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We study higher order elliptic operators with measurable coefficients acting on
Euclidean domains. The coefficients may have degeneracies or singularities on the
boundary or at infinity. We prove Gaussian-type bounds on the fundamental solu-
tion of the associated semigroup. These bounds are expressed in terms of a distance
d(x, y) that reflects the singularity or degeneracy of the coefficients. The estimates
are then used to extend the semigroup to other L p spaces and to prove that the
L p-spectrum is p-independent. � 1998 Academic Press

1. INTRODUCTION

The aim of this paper is to develop the L p spectral theory of a class of
higher order singular and�or degenerate self-adjoint superelliptic operators
with measurable coefficients. By L p spectral theory we mean the study of
heat kernels and L p properties of the associated evolution semigroup.

Until recently, most results on Lp spectral theory of higher order elliptic
operators were based on two important conditions: some kind of local regularity
assumption on the coefficients and uniform ellipticity [Gu1, Gu2, R, Ko].
There are however results on other aspects of spectral theory, namely spectral
asymptotics, where none of these two assumptions is made [BS1, BS2].

The study of the Lp spectral theory of higher order operators with measurable
coefficients was initiated by Davies [Da3]. Under the assumption that the
order 2m of the operator is larger than the dimension N of the underlying
space he obtained Gaussian-type bounds on the fundamental solution K(t, x, y)
of the associated semigroup. These bounds were then used to prove L p

properties of the semigroup and, in particular, to show that the Lp spectrum
is p-independent for 1� p��. If 2m=N then the above mentioned heat kernel
bounds are still valid, although the relevant proofs have to be modified
[AMT]. If 2m<N then, in general, there does not exist a continuous kernel
and the off-diagonal decay of the semigroup cannot be expressed in a pointwise
sense but only in a suitable operator sense. Moreover, the semigroup extends
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to other L p spaces only for p # [2N�(N+2m), 2N�(N&2m)], a range that
is in fact sharp [Da4]. The assumption 2m>N is made throughout the
present paper.

Our aim is to study some spectral properties of operators with measurable
coefficients that are not uniformly elliptic. We look at operators that act on
a domain 0/RN and are self-adjoint on L2(0, b dx), where b(x) is some
weight. They are given formally by

Hf =(&1)m b&1 :

|;|=m
|:|=m

D:[ba:; D;f ], (1)

and satisfy Dirichlet boundary conditions on �0. The matrix valued function
[a:;(x)] and the weight b(x) are positive and measurable and satisfy two
basic hypotheses (H1) and (H2), introduced below. The first is a weighted
Sobolev embedding theorem and the second a weighted interpolation inequality.
In Examples 2, A, B and Proposition 3 we give sufficient conditions under
which they are valid. The first, Example A, concerns functions a(x) and
b(x) that are bounded from above and below by powers of the distance of
x # 0 from a smooth, compact manifold K of dimension M, 1�M�N&1;
the second, Example B, deals with functions that are bounded from above
and below by powers of (1+|x| 2)1�2 in RN. Although these two examples
are quite general, we choose to base the whole paper on Hypotheses (H1)
and (H2), not only for the sake of greater generality, but also for that of
greater clarity as well as possible future applications. However, at various
points we shall return to those two examples in order to illustrate the theory.

Under the above assumptions, we prove Gaussian-type bounds on the
fundamental solution of the associated parabolic equation (Theorem 10).
They have the form

|K(t, x, y)|�c1 t&N�2m exp {&c2

d(x, y)2m�(2m&1)

t1�(2m&1) +c3 t= , (2)

where ci are some positive constants. The metric d(x, y) depends on the
operator H and is not equivalent to the Euclidean one unless H is uniformly
elliptic. In Example 12 and Proposition 13 we give precise estimates for
that metric. For instance, for Example B we prove that if a(x) is a function
controlling the size of the matrix [a:;(x)] (i.e., c&1a(x)�[a:;(x)]�ca(x)
in the sense of matrices) and h # RN is small, then

c&1a(x)&1�2m |h|�d(x, x+h)�ca(x)&1�2m |h|

uniformly in x. This is known to be optimal up to equivalence of metrics
[T]. We do not however make any attempts to find the sharp value of the
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constant c2 in (2). For results on short time asymptotics and sharp bounds
on heat kernels for uniformly elliptic operators see [EP, T] and [BaD, Ba]
correspondingly.

