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Abstract

In a general Banach space we consider gradient-like dynamical systems with the
property that there is a manifold along which solutions move slowly compared to
attraction in the transverse direction. Conditions are given on the energy (or Lyapunov
functional) that ensure solutions starting near the manifold stay near for a long time
or even for ever. The abstract results are then used to show the super slow motion of
interfaces for the vector Allen-Cahn and Cahn-Morral systems.

1 Introduction

The dynamics of a gradient system is obviously determined by the geometric structure or,
as some authors like to say, by the landscape of the graph G” of the energy functional
J : H — R. In certain cases, for instance in singular perturbation problems, J depends on
a small parameter € > 0 and, for € << 1, G’ exhibits special features that have peculiar
dynamical counterparts. A quite striking phenomenon in this context is the occurrence
of Slow Motion (see, for instance, [15], [18], [4] and [30]). The geometric structure of G/
responsible for this phenomenon can qualitatively be described as follows: There exists
a manifold M C H of low energy states relative to some neighborhood, that is, the
energy rapidly grows when moving away from M. Moreover M is a set of quasi-equilibria
in the sense that variations of J along M are small compared to variations away from
M. We formulate hypotheses that correspond to a quantitative description of G’ in a
neighborhood of M and show that, provided a certain condition is satisfied, if the initial
condition ug € H is sufficiently close to M and the value of J(ug) is of the order of the
typical values of J on M, then the solution ¢t — u(t) of the gradient system

up = —VJ(u),
(1.1)
u(0) = uo,

remains near M for a long time or even for ever. A similar point of view was already
adopted in [25] where an abstract theorem that relates the structure of G/ to the existence
of slow motion has been proved. Our main results, Theorems 2.1 and 2.2 below, are
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abstract developments of some ideas first considered in [4] in the context of slow motion of
bubbles in Cahn-Hilliard and conserved Allen-Cahn dynamics. We do not insist that the
motion along M be super slow for our general result, but that can be inferred if conditions
are placed upon the variation of J along M. Thus, our main results only concern positive
invariance of a neighborhood of M and dynamics being then driven by the variation of
the energy along M.

In fact, we will consider a slightly more general situation in which J is merely a Lyapunov
function for an evolutionary equation

(1.2)
u(0) = ug € H.

We assume that H is a Banach space and F' is such that (1.2) has a unique continuous
solution ¢t — wu(t) € H existing on [0,7) for some T > 0. We assume that J : H — R is
continuous and

(13) if t1,t9 € [O,T) with ¢; > to then J(u(tl)) < J(u(tg))

Let ||u|| denote the norm of u in H. We develop this point of view in Section 2.1 where
we formulate the assumptions on the geometry of G’ and prove two abstract theorems:
Theorem 2.1 that says that a solution that starts near M with energy of the order of the
energy on M is trapped near M until it gets close to M or, forever, if M is empty. On
the other hand Theorem 2.2 provides a lower bound on the time needed to reach OM.

In the remaining part of the paper we apply the results of Section 2 to two different
situations. Our intention is to show how different problems fit perfectly into the abstract
framework developed in Section 2.1. This also substantiates our view that Theorem 2.1
captures the essential features of the various phenomena of slow motion discussed in the
literature. In Section 3 we consider a finite-dimensional approximation of the geometric
evolution of a small droplet which is contained in a planar region {2 and slides on 0f)
(see Theorem 3.1). In Section 4 we study layers dynamics for the Allen-Cahn and Cahn-
Morral systems. These are gradient systems of the same functional with respect to two
different inner products. In spite of this, since Theorem 2.1 is only based on the geometry
of G7, we can treat the two problems in a unified way. Theorem 4.1, the main result of
Section 4, establishes the exponentially slow motion of layers in solutions to the vector
Allen-Cahn and Cahn-Morral systems in one space dimension. Our proof of Theorems 3.1
and 4.1 follows a precise path and consists essentially in the systematic verification of the
assumptions of Theorem 2.1.

Slow motion of layers for the scalar Allen-Cahn equation was first described in [24]
and then analyzed in [15], [18], [16], [17] and [29] with a geometric approach based on
linearization and invariant manifold theory. In [13] and [14] the problem was reconsidered
by a variational approach in the spirit of I'-convergence. The geometric approach was also
used in [2], [9] and [10] to analyze layer dynamics in the context of the one-dimensional
Cahn-Hilliard equation. The technique in [13] was extended in [19] to show exponential
slow motion of layers for the Cahn-Morral system. Slow dynamics of layers for the vector
Allen-Cahn equation was studied in [11] in the case the minima of W are nondegenerate
and in [12] for the degenerate case. The approach in [11] and [12] is variational and
bears some similarity with [13] and [19] but uses local energy estimates derived from the
parabolic equation (4.2). Our analysis requires more restrictive assumptions but the main



result, the implication (4.13) in Theorem 4.1 is merely a geometric property of the graph
G’ of the functional (4.1) that applies indifferently to both (4.2) and (4.3) and makes no
use of the corresponding parabolic dynamics.

Slow motion appears also in higher space dimensions. Slow motion of an almost
spherical interface dividing a domain into two regions where u(t,ug) is near to one or
the other of the two minima of W was studied in [6], [30] and [4] for the Cahn-Hilliard
and mass-conserving Allen-Cahn equation. Other problems that exhibit metastability and
slow dynamics are considered in [7], [30] and [22].

2 Persistence of the dynamics near M.

Throughout we assume that M is a smooth embedded manifold with or without boundary
and assume that there is g > 0 such that

(2.1) |J(v1) — J(v2)| < dp, for vi,vy € M.
For 1 > 0 small we denote by N the n—neighborhood of M defined by

{ueH:du,M)<n}, if OM=10,
(2.2) N =
{ueH :du,M)<n, dx(u,oM) > d}, if OM #1),

where d > 0 is fixed and small and dx is a distance function, possibly with respect to a
different space, X.

The situation we have in mind is that X is a separable Hilbert space, H C X is a
dense subspace which is itself Hilbert. We denote by (,) both the inner product in X and
the pairing of H and its dual space H*, H C X C H*. One may take F' to be semilinear,
of the familiar form F(u) = Au+ f(u), where A € L(H, H*) is a bounded linear operator,
typically a uniformly elliptic operator, and f : H — X is sufficiently smooth. With D(A)
the domain of A as an unbounded operator in X, f should be smooth enough such that,
for up € D(A), the solution t — u(t,up) € C([0,T]; H) and both v, Au € C([0,T7], X).
We assume that for some fixed small 77 > 0 there exists a projection defined on A/

u — v"* € M that satisfies

(2.3) du, M) <6 = |u—2"|<CS ueN §el0,7).
for some constant C' > 1 and allows one to decompose J(u) — J(v*):
(2.4) J(u) — J(v") = L(v*,u — v") + Q(v*,u — v") + N(v",u — v"), for ue N,

where the name L suggests it is linear, () suggests it is quadratic, and N stands for higher
order nonlinear terms, even though, strictly speaking, these operators need not be linear,
etc.. On L,Q, and N we make the following hypotheses:

H; There exists d;, > 0 such that

|L(v",u —v")| < &p|lu—v"||, for ue N

H, (M is a manifold of low energy) There exists Ky > 0 such that

Q" u—v") > Kollu — v*||?, for ue N



IN (", u—v")| < Ki|lu—o"||#, for ue N,

for some K7 > 0 and some p > 2.

Define

(2.5) h= { (F32)7 if Ky >0,
400, if Ky =0,

and set

(2.6) n = min{g,ﬁ},

where C is from (2.3).

Our first result is an abstract theorem that captures the essential features of the energy
landscape that are remarkably common in singularly perturbed PDEs with variational
structure and are at the basis of various phenomena of slow motion that have been dis-
cussed in the literature [2], [4], [10], [15], [18]. In section 4 we analyze in detail how the
abstract result can be applied to show existence of slow motion in the context of the vector
Allen-Cahn and Cahn-Morral dynamics.

Theorem 2.1. Assume that J : H — R, M and the projection u — v* € M, defined on
N7, satisfy hypotheses Hi-Hs. Assume that u satisfies

(2.7) J(u) < sup J(v) + 41,
vEM

for some 61 > 0 and that dg, 61, and 6y, satisfy the condition

(2.8) M = ;S(LO + };(%3 + 250;051 <7
Then
(1)

(2.9) we N = wueN",

i.e., if u finds itself in the larger neighborhood of M, N, then it is actually in the
smaller neighborhood, N.

(ii) For any ug € N, if [0,T) is the (positive) maximal interval for which the solution
u(t,up) to (1.2) with initial datum ug lies in N, one of the following alternatives
prevails
a) T = +oo and u(t,up) € N, for te€[0,+00).

b) T < +oo and limy—7 dx (u(t,ug), OM) = d, the constant in definition (2.2).

In particular, T = +oo if OM = ).

