) :
HY(D) x HY(D) — C by

(2.1) B(r;v,w) := G(r;v,w) + 6 (v,w) Yv,we HY(D),

where G(r;-,-) is the sesquilinear form defined in (IIH). Using the trace inequality (II2) and the
Cauchy-Schwarz inequality we obtain

(2.2) | B(r;v,w)| < Cp vl llwlly Yv,we HY(D), Vr & [ro,R],



with C'; = max {(5, SUP mywo 10 C1rr SUDL ayvo 01 | B s SUP RIxD |A|2} where |- |3 is the Euclidean
matrix norm and Cp g is the constant in (ITI2). Also, using (ICI3), (M) and the Cauchy-Schwarz
inequality, we conclude that

(2.3) Re[B(r;v,v)] > Cy |v||? Vv e HY (D), Vr€ [ro, R],

where Cp = mm{ ,1}. Now, for 7 € [ro, R], we define an elliptic (or a Ritz) projection Rj(r) :
H'(D) — S by

(24) B(Ta Rh(r)’UvX) = B(T;U7 X) VX € S;v,na

which is well-defined due to the coercivity property (23). In the following lemma we provide some a
priori bounds for the elliptic projection.

Lemma 2.1. Let £ € Ng. Then, there exists positive constant Cy such that
¢
(2.5) 105 (Ra(r)g(r))ll < Ce Y 107g(r)|a
§=0
for g € C¥([ro, R]; HY(D)), h € (0, hy] and r € [ro, R].

Proof. The proof follows an induction argument with respect to £. Also, to simplify the notation we set
p(r) := Rp(r)g(r) for r € [ro, R].
First, set x = p(r) in (E4) and then use (E33) and (E2) to get

Co lp()IF < Cs Mgt [lp(r)la

which yields (E3) for ¢ = 0. Now, we assume that (E35) holds for £ =0,...,v — 1, where v € N. Taking
the 0¥ derivative of both sides of (E2) we get

v—1
20)  Boo(r0 = - 3 ()or I Btri okl +Z( Vor-isrolan) Ve s
7=0
where the sesquilinear form 0%~/ B(r;-,-) : H(D) x H'(D) — C follows from the sesquilinear form B by

differentiating the coeflicients with respect to r. Next, we set x = 9% p(r) in (E8) and use (223) and (22),
to obtain

v—1
(2.7) 02 p(r)ll < C | Y 102p(r |1+Z||8] )
7j=0

Combining (E7) and the induction assumption we arrive at (233) with £ = v. O

Remark 2.2. If (I9) holds as equality (see Remark IA) then the sesquilinear form B is Hermitian.
Therefore, if f = 0, setting ¢ = J,u(r) —i(B(r) + 0)u(r) in (CIA) and then taking imaginary parts
and using (2Z33) we obtain 3-LRe [B(r;u(r),u(r))] < c|lu(r)||? < cRe[B(r;u(r),u(r))] for r € [ro, R,
which, after the application of the Gronwall lemma, yields that Re [B(r;u(r),u(r))] < c¢Re[B(0;ug, ug)]

for r € [0, R]. Combining the latter equation with (223) and (22), we arrive at an H! stability estimate.

2.1. Approximation estimates. In this section we analyze some approximation properties of the el-
liptic projection defined in (24), which we will use often in the error analysis of Section B. The analysis
below is based on the techniques proposed in [20] and [I4].

Let 7 € [ro, R]. First, we define an elliptic differential operator £*(r) : H%(D) — L?*(D) by

L*(r)yw = —div(A(r, ) Vw) +ib(r,) Vw +idiv(b(r,"))w + 6w Yw € H*(D).

Then, we introduce an operator 7% (r) : L?(D) — H?(D) as the solution operator of the following elliptic
boundary value problem: for given g € L?(D), find w(r) € H?*(D) such that

L (r)w(r) = g,

2.8
(2:8) n"A(r,y,0)Vw(r,y,0) = ipsc(r,0) w(r,y,0) V(y,0) € I'x,
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where pige : [ro, R] % [04,05] — C is defined by ppc(r,0) := bi(r,1,0) — Ape(r,0) for v € [rg, R] and
0 € [04,05]. The operator T*(r) is well-defined since the elliptic boundary value problem () has
unique weak solution T*(r)g € H'(D) which, according to the elliptic regularity result of Section H,
belongs also to H?(D) and has the following property: there exists a constant C' > 0 that depends on
[ro, R] and D such that

(2.9) 1T(r)gll2 < Cllgl-

Remark 2.3. We note that if w; € H?(D) and satisfies the Robin-type boundary condition in (Z8), then
it holds that

