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1 Introduction

In a variety of applications, ranging from mechanics to financial engineering, the mathematical
models which arise are in the form of partial differential equations with variable coefficients which
have either a fast periodic variation, or quasiperiodic variation or even random variation. Relevant
examples may be heat flow is periodic media with fast varying microstructure, pricing of contingent
claims whose underlyings exhibit multiscale volatility or the modeling of electromagnetic fields in
random complex media. Since partial differential equations with fast or random variable coefficients
present considerable difficulties in their analytic and even numerical treatment, an approximate
model exhibiting constant coefficients would be highly desirable. This is the main focus of homoge-
nization theory, which can mathematically be described as a theory for averaging partial differential
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equations, whose physical principles have a long history going back to Poisson, Mossotti, Maxwell,
Clausius and Rayleigh.

It is interesting to note that (mathematical) homogenization theory started in the late 1960s and
in at least three directions, as pointed out by Allaire (see [1] where a detailed reference list can be
found): the first (and oldest) direction dealing with a general theory for the convergence of operators
(namely the H- or G-convergence), the second treating the asymptotic study of perforated domains
containing many small holes and the third refers to a systematic study of periodic structures using
asymptotic analysis, while since the mid 1970’s there is also a variational theory of homogenization,
known as Γ-convergence. Mathematical homogenization theory is still a very active field, with a
huge number of publications by many researchers in various directions.

The initial developments in the theory were concerned with homogenization of periodic structures
using either asymptotic analysis or variational tools, but soon the theory was extended to the study
of quasiperiodic structures, adding more realistic features to the models. An important branch of
homogenization theory was concerned with the modeling of random media, in which ergodic theory
plays an important role. Random structures naturally appear in a number of applications (e.g. in
the modeling of porous media or structures with irregular imperfections) and the construction of
an “effective” homogeneous medium which serves as an approximation of the properties of the full
medium can often be quite useful. What often comes as a surprise is that for a variety of random
media, the average medium is deterministic, a property that arises naturally from the use of ergodic
theory.

Historically, stochastic homogenization for elliptic equations was first studied by Papanicolaou and
Varadhan [18], and by Kozlov [12]. An important development in random homogenization theory
was the work of Blanc, Le Bris and Lions [4, 5] which essentially combined random homogenization
and periodic homogenization for scalar linear elliptic problems by assuming random media whose
diffusion coefficient is the composition of a periodic function with a random diffeomorphism. See,
also, [10], [14]. This creates random media which in some sense are “small” random perturbations
of periodic structures, thus allowing the extension of the powerful tools of the periodic theory in
conjunction with those of ergodic theory to obtain detailed information concerning the homogenized
medium. There is related interesting work on integral functionals as well as on discrete linear
elliptic equations; for both see the recent Habilitation Thesis of Gloria [10] and references therein.
Quantitative results are also obtained for linear elliptic equations, where connection is made between
the statistical properties of the random medium (such as correlation length) with the properties of
the homogenized medium. The passage from discrete to continuous relies basically on the De Giorgi-
Nash-Moser theory. Questions related to the convergence rate have been studied both in the linear
case, again see the references in [10], and in a very general nonlinear setting by Caffarelli and
Souganidis, [7]. A different very interesting view point regarding diffusion in random media can be
found in [17].

A number of interesting models require the study of random elliptic systems, rather than scalar
equations. As examples one may consider applications in mechanics (e.g., elasticity, elastoplasticity,
thermoviscoplasticity) or in electromagnetic theory1 and in particular in the modeling of complex

1Homogenization in electromagnetics has been around for 130 years, which is a testament in itself to the success
and usefulness of this research area. One of the first applications is due to James Clerk Maxwell himself ([16], p.
401).
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electromagnetic media, an area with important applications in modern technology (e.g., metamate-
rials, split-ring arrays, current driven homogenization). The theory of elliptic systems is rather more
involved that that of scalar equations and it is the aim of the present paper to extend the theory
of homogenization of random elliptic equations to that of elliptic systems. We take as our starting
point the modeling assumptions employed by Blanc, Le Bris and Lions [4, 5] i.e. that the diffusiv-
ity tensor is the composition of a periodic tensor with a random diffeomorphism with stationary
gradient, an assumption that allows the use of ergodic theory as a means of obtaining asymptotic
results. We show that an extension of homogenization theory for elliptic systems is possible, provid-
ing explicit expressions for the homogenized medium in terms of solutions of properly selected “cell”
systems, not defined as in the case of classical deterministic homogenization on a periodic cell but
rather on the whole space. The results are valid for elliptic systems in general form and therefore
may be used in a wide range of applied models. As an illustration we present a concrete application
of the general theory in the study of homogenization of random bianisotropic media, modeled by
the Maxwell equations complemented with constitutive laws in the form of temporal convolutions
involving kernels with random spatial dependence. Such models are often used to study dispersive
complex non-homogeneous media, exhibiting random imperfections. It is shown that the original
homogenization problem can be solved in terms of an auxiliary homogenization problem involving
an elliptic system, and using the general theoretical framework developed in the first part of the
present work, we provide expressions for the homogenized medium.

2 Homogenization of random elliptic systems: Abstract re-
sults

2.1 A model for random media

In this section we present a general class of models for a random medium. Let us consider a general

m×m elliptic system on a bounded domain O ⊂ Rd
, of the form{

−
∑m
α=1

∑d
i,j=1

∂
∂xj

{
aijαβ(x)∂uα∂xi

}
= fβ , in O,

uβ = 0, on ∂O,
β = 1, . . . ,m. (2.1)

where u : O → Rm
, u = (uα), α = 1, · · · ,m, is a vector field describing the state of the system,

and A := (aijαβ(x)), i, j = 1, · · · , d, α, β = 1, · · · ,m, is the diffusivity tensor. Systems of equations
of this type appear in a great variety of applications, ranging from elasticity, fluid mechanics,
plasticity, to complex media electromagnetics. The medium (which is considered here in a very
general manner) is fully characterized by the diffusivity tensor A. In some cases the tensor A
cannot be fully described, either on account of unknown processes taking place within the medium
or on account of incomplete information. Such cases are considered under the general terminology
of random media, and are modelled by assuming that the diffusivity tensor A is a family of random
variables; a random field A(·, ω) := (aijαβ(·, ω)), i, j = 1, · · · , d, α, β = 1, · · · ,m where (Ω,F , P ) is
a probability space. The probability space (Ω,F , P ) is a model for the spatial randomness of the
medium; we will return to specific examples later on. The random nature of the medium is used
to model imperfections of the medium due to its construction, experimental mis-specifications of

3



the medium properties etc. Clearly, if A is a random field, then the solution of system (2.1) is a
random field as well. The essential meaning of this formulation is that for a random medium, if an
experiment is repeated, then, we expect different results as outcome of the experiment. Then, in Ω
we collect all the possible outcomes that an experiment concerning this medium may provide, and
by ω ∈ Ω we denote a particular outcome of an experiment.