The idea of the proof can be seen in Figure 1, which illustrates the geometry of G’
described in Theorem 2.1 and explains how the interplay between the energy and the
neighborhood of M leads to the implication (2.9).



Figure 1: The geometry of G’ near M

Proof. Take v € N and set (u) = ||u — v*|. Note that (2.3) yields
(2.10) n(u) < O <4,

Observe that hypotheses H1-H3 imply

(2.11) () + Kon(u)? — Ki(u) < J(u) — J(o").
Also (2.1) and (2.7) yield

(2.12) J(u) — J(v*) < sup J(v) + 61 — inf J(v) < g + 6.
veM veM
Figure 1:

Combining with (2.11) we see that n(u) satisfies the inequality
—5pn(w) + Kon(w)® — Kin(u)* < 6 + 61,

or equivalently

(2.13) S0 w)? — Sen(u) — (o + 01) < Kinuy — S0n(u)?

From (2.10) and the definition of 7 in (2.5), the expression on the right is non-positive.

Hence,
K
7077(102 = 6zn(u) — (do + 1) < 0.

But this quadratic in n(u) has 7, as its largest zero and consequently, n(u) < n.. This, of
course means u € N,

The proof of (i) is complete. Statement (ii) is an obvious consequence of (i).



Remark. Note that for the validity of Theorem 2.1 it is not required that all equilibria
of (1.2) in a neighborhood of the basic manifold M lie on M. In particular 67, in Hj is
not required to vanish. This is an advantage of our approach since the construction of M
with the property that includes nearby equilibria is rather easy in the case of slow motion
for the scalar Allen-Cahn equation [25] but is a nontrivial task in the vector case and for
other higher dimension situations.

The next result gives an estimate on the time it takes for a solution to leave a neighborhood
of M, in the case that OM # (). For this we take H to be a Hilbert space with inner
product (-, -).

Under the assumptions of Theorem 2.1, if O M is not empty, we know that the only
way a solution originating in N and satisfying (2.7) can leave N is through its ends.
If we assume that a differentiable functional J is a Strong Lyapunov function for (1.2) in
the sense that

[SL] (VJ(u), F(u)) < —col|F(u)||% for some 7 >1, ¢y >0, and all u e N,

we can make a quantitative statement concerning the long-term dynamics and, in partic-
ular, establish a lower bound on the time the solution remains in N*.

Theorem 2.2. Assume that the hypotheses of Theorem 2.1 hold. Assume that [0,T) >
t — u(t,up) is differentiable with v € X and that J is a Strong Lyapunov function for
(1.2), i.e., [SL] holds. Then each t € (0,T) provides an upper bound for the displacement
i the X -norm:

« (00 + 01\ U7
(2.14) lut) = wgllx < /7 (222) 7,
€o
where T is the conjugate of T. In particular, if OM # (),

7> (dx(u0,OM) — d)T*CE*_l.
N (0p + 61)7" 1

Proof. We have
t ) t . t
(215) [lu(t) — uollx < /0 lllx < V7 /0 oI5 = £/ /0 | F(uls))ds) /™

< i/ (;Ol /;(VJ(U), F(u)>ds> _ e (;01 /Ot<VJ(u),utu/>dS>
0o + d1)

J(”u,o) — J(’U,(t)) 1/7 1/7* 1/7
Dy e Py,

1/7 1/7

:tl/T*(
by (2.12). Hence,
. Co T*—1
2.1 t> t) — Yl .
(2.16) > [lu(t) ~woll% (555

The other inequality follows from Theorem 2.1. O



3 An example of dynamics on RY

Our first application of Theorem 2.1 is to a discrete version of the geometric evolution of
a small droplet along the boundary of a plane region.

Let © C R? be a bounded smooth domain and let Q¢ C ©, 0 < € << 1, be a small region
such that I'* = 9Q¢NQ is a simple smooth, almost semicircular, arc which intersects 92 at
right angles at the end points, see Fig. 3. We consider a finite-dimensional approximation
of the geometric evolution t — €)f of a given initial droplet 2§ under the gradient dynamics
associated to the constrained functional

J(Q°) = L(I),

A(QF 21
(@) =2,

(3.1)

where L and A denote length and area, respectively.

Figure 2: The droplet Q¢ on the boundary of €.

Let p : [0,L(C)) — R? be a representation of a simple closed curve C C 9 with
parameter being arclength s € [0, L(C)). Given s, the map

(3.2) y — h(y,s) = ply1 + s) + n(y1 + s)yo,

where n(s) is the unit normal to JQ2 at p(s) pointing inside €2, is a diffeomorphism of a
neighborhood of the origin in Ri = {y € R? : 5 > 0} onto a corresponding neighborhood
of p(s) in Q. This follows from the inverse mapping theorem and

Oy 5) = ( Pr(yn + )1 —k(ys + 8)y2)  —pa(y1 + ) )
oy Ys pa(yr +8)(1 — k(y1 + 8)y2)  p1(y1 +s)
(3.3)

= det(g}yl) =1—Fk(y1 + s)y2,
where k(s) is the curvature of 092 at p(s), taken positive for a circle. Given s € [0, L(C))
and a point z € Q in a small neighborhood of p(s) the equation = = h(y,s) uniquely
defines a vector y = y(s) that we call the vector of the coordinates of z with respect to
p(s). If, in particular, we choose s = s, with s, such that p(s,) is the (unique) orthogonal
projection of x on 92 we have

Yi1(sz) =0, y2(sz) = (x — p(sz)) - n(82).



For any s € [0, L(C)) the coordinates y;(s) of x with respect to p(s) are determined by the
condition

P(sa) + y2(se)n(s2) = = = p(y1(s) + ) + ya(s)n(yi(s) + s).

This and the uniqueness of p(s;) imply p(sz) = p(y1(s) + s) and therefore
yl(s) =5, —s, and yQ(S) = yQ(Sr)-
Given s € [0, L(C)) and a map r € C1([0, 71]; R) that satisfies

(3.4) r9(0) = rg(m) =0
the arc
(3.5) I(s,7) = {h(y(8,€),s) : y(0,¢) = e(1 + er(0))(cos f,sin )", 6 € [0, 7]},

is contained in Q and intersects O at right angles at the end points. Moreover,
I(s,r) = 0Q¢(s,r) N Q,

where Q¢(s,r) C Q is an almost semicircular region with approximate center at p(s) and
radius €. The representation (3.5) of I'“(s,r) is not unique but depends on s. We show
below that there is a unique choice of s which allows one to represent I'“(s,r) with r
satisfying

(3.6) /07r r(6) cos 0df = 0.

We assume that r satisfies (3.6) and therefore we have a unique s and a unique
representation of I'“(s,r). The uniqueness of s is basic for the definition of the manifold
M and the associated projection for the case at hand. Indeed we show that for each
s € [0, L(C)) and small € > 0 there is a unique constant 7(s, €) € R such that (3.1)2 holds
with Q¢ = Q(s,7o(s,¢€)). Now set
(3.7)

M ={T(s) = h(y,s) : y = e(1 + eFo(s,€))(cosb,sinf) " € C([0,7],R?), s e [0,L(C))}.

More generally we prove that the constraint (3.1); determines the average ro = 1 Jo r(0)do
of r and therefore that each I'“(s,r) of the form (3.5) is actually identified by s and the
map p = r—ro(p, s, €) and we refer to the pair (s, p), where p has zero average and satisfies
(3.6), as the coordinates of I'“(s,r) and write I'“(s, p) instead of I'“(s, ). Determining the
evolution of T'“(s, p) is equivalent to determining the evolution of the pair (s, p). After
having established all this we compute L(I'“(s,p)) as a function of (s,p) and restrict to
finite-dimensional subspaces. We fix an integer N > 2 and take

N
(3.8) p= Z ¢, cosnb.
n=2
We denote by | - || the L?(0,7) norm and let L% be the subspace of L?(0,) given by

functions of the form (3.8). Fix a € (0, 3) and set

c

(3.9) N = {T(s,p) : s € [0,L(C)), p € L, |oll <ia) = ool

for some ¢ > 0. We can now state the main result of this section



Theorem 3.1. Given N > 2 there exists ey > 0 such that for € € (0,en), if
T¢(s0, po) C N satisfies

L(T¢ < L(T T'e?
(I'“(s0,p0)) < se%l,%)((c’)) (I'“(s)) + Ce

and if (s,p) : [0,T) — [0, L(C)) x L% is the solution to the problem
{ (8,0) = =V (5,0 L(I'*(s,p))
(s(0), p(0)) = (50, p0),
then T' = 400 and
T(s(t), p(t)) € NT2),  for t€[0,+00).
The next lemma asserts that (3.6) leads to a unique representation for an interface T

Lemma 3.2. Given 5 € [0,L(C)) and C' function 7 : [0,7] — R, there exists a unique
s € [0,L(C)) in an e-neighborhood of s and function r : [0,71] — R satisfying (3.6) such
that

Ié(s,r) =T(s,7).