(2.10) (L*(r)wy, wy) = B(r;wa,wy) Yws € HX(D).
Proposition 2.4. There exists a positive constant C' such that
(2.11) IBn(r)o = vll + R [|Ra(r)o = vlli < CR™H[v]lms
for v e H™TY(D), h € (0,h] and r € [ro, R)].
Proof. Let e(r) := Ry, (r)v — v. Using (E4), (E3) and (EH), we obtain
O lle() ¥ <Re [B(r;e(r), e(r))]
<Re[B(r;e(r), x —v)]
<Clle)llix —vl VX e S5,
which, along with (IZ20), yields
le(r)lly <€ inf flv—x]h
(2.12) XESy
SCR™ [[v]lmp1-
Now, let w(r) := T*(r)e(r). Then, using (Z710), (E4), (E2) and (ET2), we obtain
lle(r)]* = (£ (r)w(r), e(r))
(2.13) —Blrrel, o) = X)
<CR™ w(r) = Xl [vllmrs ¥x € S
Now, we use ([Z20) and (EZX9) to get

inf [Jw(r) = x[i <Chw(r)
X€ES"

(2.14)
<Chlle(r)]-

Combining (E13) and (E14) we obtain
(2.15) le()ll < €A™ o]l
Finally, (21) follows as a simple consequence of (Z13) and (Z13). O

Proposition 2.5. For ¢ € N, there exists a positive constant Cy such that

(2.16) 108 (Bn(r)g(r) = g(m)]|, < Ceh™ Z 1079(r) 1

7=0
for g € C¥([ro, Rl;H™TY(D)), h € (0, hy] and r € [ro, R].

Proof. We will get the error bound (E18) by induction with respect to .
Let e(r) := Rp(r)g(r) — g(r) and v € N. Then, differentiating with respect to r both sides of (E) we
obtain

(2.17) B(r; %e( Z( >8” iB(r;de(r),x) Yy € Sm™
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Let us assume that (218) holds for £ = 0,...,v — 1, which is true when v = 1 due to (2ZI). Now, using
(23), (Z14) and (22), we have
C |07 e(r) T <B(r; dre(r), 9y e(r))
<B(r;07e(r),d;e(r) + x) — B(r; 0/e(r), x)

< B(r; 0%e(r), 0%e(r) + X) +Z< ) o030

v—1
<C | lore(r) s 07 e(r) + Xl + Ixls D [07e(r)]
L 3=0
<C | [[ore(r)]l1 107e(r) + xll + (197 e(r) + xllx + 107 e(r)]1) leaj )M

<C leaj M | 107e(r) + xlly + (107 e(r lellﬁj | Vxesy,

which yields

Haﬁe(T’)II?SC ZH@] M | inf 1979(r) = xlls + |97 e(r lellaj )l
h

< v ) v —
<C|97e(r)|lh ZH@ i+ msf 979(r) — xlla
+C lnf o7 g(r) = xlh ZII(?J -
Next, using the arithmetic mean inequality, it follows that
2
|0y e(r)|T <C ZH@J M+ nf, No7g(r) = x| + o 97 9(r) = x| leaj )
2
<C ZH@” Wil + inf 107g(r) — X2

XES!

Finally, using the induction assumption and ([Z20), from the inequality above we obtain

2

17 e(r)|IF < Ch*™ leaj Mt |+ 107970 |

which yields (E718) for ¢ = v. O

Using a technique introduced in [I4], we are able to derive an optimal order estimate of the elliptic
projection error in the |-|_1 ., Dorm which allows us to obtain the following optimal order approximation
result for the time-derivative of the elliptic projection.

Proposition 2.6. There exists a positive constant C' such that

(2.18) 10, (Ru(r)g(r) — gDl < CR™ (Nlg(r) lmtr + [10rg(r)llms1)
for g € CY([ro, R);H™+1(D)), h € (0, h,] and r € [ro, R].
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Proof. Let e(r) := Rp(r)g(r) — g(r) and w(r) = T*(r)0.e(r). Then, using (E10) and (EI4), we have

1re(r)II* =Re [(£*(r)w(r), Ore(r))]
=Re[B(r; dre(r), w(r))
(2.19) =Re[B(r; Ore(r), w(r) — x) — 0:B(r;e(r), x) ]
=Re [B(r; 0re(r), w(r) — x) = 0,;B(r;e(r), x —w(r)) — 8:B(r; e(r), w(r))]
C ([10re(r)llx + lle(r)ll1) lwlr) = xll — Re [0:B(r; 6( ) w(r))]
for x € S;". Setting I(r) := —Re [0, B(r;e(r),w(r))] and using (1) and (EI8H), (Z19) yields
[8re(r)]* <C ([0re(r)]l1 + lle(r)]]) ngf;n||w(7’) =Xl +1(r)

(2.20)
<CR™ M [[lg(r) st + 10r9(F)lms1] ()2 + I(7).

First, we observe that

(2.21) I(r) =Y I(r)

where
I(r) i= ~Re[i (9,b(r)Ve(r), w(r) ], Lo(r) i= ~Re [ =i (@, Anc(r) e(r),w(r))y, |,
Is(r) := —=Re [ (0, A(r)Ve(r), Vw(r))].