The heat kernel bounds are then used in order to extend the semigroup
to L p(0, b dx) for p{2 and to prove that the L p spectrum of the generator
is p-independent (Theorem 16). For this we employ the technique used in
[Da3], which is based on an abstract spectral invariance theorem.

Finally, for the Examples A and B mentioned above we prove that the
spectrum of H is not discrete, thus generalizing some of the results of Pang
[P], who treated the second order case.

2. SETTING AND EXAMPLES

We first fix some notation. Given a multi-index :=(:1 , ..., :N) we write
:!=:1 ! } } } :n ! and |:|=:1+ } } } +:n . We shall use the standard notation
D: for the differential expression (���x1):1 } } } (���xN):N and for k�0 we
shall denote by {kf the vector (D:f ) |:|=k . If g, h are two positive functions
(or sequences) with common domain of definition we shall write gth
to indicate that their ratio is bounded away from zero and infinity. We
shall call such functions equivalent. Throughout the paper the letter c will
denote a positive constant depending only on 0 and H, whose value may
change from line to line.

We now introduce our setting. We work on L2(0, b dx) where 0 is a
domain in RN and b is a positive measurable weight with

b\1 # L�
loc(0).

We shall work with the corresponding Lp spaces, L p(0, b dx)=: L p
b , equipped

with the norm

& f &L p
b
={|0

| f (x)| p b(x) dx=
1�p

.

For the unweighted norm we shall simply write & }&p .
We assume that 2m>N and consider self-adjoint elliptic operators on

L2
b(0) of the form

Hf (x)=(&1)m b(x)&1 :

|;|=m
|:|=m

D:[a:;(x) b(x) D;f (x)] (3)

subject to Dirichlet boundary conditions on �0. In the classical case where
H is uniformly elliptic with smooth coefficients and �0 is smooth, this
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corresponds to the requirement that functions in the domain of H as well
as their derivatives {f, ..., {m&1f, vanish on the boundary �0. The precise
definition shall be given below.

The matrix-valued function [a:;] is assumed to be measurable and to
take its values in the set of all complex, self-adjoint, positive definite &_&-
matrices, & being the number of multi-indices : of length |:|=m. We assume
that there exists a positive function a(x) with a\1 # L�

loc(0) that controls
the magnitude of [a:;], in the sense that

c&1a(x) | p| 2� :

|;|=m
|:|=m

a:;(x) p: p� ;�ca(x) | p| 2 (4)

for some constant c<�, all vectors p=( p:) |:|=m # C& and all x # 0. Condition
(4) is known as the superellipticity condition, in contrast to the weaker
ellipticity condition

c&1a(x) |!| 2m� :

|;|=m
|:|=m

a:;(x) !:!� ;�ca(x) |!| 2m, ! # CN.

Under these assumptions we define a quadratic form Q with domain
C�

c (0) by

Q( f )=|
0

:

|;|=m
|:|=m

a:;(x) D:f (x) D;f� (x) b dx, f # C �
c (0).

Lemma 1. The form Q is closable.

Proof. For f # W m, 2
loc (0) we define

Q� ( f )=|
0

:

|;|=m
|:|=m

a:;(x) D:f (x) D;f� (x) b dx # [0, �]

and we let

D=[ f # W m, 2
loc (0) | Q� ( f )<�].

Clearly D#C �
c (0). We shall prove that Q� is closed on D. Indeed, let

fn , f # L2
b(0), n=1, 2, ..., be such that

& fn& f &L2
b

� 0, Q� ( fn& fm) � 0
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as n, m � �. Let (0k) be an increasing sequence of open subsets of 0 such
that

0k //0, .
k

0k=0.