Proof. Set 5(19,€) = e(1 + e7(19))(cos ¥, sin®?) T. To determine the function
(-, 8,€) : [0,7] = R defined by (3.5) for s in a neighborhood of 5, we solve
P (V) +5) + n(G1(0) + 5)72(9) = h(g(?), 5)
(3.10) =z
= h(y(0,s),5) = p(y1(0,s) + 5) + n(y1(0, 5) + s)y2(0, 5)-

for each ¥ € [0, 7]. We obtain

91(0,5) =51(0) +5 =5, ya(0,5) = 52(0)

and, if we define o = s%g and write (6, o) in place of r(0, 5 + €0, €), we have

(1+er(0,0))cosf = (1 +er(¥))cos? — o,
(1+er(f,0))sind = (1 + er(9)) sin .
This implies

(I1+er(9))costd — o

cosf = :
V(T + er(0)) cos ) — 0)2 + (1 + ()2 sin 2

(3.11)
(1+er(8,0)? = ((1+ e (¥)) cos ¥ — 0) + (1 + €7 (19))? sin ¥?

and these determine the maps 6(¢J,0) and r(0, o).

We observe that r(6, o) satisfies (3.6) if and only if

(3.12) /Oﬂ(l +er(f,0)) cosdf = 0.



From (3.11) we derive

(14 €7(19))? — (erg(9) sin V¥ + (1 + €7 (1)) cos ¥

(3.13) 90 = T+ er(@)) cosd — 02 + (1 1 er(9))? sin 02

and we can rewrite (3.12) in the form
(3.14)
F(er,o) =/ (1 + €7 () cos ¥ — o)fydV)
0

(14 er(9))? — (erg(V) sin V¥ + (1 + er(¥)) cos )

(14 e7(9)) cos ) — 0)2 + (1 + €7 (19))2 sin 92 dy = 0.

= /Oﬂ((l + er(¥)) cos ¥ — o)

We have F'(0,0) = 0 and D2F'(0,0) = —7, therefore the implicit function theorem provides
the existence of Cp > 0 and § > 0 such that, for each 7 satisfying [|7||c1(0,x) < % there
exists a unique o € (—6,0) that solves (3.14). This concludes the proof. O

Next we show that the area constraint in (3.1) uniquely determines the average value of
r. In the following we use the notation

=a(f,s,€) =1+ er(d,s)

and
C =cosf, S =sind.

With this notation we have

y1=y1(0) = eaC, y19 = €(apC — aS),
Y2 = y2(0) = €aS,  y29 = €(agS + aC),

and using (3.3) we find

8h ,
/ o= Py = [ (= b+ sl
€ Qe 1(9678)

y2(0) ™
- /0 odd [0 = b+ hpde == [ (10(0) = G+ 5)02(60) o0

2 i
= —62/ aS(agC — aS)(1 — ik(eaC + s)aS)dl = 62/ (a2 + e(a?agS?C — a>S?)k(eaC + 3)>d9.
0 0

From (3.15) we see that the constraint A(2€) = €22 is equivalent to
s 2 _ 1
(3.16) / (“ + (a%apS2C — a3S3)k(eaC + s))de —0.
0 €

We first analyze (3.16) for r = 7(s, €), a constant in §. Then, with a = 1 + €7y,

T, =2 1
(3.17) D (7o, €) = / (a —a’S3k(eaC + s))d@ =0.
0

€

We have ®¢(79,0) = [; (270 — S3k(s))df and therefore

3k(s)

10



On the other hand D;®¢(70(s,0),0) = 27 and so the implicit function theorem assures the
existence of €9 > 0 and 6 > 0 such that for each € € [0,¢€p), (3.17) has a unique solution
7o(s,€) € (£k(s) — 6, =k(s) + §). By compactness of 09 we can take € and  to be
independent of s.

We now analyze (3.16) for a general r € C!([0,7],R). Define rq = %fow rdf, set
v = 19— T, Write r = 7o+ + p, and observe that f(;T pdf = 0. In the following we denote
by C a generic constant that may change from line to line and by g;(ez, 6, s, €) certain
smooth functions. By subtracting (3.17) from (3.16) and multiplying by € we get a fixed
point problem for the quantity ey:

2

1 ™
E’y:—%< 770’7+’72+/ deQ)
(3.18) TJo

€ m
to /0 (91(6(7 +p),0,5,¢€) + epoga(e(y + p), 0, s, e))d@ = &(ev, p, s, €),

where ¢1(0,0,5,¢) = 0. Under the assumption that e(|y| + [|pllw1.1(j0.)) < Ce* for some
constant ¢, ®(-,p,s,€) is a contraction map for ey in [—e®,€?], with contraction factor
K = Ce*. Note that |pgll51(jo,x) is equivalent to |[p|ly1.1(0.q)) since p € L% has mean
value zero. Let ey; = ®(eyj_1,p,5,€),5 = 1,... with eyg = ®(0, p, s,€). It is routine to
check that

ol < Ce*llpllwras I =0l < Ce*pllws
and therefore that the solution v = v(p, s, €) of (3.18) satisfies

1
Iy — 0| < _7K|’71 ]

(3.19) and so
- Clelte -
7] < Ce|lpllwrr + m”ﬂ”wm < Ce|lpllwrr-
So, if we set
(3.20) p=(p,s€) + p,
we have the estimate
(3.21) 18 < Cllpll.

Next we compute the length L(I'“(s,r)) of I'“(s,r) and estimate the difference
L(T¢(s,7)) — L(I"*(s)). With y = e(1+er(6,s))(cosd,sinf) ", from (3.2) and (3.5) we have

L(T(s,r)) = /07r |(P(y1 + 5) +y2n(y1 + 5))yre +n(y1 + 5)y2,9|d0

= [ U=k 9ol + ot
0

322 = [ ol + o) — (1= (1= K+ 5ot

— /” V(@ +a3) — (1= (1 — eh(caC + )aS)?)(a$ — agC)2do
0

26/7T v/ 1+ &dO,
0

11



where

E=a* -1+ ag - (1- (1 — ek(eaC’ + 5)aS)*)(aS — agC)?.
From /1+¢ —1—|—2£ 16f0

(3.22) becomes

(3.23)
L(T%(s,7)) = em + % /0 <a2 “14+a2—(1— (1 - ek(eaC + 5)aS)?)(aS — agC)2>d9

(€ -
1+t

dtd@

;/0 @ —14a2— (1—(1— ek(eaC + s)aS)?)(aS — apC)? d9+//

+ % / — ea®S?(apC — aS)k(eaC + s) + af — (1 — (1 — ek(eaC + s)aS)?)(aS — a90)2>d9
0

¢ 2
8/ a? —14a2 — (1 — (1 — ek(eaC + s)aS)?)(aS — a90)2> de

0

ok L

—€em+ = (114-[2—1—[3)

dtd9

where we have also used (3.16). Note that I, I and I3 depend on (s, p). We let I, I and
I3 be the values of Iy, Is and I3, respectively, computed on the basic manifold, that is, for
p = 0. With this notation we have

(3.24) L(I“(s,r)) — L(I'“(s)) =

DN
[
—~
&~
|
~i
N~—

=1

We let ||p|| and ||p|lec be the L? and the L> norms of p € L3, and observe that

lpollLr < Npll,

lplloo < VN||pll,
3.25
( ) and

3
1Polloc < N2]|p-

In the following estimates we will systematically use the above inequalities, with N fixed,
to control terms containing powers of p and py.
For T'(s, p) € N(®) we compute

(3.26)
L = / (— €a?S?(apC — aS)k(eaC + s) + a3 — (1 — (1 — ek(eaC + 5)aS)*)(aS — agC’)2>d9
0

= 6/0 (—k(eaC + s)aS + ek?(eaC + s)a*S?)a*S*df + 62/0 padf
+ e/ a9< — a%S%Ck(eaC + s) + (—2k(eaC + 5)aS + ek*(eaC + 5)a>S%)(—2aSC + aQC’Q))dG
0
= 62/ pde +e(l11+ Li2).
0
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To estimate I ; recall that a = 1 + €(7o + p) with p = v(p, s, €) + p and observe that we
can write

(3.27) 1171:/ g(eﬁ,@,s,e)d@,
0

where ¢(z,6, s, €) is a smooth function. Note that ¢(0,6, s, €) is the integrand evaluated
at r = 7, that is, evaluated on the basic manifold (3.7). Since I'“(s,p) € N the
derivative of g with respect to z is bounded, therefore,

(3.28) I :/ g(eﬁﬁ,s,e)dé’:/ 9(0,0,s,€)d0 + O(€||p| o) -
0 0

We also note that g(0,0, s, €) = (—k(eaC+s)aS+ek?(caC+5)a25?)a?S? = —k(s)S3+0(e)
and therefore

(3.29) Iy = /Oﬂ 9(0,0, s, €)d0 = —gk(s) +0(e).