Now, using integration by parts, we obtain
1(r) = = Re [~ (@iv(2,b(r)) e(r), w(r)) — 1 (B,b(r) e(r), Vao(r)) + 1 @by ()e(r), w(r))y, |
<Clle(r)l o)l = Re [ (@01 (r)e(r), wir)),, |
Next, we use (Z22) and (IZIT), to obtain
1) + Io(r) < = Re [ {(0:2a(r) = 0,01 (r)) e(r), ()., | + € e Jo(r) s
<C [le()]- gy + @] Tl

In addition, using integration by parts, we have
I3(r) = = Re | ~(div(9,(A(r)Vw(r)), e(r) + (a0, A(r)Vuo(r), e(r)),,, |
(2.24) <C w2 lle(r)]| + Re | (070, A(r)Vu(r), e(r)),,, |
<C [lle) + ey uy, | Tl

Combining (2221), (2223) and (2224), we arrive at
(2.25) 1) < C | e)ll + 1e(r)] g0y, | ()]l
For ¢ € Hz(T'y), let z(r) € H2(D) be the solution of the following elliptic boundary value problem:
L*(r)z(r) =0,

TA(r,y,0)Vz(r,y,0) = ippc(r,0) z(r,y,0) + e(r,y,0) V(y,0) € k.
Since (L*(r)z(r),e(r)) = 0, after integrating by parts and using (24), we get

(2.22)

(2.23)

(2.26)

(2:27) (€(r),2)y,, = Blrie(r), 20 —x) VxS
Using (221), (222), (20) and (1), we obtain

(e(r): €)1 | Clle@lr int [12(r) = xlx
(2.28) X€Sy,

<CH™ () s [12(r) -
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The elliptic regularity result (cf. Theorem B23 and Remark 54) for the elliptic problem (E228), yields the
existence of a constant C' > 0 that depends on [rg, R] and D such that

(2.29) J2()ll2 < Clely v
Thus, combining (2728) and (2729), we conclude that
<€(7")a7'87:¢>rR <CpmH lg(r)lm+1 ‘76D¢|FR‘%,FR
<Ch™ g lm+r ¢l V¢ € HY(D),
which yields

(2.30) le(r)] 3 0 < CH™ Hlg () lons1-
Therefore, (2223), (230) and (271) yield
(2.31) I(r) < CR"™H lg(r) e w(r)]l2-

Finally, we use (2220), (2231) and (E9) to have

|10re(r)|I> < C R (Nlgr)llmr1 + 10rg(r)llm+1) |0re(r)]]
which obviously yields (E7I8). O

3. CONVERGENCE ANALYSIS

3.1. Stability results for the numerical method. We show below that the numerical method is
well-defined and stable when k is small enough.

Proposition 3.1. There exists a constant Cy > 0 such that the Crank—Nicolson finite element method
(23) is well-defined when Cyk < 1.

Proof. Let ¢ € SJ*, r € [ro, R] and Ap(¢;-) : Si* — C defined by
A5 x) = (6, X) + 5 G(r;6,x) — Z (B(r) ¢, x) Vx € i

It is easily seen that the numerical method (IC2Z3) yields at every range step a linear system of algebraic
equations the matrix of which is invertible iff the assumption Aj(¢;-) = 0 implies that ¢ = 0.
Let ¢, € S} such that Aj(¢.,x) = 0 for x € S;"". Then, we have Re [Ay(¢x; ¢4)] = 0 which yields that

(3.1) 6.1 + 5 [ (Re(ruc(r)n, 64, — Re[(b(r) Vs, 6)]] + 5 (Im(B(r)) 61, 6) = 0.

Using integration by parts we obtain

(3.2) Re [(b(r) Ve, ¢u)] = =5 (div(b(r))du, &4) + 5 (b1(r) du di)y -

Then, combine (Bl) and (82) to obtain

(3.3) [9ull” + % (2Re(Aoc(r) = bi(r) ¢es du)r = —% ((Im(2B(r)) + div(b(r))) b, 64)

which, along with (I9), yields ||¢.[*(1 — Co k) < 0 with Cp = 1 SUP(, np [21Im(B) + div(b)|. Thus, if
1—Cyk > 0 then ¢, = 0. g
Remark 3.2. In the physical problem (IZ7), the equality holds in (IT9) and we have div(b(r)) = 6;(1(?9’)0)
and 2Im(B(r,y,0)) = —3;(85’7"9’)9) since yxp is real valued. Thus, from (B33) follows that [|¢4]|> < 0 or

¢« = 0, which means that the numerical method is unconditionally well-defined.

Remark 3.3. Assuming that (IC9) holds, in the proof of Proposition B we proved that the following
inequality holds

(3.4) Re[-iG(r;w,w)] < Cllw|?® YweHYD), VYr € [ro,R].

Proposition 3.4. Let Cy be the nonnegative constant specified in Proposition BA. Then, there exists a
constant ¢, > Cy such that the Crank-Nicolson finite element method (I"23) is L2-stable when ¢, k < 1.
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Proof. First, we assume that Cyk < 1 in order to ensure that the numerical approximations are well-
defined. Then, we set y = AU™ in (23) and take real parts to obtain

[ 2 — U2 =2k Re [—ig (7t AU, AU )| - 2k Im [ (B0 E) AU™, AU |
+2kRe Kf(r"Jr%),.AU")} , n=0,...,N—1.