The conditions on [a:;(x)] and b(x) then imply that there exists constants
ck such that

Q� ( fn& fm)�ck |
0k

|{k( fn& fm)| 2 dx.

Therefore ( fn) is a Cauchy sequence in W m, 2(0k) and its limit has to be
equal to f | 0k . It follows that f # W m, 2

loc (0) and we conclude that

Q� ( f )=lim
k |

0k

: a:;D:fD;f� b dx=lim
k

lim
n |

0k

: a:;D:fnD;f� nb dx

�lim sup
n

Q� ( fn)<�.

Hence Q has a closed extension and therefore is closable. K

We use the same symbol, Q, for the closure of the above form and define
H to be the associated self adjoint operator on L2

b , so that (3) is valid in
a weak sense. The appearence of the factor ba:; in this expression may
seem somehow awkward, but will lead to more nicely formulated results
later.

We make two basic hypotheses on the functions a and b.

(H1) The domain Dom(Q) is embedded in C0(0) and

& f &��cQ( f )s�2 & f &1&s
L2

b
(5)

for some s # [N�2m, 1] and all f # Dom(Q).

(H2) There exist a constant c such that

|
0

ak�m |{kf | 2 b dx<= |
0

a |{mf | 2 b dx+c=&k�(m&k) |
0

| f | 2 b dx, (6)

for all 0<=<1, 0�k<m and all f # C �
c (0).

Hypothesis (H1) is needed to obtain uniform (on-diagonal) bounds on
the heat kernel, while (H2) will be used in order to extend those to off-
diagonal Gaussian estimates. It is well known that both (H1) and (H2) are
satisfied when b(x)t1 and H is uniformly elliptic. In that case, the best
value for the constant s is s=N�2m, and that is why we cannot expect any
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value that is better (smaller) than that number. Of course, the unweighted
inequality implies that (H1) is valid with s=N�2m if the functions ab and
b are both bounded from below by positive constants. The following
example shows that more than this is possible. We set (x) =(1+|x| 2)1�2,
x # RN.

Example 2. [L] Let 0=RN with N odd and let a(x)=(x) a, b(x)=
(x) ; where : and ; are real numbers satisfying

;>&N, :+;>&N. (7)

Assume that

N
2m

:+;�0,
N+;
2m&:

�1. (8)

Then (H1) is satisfied with s=(N+;)�(2m&:). [One easily checks that
s�N�2m] If N is an even number, then this remains true provided inequalities
(8) are replaced by strict inequalities and the exponent s is replaced by
s+$ for any small $>0. We refer to [L] for the details.

In Proposition 3 we shall prove that (H2) is valid for Examples A and
B below. We shall return to these examples later on in order to illustrate
some of our results.

Example A. Let K be a smooth compact surface in RN of dimension
M, where 1�M�N&1, and let 0=0$"K, where 0$ is an open domain
containing K. We let d(x) be a smooth function on 0 satisfying d(x)=
dist(x, K) in a neighbourhood of K and such that d(x) is bounded away
from zero and infinity outside that neighbourhood. For fixed :, ; # R we
consider weights

a(x)td(x):, b(x)td(x);, x # 0,

and assume

:>2m.

We point out that with very minor modifications this example also covers
the case of a bounded domain 0 with smooth boundary, d(x) being the
distance from a smooth submanifold A of �0. We omit the details and shall
only deal with the example as stated.

Example B. Let 0=RN, consider weights

a(x)t(x) :, b(x)t(x) ;
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and assume that

:<2m.

Proposition 3. Hypothesis (H2) is satisfied in both Examples A and B.

Proof. We shall make use of the following Claim, whose proof is given
in the Appendix.

Claim. Let R=[0, h1]_ } } } _[0, hN] be a rectangle in RN and let
h=mini hi .

There exists an absolute constant c such that the inequality

|
R

|{kf | 2 dx<= |
R

|{mf | 2 dx+c=&k�(m&k) |
R

| f | 2 dx (9)

is valid for all 0�k�m&1, all = # (0, h2m&2k) and all f # C�(R� ).