Since the integrand of I; 5 is the product of ap = €pg and a function which, for
(s, p) € N is bounded together with its derivative, we have

(3.30) |112] < Cel|pglloc-
From (3.25), (3.28) and (3.30) we obtain

L=I+¢ / p2d8 + O(E([|5loo + l196]10))
(3.31) 0

Iy /0 p2d8 + O(||o])).

where I is I1 computed on M, that is, for p = 0. To estimate Iz and I3 we begin by
estimating & and the difference & — € for I'(s, p) € N(®) where € is £ computed at p = 0.
With a = 1 + erg we have

(3.32)
£ —&=2e(1+ero)p+ (5" + pj)
+ ek(eaC + 5)aSC(2 — ek(eaC + s)aS)(2eaSpy — €2 p3C)
- e(k:(eaC + 8)aS(2 — ek(eaC + s)aS)a*S?* — k(eaC + s)aS(2 — ek(eaC + s)dS)d2S2>
= 2¢(1 + €70)p + €2(p° + p3) + R + Ro.
Since I'“(s, p) € N®) ¢ is bounded, and since k and &’ are bounded we have

(3.33) |R1| < C(e¥]lpslloo + €llpell2) < Ce|lpll-

From (3.32) it follows that Ry = 0 for a — a = ¢p = 0 and therefore we see that Rs is a
smooth function of the form g(ep, 0, s, €) with ¢(0,60,s,e) = 0. From this it follows that

(3.34) |Ro| < C€17]|.
Therefore, using (3.21), we see that (s, p) € N7(®) implies

€ — €| < Ce™.
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This and the fact that

(3.35) €] =1a*—1— (1 — (1 —ek(eaC + s)aS)?)a’S? < Ce.
imply that for (s, p) € N(®) we have

(3.36) €| < Ce”.

From (3.25), (3.32), (3.33) and (3.34) it follows that

£ =E+2ep+ (52 + pg) + 0(|lpl])

(3.37) S
= &4 2¢p+ O([lpll + [lol?)-

Using that together (3.35) and T“(s, p) € N(®) imply |€ + 2¢p| = O(e%),

& = +4€°5% + 4e&p + 2€° (£ + 2¢p)O(||pl| + [|pl1?)
+et0(lpl” + llpll*)

=& 4P + 4ekp

O (llpll + 1ol1) + e*lloll*)-

(3.38)

From (3.38), using also (3.35) and (3.19), we deduce

=—/ £d9——/ 5d9—e2/ ,one—e%wQ—ev/ Edﬁ—e/ §pdf
0 0 0

+ 0> (|lp|l + + ¢t
(3.39) (ol + lolI*) + €'l *)

= /?d@—e/p%w

+ O (llpll + lo1%) + Ol

where we have also used [ pdf = 0.
To evaluate I3 we need an estimate of the difference
_ € (&—1)2 §(E—1)?
D(§7f):/ ( )sdt_/ ( )§dt
0 (1+1)2 0 (1+41)2

A (i ok € (& —1)?
(3.40) _/0 Y dt+/£_ o
)

2 3 £ (&—1)?
:/ €206, (02,
0 (1+1)2 £ (1+1)
Therefore from (3.40), using also (3.35), (3.36) and |¢t| < max{|¢[, ||}, it follows that

ID(E,6)] < C(eeE — €| + | — &)
< e (llpll + llel®).

(3.41)

From (3.41) we finally conclude

(3.42) Iy = I+ O (llp]l + [Io11%)),
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where we have used (3.37). We also have from (3.35)

(3.43) |I3] < 262 < Cé.

Using (3.26), (3.29), (3.39), (3.43) and | f; £2d6| < Cé? it follows that

(3.44) L(s) = em + (T + B+ Iy) = em — gezk(s) + O
and therefore
(3.45) IL(T(s1)) — L(T(s2))| < G —: 6,

giving condition (2.1) with J := L. We now examine (2.4) and show that assumptions
Hl-Hg hold.
From (3.44), (3.23), (3.31), (3.39) and (3.42), it follows that

3 T
(3.46) L(P(s, p)) = L(I*(5)) = O(”[lpll) + 2/0 (05 — p*)dO + O (¥ pl|*).

On the basis of the abstract Theorem 2.1, we can interpret the various terms in (3.46) as
follows:

(3.47) IL(s,p)| < CEllp| = o = Ce,
6 N
Q(s, p) z;Zn — 1) — Ce|p|?
(3.48) n—2
3
€ ~N
> S (B =Cllpll* = Elpl*, = Ko=¢,

(3.49) and N(s,p) =0, which gives K; =0.
We take our initial bubble I'f such that

. L(T¢ L(Te 2 61 = C1é’.
(3.50) ( )<s€[(§flLai)8<Q)) (I“(s)) + Cie = 61 =Che

From (3.49) and (2.6) it follows that

From this, (3.45), (3.47), (3.48), and (3.50), it follows that the condition (2.8) in Theorem
2.1 reads

(3.51)

oL ﬁ+25°+51 <C+1+1/e) <
e = K() Kg Ky —

which, provided € > 0 is sufficiently small, is satisfied for a € (0, %) We can now invoke
Theorem 2.1 to conclude the assertions in Theorem 3.1.
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4 Slow motion for the vector Allen-Cahn equation and the
Cahn-Morral system

In this section we consider the Allen-Cahn energy J : W12([0,1],R™) — R

1 62
(4.1) J() = J(u, (0,1))_/0 (5 el + W () da.

and the associated gradient dynamics governed by the parabolic systems

U = Uy — Wy(u), t >0, z € (0,1),
(4.2) up, =0, 2=0,1,
u(0) = wo,

and

g = —(ugy — Wy (u))za, t >0, 2 € (0,1),
(43) Up = Ugze = 0, . =0,1,
’U,(O) = Uup.

We refer to (4.2) as the vector Allen-Cahn equation and to (4.3) as the Cahn-Morral
system. System (4.2) is the L2-gradient flow of (4.1) while (4.3) is the gradient flow in
Hy'((0,1);R™), the Hilbert space of the maps v € H~'((0, 1); R™) that satisfy fol vdx = 0.
The inner product in Hy *((0,1); R™) is defined by

! _1 _1
(4.4 () = [ (D)3 (D) Hgda
where D : Hy '((0,1);R™) — HE((0,1); R™)! is the operator f — v defined by

Vg = f, x € (0,1), [y fdx =0,
v, =0, £=0,1,
folvda::&

We assume

h;) W:R™ — R is a smooth potential that satisfies
0=W(a) < W(u), for a€ A and ueR™\ A.

where A C R™ is a discrete set with at least two elements. Moreover a € A is
nondegenerate, in the sense that the quadratic form D2?W (a) is strictly positive
definite.

hy) liminf W(u) > 0.

|u| =400
For e << 1, in a time interval of length O(1), the evolution of the solution ¢t — w(t, up)
of (4.2) is mainly dictated by the kinetic equation u; = —W,,(u) and u(t,up) moves to a
neighborhood of A in the subset of the spatial domain (0, 1) where ug(x) lies in the basin

of attraction of A, with respect to this kinetic equation. Depending on the structure of
up this leads to an intermediate state where (¢, ug) has a layered shape. That is, there

'Here H} is the subspace of H' of maps with zero average.
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is a certain number N of thin intervals of width O(e), I1,...,Ixy C (0,1) across which
u(t, up) jumps from a neighborhood of a; € A to a neighborhood a; € A for some distinct
a;,aj € A. In the complement (0,1) \ U;j1;, u(t, up) remains close to A. Once u(t,ug) has
achieved this layered shape its energy is essentially concentrated in the layers and changes
only a very small amount with the layers’ positions. Therefore the layered structure is a
kind of metastable state which persists for a very long time during which the layers move
until two of more of them collide and annihilate. This type of metastable dynamics of
layers occurs also for the Cahn-Hilliard equation in one space dimension and for the vector
version of Cahn-Hilliard, the Cahn-Morral system (4.3). However the route leading to a
layered structure is more complex with respect to the simple evolution sketched above for
the Allen-Cahn equation.

All these slow motion phenomena are consequences of the fact that the geometry of
the graph G/ of J for € << 1 has the structure described in the abstract Theorem 2.1.
To substantiate this statement we discuss in detail layer dynamics for the systems (4.2)
and (4.3). We take Theorem 2.1 as a paradigm for our proof and proceed step by step
with the definition of M the associated projection and the computation of the quantities
90, Ko, K1, ... necessary to check the validity of the condition (2.8) in Theorem 2.1.