We now restrict the above very general setup to one which is more useful for the study of homoge-
nization in random media. We wish to restrict our study to random media that present some sort of
self-repetitive structure, i.e., of some structure that allows us to reconstruct (in a statistical manner
of speaking) the whole medium from knowledge of a part of it only. This certainly is true for media
presenting some periodic structure, in which case the whole medium can be reconstructed (exactly)
by knowledge of a “fundamental cell” and by translations of it by an appropriate vector. Clearly,
this cannot be true for a random medium, however, we may provide a convenient framework that
allows us to do that in an approximate (statistical) fashion. This can be done within the framework
of ergodic or stationary media.

Let (Ω,F , P ) be a probability space, and τk : Ω→ Ω a group of transformations parameterized by

a parameter k ∈ Zd. We assume that the group of transformations {τk} preserves the measure P ,
i.e.,

P (τkA) = P (A), ∀A ∈ F , ∀k ∈ Zd.

The probability space (Ω,F ,P) is to be interpreted as follows: Each realization ω is to be inter-
preted as a particular configuration of the medium. In other words, each experiment we perform on
a particular medium corresponds to a particular choice of ω ∈ Ω. However, it is not known before-
hand and with certainty which medium is to be realized, when the experiment is performed. The
probability that a particular medium is realized is given by the probability measure P. The above
description is rather abstract, and accomodates a number of interesting cases arising in applications.

A more concrete description is to assume that Ω = Rd
i.e. each ω is identified with a point x ∈ Rd,

and assume that τ is (R3,+) the usual translation group, τkω = τkx = x+ k the action of a group
acting on Ω. Invariance of measure means some kind of periodicity with respect to a fundamental
lattice, i.e., self repetitive structure, obtained by translation by k ∈ Zd of a fundamental structure.

In this paper we will assume certain conditions on the random coefficients. These are the conditions
of ergodicity and stationarity.

Definition 1 (Stationarity and ergodicity).

1. The group action (τk) is ergodic if it is measure preserving and any invariant event A has
probability 0 or 1, i.e.

(τk A = A , ∀k ∈ Zd) =⇒ (P (A) = 0 or P (A) = 1)

2. A random field F ∈ L1
loc(R

d
, L1(Ω)) is called stationary with respect to the group action (τk)

if

F (x+ k, ω) = F (x, τkω), ∀k ∈ Zd a.e. in x, a.s.
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Stationary processes need not be ergodic (consider for example F (x, ω) = Y (ω) where Y is a given
random variable). Stationarity guarantees that in a statistical sense, parts of the material located
at different positions will present the same properties, i.e. that the statistical properties of the
medium are invariant under translations which are to be understood as the transformation τx. In

other words, the function F at x ∈ Rd
and the function F at x+y, y ∈ Rd

, will look as if generated

by the same probabilistic law. Alternatively, if F is considered as F : Rd × Ω → RN
then F is

stationary if and only if P ({ω : F (x, ω) ∈ B}) is independent of x for B ∈ B(RN
). If f is an L1(Ω)

random variable, and we define the random field F (x, ω) := f(τxω), then, F (x, ω) is a stationary
random field. Ergodicity implies that all τ invariant quantities are non-random. For examples of
media that fall within this description we refer to [21].

For the purpose of this paper, inspired by recent very interesting work of Lions, Le Bris and Le
Blanc [5] on stochastic elliptic homogenization, we will concentrate on random coefficients of a
special form.

Assumption 1. The coefficients of the problem depend additionally on a small parameter ε > 0
and are random fields of the form

F
(x
ε
, ω
)

= Fper

(
Φ−1

(x
ε
, ω
))

(2.2)

where Fper is a periodic function in Rd and Φ is a random mapping which is a diffeomorphism
almost surely, with stationary gradient.

This type of coefficients models some sort of statistical periodicity of the medium. Problems of this
type have been studied in [4, 5].

Stationarity and ergodicity allow us to look at average properties of the material at long scales and
obtain nice expressions for these quantities. In fact the Ergodic Theorem (see e.g. [5]) states that

lim
N→∞

1

(2N + 1)d

∑
|k|∞≤N

F (x, τkω) = E [F (x, ·)] , in L∞(Rd
), a.s.,

where for k = (ki) ∈ Zd, i = 1, · · · , d, |k|∞ = maxi |ki|. This implies that

F
(x
ε
, ω
)
∗
⇀ E

[∫
Q

F (x, ·)dx
]
, as ε→ 0 a.s. in L∞(Rd)

where E [·] is the expectation over the measure P ,
∗
⇀ denotes the weak star convergence and Q is the

unit cube in Rd
. The ergodicity hypothesis implies that instead of looking at an ensemble average

of media, and averaging the properties of the medium on the ensemble average, we may consider
a single realization of the medium whose spatial dimensions are large and sample its properties by
traversing this single realization for large enough distances.
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2.2 Homogenization of the random elliptic system

We consider the following m×m system in a bounded Lipschitz domain O ⊂ Rd
:{

−
∑m
α=1

∑d
i,j=1

∂
∂xj

{
aijαβ(x)∂uα∂xi

}
= fβ , in O,

uβ = 0, on ∂O,
β = 1, . . . ,m. (2.3)

The functions aijαβ are deterministic functions in L∞(O). The system is understood in the weak
sense: let Q(·, ·) be the bilinear form on (H1

0 (O))m given by

Q(u,v) =

∫
O

m∑
α,β=1

d∑
i,j=1

aijαβ(x)
∂uα
∂xi

∂vβ
∂xj

dx , u = (uα),v = (vβ) ∈ (H1
0 (D))m ;

to simplify our notation we shall also write this as

Q(u,v) =

∫
O
A(x)∇u · ∇v dx . (2.4)

Thus, given f = (fβ)mβ=1 ∈ (H−1(O))m we say that u = (uα) ∈ (H1
0 (O))m is a (weak) solution of

the system (2.3) if

Q(u,v) = 〈f ,v〉 :=

m∑
β=1

〈fβ , vβ〉

for all v = (vβ) ∈ (H1
0 (O))m. We make the ellipticity assumption that there exists c > 0 such that

Q(u,u) ≥ c‖u‖2(H1
0 (D))m , u ∈ (H1

0 (D))m ;

hence the Lax-Milgram theorem yields the existence of a unique solution u of (2.3), which satisfies
‖u‖(H1

0 (D))m ≤ c−1‖f‖(H−1(O))m .