Using the Cauchy-Schwarz inequality and (B4) from the latter equation it follows that there exists C>0
such that

JUt 2 = o2 < Ck (IO + o) (e 51+ [+ o))

for n = 0,...,N — 1. Observing that [|[U™*!]|2 — |[U™]|? = (JU™Y|| — ||U™]]) (JU™T]| + [[U™]), the
inequality above yields

(1=Ck) U <1+ Ck)|U"|+Ck|f(r"2)|, n=0,...,N—1.
Thus, letting ¢, = max{Cp,3C} and assuming that ¢, k < 1, we arrive at
o™ < SR U] + 3 k|, n=0,..., N —1,
from which, after applying a standard discrete Gronwall argument, we get

jomi < e (Wwol+ sw If@)1), n=0,....N,
relrg,R)

which indicates the L? stability of the method. O
3.2. Error estimates. In this section, to simplify the notation we set o(r) := Ry (r)u(r), e(r) := u(r) —
o(r) and o(r) := Ry (r)0%u(r) for r € [ro, R}, and 0" := o(r"), €™ := e(r"), o™ := o(r") and u™ := u(r")

for n=0,...,N. Let us define (6™))_, C S}" by

(3.5) 0" :=U" = R(r")u(r™) + & Ry (r")0%u(r")
' :U”—Q"—F%U", n=20,...,N.
Using (I"23) and (II4), we arrive at the following error equation

6

(3.6) (00", %) +iBE" 240", x) =1((6+ B™F2)) A0", x) + D Ty(x), Vx € Sp,
where

Ti(x) == (@ru(r" %) = O™, ),

() =i (6 + B0 ) (Au" = u(r™+4)), x)

Ty(x) =% (9™, x),

Tu(x) =i (6 + B0 4)) (A" — Au™), x)

T5() = — ik ((6+B0"H)) Ao™ x) |

Ts(x) ==iB (rn+%;u(rn+%) — Ao + £ Ao, X) :

Set x = Af™ in (BW) and then take real parts and use (B4) to obtain

6
(3.7) 6712 = 167> < CR6™ |+ [1071)% + 2k > Re(T;(A0"), n=0,...,N —1.
j=1
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Our next step is to bound properly the terms in the right hand side of (B). First, using the Cauchy-

Schwarz inequality, the Taylor formula and (27I0), we obtain

Re(T3(x)) < C x| [Au" — urth)

T_n+1 T‘n+§
(3.8) <Cxll |/ . (r"t — 5) 0%u(s) ds +/ (s — ") 9%u(s) ds
<CK x|l sup ||02ul|, Vx e Sp,
[ro.R]
and
Re(Tu(x)) <C x|l (lle™]| + "I
(3.9)

<CR™ x|l sup [ullmsr,  Vx € Si
[ro,R]

Now, we use the Cauchy-Schwarz inequality, the Taylor formula and (ZI8) to get

Re(T3 () < Il [||orutrt3) = o

+Jj0ke”

T’n,+l
/ Ore(s) ds

<ClIxll (k2 sup [|0Ful| + sup ||8re>
[ro,R] [ro,R]

<xl Haruw*%) o + 4

(3.10)

<Cl [k sup [[0Pul] + Bt (sup s + sup |aru||m+1)} . vxesp
[ro,R] [ro,R]

[ro,R.

Next, we use the Cauchy-Schwarz inequality and (E3) to have

n+1

/ Oro(s) ds

(3.11) <CE* x|l sup 0,0
[ro.R]

Re(T5(x)) <Ck x|l |

<CR (sup l62u]], + sup Haqu1> . Vxesp
[ro,R] [ro,R]

and

Re(T5(x)) <C K lIx]l (o™l + llo™ )

<Ck?|x|| sup |le
2 I sup o]

Vx €Sy

<CkK? lIx|| sup H@TQU‘ .
[ro,R]

In order to estimate the last term in the right-hand side of (82) we introduce the following splitting

3
(3.13) To(x) =Y _To;(x), YxE€ESy,
j=1
where
Toa(x) =1 B 3u(r™ ) — Au”, y),
To,2(x) =1B(r"*7; Au™ — Ag"™, x),
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Using (22), the Taylor formula and (I21) we obtain

Re(Ts, (1)) <Re [~ § B4 02u(r4), 0] + € I sup 195l
ro, R
(3.14) . 1 1
<Re [~ 5 B H:00ut ), 0] + O R B ] sup [9ull, Ve 5P
ro. R

Now, applying the Taylor formula, (22), (E), (I"21) and (EZ10), we have
Re(Ts2(x)) =Re [1 B0 45 4e", x|

<Re [1BI" e 4), x| + Ck? sup [92ells 1l

[ro,R]

(3.15) <OR B sup |02l [Ix]

[ro, R]

<CER™ x|l Z bup 109wl mir |, ¥x €SP
j=0 0"

Also, using (23), (22), (I=20), the Taylor formula and (Z3), we obtain
Re(Ts,3(x)) =Re i % B(r"+%;83u(rn+%),x)- + Re {i % B (7‘"4‘%;./40" — a(r”+%)’ X)}

’ 1

~—

<Re [i5 B3 02u(r ), )] + CR? Il [Ao™ = o(rt)

1

<Re i Bt 45 02u(rm ), 0] + CR R [[Ao” — ot

~—
L

(3.16)

<Re _i%B(r"+%;8r2u(r"+%)7X + Ok Rt [Ix|] sup H@fc”l

~—
L

~—
L

+Ck*h 1||x||ZSup |0dull,, VxS

j=2 o

<Re i% B(T"Jr%;afu(r’”%),)(

Finally, observing that the first term in the bounds of Re(Ts,3(x)) and Re(Ts,1(x)) cancel out, we combine
(813), (814), (B1H) and (BTH), to obtain

2 4
(3.17)  Re(Ts(x)) < Clx|| | k2™t Z sup [|09ul|myr + kAT Z sup H@JUH , Vxesy.