Note. 1. It is well known [A] that the inequality is valid for a general
domain that possesses the cone property. The point here is the dependence
upon the thickness h.

2. We shall often make use of the fact that in inequalities such as (9)
one can replace the range (0, h2m&2k) of = by (0, c1h2m&2k), for some
constant c1 , provided the constant c is also replaced be a new constant
c$=c$(c, c1).

We shall also use the following notation: given a diffeomorphism ?, we set

sm(?)= sup
1�k�m

[&{k?&� , &{k?&1&�].

[By &{k?&� we mean the maximum of the L� norm of each of the
components of {k?.] It is clear that inequality (9) remains valid if the
rectangle R is replaced by some diffeomorphic image of itself. The constant
c will then also depend on the diffeomorphism ?, via the number sm(?)
only.

We now proceed with the proofs.

Proof of Example A. There exists a neighbourhood U of K such that
0 & U is diffeomorphic to the product K_[BN&M"[0]], where BN&M

is a ball in RN&M and for all x#(x$, x") # U, x$ # K, x" # BN&M , x"{0,
we have |x"|=d(x). We use this diffeomorphism to identify U with
K_[BN&M"[0]].

131SINGULAR ELLIPTIC OPERATORS



File: DISTL2 319508 . By:CV . Date:21:04:98 . Time:08:00 LOP8M. V8.B. Page 01:01
Codes: 2536 Signs: 1233 . Length: 45 pic 0 pts, 190 mm

Let r>0 be fixed. We write U as

U= .
�

n=n0

0n ,

where 0n are closed ``shells'' enveloping K,

0n=[x # 0 | (n+1)&r�d(x)�n&r]

=K_[x" # BN&M | (n+1)&r�|x"|�n&r]=: K_Sn .

Now let [Kj] be a finite cover of K such that each Kj is diffeomorphic to
some closed M-dimensional cube. The collection

[Kj_Sn]j, n

is a cover of U and, moreover, it is uniformly finite; that is, denoting by /j, n

the characteristic function of Kj _Sn we have

sup
x # U

:
j, n

/j, n(x)<�.

[The various constants below may also depend on this supremum.] The
thickness of each ``rectangle'' Kj _Sn is, for large n, approximately equal to
the thickness of Sn , which is

n&r&(n+1)&r
tn&(r+1).

From this follows that there exist diffeomorphisms ?jn that map Kj_Sn

onto a rectangle Rjn of minimum edgelength n&(r+1) and such that

sup
j, n

sm(?jn)<�. (10)

Hence, by the remark above on the invariance of (9) under diffeomorphisms,
we have

|
Kj_Sn

|{kf | 2 dx<= |
Kj_Sn

|{mf | 2 dx+c=&k�(m&k) |
Kj_Sn

| f | 2 dx (11)

for all j, n, all = # (0, n&2(r+1)(m&k)) and some constant c which, because
of (10), is independent of n.

Now, let an , bn be positive constants. Summing over all j, replacing = by
=a (m&k)�m

n and multiplying both sides by ak�m
n bn , we conclude that

ak�m
n bn |

0n

|{kf | 2 dx<=anbn |
0n

|{mf | 2 dx+c=&k�(m&k)bn |
0n

| f | 2 dx, (12)
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for all f # C�(0n ) and all = such that 0<=<n&2(m&k)(r+1)a&(m&k)�m
n .

Taking an=n&r: and bn=n&r; we have

c&1d(x):�an�cd(x):, all x # 0n ,

and

c&1d(x);�bn�cd(x);, all x # 0n .

Hence

|
0n

d(x)(:k�m)+; |{kf | 2 dx<= |
0n

d(x):+; |{mf | 2 dx

+c=&k�(m&k) |
0n

d(x); | f | 2 dx

for all f # C�(0n ). A similar inequality is valid away from K, where the
coefficients of H do not have singularities or degeneracies. Adding all the
above inequalities we conclude that

|
0

a(x)k�m |{kf | 2 b(x) dx

<= |
0

a(x) |{mf | 2 b(x) dx+c=&k�(m&k) |
0

| f | 2 b(x) dx

for all f # C �
c (0) and all = such that

0<=<c inf
n # N

n&2(m&k)(r+1)a&(m&k)�m
n =inf

n
n((m&k) r:�m)&2(m&k)(r+1).