Notational remark. We think of A(x) = (aijαβ(x)) as a matrix acting on Rmd
: if p = (piα) ∈ Rmd

,
then q = Ap is the vector qjβ = aijαβpiα. Here and below, we use the summation convention over
repeated indices. Moreover, Latin letters i, j, k . . . will take values in {1, . . . , d}, while Greek letters
α, β, γ, . . . will take values in {1, . . . ,m}.
Our aim in this section is to study the homogenization problem for the system (2.3) when the
coefficients are random of the form (2.2). More precisely, for ε > 0 we consider the stochastic
elliptic system{

−
∑m
α=1

∑d
i,j=1

∂
∂xj

{
aijαβ(Φ−1(xε , ω))∂uα∂xi

}
= fβ , in O,

uβ = 0, on ∂O,
β = 1, . . . ,m, (2.5)

where the functions aijαβ(y) are periodic of period Q. We intend to study the behaviour of the
solution uε(x, ω) of (2.5) as ε→ 0.

In the rest of the paper (weak) convergence in Lploc(R
d
) means (weak) convergence in Lp(U) for any

U ⊂⊂ Rd
.
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Lemma 1. We have as ε→ 0,

(i) (∇Φ)(
x

ε
, ω) −→ E

[∫
Q

(∇Φ)(y, ·)dy
]
∗-weakly in (L∞(Rd

))d×d , a.s. ;

(ii) εΦ(
x

ε
, ω) −→ E

[∫
Q

(∇Φ)(y, ·)dy
]
x in (L∞loc(R

d
))d , a.s. .

Proof. Part (i) is an immediate consequence of the Ergodic Theorem. To prove (ii), let us define

Ψε(x, ω) = εΦ(xε , ω)− E
[∫
Q

(∇Φ)(y, ·)dy
]
x. Let U ⊂⊂ Rd

be fixed. Then ‖Ψε‖L∞(U) ≤ c and, by

(i), ∇Ψε ⇀ 0 ∗-weakly in (L∞(Rd
))d×d. Hence

‖Ψε‖W 1,∞(U) ≤ c , ε > 0 , a.s. .

Therefore there exists Ψ ∈ W 1,∞(U) such that, up to a subsequence, Ψε ⇀ Ψ weakly in W 1,∞(U)
and hence Ψε → Ψ (strongly) in L∞(U). It then follows immediately that Ψ = 0 and that the full
sequence Ψε → 0. �

Lemma 2. Let ψ, ψε, ε > 0, be diffeomorphisms of Rd
onto itself such that

max{‖∇ψε‖∞, ‖∇ψ−1
ε ‖∞} ≤ c1

for all ε > 0 and ψε → ψ in L∞loc(R
d
). Then

χψε(A) −→ χψ(A) , in L1(Rd
),

for any set A ⊂⊂ Rd
.

Proof. Let us denote by Bδ the δ-neighbourhood of a set B ⊂ Rd
. Let A ⊂⊂ Rd

be given and let
δ(ε) = ‖ψε − ψ‖L∞(A). Then

Hausdorff dist(ψε(A), ψ(A)) ≤ δ(ε),

and therefore

‖ψε(A)− ψ(A)‖
L1(Rd

)
= |ψε(A)4 ψ(A)| ≤ |(ψε(A))δ(ε) \ ψε(A)|+ |ψ(A)δ(ε) \ ψ(A)|.

The second of the last two terms clearly tends to zero as ε → 0. Moreover, it is easily seen that
ψε(A)δ ⊂ ψε(Ac1δ) for any δ > 0. Hence

|ψε(A)δ(ε) \ ψε(A)| ≤ |ψε(Ac1δ(ε)) \ ψε(A)| ≤ |(ψε(Ac1δ(ε) \A)| ≤ c1|Ac1δ(ε) \A| → 0,

as ε→ 0. This concludes the proof. �

We set

cΦ = det

(
E
[∫

Q

∇Φ(x, ·)dx
])−1

.
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Lemma 3. Let g ∈ L∞(Rd
, L1(Ω)) be stationary. Then

g(Φ−1(
x

ε
, ω), ω) ⇀ cΦE

[∫
Φ(Q,·)

g(Φ−1(x, ·), ·)dx

]
,

as ε→ 0, ∗-weakly in L∞(Rd
), almost surely.

Proof. A simple approximation argument shows that it suffices to check the convergence against

functions of the form χA, where A ⊂ Rd
is open, bounded and connected. Now, Lemma 1 (ii) and

Lemma 2 imply that for such a set A we have

χεΦ−1(Aε ,ω) → χB , in L1(Rd
), (2.6)

as ε→ 0, almost surely, where

B =
(
E
[∫

Q

∇Φ(y, ·)dy
])−1

A .

Moreover, the Ergodic Theorem applied to the stationary random function F (x, ω) = g(x, ω) det∇Φ(x, ω)
gives

g(
y

ε
, ω) det∇Φ(

y

ε
, ω)

∗
⇀ E

[∫
Q

g(y, ·) det∇Φ(y, ·)dy
]

= E

[∫
Φ(Q,·)

g(Φ−1(x, ·), ·)dx

]
, (2.7)

as ε→ 0, ∗-weakly in L∞(Rd
), almost surely. Combining (2.6) and (2.7) we obtain∫

A

g(Φ−1(
x

ε
, ω), ω)dx =

=

∫
Rd

g(
y

ε
, ω) det∇Φ(

y

ε
, ω)χεΦ−1(Aε ,ω)dy

→
∫
Rd

E

[∫
Φ(Q,·)

g(Φ−1(x, ·), ·)dx

]
χB(y)dy

= E

[∫
Φ(Q,·)

g(Φ−1(x, ·), ·)dx

]
|B|

= E

[∫
Φ(Q,·)

g(Φ−1(x, ·), ·)dx

]
det

(
E
[∫

Q

∇Φ(x, ·)dx
])−1

|A|,

as required. �

We now need to consider a corrector problem which shall play a crucial role for the main theorem
of this section. We note that in the periodic case the corrector problem (2.8) below is posed on a

single cell, but in the general stationary case it is posed globally on Rd
.
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For 0 < δ ≤ 1 we denote by Cδ(Rd
) the set of functions v for which the Hölder seminorm

[v]δ = sup

x,y∈Rd
,x 6=y

|u(y)− u(x)|
|y − x|δ

is finite.

Proposition 1. Assume that the functions aijαβ belong in Cδ(Rd
) for some 0 < δ ≤ 1. Then for

any p = (piα) ∈ Rmd
, the system

−
∑m
α=1

∑d
i,j=1

∂
∂yj

{
aijαβ(Φ−1(y, ω))(∂wα∂yi

+ piα)
}

= 0, in Rd
, (β = 1, . . . ,m)

w(y, ω) = w̃(Φ−1(y, ω), ω), ∇w̃ stationary,

E
[∫

Φ(Q,·)∇w(y, ·)dy
]

= 0,

(2.8)

has a unique (up to an additive constant which may depend on ω) solution w(p) in (H1
loc(R

d
, L2(Ω)))m.