= —o [r0-R] = —olroR

Thus, combining (BR), (B4), (B1M0), (B11), (B12) and (BIA) , we arrive at

6

(3.18) > Re(Tj(x) < Clixll [k Bu(w) + k™! By(u) + k* h™' Bs(u)], Vx € Sp,
where

Bi(u) := sup |07 ull, + Jnax, sup 182 ullm+1,

[ro J<2(ry.R)
— ]

(3.19) Bo(w) = max, sup [[0full,,,

Bs(u) := Joax, [sup ||8]qu.

From (BZ2) and (BIR), we conclude that there exists a positive constant Ce such that
(3.20) (L=Cok)[|0"|| < (1+Cok) 10| + Co k [k* Bi(u) + k™! By(u) + k* h™" By (u)] ,

forn=0,...,N — 1. Assuming that Cg k < % and applying a standard discrete Gronwall argument (cf.
proof of Proposition B4), from (B=20) we arrive at

(3.21)  max 167 < C [1|6°]] + k* By (u) + K™ By(u) + k* h™' Bs(u)] .

Now, we are ready to establish our error estimate in the theorem below.
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Theorem 3.5. Let (U™)X_, be the approzimations derived by the numerical method (I"22)-(I23). Also,
we assume that k* = O(h), Co k < & where Cs is the constant in (B20), and there exists a constant
C, > 0 independent of h such that

(3.22) [uo,n — uoll < Co ™ {|ugllmsrs  Vh € (0, hu].
Then there exists a positive constant C' independent of k and h such that
(3.23) Jmax U™ —u(r™)|| < C [k* (Bi(u) + Bs(u)) + K™ By(u)]

where By(u), Ba(u), Bs(u) are defined in (B19).
Proof. First, we use (83), (B220), (23) and (8722), to conclude that

(3.24) jmax U™ = Rp(r™)u(r™)|| < C [k* Bi(u) + K™ By(u) + E*h1 Bs(u)] .
<n<nN
Then, we combine (824), (Z10) and the assumption k% = O(h) to arrive at (8=23). O

Remark 3.6. The error bound (822) is valid when wugj, is the L?(D) projection of ug onto S or an
Si*-interpolant of ug.

4. NUMERICAL EXPERIMENTS

In this section we report on the outcome of some numerical experiments performed with the fully
discrete method of Section 4.

In particular, we consider the ibvp (IC)-(I=3) and (IF), with the following data: [04,65] = [0, 22.5],
[ro, R] = [1,301], fo = 25Hz, ¢(r,z,0) = ¢y = 1500m/s so that nypp(r,z,0) = 1, a variable bottom
topography represented by the function

s(r,0) =100 + sin(EF) exp (—4ko(0 — 0,,)?)  V(r,0) € [ro, R] x [0.4,05],

where 6,, := ‘9“;93 , and an initial condition given by
(4.1) Po(2,0) = /52 do(2;25) ¢o(0;0,),
where
2 2
(4.2) ¢o(;p) := exp (—%“(w - p)z) —exp (—%“(x +p)2)

and zg = 50m is the depth where the point harmonic source is placed. The latter function is known as an
analytical starter or generalized Gaussian source and is widely used in underwater acoustic simulations.
It can be shown that (B732) is a far field approximation of a point-source solution of the Helmholtz equation
in a homogeneous medium, see, e.g. [9].

Our working example will be the ibvp (IZ2) which follows after performing the transformation (ICH)
and then adding a forcing term f which follows after choosing an exact solution u that satisfies the initial
and the boundary conditions.

r =101 r =201 r =301
hT E(r) Rate E(r) Rate E(r) Rate
96 | 1.3227(-1) 1.5485(-1) 1.9143(-1)
192 | 2.6685(-2) 2.31 | 3.1024(-2) 2.32 | 3.8105(-2) 2.32
256 | 1.4016(-2) 2.24 | 1.6232(-2) 2.25 | 1.9873(-2) 2.26
288 | 1.0895(-2) 2.15 | 1.2575(-2) 2.17 | 1.5312(-2) 2.21
384 | 6.0073(-3) 2.07 | 6.8971(-3) 2.09 | 8.2997(-3) 2.13
TABLE 1. Errors E(r) and spatial convergence rate for k=1 = 768

We implemented the Crank-Nicolson finite element scheme (IZ22)—(I=23) using uniform, rectangular
partitions of the domain D of maximum diameter h. The family S} of finite dimensional subspaces of
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C(D) NH' (D) was that of piecewise linear functions on each element of the partition i.e. m = 1. The
starting approximation U° was chosen as the interpolant in S} of the initial condition (Z).