Hence, in order to have a non-trivial range of =>0 we need the above
infimum to be positive, that is we need

:�
2m(r+1)

r
.

Since :>2m, this is true provided r>0 is chosen large enough.

Proof of Example B. The proof is very similar to that of Example A, so
we only give an outline. We let r>0 be arbitrary but fixed and define

0n=[x # 0 | nr<(x) <(n+1)r].
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Each 0n has thickness approximately nr&1 and therefore

|
0n

|{kf | 2 dx<= |
0n

|{mf | 2 dx+c=&k�(m&k) |
0n

| f | 2 dx

for all =<n2(m&k)(r&1) and all f # C�(0n ). Taking an=nr: and bn=nr; and
following the same reasoning as in Example A we conclude that

|
RN

(x) (:k�m)+; |{kf | 2 dx

<= |
RN

(x) :+; |{mf | 2 dx+c=&k�(m&k) |
RN

(x) ; | f | 2 dx

for all f # C �
c (RN) and all = such that

0<=< inf
n # N

n2(m&k)(r&1)a&(m&k)�m
n .

The assumption :<2m implies that this range is non-empty provided we
take r to be large enough. K

3. HEAT KERNEL ESTIMATES

Diagonal Bounds

We start by proving uniform bounds on the heat kernel. The way these
follow from the Sobolev embedding (H1) is standard, but we include the
proof for the sake of completeness. Given an operator T that acts on
different L p

b spaces we shall denote by &T&p � q its norm when regarded as
an operator from L p

b to Lq
b . When p=q=2 we shall simply write &T&. We

always assume that 2m>N.

Proposition 4. The semigroup e&Hz, Re z>0, has a jointly continuous
kernel K(z, x, y) that satisfies

|K(t+iu, x, y)|�ct&s, (13)

for all t>0, u # R and x, y # 0. Moreover for fixed x, y the kernel is analytic
as a function of z on [z | Re z>0].

Proof. Let f # L2
b be fixed. It follows from (H1) that for t>0 we have

&e&Htf &��cQ(e&Htf )s�2 &e&Htf &1&s
L 2

b

=c &H 1�2e&Htf &s
L 2

b
&e&Htf &1&s

L2
b

�ct&s�2 & f &L2
b
.
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Hence for t>0 and u # R we can write

e&H(t+iu)=A } B } C

where A=e&Ht�2: L2
b � L� satisfies &A&2 � ��ct&s�2, B=e&iHu is unitary

on L2
b and C=A*=e&Ht�2: L1

b � L2
b . Using a standard theorem on integral

operators we conclude that e&H(t+iu) has an (x, y)-measurable integral
kernel K(t+iu, x, y) which satisfies

sup
x, y # 0

|K(t+iu, x, y)|=&e&H(t+iu)&1 � ��&A& &B& &C&�ct&s.

The analyticity in z of the kernel follows, for example, from [Da5] where the
analyticity of kernels of semigroups is proved under very general conditions.
To prove the joint continuity we define the map

,: 0 � L2
b(0)

by

[(H+1)&1�2 f ](x)=( f, ,(x)) , all f # L2
b .

Let x # 0 be fixed, let D be a bounded open neighbourhood of x with
D� /0 and let g # C �

c (D) be such that g=1 near x. The compactness of the
unweighted embedding W m, 2

0 (D)/C0(D) implies that the set

[g(H+1)&1�2 f | f # L2
b(0), & f &L 2

b
�1]

is precompact in C0(0), and therefore equicontinuous by the Arzela�Ascoli
theorem.