Proof. Existence. We regularize the problem (2.8) by fixing θ > 0 (which will eventually tend to
zero) and considering the system{

−
∑m
α=1

∑d
i,j=1

∂
∂yj

{
aijαβ(Φ−1(y, ω))(∂wα∂yi

+ piα)
}

+ θwβ = 0,

w(y, ω) = w̃(Φ−1(y, ω), ω), w̃ stationary.
(2.9)

The problem (2.9) is understood as follows: we define the Hilbert space

H = {w = w̃ ◦ Φ−1 : w̃ ∈ H1
loc(R

d
, L2(Ω)) , w̃ stationary},

equipped with the (real) inner product

〈w,w′〉H = E

[∫
Q

m∑
α=1

( d∑
i=1

∂w̃α
∂yi

∂w̃′α
∂yi

+ w̃αw̃
′
α

)
dy

]
.

We define the bilinear form

a(w,w′; θ) = E

∫
Φ(Q,·)

( m∑
α,β=1

[ d∑
i,j=1

aijαβ(Φ−1(y, ·))∂wα
∂yi

∂w̃′β
∂yj

+ θδαβwαw̃
′
β

])
dy

 ,
and the problem (2.9) is to find w ∈ H so that

a(w,w′; θ) = E

∫
Φ(Q,·)

m∑
α,β=1

d∑
i,j=1

aijαβ(Φ−1(y, ·))piα
∂w′β
∂yj

dy

 , ∀w′ ∈ H .
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Since the form a(w,w′; θ) is coercive on H, equation (2.9) has a unique solution w(p,θ). Hence, in
the notation used in (2.4), w(p,θ) satisfies

E

[∫
Φ(Q,·)

(
A(Φ−1(y, ·))(∇w(p,θ) + p) · ∇w′ + θw(p,θ) ·w′

)
dy

]
= 0 , ∀w′ ∈ H . (2.10)

The solution w(p,θ) satisfies

E
[∫

Q

|∇w̃(p,θ)|2dy
]
≤ c , E

[∫
Q

|w̃(p,θ)|2dy
]
≤ c

θ
. (2.11)

In particular
‖∇w̃(p,θ)‖L2(Q,L2(Ω)) ≤ c , ∀θ > 0,

hence, for a subsequence θ → 0,

∇w̃(p,θ) ⇀ T (p), weakly in L2(Q,L2(Ω)), (2.12)

for some T (p) ∈ L2(Q,L2(Ω)). We extend T (p)(y, ω) from Q to Rd
by requiring it to be stationary.

Then it is easily verified that

∇w̃(p,θ) ⇀ T (p), weakly in L2
loc(R

d
, L2(Ω)), as θ → 0.

Defining

S(p)(y, ω) = (∇Φ−1)(y, ω)T (p)(Φ−1(y, ω), ω) , y ∈ Rd
, ω ∈ Ω, (2.13)

it is easily seen that, for the same subsequence as above,

∇w(p,θ) ⇀ S(p), weakly in L2
loc(R

d
, L2(Ω)), as θ → 0.

Claim. There exist v(p), ṽ(p) in H1
loc(R

d
, L2(Ω)) such that

T (p) = ∇ṽ(p) , S(p) = ∇v(p).

We shall prove the claim for T (p), the proof for S(p) is similar. Let us fix φ ∈ C∞c (Rd
). For each

1 ≤ i, j ≤ d and θ > 0 we then have∫
Rd

w̃(p,θ)
xi φxjdx =

∫
Rd

w̃(p,θ)
xj φxidx , ω ∈ Ω. (2.14)

We next multiply (2.14) by an arbitrary ψ ∈ L2(Ω), integrate over Ω and let θ → 0 along the
subsequence above. Using the weak convergence (2.12) we obtain

E
[∫
Rd

T
(p)
i φxj (x)ψ(ω)dx

]
= E

[∫
Rd

T
(p)
j φxi(x)ψ(ω)dx

]
.

Since ψ ∈ L2(Ω) is arbitrary this gives∫
Rd

T
(p)
i φxjdx =

∫
Rd

T
(p)
j φxidx , for all ω ∈ Ω and φ ∈ C∞c (Rd

), (2.15)
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that is (T
(p)
i )xj = (T

(p)
j )xi in distributional sense. By [15, Theorem 2.1] this implies that there

exists a distribution ṽ(p), which may also depend on ω, such that T (p) = ∇ṽ(p). The fact that

v(p) ∈ H1
loc(R

d
, L2(Ω)) follows from [15, Theorem 3.1].

The Claim together with (2.13) imply

v(p)(y, ω) = ṽ(p)(Φ−1(y, ω), ω) +X(ω) , y ∈ Rd
, a.s. ,

for some random variable X(ω), ω ∈ Ω, independent of y ∈ Rd
. Let us now define w(p) = v(p)−X,

w̃(p) = ṽ(p). Changing variables in (2.10), taking the limit θ → 0 and using (2.11) we obtain

E
[∫

Q

A(y)(∇w(p) + p) · ∇w′dy

]
= 0 , ∀w′ ∈ H ; (2.16)

Moreover, we have by construction w(p)(y, ω) = w̃(p)(Φ−1(y, ω), ω) and E
[∫

Φ(Q)
∇w(p)(y, ·)dy

]
=

0. Hence existence has been proved.

Uniqueness. Suppose w is a solution of the corresponding homogeneous problem:
−
∑m
α=1

∑d
i,j=1

∂
∂yj

{
aijαβ(Φ−1(y, ω))∂wα∂yi

}
= 0, in Rd

, (β = 1, . . . ,m)

w(y, ω) = w̃(Φ−1(y, ω), ω), ∇w̃ stationary,

E
[∫

Φ(Q,·)∇w(y, ·)dy
]

= 0,

(2.17)

By standard elliptic regularity, ∇w ∈ L∞loc(R
d
) and, therefore, also ∇w̃ ∈ L∞loc(R

d
). We use the

fact (see [13, 2]) that the stationarity of ∇w̃ implies that w̃ and w are sublinear at infinity, that
is w(y) = o(|y|). Now, let N be a large parameter and χN be a cut-off function which equals 1 on
QN , vanishes on Q2N and satisfies |∇χN | ≤ c/N . We multiply the equation in (2.17) by χNwα and
integrate by parts. We obtain for ω ∈ Ω∫

Q2N

A(Φ−1(y, ω))∇w · ∇(χNw)dy = 0.

Using the Cauchy-Schwarz inequality this gives∫
QN

A(Φ−1(y, ω))∇w · ∇wdy ≤ c

N
‖∇w‖L2(Q2N )‖w‖L2(Q2N ).