Our first set of experiments concerns the experimental verification of the convergence rate of the scheme
in the spatial variables. The measure of the error was E(r) := ||u(r) —U™|| for r = nk and n € N, whereas
for other values of r E(r) was defined by linear interpolation. To determine experimentally the spatial
order of convergence the approximate solution was computed for 1 < r < 301 using a rectangular partition
of D with the inverse element diameter ranging from 96 to 384. For these runs, very small r-steps were
taken to ensure that the error due to the discretization in range variable r is negligible. The observed
error was recorded at r = 101,201 and 301. As usual, the convergence rate corresponding to two different

runs with mesh sizes hi, ho and corresponding errors F; and Es is defined to be log (%) / log (%) The

results are shown in Table 0. It is evident that the convergence rate of the spatial component of the error
is indeed two.

The determination of the accuracy in the range variable r is more delicate. We took h~! = 192 and
computed the solution of our problem up to r = 301 for various values of k. For this fixed value of h
we made a reference calculation with a small value of k = kyef = 2%. The corresponding approximate
solution, denoted by U}, ot differs from the exact solution by a factor which is almost entirely due to the
spatial discretization. We then define a modified measure of the error E*(r) as above but with the exact

solution replaced by the reference solution U}, yor. The results are shown in Table .

kT E(r) E*(r) Rate
192 [ 9.0887(-1) 0.1304(+1)

384 | 1.7834(-1) 2.2936(-1) 251
512 | 9.2327(-2) 1.2048(-1) 2.24
576 | 7.1442(-2) 9.3765(-2) 2.13

TABLE 2. Errors E(r) and r-convergence rate for h=! =192 and r = 301

5. A GLOBAL ELLIPTIC REGULARITY RESULT

In this section, we present a general Global Elliptic Regularity Theorem for complex elliptic operators
with mixed Dirichlet-Robin boundary conditions, in rectangles of R?. Our proof follows that of [IH] which
deals with the Dirichlet problem for real operators. In our approach, the main idea is that if the trace
terms in the weak formulation of the problem vanish due to the boundary conditions, for suitably chosen
test functions, then a Global Elliptic Regularity result is proved in Theorem BETl. Note that the Robin
condition in this Theorem does not involve any zero order term, while the first order terms are related
to the coeflicients of the boundary problem so that indeed in the weak formulation, after integration by
parts, the trace integrals vanish. Our result is established by the fact that the closure of a rectangle can
be covered by using a finite union of half-balls together with an open smooth domain in the interior. We
then apply an exponential transformation and extent our result, in Theorem B3, where an arbitrary zero
order term is introduced at the Robin condition of Theorem Bl

Theorem 5.1. Let W = (0,1) x (0,4,05) be a rectangular domain in cartesian coordinates. We consider
the following boundary value problem: We seek a complex-valued function u such that

Au,, + Bu,g + Cugg + Du, + Eug + Fu=f in W,
u(0,6) = 0,

u(z,04) = u(z,05) =0,

a(@)u, +b(Dug =0 at z=1,

(5.1)

where A,B,C € C*(W), D,E,F € L*W), f € L?*(W), a : [04,05] — C\{0} and b : [04,05] — C.
We also assume that A, B,C take imaginary values and é, % are always positive (or always negative).
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Moreover, we assume that

(5.2) |AC| > %, for any (z,0) € W,
(5.3) 2A(1,0)b(0) = B(1,60)a(), for any 6 € [0,4,05].

If u € HY (W) is a weak solution of (60) then the following elliptic reqularity estimate holds
(5.4) ue H*W) and llull z2om) < el fllz2om)-

Proof. We consider the rectangle WW. Obviously its boundary is the union of four linear segments and
we write OW = Ui 0W; (cf. Fig. 2). Let U; = B°(k;,r;) N W, be a half-ball in R? in W laying at
OW of range r; and of diameter in 0W;. We define its boundary by oU; := lU;p U OU;., where U, is
the diameter such that 0l C OW;, and OU,. is the semicircle of range r; such that U; C W, we also
consider V; = B°(k;,r;/2) N W, the half-ball being of the same center k; as U; and of range 7;/2 (cf. Fig.
3). Obviously, 9W is compact, thus 9V may be covered by using a finite union of sets of the form V;,
while the same union together with a suitably chosen smooth domain in W covers W. By [I4] an interior
regularity estimate holds. Our aim is to prove the regularity estimate

(5.5) lallizn < llflizan, 0= 1.0,

Interior regularity combined with the estimate (B3) gives the desired result (B4) (cf. [H], pg. 322).

0
0, T W,
15)4%] w OWs
“0,
: N5 l
0 1 =z

oOW; U

FIGURE 3. Half-balls, curved boundary, horizontal boundary.