Hence , is continuous at x. The joint continuity of the heat kernel then
follows by means of the formula

K(z, x, y)=( (1+H) e&Hz ,( y), ,(x)). K

Corollary 5. If the weight b(x) is integrable then the semigroup e&Ht

is trace-class and

|Tr(e&Ht)|�ct&s

for all t>0.

Proof. We have Tr(e&Ht)=�0 K(t, x, x) b(x) dx. K

Off-Diagonal Bounds

We now proceed to prove off-diagonal bounds for the kernel K(z, x, y).
These bounds will then be used to extend the semigroup to L p

b for p{2 and
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also to prove that the L p-spectrum of H is independent of p. Hypotheses (H1)
and (H2) are assumed for the rest of the paper.

Our estimates will be expressed in terms of a metric d(x, y) induced
canonically by the function a(x) as follows: Let

E=[, # Cm(0) & L�(0) | |{k,(x)|�a(x)&k�2m, 1�k�m].

We define the distance d(x, y) on 0 by

d(x, y)=sup[,(x)&,( y) | , # E]. (14)

We shall discuss this metric in more detail later in this section (Example 12
and Proposition 13) where, in specific cases, we shall give explicit lower
bounds on d(x, y).

Lemma 6. Given k, l such that 0�k, l�m, k+l<2m, there exists a
constant c so that

(1+*2m&k&l) |
0

a(k+l )�2m |{kf | |{lf | b dx

<=Q( f )+c=&(k+l )�(2m&k&l )(1+*2m) & f &2
L 2

b
, (15)

for all 0<=<1, *>0 and all f # C �
c (0).

Proof. We shall first prove (15) for *=1. Let 0<=<1 be given. If both
k and l are smaller than m then using (H2) we have

|
0

a(k+l )�2m |{kf | |{lf | b dx

�\|0
ak�m |{kf | 2 b dx+

1�2

\|0
al�m |{lf | 2 b dx+

1�2

�c($1Q( f )+$&k�(m&k)
1 & f &2

L 2
b
)1�2 ($2Q( f )+$&l�(m&l )

2 & f &2
L 2

b
)1�2

and choosing

$1==2(m&k)�(2m&k&l), $2==2(m&l )�(2m&k&l),

we conclude that

|
0

a(k+l )�2m |{kf | |{lf | b dx<c(=Q( f )+=&(k+l )�(2m&k&l ) & f &2
L2

b
), (16)
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as required. If l=m, say, then we have

|
0

a(m+k)�2m |{kf | |{mf | b dx

�\|0
ak�m |{kf | 2 b dx+

1�2

\|0
a |{mf | 2 b dx+

1�2

�(=2Q( f )+=&2k�(m&k))1�2 Q( f )1�2

and (16) again follows, completing the proof of the case *=1. Suppose
now that *{1. If *<1, then (15) follows immediately from (16); if *>1,
we replace = in (16) by =*k+l&2m (which is smaller than one) and (15)
follows after multiplying both sides by *2m&k&l. K

Given , # E and a multi-index #, |#|�m, we define the function

P#, ,(x)=e&,(x)D#[e,(x)].

This is a polynomial in various derivatives of , and a simple induction
argument shows that

|P#, *,(x)|�c(1+* |#| ) a(x)&|#|�2m (17)

for all , # E, *>0 and x # 0.

Lemma 7. For , # E and *>0 the map f [ e*,f maps Dom(Q) into
Dom(Q).

Proof. Let f # Dom(Q) and let ( fn)/C �
c (0) be such that

& fn& f&L 2
b

� 0, as n � �

Q( fn& fm) � 0, as n, m � �.