Now, by the local regularity estimates of Hong [8, Theorem 2] we have that ‖∇w‖L2(Q2N ) ≤
cN−1‖w‖L2(Q4N ). Combining the above we obtain

1

Nd

∫
QN

A(Φ−1(y, ω))∇w · ∇wdy ≤ cNd−2‖w‖2L2(Q4N ) = o(1) , (2.18)

as N →∞. We note that the integral in the LHS of (2.18) equals
∫
QN

g(Φ−1(y, ω), ω)dy where

g(z, ω) = [A(z)(∇Φ(z, ω))−1∇w̃(z, ω)](∇Φ(z, ω))−1∇w̃(z, ω)
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is stationary. Because of stationarity, Lemma 3 applies here. Taking ε = 1/N and the test-function

χQ ∈ L1(Rd
) we obtain that

1

Nd

∫
QN

g(Φ−1(y, ω), ω)dy =

∫
Q

g(Φ−1(Nx, ω), ω)dx→ cΦE

[∫
Φ(Q,·)

g(Φ−1(x, ·), ·)dx

]
, (2.19)

as N → ∞. From (2.18) and (2.19) we conclude that g = 0 and hence w = 0. This concludes the
proof. �

Let {eiα}, α = 1, . . . ,m, i = 1, . . . , d, be the canonical basis of Rmd
. When p = eiα we shall write

w(iα) instead of w(eiα). So each w(iα) is a vector field, w(iα) = (w
(iα)
β )mβ=1.

We define the homogenized coefficient matrix A∗ = {a∗ijαβ} by

a∗ijαβ = det

(
E
[∫

Q

∇Φ(x, ·)dx
])−1

E

[∫
Φ(Q,·)

akjγβ

(
δikδαγ +

∂w
(iα)
γ

∂yk

)
dy

]
. (2.20)

Theorem 1. Let O ⊂ Rd
be bounded and f = (fα)mα=1 ∈ (H−1(O))m. Assume that the functions

aijαβ belong in Cδ(Rd
) for some 0 < δ ≤ 1. Then the solution u(ε)(x, ω) of (2.5) converges as ε→ 0

weakly in (H1
0 (O))m almost surely to the function u∗(x) which is the solution of the problem{

−
∑m
α=1

∑d
i,j=1

∂
∂xj

{
a∗ijαβ

∂uα
∂xi

}
= fβ , in O,

uβ = 0, on ∂O,
β = 1, . . . ,m. (2.21)

Proof. The sequence (uε) is bounded in L∞(Ω, (H1
0 (O))m). Hence the sequence rε(x, ω) :=

A(x/ε)∇uε is bounded in L∞(Ω, (L2(O))md). It follows that, by extracting a subsequence ε → 0,
there exist u∗ and r∗ such that

uε ⇀ u∗ weakly in (H1
0 (O))m a.s. (2.22)

rε ⇀ r∗ weakly in (L2(O))md a.s.. (2.23)

The proof of the theorem will be complete once we prove that

r∗ = A∗∇u∗ , x ∈ O , a.s. . (2.24)

Let p ∈ Rmd
be fixed and let v(p) be the solution of the problem

−
∑m
α=1

∑d
i,j=1

∂
∂yj

{
ajiβα(Φ−1(y, ω))(∂vα∂yi

+ piα)
}

= 0, in Rd
, (β = 1, . . . ,m)

v(y, ω) = ṽ(Φ−1(y, ω), ω), ∇ṽ stationary,

E
[∫

Φ(Q,·)∇v(y, ·)dy
]

= 0,

(2.25)

So the only difference in the definitions of w(p) and v(p) is that while for the first we use the

matrix A = {aijαβ}, for the latter we use the transpose (with respect to action on Rmd
) matrix

AT = {ajiβα}.

12



Let v
(p)
ε (x, ω) = εv(p)(xε , ω). Applying Lemma 3 to the (stationary) function

g(x, ω) = (∇Φ)−1(x, ω)(∇ṽ(p))(x, ω)

we obtain

∇v(p)
ε (x, ω) = g(Φ−1(

x

ε
, ω), ω)

⇀ cΦE

[∫
Φ(Q,·)

g(Φ−1(x, ·), ·)dx

]

= cΦE

[∫
Φ(Q,·)

∇v(p)(x, ·)dx

]
= 0, (2.26)

∗-weakly in L∞(Rd
) almost surely. Now, let us define

q(y, ω) = AT (Φ−1(y, ω))(∇v(p)(y, ω) + p) , qε(x, ω) = q(
x

ε
, ω).

Applying Lemma 3 to the function

g(x, ω) = AT (x)
[
(∇Φ)−1(x, ω)∇ṽ(p)(x, ω) + p

]
we obtain

qε(x, ω) ⇀ q∗ := cΦE

[∫
Φ(Q,·)

AT (Φ−1(y))[∇v(p)(y, ·) + p]dy

]
(2.27)

*-weakly in L∞(Rd
), almost surely. Let us compute the jβ-coordinate of the first term in the last

integral: for ω ∈ Ω we have∫
Φ(Q,ω)

AT (Φ−1)∇v(p) · ejβdy =

∫
Φ(Q,ω)

A(Φ−1)ejβ · ∇v(p)dy

= −
∫

Φ(Q,ω)

A(Φ−1)∇wjβ · ∇v(p)dy

=

∫
Φ(Q,ω)

A(Φ−1)∇wjβ · p dy.

Substituting in (2.27) we obtain

q∗jβ = cΦE

[∫
Φ(Q,·)

aijαβ + ajkβγ
∂wiα

∂yk
dy

]
piα,

that is q∗ = (A∗)Tp.

Since div qε is independent of ε, the Compensated Compactness Theorem [11, Lemma 1.1] can be
applied and (2.22) together with (2.27) imply

∇uε · qε → ∇u∗ · (A∗)Tp , ∗-weakly in L1(D) a.s. (2.28)
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Similarly, (2.23) and (2.26) imply that

rε · (∇v(p)
ε + p)→ r∗ · p , ∗-weakly in L1(D) a.s. (2.29)

(We refer to [11] for the precise definition of ∗-weak convergence in L1). Since the left-hand sides of

(2.28) and (2.29) are equal, we obtain that u∗ · (A∗)Tp = r∗ · p. This being valid for all p ∈ Rmd
,

we obtain that r∗ = A∗∇u∗, as required. �

3 An application: Homogenization of Maxwell’s equations
for random bi-anisotropic media

In this section we shall see how the results of Section 2 can be applied in the study of a homoge-
nization problem for Maxwell’s equations in a random medium. The corresponding deterministic
problem has been studied, e.g. in [3, 6, 20]; some preliminary results for the random case are also
included in the latter, as well as in [19].

In what follows we shall denote by φ̂(p) the Laplace transform of a function φ(t), t > 0. Hence the

variable p is complex, and typically we shall have p ∈ C+
:= {Re p > 0}.

3.1 The Maxwell system

In a bounded domain O ⊂ R3
with Lipschitz boundary we consider for a fixed ε > 0 the initial

boundary value problem for Maxwell’s equations

∂tD
ε = curl Hε + F(x, t)

∂tB
ε = −curl Eε + G(x, t), x ∈ O, t > 0, (3.30)

Eε(x, 0) = 0, Hε(x, 0) = 0, x ∈ O,
n×Eε = 0, x ∈ ∂O, t > 0.