Under assumptions h;) and hg), if A = {a1, a2}, a1 # ag (see [26], [23] [31],[27],[8] and
[5]) there exists a connecting orbit 4 : R — R™ between a; and ay that is a solution of
' = Wy(u), seR

(4.5)

SEI_IIOOU(S) = o, SEI-EIOOU(S) - a2

The connection map u is characterized as a minimizer of the functional

2
JR(U):/R(62|U;E|2—I—W(U))(Z:E, that is, Jg (@) = min Jg (1),

ueA

i 172 m 3 57 i
where A = {u e W (R, R ),mggloou(x) = +a}.
In the general case we assume that there exists a; € A,j =1,...,N + 1, a; # aj1,
j=1,...,N and connections @;,j = 1,..., N that minimize Jr(u) on
172 ] i — . 3 7] — .
A= {u € I/Vloc (R7 Rm)7sgr_noou(s) = ay, Sl}ﬂ_noo u(s) - a]+1}‘
The fact that a; is a nondegenerate zero of W implies the existence of constants k, K
such that
4(s) — aj] < Keks, <0
(4.6)
Tj(s) — aji1] < Ke ™, s>0
This and elliptic regularity imply that we can also assume
= = —k
(4.7) @ (s)], ) (s)] < Ke ™t
We also make the following generic assumption

h3) The zero eigenvalue of the operator £; : W*2(R;R™) — L?(R; R™) defined by
Ljp = —¢" + Wiy ()0
is simple and therefore there is 5 > 0 such that o(£;) C {0} U {\ > S}

In the scalar case this is automatically satisfied and is related to the monotonicity of the
connection u. In the vector case the situation is more involved: the connection may not
be unique [3] and the kernel of £ may be m-dimensional.
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4.1 The manifold M
Define

E:E(p)::{ﬁéRN: 0<& <--- <&y <1, such that
Ga1=&>p J =1 N=1,&>p/2 11—y > p/2},

where p € (0,1/N) is a small fixed number. Given £ € =, set § = —&1, En41 = 2 — &N
and let éj = %, j=0,...,N be the mid points.

Definition. For each ¢ € E we define the function u¢ by

N v €
(48) uf(2) = Y (5(—2) — o) + o

=1

In the special case where A = {—a,+a} we have

(49) )= 3 [u ((—1)j+1(x - @)) . <—1>J’+1a} .

€
where @ is as in (4.5).

The manifold M is defined by,
(4.10) M= {ub: £ B}

and, with d > 0 to be specified later, define the neighborhood N of M by

(4.11) N ={u e WH dyaa(u, M) <1, dpa2(u, OM) > d},

where dj2 is the distance in the L? sense and dW1,2 denotes the distance in the sense of
the || - [|;,1.2 norm

(4.12) IIUH%W = lual?s + [[ull?-.

We can now state the main results of this section. We denote by (-, -) the standard inner
k
product in L2((0,1); R™) and by || - || the associated norm. We use the notation O(e™2)

k
to denote a quantity ¢ that satisfies a bound of the form |g| < 066_75 for some constant
C. > 0 that may depend algebraically on e.

Theorem 4.1. Let H = W2((0,1); R™) with norm |Ju||1.2. Assume that W : R™ — R

satisfies hy)-h3). Let 23 & — uf be defined by (4.8). Take any 61 = O(e_%). Then there
are €9 > 0 and constants C,C" > 0 independent of € € (0,¢ey) such that, with d = C'es in
(4.11), one has

kp

(4.13) up € N = u(t,ug) € N %, for t €[0,T),

where t — u(t,ug) is the solution of (4.2) or (4.3) and either
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(i) T =40

or
(i) limy7dp2(u(t,ug),0M)=d and
T > % (dy (g, OM) — C'ez)?,
where X = L? for (4.2) and X = H™! for (4.8).
Proof. We divide the proof in several Lemmas.
Lemma 4.2. [Computation of 5]
Let £,€ € E and ué,ué € M, then
(4.14) T (u€) — J(u€)] < &

_kp
where g = e~ 2¢.

Proof. We have

(4.15) Z/ |u§\2 + W (uf))da.
i— 1,&
The change of variable x = s + &; gives
Eit1—&i
we [ (5 sl wna= [ o (G + G+ W + &)
(4.17)
ere)=m) + ¥ (mTETH) a0
1<5<i
s+ & —§
+ K;N (“J( p 2) J)

From (4.8) we also have

(4.18)
(S-l-&)—i ;(g)_i_zlu(s-i-fz fy)

L ¢ J €
JFi

For s € (—%, %) and j # i, one has |s + & — ;| > p/2. Therefore from (4.6),
(4.17) and (4.18) it follows

(4.19)

19



Now observe that (4.6) implies

(4.20) —

From this and the estimates (4.19) it follows that

§.+1,§.
7 : T 2

I (62 WS (s + &)[2 + W (uS(s + &)))ds = eJ; + O(e F %),

where J; = [, < (z)]? + W (1 (x )))dm and thus from (4.15) we obtain

L -
k?e ), for £ €E.

Rl

N
1
which shows that we can take

n (4.14). O
In the following lemma we collect some properties of the map = 3 & — u¢ defined above.

Lemma 4.3. There exists qo > 0 and €y > 0 such that, for € € (0,¢€p), the condition

(4.21) € — €| < qoe
implies
c o ¢ C N
(4.22) 1€ =€l < [luf — bl < FlE - €],
€2 €2
and
Cy R
(4.23) g — || > < “2le— €]
€2

for some positive constants c1,C1 and Cs.

Proof. We only sketch the proof of (4.22). The proof of (4.23) is similar. We have

) I )
(4.24) w(z) — b (z) = /0 WO (@) (€ - e)at

Observe that from (4.8) it follows that
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j=1
(125) - 1: /01 (5 (2 3 —;f(éj - &)) _ a;(x%gj»dt(fj —¢)
1 r—&
= ()69
j=1
+141;,Alﬁfay(”‘§7‘z“f D) arar(é; — &)

To compute the L?((0,1); R™) norm of u€ — uS we estimate the LY((0,1); R™) norms of
products of the functions on the right hand side of (4.25). Note that

R R CLR
= (%2 [ I Pds + 0 ) € - €06 - &),

From (4.7) and the assumption (4.21) it follows that

(4.26)

‘ﬂ/(<$ —& —Tt(§ — fj))‘ < Ke_kw
J c =

le—&;51—16;—&;1
Ke < < Kekwoe=Fk

(4.27)
lz—¢;1

€

and therefore

/ x—éj / / 7// — (& + (G - éi)))detdfﬁ”éj — &ll& — &l

€

—&; H—\ ~
<L /z@m I Gl — g6 — &

€3

(4.28) -
1, K2k .
= S0 o ))Ig - g6 - &
1 K2ekao S
< Loy S+ 0 E)IE — I -6l
From (4.25), (4.26), (4.28) and a similar estimate for terms containing products of the @
we conclude
k A
wl—uWQ—EZ/W s — & = Ofao + ¢~ #)é — ¢
and, by taking go > 0 sufficiently small, (4.22) follows. O

21



4.2 Existence of the projection

In this section we consider a more local version of M and N’ 22. Namely, we define

M(&) = {u* : £ € Bye(€0)},  Bypelbo) = {€+ [€ — o] < qoe}
where & € Z and qq is as in Lemma 4.3. Set
N2 (&) ={u € W2 dpa(u, M(&)) < n, drz(u,dOM(&)) > ce},

where ¢ > 0 is to be chosen later. Note that for ¢ > 0 small, one has ./\/'22 (&) # 0. Indeed,
from (4.22) we have

C 1
[ufo —uS| > "€ — ¢| = crgoe? > ce, for ¢ € Bgoe(&o)
€2

and therefore u* € N7, (&).
We show that, for n > 0 sufficiently small, if u € N, 22 (&0), then there is a unique
ut € M(&) such that

(4.29) lu—ulp2=6:= inf |ju—u|e.
I¢—€ol<qoe

Indeed, with (-,-) the standard inner product in L?((0,1); R™), we have

Lemma 4.4. Take n = ae. If a > 0 is sufficiently small, then for each u € Ngz (&o) there
is a unique & € Byyc(&) such that u — ub satisfies (4.29). Moreover,

(i) ¢ is a smooth function of u € N},(&) and
(u—ug,u&) =0, 1=1,...,N

where ui is the derivative of u¢ with respect to &;.

(ii) There exists C > 0, independent of € > 0, such that for each v € (0, ae),

dya2(u, M(&)) <~ implies |lu— UEHW61,2 < CH.

Proof. 1. The map By 3 § — ué € L? is continuous. Therefore there exists £ € By, that
satisfies (4.29).
2. £ € Byye. From (4.22), for ( € 0By, it follows that

1

€2
1€ —¢| > a”ug —ul| 2

N[
[SIES

> (=l = llu = wlz2) > (e - a)e

and therefore § € 0B, provided a < c.

3. (i) follows from 2. and a standard argument.