We consider ¢; € H'(U;) and let u be the weak solution of (5). If (u,v)y, := [, u0ds then using
the differential equation of problem (1) and integrating by parts we have

(fspidu, = — (Auz, 0:00)u;, — {(%uzﬁe@)u + (§u973z¢i)u }

i i

(5.6) — (Cug, Bpi)u, + (Duz, di)u, + (Bug, ¢i)u, + (Fu, i)y,
+ /aui [uz (A, %) + ug (270)}@51-@3,
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where D = —A, — % + D, E=—-Cy— % + E are the resulting terms after integration by parts, and
7 is the outward unit normal to 9l;. We let Q;(u, ¢;) = fau,i [u.(A, Z) +up(Z, O)]¢imids, and define
the vector K; := [u, (A, g) + ue(g, C)]¢s; here (-,-) denotes a vector of R2. Then for OU; = 0Uy;, U OU..
it holds that Q;(u, ¢;) = fauih K;nlds + Jou.. K,7;ds. Using the boundary conditions of u € H'(W) we
obtain

Ql (’LL, ¢1) = _/ A’U,Zé]_ds + Klﬁd‘% QQ(“H ¢2) = KQ%d‘%
82/{1;,, abﬁc au2c
(5.7) Q3(u, ¢3) = — Cugdsds + Ksijids,
6u3h BZ/ISC
Qa(u, da) = / Cugads + Kynids.
62/{4;,, 3U4C
We note that for the term s (u, ¢2) the boundary condition along z = 1 is crucial. More specifically
Qg(u, ¢2) = KQ%CZS =+ Kzﬁds.
8u2h, 8u2c

But we observe that 0lsp, C OWo (where z = 1). So, using the definition of K> i.e.
Ky = [uz (A, %) - ue(§ C)}qu = ¢ (uzA +up u. 2 + u00)7

and the boundary condition along z = 1 which gives u,A + ueg = 0 on Uz, we obtain

Kg%ds = /

b2 (0, uzg + ugC) @ds =0,
MUz,

MUz,
since the second co-ordinate of 773 is zero (cf. Fig. 2). Thus indeed we have
Qg(u, (bg) = KQ% ds.
MUye

Our aim now is to find test functions ¢; such that in the weak formulation the trace terms vanish.

Assumption 1. We assume that there exist functions ¢; that satisfy the following requirements:

e The test functions are smooth and along the curved boundary U;. of U; vanish: ¢; € H 1(U¢), and
¢i :00n8uic, = 1,...,4.

e For i = 1,3,4, the test functions vanish also along the horizontal boundary U;;, of U;: ¢1 = 0 at
z =0, ¢o is arbitrary, ¢35 =0at 0 =0,, ¢4, =0 at 0 = 6;.

Under this assumption, the sum of trace integrals in the weak formulation equals zero because Q;(u, ¢;) =
0 for any ¢ =1,...,4. The weak formulation (58) for B(u, ¢;)u, := (f, ¢i)u, becomes

Blu, 6, = — (Auz, D00, — { (B, 0004),, + (Buo, 0:61),, )
- (Cu97 80(151)1/{7 + (ﬁuza ¢1)1/{1 + (Euea d)z)% + (F’U,, ¢1)U1

The next step is to define, properly, for any ¢ = 1,--- , 4, test functions ¢; satisfying this assumption.
We define the following general cut-off function ([i5])

(5.8)

0 in R2 — B(I,r),
(5.9) J =1 1in B(l,r/2),

0 < J <1 elsewhere (with J = 0 near ol,).
Here U := B°(I,r)N W is a half-ball in R? of radius 7 and of center I such that o), C OW. Let V be
the half-ball in R? of center [ and of range r/2 with diameter in 9. Obviously the cut off function J

in V equals 1, and near 9, is 0. Let @ be a function in H*(W) that satisfies the boundary conditions of
problem (BE), we define the function ([I5])

(5.10) o := —D "(J2D"a), with Dhi(z) = Hethe—al@) o e 3y,
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where h is a positive number and e is a unitary vector (direction) in R? parallel to the diameter of the
half-ball U.

In this way for every boundary line (¢ = 1,--- ,4) of the rectangular domain W we define a cut-off
function J; and denote by e; the unitary direction of the specific boundary line 9W;. We then prove first
that ¥; defined by these J; in (BI0) for the directions e; are test functions that satisfy the Assumption
1, and in the sequel we set ¢; := v;.

More specifically, for every i = 1,...,4 we consider U; = B°(ks,7:) "W, V; = B°(k;, NW, ki,
such that U; CW, dU;, C OW; and define the cut-off function

Ji =01in RQ — B(k‘i,ri),
Ji = Jz =1in B(k’i, %),
0 < J; <1 elsewhere (with J; = 0 near dl;.).

Let @ be a function in H'(W) that satisfies the boundary conditions of problem (E1), we define as
previously the function

(5.11) ¥ = —D; "(J2DMa), with Da(x) = Hethed=a@) =y ¢ gy,

By [15], for any = € U;, the following identity holds
(5.12) 0i(x) = — 75 (JH(x — hey)[a(z) — a(z — he;)] — J2(z)[a(z + he;) — @(z))]).

Using the boundary conditions of the elliptic problem and the identity (E12), we will prove that o;
satisfy Assumption 1 for any ¢ =1,...,4.

If i = 1, then obviously @ is in H'(U;). We notice that if x is in Uy, then Ji(z) = 0 and for h
small enough J; (z — hey) = 0 so by (B32) 91 (z) = 0 on dU.. Along the boundary line Oy holds that
z=0and e; = (0,1). If z = (0,0) then u(x) = 0 and @(x £+ he;) = u(0,0 £ h) = 0, thus by (512) follows
that (0, ) = 0.