The system (3.30) is accompanied by linear constitutive laws of the form

Dε = εε0E
ε + ξε0H

ε + εεd ∗Eε + ξεd ∗Hε

Bε = ζε0Eε + µε0H
ε + ζεd ∗Eε + µεd ∗Hε, (3.31)

describing the anisotropic media; here and below the symbol ∗ stands for temporal convolution. In
compact notation the constitutive laws can be written as

Dε = Aε0Eε +Aεd ∗ Eε,

where Dε = [Dε,Bε]T , Eε = [Eε,Hε]T and

Aε0(x) =

[
εε0(x) ξε0(x)
ζε0(x) µε0(x)

]
, Aεd(x, t) =

[
εεd(x, t) ξεd(x, t)
ζεd(x, t) µεd(x, t)

]
.
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We assume that Aε0 ∈ (L∞(O))6×6 and Aεd ∈ (L∞(O× (0,∞)))6×6 and that the following ellipticity
conditions are satisfied:

Aε0(x)U · U ≥ c|U |2 , Aεd(x, t)U · U ≥ 0 , for all U ∈ R6
, (3.32)

for some c > 0 and all x ∈ O, t > 0 and ε > 0

3.2 Homogenization of the random Maxwell system

We now make the assumption that the matrices Aε0(x) and Aεd(x, t) above are random, of the form
studied in Section 2, that is

Aε0(x, ω) = A0(Φ−1(
x

ε
, ω)) , Aεd(x, t, ω) = Ad(Φ

−1(
x

ε
, ω), t),

where Φ is a random mapping which is a diffeomorphism almost surely, with stationary gradient

and A0(y) and Ad(y, t) are periodic in y ∈ R3
with period cell Q and satisfy

A0(y)U · U ≥ c|U |2 , Ad(y, t)U · U ≥ 0 , for all U ∈ R6
, (3.33)

for some c > 0 and all y ∈ Q and t > 0. We note that it follows from (3.33) that the matrix

Ã(y, p) := A0(y)+Âd(y, p) =

[
ε0(y) + ε̂d(y, p) ξ0(y) + ξ̂d(y, p)

ζ0(y) + ζ̂d(y, p) µ0(y) + µ̂d(y, p)

]
=:

[
ε̃(y, p) ξ̃(y, p)

ζ̃(y, p) µ̃(y, p)

]
(3.34)

satisfies
〈Ã(y, p)U ,U〉 ≥ c|U|2, y ∈ R3

, p ∈ C+, U ∈ R6
.

We make the following assumption:

Assumption 1. The Maxwell system (3.30) - (3.31) is uniquely solvable for all ε > 0 and ω ∈ Ω
and the solution satisfies ‖Eε‖L2(O), ‖Hε‖L2(O), ‖Dε‖L2(O), ‖Bε‖L2(O) ≤ c for all ε, t > 0 and ω ∈ Ω.

For a variety of natural conditions under which Assumption 1 is valid we refer to [19]. E.g., if we
only assume that ‖Eε‖L2(O), ‖Hε‖L2(O) ≤ c then the inequalities ‖Dε‖L2(O), ‖Bε‖L2(O) ≤ c follow

if
∫∞

0
‖Ad(y, t)‖dt < +∞, uniformly in y ∈ Q.

To state our theorem on the homogenization of the Maxwell system (3.30) - (3.31) we need to define
a certain homogenized coefficient matrix Ã∗. This will be a 6x6 matrix depending only on p ∈ C+.
The matrix Ã∗ shall be written in block form as

Ã∗ =

[
ε̃∗ ξ̃∗

ζ̃∗ µ̃∗

]
;

we define Ã∗ to be the transpose matrix of the limit in the sense of Theorem 1 of the sequence of
transpose matrices

Ã(Φ−1(
x

ε
, ω), p)⊥ =

[
ε̃(Φ−1(xε , ω), p)⊥ ζ̃(Φ−1(xε , ω), p)⊥

ξ̃(Φ−1(xε , ω), p)⊥ µ̃(Φ−1(xε , ω), p)⊥

]
.
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The precise expression for Ã∗ is as follows. By an application of Proposition 1 of Section 2.2 there
exist unique (modulo random constants) functions uj1, u

j
2, v

j
1 and vj2, j = 1, 2, 3, defined by the

relations 
− ∂
∂yi

{
ε̃ik

∂uj1
∂yk

+ ξ̃ik
∂uj2
∂yk

}
=

∂ε̃ij
∂yi

− ∂
∂yi

{
ζ̃ik

∂uj1
∂yk

+ µ̃ik
∂uj2
∂yk

}
=

∂ζ̃ij
∂yi

and 
− ∂
∂yi

{
ε̃ik

∂vj1
∂yk

+ ξ̃ik
∂vj2
∂yk

}
=

∂ξ̃ij
∂yi

− ∂
∂yi

{
ζ̃ik

∂vj1
∂yk

+ µ̃ik
∂vj2
∂yk

}
=

∂µ̃ij
∂yi

in O, where we also require that

ujγ(y, ω) = ũjγ(Φ−1(y, ω), ω) , vjγ(y, ω) = ṽjγ(Φ−1(y, ω), ω),

with ũjγ and ṽjγ stationary and E
[∫

Φ(Q)
∇ujγ(y, ·)dy

]
= E

[∫
Φ(Q)

∇vjγ(y, ·)dy
]

= 0, γ = 1, 2, j =

1, 2, 3. Using (2.20) one can then see that

ε̃∗ij = det

(
E
[∫

Q

∇Φ(y, ·)dy
])−1

E

[∫
Φ(Q,·)

(
ε̃ij + ε̃ik

∂uj1
∂yk

+ ξ̃ik
∂uj2
∂yk

)
dy

]

ξ̃∗ij = det

(
E
[∫

Q

∇Φ(y, ·)dy
])−1

E

[∫
Φ(Q,·)

(
ξ̃ij + ε̃ik

∂vj1
∂yk

+ ξ̃ik
∂vj2
∂yk

)
dy

]

ζ̃∗ij = det

(
E
[∫

Q

∇Φ(y, ·)dy
])−1

E

[∫
Φ(Q,·)

(
ζ̃ij + ζ̃ik

∂uj1
∂yk

+ µ̃ik
∂uj2
∂yk

)
dy

]

µ̃∗ij = det

(
E
[∫

Q

∇Φ(y, ·)dy
])−1

E

[∫
Φ(Q,·)

(
µ̃ij + ζ̃ik

∂vj1
∂yk

+ µ̃ik
∂vj2
∂yk

)
dy

]
.