4. There is a unique { € By, satisfying (4.29). If £ and ¢ solve (4.29), from the
parallelogram identity we derive

(4.30) 46* = 2llu — w72 + 2]lu — wblfF2 = |20 — u* —uf|f72 + [lu® —u®||Z
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and therefore

ub +u 1 3
T L i T
. u5+u ¢ ¢ 1 ¢ &2
fu— e = 01—l — w2 <0 L a2
This and R R
&+€ ut + us (8 ut + ub
- 2 — - 2 - 2
lu—w=" 2 = [ = w2 |2 < flu I
imply
&ré é U —|—u5 5
(4.32) Ju—u2"[|f2 <6 — *HU —ut|[72 + | — .
To estimate ||“5'57“§ — 2 ||2 we observe that, for each x € [0, 1] one has
3 3 : .
I A _1 u£2£—u£)+(u%—u5))

1 1 1 s _o)(E— . .
=3 [ [T g - ¢ - o),

Since |é —&| < 2qpe, proceeding as in the proof of Lemma 4.3 and reducing the value of g
if necessary, we obtain

ué + ué £+€

E+€ C3
| g T u? 2 < j’f—ﬂz-
€2

Inserting this into (4.32) and using (4.22) yields

3 Cs
(4.33) u—us |2 < 6 — <i .
€2

2
e i

since § < n = ae. The claim follows from (4.33) which contradicts the minimality of ¢ if
€ > 0 is sufficiently small and if £ # €. This complete the proof of (i).

To prove (ii) note that dy12(u, M(&)) < v < ae implies dp2(u, M(&)) < 7 and
therefore

(4.34) lu—u|[ 2 < 7.
Fix ¢ € Byye(&o) such that

(4.35) lu = uS a2 < 2v.
Then we have

(436) 2y > [lu— ullye > lu—ufLe > ut —ublle — [Ju—ub|| 2
' = [uS — ul| 2 < 3.
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Observe that (4.23) implies

Cy

(4.37) [ut = uS e < 1€ =)
€2

From this, (4.22) and (4.36) it follows that

(4.38) luf — Sl yre < 3%7

and therefore

c
flu — USHWL2 < lu— UCHWL2 + HUE - UC”WL2 <(2+ 301 )7
€ € € 4

The proof is complete. O

Set
N*(&) = {u e WH?: dy1.2(u, M(&0)) < ae, drz(u, M(&)) > ce}.

On the basis of Lemma 4.4, each u € N%(&;) can be decomposed in a unique way in the
form

(4.39) u = ub + 1,

where £ € By,c(&) is as in Lemma 4.4 and ¢ = u —u® satisfies the orthogonality condition
(i). The decomposition (4.39) brings about a decomposition of the energy difference
J(u) — J(uf) that corresponds to the (2.4) in the abstract Theorem 2.1. We can indeed
write

J(u) — J(uf) = J(u® 4 1) — J(u®)
1 62
= [ (Gt )+ W) +0) = W) ) o

(4.40)

(21l?) + W) - ) ) d

1
>
(W +6) = W) = W) — S W () -0 da
3

with obvious identification of linear, quadratic, and higher order terms L, Q) and N.
Based on the decomposition (4.40), we proceed to estimate the constants dr,, Ko, K1, and
u for the case at hand.

Lemma 4.5. We have
(4.41) | L(u®, )| < Op|[lly2,

kp

where 0, = O(e™ 2¢).
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Proof. Note that
1
Lt 0) = [ (@ + Wl )u)do
0
1
(1.42) = S0 = OO0 + [ (e, + W) e

N
= S (p(1) — 1 0)0(0) + Y /[ W)
=1

i—1 »éi
We have

€2 (u (1)¥ (1) — us(0)¥(0))|
(4.43) Ckp kp
< Cee™ 2 ([9(0)] + [ (1)]) < Cee™ 2 [l

The change of variables z = s + &; gives
(4.44) l/ (=l + Wy (ud))de =
[§i—1,84]

Ei+1—&
e, (—EPu (s + &) W (s + €0))(s + &) ds

The same argument leading to (4.19) yields

(445) ugx(s + é’z) _ %a;/(f) + O(%E_ki) for s ¢ (_52 - ‘Si—l’ §i+1 - fz)
€ € € 2 2
This and (4.5) imply
- €2U§:$(S + gz) + Wu(ug(s + &))
(4.46) = (%) + Wa(@s(2)) + O(e ™)
= O(e—ki)’ = (_fi _252‘—1’ fz’+12— §i)‘

O

To evaluate the constant K needed to apply Theorem 2.1 to the case at hand we need
to analyze the operator £& = —62% + Wi (u®) = W22(]0,1; R™) — L2([0,1];R™) that
appears when J(u) is expanded around u¢ € M. The eigenvalues and the eigenvectors of
LS are the solutions (), ¢) to

5590 = _EQSOM: + Wuu(ug)so =Ap, 0<z<1

(4.47)

¢' =0, z=0,1.
As in the scalar case we expect that £¢ has N exponentially small eigenvalues A1, ..., Ay
with corresponding eigenvectors lying approximately in the subspace span{ugl, . ,ugN}

tangent to M at ut.
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Proposition 4.6. There exist ¢g > 0 and A > 0 such that, for e € (0,¢p], the eigenvalues
A1 < Ag < ... of the operator L8 satisfy

k
| Anl SC’e*f, n=1,...,N,

(4.48)
An 2 A, n>N+1,

To complement the information for the operator £¢ given in the proposition above, we
show that the subspace of the first N (normalized) eigenfunctions ¢, ..., oy of LS is well
approximated by span{ué, el ugN}

Proposition 4.7. Let \; < ... < Ay the first N eigenvalues of LS and let @1, ..., 0N be
the corresponding orthonormal eigenfunctions. Then

(4.49) i — Z]H @” — 0%, i=1,...,N,
Uz,

for some c§ € R such that Zj(c§)2 =1.

For the proofs of Proposition 4.6 and Proposition 4.7 we refer the reader to Section 5.
Set ¥ = Span(¢1,...,¢N).

Lemma 4.8. One has

(4.50) Q(u, ) = Kollv},1.2,
where Ky = 5 and A > 0 s the constant in Proposition 4.6.
Proof. From
¥
&i .
(4.51) (1, : ) =0,i=1,---N.

I I,

and (4.49)2 in Proposition 4.7 it follows

= O(|[yo]le™ ).

(4.52) (W, @iz = (¢, i — Z
J j 12
Therefore, if we decompose 1 as
Y=97 Y
where 1> is the orthogonal projection of 1 on ¥ and 1 the projection on the orthogonal
complement, we have by (4.52)

(4.53) 10™] = O(|[wlle %)
and
(4.54) [ = [l (1 = O(e™ ).
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Therefore, using (4.49) and Proposition 4.6 we have, denoting by ; the projection of ¢
on the i-th eigenvector ¢; of L¢,

1 e’
/O (10 + W () 0)d = 3 Al
=1

N )
(4.55) =S x2S dllwll?
=1

i=N+1

7.

> M = mae |\l 167 >

| >

Following [15] this estimate can be upgraded to

L a2 ¢ A2
(4.56) @R+ Wy ) = S0l

The proof is complete. O

Lemma 4.9. One has

(4.57) IN (U, )] < Kl o,

C
where K1 = — and pp = 3.
€

Proof. Note that

W (u(2) + () = W(ut () = Wa(u ()9 () = 5 Wau(u® (2))0(2) - 9 ()

1

2
1 1 1

:/0 /0 /0 0209 W (uS () + 01090310 () (Y (), Y (), ¥ (x))dodogdos.

This
1
1
Nt w) = [ (W 0) = W) = W) = W) -6 da
0
and
9]l < CeHlllyy.2
imply that for u € N one has
s
IN(u,9)] < SVl e
The proof is complete. O

We are now in a position to apply Theorem 2.1. On the basis of the estimates in
Lemmas 4.2, 4.5, 4.8, 4.9, and on the assumption on §; in Theorem 4.1, we compute

ed

4C

3
(4.58) 7> minf(2 550, > O,

_kp
Ny < Ce™ 2e.

i > ( )1/(3*2)7
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The continuity of the map Z 3 ¢ — ¢ implies that, given ug € N CES, there exists & €
such that
||u0 — U£O||L2 = sz(uo,M) < 063.

We claim that, if in (4.11) we take d = C'e2 with C' > 2C1qo, then the ball Bgye(&o) is
contained in Z. To show this we note that, for v € =N Byye(&), Lemma 4.3 implies

[ = ul|2 < Crgoe?.
On the other hand for u¢ € M we have |jug — u| ;2 > d and therefore from
d < luo — g2 < fluo — u® |2 + u® — w2 + [Ju” — w2
< Ju” = w2 + Ced + Ciqoe?

we conclude ) )
|u” — || 2 > d—2C1qoe2 = (C" — Crqo)ez > 0.

Therefore ¥ € M and v € E. This proves the claim. The fact that By (§) C =
allows the application of Theorem 2.1 to M (&) and NC€ (&) and, on the basis of (4.58),
k

conclude that wu(t,ug) € Ne_% (&o) for t € [0,T(&)) for some T'(§p) > 0. It may happen
k

_kp
that T(¢y) = +oc in which case u(t,ug) € N¢ * for all t > 0. If instead T'(£y) < +00 we
have two possibilities:

(1) dr2(u(T(&o),u0), OM) =d or
(i) dr2(u(T'(§0), uo), OM(&o)) = ce and dpz2(u(T'(§o), uo), OM) > d.