If i = 2, then ¥a(x) € H'(Uz), and ez = (0,1). If 2 € OUa. then for h small Jy(z) = Jo(z — hea) = 0,
thus by (B132) v2(z) = 0 on dlUz..

If i = 3, then 93(x) € H'(U3) and e3 = (1,0), for h small. If z € Uz, then J3(x) = J3(x — he3) = 0 thus
03(x) = 0 on OU3.. For x = (z,0,) then a(z) = u(z,0,) = 0 and @(z £ hes) = u(z £ h,0,) = 0. By (12)
follows that v5(z,60,) = 0.

If i = 4, then 94(x) € H*(Uy) and ey = (1,0), if = is in Uy then Jy(x) = 0 and for h small enough
Ji(xz — heq) = 0, thus by (B12) 04(x) = 0 on OlUse.. If 2 = (2,05) then d(z) = u(z,05) = 0 and
u(x £+ hey) = a(z £ h,05) =0, thus 94(2,05) = 0.

Therefore, in all cases Assumption 1 holds and the trace terms vanish from the weak formulation of
the elliptic problem. If we set @ := u, where u is the weak solution of the elliptic problem satisfying the
boundary conditions, then it can be easily proved (for details see [6] and [I5]) by use of ellipticity, the
weak formulation and the boundary conditions at z = 0, § = 6,, 8 = 65, that for every half-ball V; it
holds

(5.13) [ull v < € [HfHL?(Mi) + ”UHHl(Zm} :
Finite summation of (BI3) over any V; (of type ¢ = 1,...,4) and the interior regularity give ([I3])
(5.14) ullz oy < € [1flezom + lullarom -
Combining (B14) with ellipticity we obtain the elliptic regularity result
(5.15) [ullrzomy < el fllzzom)-
O

Remark 5.2. We note that an analogous result is also valid if in the assumptions of Theorem B, the
homogeneous condition at z = 1 is replaced by the non-homogeneous condition a(f)u, + b(f)ug = g
at z = 1, for any g € H2(dWg), where OWg = {1} x (64,65). In this case, in the weak formulation
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the trace integral term containing ¢ is hidden due to ellipticity, leaving at the right-hand side of (EI3)
the extra term ¢|g|1 gy, Where [g]1 gy, = inf {||v]| g2y : v € HY W), v|ow, = g and vopnow, = 0}.
More specifically, the following elliptic regularity estimate holds

(5.16) ullaz oy < & (1Fls20m + 913 0 )

The following theorem extends Theorem B in the sense that we can add at the boundary condition
along z = 1 a zero order term multiplied by an arbitrary smooth function ¢(6).

Theorem 5.3. Under the assumptions of Theorem B, if the boundary condition of (B) at z =1 has
the form

(5.17) a(@)u, +b(0)ug +c(@)u(@) =0 at z=1, 0 € [0,4,05],
with ¢ a smooth complex function of 6, then the results of Theorem B hold (elliptic reqularity).

Proof. We set ¢ = ¢q(z,0) and consider the elliptic operator of (5), we apply the transformation u :=
exp(q)w and get the following equivalent problem

Aw,, + Bw,g + Cwgg + Dyw, + Eywg + Fpw = f,, in W,

w(0,6) =0,

w(z,0,) = w(z,05) =0,

a(@)w, + b(O)wg + c(Q)w(@) =0 at z=1,

(5.18)

where D, = 2Aq. + Bqy + D, E, = Bq. +2Cqy + E, f, = exp(—q)f, Fy = F + A(q.. + ¢*) + B(q.o +
q.90) + C(qoe —l—qg) + Dq. + Eqp, and ¢,,(0) = a(6)q. +b(0)ge + c(6). We chose ¢(z, 6) such that ¢, () =0
or equivalently

(5.19) a(0) q.(1,0) + b(0) qo(1,0) + c(0) =0 for any 0 € [0, 054].

The relation (EET9) can be achieved since g is real and smooth, and a, b can not be simultaneously zero,

[[B]. Thus by (6I8) and (E19) the problem is of the form covered by Theorem BT, and consequently
we H* W) and  [[w]lm2om < ¢l full2om-

Obviously u = exp(q)w; therefore, u € H*(W) and |[ul|z2zovy < || FIlL20m- O

Remark 5.4. By using Remark B3, under the assumptions of Theorem B33 and if we impose the non-
homogeneous condition a(f)u, + b(0)ug + c(@)u(d) = g at z = 1, for g € Hz(dWg) in place of the
homogeneous one, estimate (B18) follows (the proof is the same as in Theorem B3).

Remark 5.5. Theorem B and B3 or the results of Remarks b2, 54 can be applied to cylindrical coor-
dinates for r fixed when W = {(z,r,0) € R3}, by use of the change of variables u(z,0) = 4(z,0) with
0 := 2?:%%9 = ¢o0; then the equivalent problem in cartesian coordinates is defined in a rectangular domain

and satisfies the assumptions of Theorems Bl and B=3 or those of Remarks b2, 5.
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