Clearly &e*,fn&e*,f &L2
b

� 0 and therefore it is enough to prove that
Q(e*,( fn& fm)) � 0 as n, m � �. Letting fnm= fn& fm and c:

#=:!�# !(:&#)!
we have

Q(e*,fnm)=|
0

:

|;|=m
|:|=m

a:; D:(e*,fnm) D;(e*,f� nm) b dx

=|
0

e2*, :

|;|=m
|:| =m

a:; :

$�;
#�:

c:
# c;

$ P#, *, P$, *, D:&#fnm D;&$f� nm b dx

=: |
0

e2*, :

|;|=m
|:|=m

a:; D:fnm D;f� nmb dx+Inm .
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Here the first of the two terms has (#, $)=(:, ;) while the second has (#, $)
{(:, ;). Now, the first term is smaller than e2* &,&�Q( fnm) and therefore
converges to zero as n, m � �. For the second, using Lemma 6 and (17)
we have

|Inm |= }| e2*, :

|;|=m
|:| =m

a:; :

|#+$|<2m
#�:; $�;

c:
# c;

$ P:&#, *, P;&$, *, |D#fnm| |D$fnm| b dx }
�ce2* &,&� | a :

|#+$|<2m
|#| , |$|�m

(1+*2m&|#+$| ) a&(2m&|#+$| )�2m

_|D#fnm | |D$fnm | b dx

�ce2* &,&�(1+*2m)[Q( fnm)+& fnm&2
L2

b
] � 0,

as n, m � �.

This concludes the proof. K

Given , # E and *>0 Lemma 7 allows us to define a non-symmetric
sesquilinear form Q*, with domain Dom(Q) by

Q*,( f, g)=Q(e*,f, e&*,g),

where Q( f, g) is the sesquilinear form induced by the quadratic form Q( f ).
The associated operator is given by

H*, f =e&*,He*,f

for all f # Dom(H*,)=[ f # L2
b | e*,f # Dom(H)]. Since the form Q*, has

the same highest order terms as Q, we can use Lemma 6 to obtain

Lemma 8. We have

|Q*,( f )&Q( f )|<=Q( f )+c=&2m+1(1+*2m) & f &2
L2

b
(18)

for all , # E, *>0, 0<=<1 and all f # C �
c (0).

Proof. We have

Q*,( f )=| :

|;| =m
|:|=m

a:;D:(e*,f ) D;(e&*,f� ) b dx

=| :

|;| =m
|:| =m

a:; :

$�;
#�:

c:
# c;

$ P#, *,P$, &*, D:&#f D;&$f� b dx
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and therefore, applying Lemma 6 and recalling (17),

|Q*,( f )&Q( f )|

= } | :

|;|=m
|:|=m

a:; :

#+${:+;
#�:; $�;

c:
# c;

$ P:&#, *,P;&$, &*, D#f D$f� b dx }

�c :

|#+$|<2m
|#| , |$|�m

(1+*2m&|#+$| ) | a |#+$|�2m |D#f | |D$f | b dx

�=Q( f )+c=&2m+1(1+*2m) & f &2
L 2

b

as required. K

Lemma 9. There exists a constant k$<+� such that

(i) &e&H*,t&�c exp[k$(1+*2m) t]

(ii) &H*,e&H*, t&�
c
t

exp[k$(1+*2m) t]

for all , # E and *>0.

Proof. It follows from (18) and the non-negativity of Q( f ) that there
exists a constant k1 such that

Re Q*,( f )�&k1(1+*2m) & f &2
L2

b
,

for all f # C �
c (0). Hence, letting f # L2

b and ft=e&H*,tf we have

d
dt

& ft&
2
L 2

b
=&(H*, ft , ft) &( ft , H*, ft)�&2k1(1+*2m) & ft&

2
L 2

b

and (i) follows by integration.
Now, let f # L2

b and |%|<?�3 be given and for r>0 set

fr=e&H*, re i%f.

Then, using also (18) for small but fixed =>0 we get

d
dr

& fr&2
L2

b
=&2 cos %Q( fr)+2 Re[ei% (Q&Q*,)( fr)]

�&Q( fr)+2[=Q( fr)+c=(1+*2m) & fr&2
L 2

b
]

�2k2(1+*2m) & fr&2
L2

b
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for some positive constant k2 so that

&e&[H*,+2k2(1+*2m)] re i%&�1

by integration. Lemma 2.38 of [Da1] then implies that

&[H*,+2k2(1+*2m)] e&[H*,+2k2(1+* 2m)] t&�c�t

for all t>0, from which (ii) follows with k$=max[k2+1, k1] by means of
the triangle inequality and (i). K

We can now prove our main heat kernel estimate.