If (i) prevails we can identify T'(§y) with 7" in Theorem 4.1. If (ii) prevails we can iterate
the procedure after replacing ug with ug1 = w(T(£), up) and v with the projection w0
of u(T(&),uo) on M(&). Continuing in this way the iteration process ends if for some
J > 1 one has either T'(&y ;) = +o00 or dr2(u(T' (o), uo,j), 0M) = d. This concludes the
proof of the first part of Theorem 4.1. It remains to estimate 7. From Theorem 2.2 with
T =2, for € € (0, €p) for some ¢y > 0 we have

T > €5 (dyz(ug, IM) — d)>.

This completes the proof for the vector Allen-Cahn case. To estimate the time T for the
Cahn-Morral system (4.3) we start from

T > e |u(T, uo) = uol[f-1,
that follows from Theorem 2.2 with 7 = 2 and X = H~!. Let uf be such that
(T, up) — uf| 2 = d.
Then we have

(T, uo) — ol g+ = [[u® —uoll g — u(T,u0) — u | g
Z dH—l(UO,aM) — d,

where we have used
ol g-1 < ||vl|lge, for v e L*((0,1);R™).

The proof of Theorem 4.1 is complete. O
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5 Appendix: Eigenvalues and Eigenvectors of £¢

5.1 Proof of Proposition 4.6

Proof. The proof is based on the min-max characterization of the eigenvalues of second
order selfadjoint operators

(L°¢, )

(5.1) An = maxy, mingr-————, n=1,...

(¢,0)

where (f,g) = fol f-gdr and ¥, ¢ W2([0,1];R™) is an n — 1 dimensional subspace
and ¥ < W2([0,1];R™) its L%-orthogonal complement. We associate to (5.1) two
auxiliary problems. In the first problem we replace W2([0,1];R™) with the subspace
U c WH2([0,1];R™) of maps ¢ : [0,1] — R™ that vanish at 0, 51552, 52253 ey 5N*12+£N ,1
and denote by v,, n = 1,..., the eigenvalues given by (5.1) with ¥,,%! c U. In the
second problem we regard W12([0,1];R™) as a subspace of

V=@l W& +£-1)/2, (E41 + &) /2R™), (§0=—&, Envg1=2—En).

We let ji,, n = 1,... the eigenvalues given by (5.1) with ¥,,, % C V.
From (5.1) and the definition of U and V, it follows that

(5.2) n <Ap <wvp, n=1,...

and therefore that we can derive lower and upper bounds for the eigenvalues of £¢ by
studying the eigenvalues of the auxiliary problems. We remark that in both problems the
analysis involves intervals where u¢ has just one layer. Indeed, in both cases it suffices to
consider the Rayleigh quotient

§j+1+E;

§j+11E5
f5j+52j_1 |¢[? da
(5.3) N T2
v
f_eﬁ(W/P + Wy (85 + 05)0 - ) dr
i 5 , j=1,...,N,
J oy W2 dr

where ¢(x) = ¢(zzfj), aj = %, B; = %, v(r) = uf(fj + er) — u;(r) with
homogeneous Dirichlet or Neumann boundary conditions. Note that the Rayleigh quotient

R* defined in (5.3) is associated to the operator £}

a: B
‘C*w = —¢H + Wuu(aj + @j)?ﬁ, S (_Ja &)7
J € €
with Dirichlet or Neumann boundary conditions

To estimate the eigenvalues of L7 we introduce test functions that satisfy the boundary con-

ditions at —% and %7 Since the argument that we develop is valid for all j € {1,..., N}
we temporarily drop the index j in (5.3) and in the following equations. We denote by

pi, i =1,... (vf, i =1,...) the eigenvalues of £* with Neumann (Dirichlet) boundary
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conditions. The test maps that we consider are the restrictions of @’ and @” to the interval

[—< g] with exponentially small correction designed to satisfy Dirichlet or Neumann con-

€€
ditions at —% and g We use the letter 7 for test maps satisfying Dirichlet conditions and
the letter w for test maps satisfying Neumann conditions. Let (-,-)* be the inner product

in L?((—2, €) R™), || - |I* the associated norm and define
= — hoi' (-2) — @ (%),
(5.4) Ea GB
T = a’ - hoﬂ//(—*) — hlﬂ”(*) + pT7o,
€ €

where ho(r) = a+6(ﬁ —7), hi(r) = 555(¢ + ) and p is determined by the condition
(10, 71)" = 0. For Neumann conditions we define
w=i - goﬂ"(—a) ma'(-2),
(5.5) ea 66
wi =" — gou"”'(~ 6) - 91@”’(? + quwo,

where go(r) = — ) (%—r)z, g1(r) = M(%—H‘)z and ¢ is determined by the condition
(wo,w1)* = 0. From (5.4) and (5.5) it follows that

p,q=0(e %),
(I7ol1)?, (lwoll*)? /I 124 0(e%),

(Umall*)2, (lan [ / @2 + O(e %),

A standard computation yields

(IR (), (el R o) = [ (a2 + W@l - i) + O )

kp

(5.6) = /R (—a"+ Wuu(ﬁ)ﬂ’) @+ O(eF) = O(e ),
(7 l1*)*R*(71), (lenll*)*R*(w1) = /R (7" ? + Wu(w)a” - ﬂ”) +0(e %),
Lemma 5.1. We have
—C <\ < O(e_%), n=1,...,N,

for some constant C > 0 independent of € € (0, €g].

Proof. The lower bound follows from the fact that Wy, (@ + v) is bounded by a constant
independent of e. From (5.6) and the bound for ||7o||* we have

ﬁ* *
(5.7) v <R () = L0 <o),
(l[o[*)
Since this is true for all j € {1,..., N} the upper bound follows from (5.2). O
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To prove (4.48)2 we observe that

(5.8) py = p" = min RY(Y)
(,000)*=0

ll[l*=1

and show that p* has a positive lower bound independent of €. The existence of the
minimum in (5.8) follows from standard arguments based on the fact that from (5.6) and
the bound on W, (u + v) we have

11" < fler ] < C.

This and |[¢||* = 1 imply the existence of a minimizing sequence {t¢,}, that converges
weakly in W2([—2, 8]; R™) and strongly in L2((—2, 2); R™) to some ¢ € Wh2([—2, B]; R™).

€l e €’ € €€

It follows that 1 is bounded and satisfies ||¢||* =1 and (¢, wp)* = 0. From elliptic theory
we can then assume that

(5~9) ‘|¢‘|Cz+w([,%7§};Rm) <C,

with C' > 0, v € (0,1) independent of € and that v is a classical solution of

(510) —¢//+Wuu<ﬁ+@)¢—77w0 _M*w :Oa re (_%7;)7

with 7 a Lagrange multiplier determined by the condition (¢, wy)* = 0

(511) n=— <‘C*¢7WU> _ _<[’*w07¢> _ 0(67%),

(llewol[*)? (llool[*)?

where we have also used (5.6).

Lemma 5.2. There exist g > 0 and A > 0 such that
w" >N forall € € (0,€).

Proof. We first show that, if u* < ¢o with ¢o the smallest eigenvalue of the matrix Wy, (a),
a € {ai,...,an41}, then 9(r) decays exponentially in |r|. This is a special instance of a
general fact [1]. Note that (5.10) implies

(5.12) (1917)" = 20" - 9p = 2(Wa (@ + 0) — p*I)p - 4 — 2nwo - 9.

From the assumption on ¢ and the fact that @(r) converges exponentially to some a €
{a1,...,an41} for r — 00 and the smallness of v for € > 0 small we obtain

(5.13) (W@ + ) — p*I)p -1p > |2, for |r| > 7o, € € (0, €],

for some ¢ > 0 and €y > 0. From (5.11) and (5.5) that implies wy(r) < Ce *I"l it follows

‘n|206—2k\7‘|
sfn - 0] < PECTT L g

From this (5.13) and (5.12) we obtain

(5.14) (%) = A ? = qie=", Jr| = ro,
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[n|*C kp

where 7) = 5= = O(e” < ) and we have observed that we can assume 0 < ¢ < 2k. The

comparison principle and (5.14) imply that, for r € (ro, g), one has [1|?(r) < y(r) where

y : [ro, g] — R is the solution to the problem

y” = CQy - ﬁe—cr7 S (’l“(), %)7
(5.15) y(rg) = Y0,
y'(2) =0,

with yo an L> bound for [¢/|>. We have

y(r) = Ae” + Be " + gre_”,
c

with

_.B _
le e 4+ me €0

A= :
ec(g—’/‘o) _i_e—c(g—ro)
B lecg — mec’o
= ec(gffro) + 6*0(§77»0)7
I = Yo — QQCTOe_CT()a
_n B 1 e
me= 20( € c)e '

From these expressions and 7 = O(ef%) it follows that

A= 0(672?}) and B < 2ype™.