Assumption 2. (inversion of Laplace transform) There exist 3x3 matrices ε∗0, ξ∗0 , ζ∗0 and µ∗0 and
3x3 matrix-valued functions ε∗d(t), ξ

∗
d(t), ζ∗d and µ∗d(t) such that

ε∗0,ij + ε̂∗d,ij(p) = ε̃∗ij(p) , ξ∗0,ij + ξ̂∗d,ij(p) = ξ̃∗ij(p) ,

ζ∗0,ij + ζ̂∗d,ij(p) = ζ̃∗ij(p) , µ∗0,ij + µ̂∗d,ij(p) = µ̃∗ij(p) , p ∈ C+
.

For more information concerning this assumption we refer to [22].

We can now state the main result of this section.

Theorem 2. Assume that the functions A0 and Ad(·, t), t > 0 belong in Cδ(Rd
) for some δ > 0.

Then the solution [Eε,Hε] of the Maxwell system satisfies

Eε → E∗, Hε → H∗ ∗-weakly in L∞((0,∞)× Ω, L2(O)),
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where [E∗,H∗] is the unique solution of the Maxwell system

∂tD
∗ = curl H∗ + F(x, t)

∂tB
∗ = −curl E∗ + G(x, t), x ∈ O, t > 0, (3.35)

E∗(x, 0) = 0, H∗(x, 0) = 0,

n×E∗ = 0, x ∈ ∂O, t > 0,

subject to the constitutive laws

D∗ = ε∗0E∗ + ξ∗0H∗ + ε∗d ∗E∗ + ξ∗d ∗H∗

B∗ = ζ∗0E∗ + µ∗0H∗ + ζ∗d ∗E∗ + µ∗d ∗H∗. (3.36)

Proof. By Assumption 1 there exist E∗,H∗,D∗,B∗ ∈ L∞((0,∞)×Ω, L2(O)) such that, up to taking
a subsequence ε→ 0, there holds

Eε → E∗, Hε → H∗

Dε → D∗, Bε → B∗

}
∗- weakly in L∞((0,∞)× Ω, L2(O)). (3.37)

We define the random 3x3 matrix-valued functions ε̃ε, ξ̃ε, ζ̃ε and µ̃ε by

ε̃ε(x, p, ω) = ε̃(Φ−1(
x

ε
, ω), p), ξ̃ε(x, p, ω) = ξ̃(Φ−1(

x

ε
, ω), p),

ζ̃ε(x, p, ω) = ζ̃(Φ−1(
x

ε
, ω), p), µ̃ε(x, p, ω) = µ̃(Φ−1(

x

ε
, ω), p). (3.38)

Taking the Laplace transform of the constitutive laws (3.31) with respect to the time variable and
exploiting the fact that the Laplace transform turns convolutions into products, we obtain

D̂ε = ε̃εÊε + ξ̃εĤε

B̂ε = ζ̃εÊε + ξ̃εĤε, x ∈ O , ω ∈ Ω , p ∈ C+ , ε > 0. (3.39)

We have ‖Êε‖L2(O) ≤
∫∞

0
|e−pt|‖Eε‖L2(O)dt. An analogous relation is true for Ĥε, D̂ε and B̂ε,

hence Assumption 1 implies

‖Êε‖L2(O) ≤ C
′
, ‖Ĥε‖L2(O) ≤ C

′
, ‖D̂ε‖L2(O) ≤ C

′
, ‖B̂ε‖L2(O) ≤ C

′
, (3.40)

where C ′ is independent of ω ∈ Ω and ε > 0 (but not of p ∈ C+
). It then easily follows that for

fixed p ∈ C+

Êε ∗⇀ Ê∗ , Ĥε ∗⇀ Ĥ∗

D̂ε ∗⇀ D̂∗ , B̂ε ∗⇀ B̂∗

}
∗ - weakly in (L∞(Ω, L2(O)))3 (3.41)

but also weakly in L2(O) almost surely. Now, taking the Laplace transform of Maxwell’s equations
(3.30) we obtain

p D̂ε = curl Ĥε + F̂,

p B̂ε = −curl Êε + Ĝ; (3.42)
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hence (3.40) implies that the L2(O)-norms of curl Êε, curl Ĥε are bounded and employing the same
weak compactness argument we have the existence of φ, ψ such that

curl Êε ∗⇀ φ,

curl Ĥε ∗⇀ ψ,

(up to subsequences) ∗-weakly in (L∞(Ω, L2(O)))3. Standard arguments based on uniqueness of
weak limits allow us to identify φ = curlE∗ and ψ = curlH∗. The above considerations lead to

the conclusion that for each p ∈ C+
,

Êε ⇀ Ê∗,

Ĥε ⇀ Ĥ∗ (3.43)

∗-weakly in L∞(Ω, H(curl ,O)), and also in H(curl ,O) almost surely. We now take the limit ε→ 0

in (3.42) (weakly in (L2(O))3, for fixed p ∈ C+
and ω ∈ Ω) and obtain that

p D̂∗ = curl Ĥ∗ + F̂∗,

p B̂∗ = −curl Ê∗ + Ĝ∗. (3.44)

This implies that E∗,H∗,D∗ and B∗ are solutions of the Maxwell system

∂tD
∗ = curl H∗ + F∗(t)

∂tB
∗ = −curl E∗ + G∗(t), x ∈ O, t > 0, (3.45)

E∗(x, 0) = 0, H∗(x, 0) = 0, x ∈ O. (3.46)

Hence it remains to establish that the boundary condition n × E∗ = 0 is satisfied and that the
vector fields E∗,H∗,D∗ and B∗ are related by the constitutive laws (3.36).

Validity of the boundary condition. We first note that the boundary condition is understood in
the sense of the trace operator H(curl ,O) → H−

1
2 (∂O), U 7→ n × U|∂O. Let us fix a function

φ ∈ H 1
2 (∂O). There exists [9, p. 341] Φ ∈ H1(O) such that Φ|∂O = φ. Now, for ε > 0 there holds∫

O
curl Φ ·Eε =

∫
O

curl Eε ·Φ +

∫
∂O

Φ(n×Eε),∫
O

curl Φ ·E∗ =

∫
O

curl E∗ ·Φ +

∫
∂O

Φ(n×E∗).

Combining these with the fact that n×Eε|∂O = 0 and using the relations∫
O

curl Φ ·Eε →
∫
O

curl Φ ·E∗∫
O

curl Eε ·Φ→
∫
O

curl E∗ ·Φ, (ε→ 0)

we obtain ∫
∂O

φ(n×E∗) =

∫
∂O

Φ(n×E∗) = 0.
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Since φ ∈ H 1
2 (∂O) was arbitrary, we conclude that n×E∗ = 0 on ∂O.