These estimates imply that there is a constant C' > 0 independent of € € (0, €] such that

yr) < 0, e fro, )

Since a similar estimate applies to the interval [, —ro] and [¢(r)|* < yo in [-%, 7] we
conclude that
(5.16) ()| < Ce5. e =28,

€ €

for some C' > 0 independent of € € (0, €.
If the lemma is false there is a sequence €, — 0T such that

(5.17) purp — 0,

where here and in the remaining part of the proof we denote by uj,y, ... the values of
B

p*, 1, ... corresponding to €. In particular, (f,g); = f_?’cg f - g. We can assume that
€k

[nlle = 1,

5.18
(5.18) (Y, wo )i = 0.
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From (5.9) we can also assume that the sequence ¢, converges in the C? sense in compact
intervals to a map ¢ that satisfies

(5.19) L = =" + W (@) = 0,

where we have also used (5.17) and (5.11). Moreover on the basis of (5.16) the identities
(5.18) are preserved in the limit and, together with (5.19), we have

1ol =1,

(5.20) and y
~ u

<7Z)7 _7> — 05
@]
where (f,g) = [z f - g and we have also observed that, as k — 400, wp ) converges
point-wise to @’. From (5.19) and (5.20) it follows that 1) is an eigenvector of £ orthogonal
to the eigenvector ﬁ and corresponding to the 0 eigenvalue. This contradiction with

assumption hs) completes the proof. ]

We are now in a position to complete the proof of Proposition 4.6. Since the lower
bound for the second eigenvalue of L* established in Lemma 5.2 applies for all j €
{1,..., N} we have from (5.2)

Ap > A foralln> N+ 1.

It remain to establish the lower bound A, > O(ef%), n=1,...,N. On the basis of (5.2)
it suffices to show that uj, the first eigenvalue of £* (with Neumann conditions) satisfies
a similar bound. For this we invoke Lemma 5.5 with A = £* (with Neumann conditions).
From Lemma 5.2 and (5.7) we can assume 6 > 2. We also have N = 1 and 7,, = 1.

2
Moreover from (5.5), using that —a"”" + W, (a)@’ = 0, it follows that

L wo = O(e_kTp) = Owp + O(e_%).

Therefore we see that the left hand side of (5.35) is O(ef%) and (5.36) yields

kp

[u1 = 0] = |vi| =O(e™ < ).
This concludes the proof of Proposition 4.6. O

5.2 Proof of Proposition 4.7

Proof. The map ugj (z) = —%@;(@) does not satisfy the boundary conditions at x = 0, 1

and as a consequence is not in the domain of £¢. Therefore we introduce the map ¢; defined
by

(5.21) 4% = Ugj - gougjx(o) - glugﬂ(l),
¢; = |lug, — goug ,(0) — grug_,(1)]
where go(z) = —%(1 —2)?, g1(z) = %x?

33



Lemma 5.3. Let ¢;, j =1,...,N be as before. Then there is a constant C > 0 such that
C

(5.22) L8050 < e %, j=1,...,N.
€

Proof. We have

5565 = L[/ (E8) — Wy (C Sy (E )
TZE))a ()] gy g, (0) + gru, (1)

) a8 1 g0 e ¥)

(5.23)  + (Wuu(u§ () — W (@

xr —

_ %(Wuu(uf () — W (i1

€

where we have used @}’ = Wi, (1;)u; and observed that

kp

4, (0)] = ()] = O( e %),

(5.24) '
|Ugjg;(1)| = :2\1]”(7” = 0(636_76)-

Set # = s + & and note that, for s € [—%=5=L 53 ! 57“ 841785) 1 (4.19) implies

W (s + &) = Wa <aj<§>>

= W (u; (= ) +0(e %)) - Wau(;(2)) = Oe™2),

(5.25)

while, for s € [-&;,1 —&;] \ [—%, %}, we have
(5.26) @5(=)] = O(e™2).

Note also that from (5.21), using also (5.24), it follows that ¢; = e_%Cj with C; ~
(Jr \62\2)% This and the estimates (5.25) and (5.26) conclude the proof. O

Recall ¥ = span{¢1,...,pn} and let ¢; = quz + (;Sj- with gbjz € Y and gbjl € ¥+, Since
¥ and ¥ are invariant under £¢ we have

Algy |1 < <£f¢f,¢j> (L505,07) < 150511167 | < 6 e
(5.27)
ke
= H% | < ﬁe 2
where we have also used Proposition 4.6 and Lemma 5.3. From (5.27) it follows

C
(5.28) 1—[|¢¥] < Je—%

We also have

(5.20) (85.07) = O(e™%) for i # )
This follows from (5.27) that implies

(5.30) (67, 67) = (65, 6:) + O(e™ %) for i#j
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and from (¢, ¢;) = 51‘]‘—}—0(6_%) that follows from (5.21), (5.24) and m@g,ug} =
RIS ‘

dij + O(e_%). The estimates (5.28) and (5.29) imply that the N vectors ¢1, ..., ¢% are
linearly independent and we have

(5.31) Y = span{¢y, ..., dx}.

From (5.28) and (5.29) it follows that there are orthonormal vectors ¢1,. .., ¢y such that

Y = span{¢12, ... ,¢]EV} = span{@1,..., PN},

(5.32) . o
167 — @4ll = O(e™2), j=1,...,N.
The vectors @1, ..., @n can be constructed by applying Gram-Schmidt orthonormalization
process to @7, ..., ¢y. From (5.32)2, (5.27) and (5.21) it follows that
N ug ke
(5.33) 18 - —2|| = O(e™%), j =1,...,N.
e |

On the other hand (5.32); implies

(5.34) ?
D ()P =llgil* = 1.

J

This and (5.33) prove (4.49). The proof is complete. O

5.3 Perturbation of spectra

Lemma 5.4. We list below some well known results on perturbation of selfadjoint
operators [21]. Let H be a Hilbert space and A : D(A) C H — H a selfadjoint operator.
Let 0(A) denote the spectrum of A. Assume that there is a bounded interval I C R, a
positive number 0 > 0, linearly independent normalized vector ¢1,...,¢n € D(A) and
numbers py, ..., un such that

(i)
Apj = pjd;tej, j=1,....N
for some error vectors eq,...,en.
(i1)
pj €1,
(iii)
(c(M)\NI) NI+ (=4,6)) = 0.

Then )
Nz max; ||e|
sup |7 ¢l < ——%,
peE 2
léi=1 O
where E = span{¢1,...,on}, F is the closed subspace associated to I, n' is the projection

on the orthogonal complement FT of F, and n,y, is the smallest eigenvalue of the matriz

® = ((¢i, ¢5))-
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Proof. We give the proof under the assumption that the normalized eigenvectors {wp, }ren
of A are a basis for H. Let {A,}nen be the corresponding eigenvalues.
1. Given ¢; € {¢1,...,¢n} we have ¢; =), (¢;, wn)wp, and therefore

Agj = pij +ej =Y Mg wp)wn = > pi{dj, wa)wp + > (€j, wp)wp.
3 3 3

From this, for Ay, & I, it follows that

Pl dill* < D On = )b wn)® = > (e, wn)? < legl|.

gl bV

2. For ¢ € E we have ¢ = Zj aj¢j. If ¢ € E is a unit vector then

1= <Z ;jdj, ZOWM = ®a-a > nmlel.
j i

This, >, o] < N%|a|, and 1. imply

1
. e llegll _ N masg o
ol = T (gl < 3 g mleil  MEmes el
J j 0N,

Lemma 5.5. Let dim(F) = M and assume that

1
N2 max; ||e;
illesl

(5.35) 1.

1
Onim
Then M > N and, if M < oo, for each j there exists Ap; € I such that

1
(5.36) Mo, — ] < M2 max; [|ej]|

N max; [[e;[|2\ 1
(1~ VTl
Proof. Let gbf be the orthogonal projection of ¢; on F'. Then qbf can be expressed in the
form d)f = Z)\hd(qﬁf, wpywy, and A(bf can be written

(5.37) A¢f = Z /\h<¢]F, wh>wh = lj Z <¢f, wh>wh + Z (ef,wh)wh.

A€l = Al
From Lemma 5.4 we obtain

_ Nmax; e

F2 2 T 412
195117 = sl = [l o511 = (1 o

).
On the other hand, there is Aj, € I such that

oF
<7JFH7 whj>2 >

1
16 M
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From these estimates and the hj-th component of (5.37) we obtain

[{e5s wny)| [{ej's wn,)| lesl
g = 3] < QG ] ~ o Fr oo F
; ; J J
g |<H¢ﬂ,whj>|!|¢j | |<H¢]FH,whj>|H¢j |
1
Mz |lej|
S N . 2.1 °
(1- ety
The proof is complete. O
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