Validity of the constitutive laws. In order to prove the validity of the constitutive laws we shall need
to consider an auxiliary elliptic system and apply Theorem 1. The auxiliary system will have as a
coefficient matrix the transpose of the matrix (cf. (3.38))[

ε̃ε ξ̃ε

ζ̃ε µ̃ε

]
;

the system will also depend on the parameter p ∈ C+
, as well as on ω ∈ Ω.

Specifically, let us fix a domain V with smooth boundary compactly contained in O. We recall
definition (3.34) of the 3 × 3 periodic matrix-valued functions ε̃, ξ̃, ζ̃ and µ̃ and we define the
random elliptic operator Lε : (H1

0 (V ))2 → (H−1(V ))2 by

Lε =

[
−div((ε̃ε)⊥ grad ) −div((ζ̃ε)⊥ grad )

−div((ξ̃ε)⊥ grad ) −div((µ̃ε)⊥ grad )

]
where the 3× 3 random matrix-values functions ε̃ε, ξ̃ε, ζ̃ε and µ̃ε have been defined by (3.38). Here

and below we denote by grad the usual gradient operator in R3
. Let L∗ : (H1

0 (V ))2 → (H−1(V ))2

be the operator given by

L∗ =

[
−div((ε̃∗)⊥grad ) −div((ζ̃∗)⊥grad )

−div((ξ̃∗)⊥grad ) −div((µ̃∗)⊥grad )

]
.

We note that the coefficients of L∗ depend only on the parameter p ∈ C+.

Let G = [g1, g2]T ∈ (L2(V ))2 be fixed. By Theorem 1 and the definition of Ã∗ the solutions
Uε = [uε, vε]T , U∗ = [u∗, v∗]T of

LεUε = G, L∗U∗ = G, (3.47)

satisfy

grad uε ⇀ grad u∗,

grad vε ⇀ grad v∗, (3.48)

weakly in L2(V ) a.s., and also

(ε̃ε)⊥ grad uε + (ζ̃ε)⊥grad vε ⇀ (ε̃∗)⊥ grad u∗ + (ζ̃∗)⊥grad v∗,

(ξ̃ε)⊥grad uε + (µ̃ε)⊥grad vε ⇀ (ξ̃∗)⊥ grad u∗ + (µ̃∗)⊥grad v∗, (3.49)

weakly in L2(V ) a.s. . The vector identity curl grad = 0 together with (3.48) imply that in fact

grad uε ⇀ grad u∗,

grad vε ⇀ grad v∗, (3.50)
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weakly in H(curl , V ), a.s.. Moreover, the identity divcurl = 0 together with (3.42) and (3.44)

yields divD̂ε = divD̂∗ and divB̂ε = divB̂∗; this combined with (3.41) implies

D̂ε ⇀ D̂∗,

B̂ε ⇀ B̂∗, (3.51)

weakly in H(V,div), a.s.. Relations (3.50), (3.51) and the div-curl lemma now imply that

D̂ε · graduε → D̂∗ · gradu∗,

B̂ε · grad vε → B̂∗ · grad v∗, (3.52)

a.s. in D′(V ). Adding up (3.52) we obtain

D̂ε · grad uε + B̂ε · grad vε → D̂∗ · grad u∗ + B̂∗ · ·grad v∗ (3.53)

a.s. in D′(V ). Moreover we have

−div
(

(ε̃ε)⊥graduε + (ζ̃ε)⊥grad vε
)

= g1 = −div
(

(ε̃∗)⊥gradu∗ + (ζ̃∗)⊥grad v∗
)

−div
(

(ξ̃ε)⊥graduε + (µ̃ε)⊥grad vε
)

= g2 = −div
(

(ζ̃∗)⊥gradu∗ + (µ̃∗)⊥grad v∗
)

;

these together with (3.49) imply

(ε̃ε)⊥graduε + (ζ̃ε)⊥grad vε ⇀ (ε̃∗)⊥gradu∗ + (ζ̃∗)⊥grad v∗

(ξ̃ε)⊥graduε + (µ̃ε)⊥grad vε ⇀ (ζ̃∗)⊥gradu∗ + (µ̃∗)⊥grad v∗

weakly in H(V,div), almost surely. Combining this with (3.43) we obtain by another application of
the div-curl lemma that(

(ε̃ε)⊥ grad uε + (ζ̃ε)⊥grad vε
)
· Êε →

(
(ε̃∗)⊥grad u∗ + (ζ̃∗)⊥grad v∗

)
· Ê∗,(

(ξ̃ε)⊥grad uε + (µ̃ε)⊥grad vε
)
· Ĥε →

(
(ξ̃∗)⊥ grad u∗ + (µ̃∗)⊥grad v∗

)
· Ĥ∗, (3.54)

almost surely in D′(V ). Adding relations (3.54) we obtain

(ε̃εÊε + ξ̃εĤε) · grad uε + (ζ̃εÊε + µ̃εĤε) · grad vε → (3.55)

(ε̃∗Ê∗ + ξ̃∗Ĥ∗) · grad u∗ + (ζ̃∗Ê∗ + µ̃∗Ĥ∗) · grad v∗

in D′(V ), almost surely, or equivalently by (3.39),

D̂ε · grad uε + B̂ε · grad vε → (ε̃∗Ê∗ + ξ̃∗Ĥ∗) · grad u∗ + (ξ̃∗T Ê∗ + µ̃∗Ĥ∗) · grad v∗ (3.56)

a.s. in D′(V ). Combining (3.56) and (3.53) we obtain by the uniqueness of limits,

D̂∗ · gradu∗ + B̂∗ · grad v∗ = (ε̃∗Ê∗ + ξ̃∗Ĥ∗) · grad u∗ + (ξ̃∗T Ê∗ + µ̃∗Ĥ∗) · grad v∗ , in V.
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We claim that

D̂∗ = ε̃∗ Ê∗ + ξ̃∗Ĥ∗,

B̂∗ = ξ̃∗T Ê∗ + µ̃∗ Ĥ∗, in V , for all p ∈ C+
. (3.57)

To see this, let B(x0, ρ) be a ball compactly contained in V and let ei ∈ R3
be a fixed basis vector.

Let u∗ ∈ C∞0 (V ) be such that u∗ = xi in B(x0, ρ) and let v∗ be identically zero in V . Denoting as
above U∗ = [u∗, v∗]T , we define the vector field Uε = [uε, vε]T ∈ (H1

0 (V ))2 by requiring that

LεUε = L∗U∗, in V.

Hence we obtain that D̂∗ · ei = (ε̃∗Ê∗ + ξ̃∗Ĥ∗) · ei in B(x0, ρ). Since ei is an arbitrary basis vector

and B(x0, ρ) is also arbitrary, we conclude that D̂∗ = ε̃∗Ê∗ + ξ̃∗Ĥ∗ in V . Similarly we obtain the
second relation in (3.57).

We finally note that (3.57) is the Laplace transform of the stated constitutive laws (3.36); since V
was arbitrary, this concludes the proof. �
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tion, Université Lille I, 2012.
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