Theorem 10. Suppose hypotheses (H1) and (H2) are valid. Then there
exist positive constants c1 , c2 and k such that the kernel K(t, x, y) of e&Ht

satisfies

|K(t, x, y)|�c1 t&s exp[&c2 d(x, y)2m�(2m&1) t&1�(2m&1)+kt] (19)

for all t>0 and all x, y # 0.

Proof. Let f # L2
b and for t>0 set ft=e&H*, tf. Then, using (H1), (18)

and Lemma 9 we have

& ft&��cQ( ft)
s�2 & ft&

1&s
L 2

b

�c[Re Q*,( ft)+(1+*2m) & ft&
2
L2

b
]s�2 & ft&

1&s
L 2

b

�c[&H*, ft&
2
L2

b
& ft &

2
L2

b
+(1+*2m) & ft &

2
L 2

b
]s�2 & ft &

1&s
L2

b

�c[t&1+(1+*2m)]s�2 exp[k$(1+*2m) t] & f &2
L 2

b

�ct&s�2 exp[(k$+1)(1+*2m) t] & f &2
L2

b
,

that is &e&H*, t&2 � ��ct&s�2 exp[k(1+*2m) t], where k=k$+1. By duality
we obtain a similar bound on &e&H*, t&1 � 2 (note that H**,=H&*,) and the
semigroup property then implies that

&e&H*,t&1 � ��ct&s exp[k(1+*2m) t].

Hence e&H*, t has a kernel K*,(t, x, y) that satisfies

|K*,(t, x, y)|�ct&s exp[k(1+*2m) t]

for all t>0 and x, y # 0. Since the two kernels are related by

K(t, x, y)=e*,(x)K*,(t, x, y) e&*,( y)
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we conclude that

|K(t, x, y)|�ct&s exp[*,(x)&*,( y)+k(1+*2m) t].

The stated bound then follows by optimizing first with respect to , # E and
then with respect to *>0. K

We shall give below some examples to illustrate the above proposition,
but first we prove a lemma which gives an alternative description of d(x, y):

Lemma 11. Let

E*=[, # Cm(0) | |{k,(x)|�a(x)&k�2m, 1�k�m].

Then

d(x, y)=sup[,(x)&,( y) | , # E*]. (20)

Note. The only difference between E and E* is the boundedness
requirement.

Proof. Let d*(x, y) denote the RHS of (20). Clearly d*(x, y)�d(x, y).
For the converse, let , # E* and for n=1, 2, ... define the bounded functions

,n(x)=n tanh(n&1,(x)). (21)

Then simple calculations, similar to those that prove (17), show that there
exists a sequence $n that converges to zero and such that

|{k,n(x)|�(1+$n) a(x)&k�2m, k=1, ..., m,

so (1+$n)&1 ,n # E. Since for fixed x, y # 0 we have

lim
n

(1+$n)&1 [,n(x)&,n( y)]=,(x)&,( y),

we conclude that d*(x, y)�d(x, y). K

We now proceed with our examples. We recall that given two positive
functions f, g on 0 we write f t g to indicate that their ratio is bounded
away from zero and infinity.

Example 12. If a(x)�c1 then d(x, y)�c1�2m
1 |x& y|. This follows from

the fact that given x, y # RN there exists an affine function , such that
|{,|=c1�2m

1 and ,(x)&,( y)=c1�2m
1 |x& y|. That function lies in E*.
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If in addition 2m=4 and �0 is C2 then d(x, y)�cd0(x, y), where
d0(x, y) is the geodesic distance on 0. This follows from the above and
Theorem 4.19 of [O].

In the proposition below we denote by dK ( } , } ) the geodesic distance on
the compact manifold K of Example A.

Proposition 13. For the two examples (Examples A and B) of Section 2,
the distance function d(x, y) satisfies:

Example A:

d(x, y)�min[d(x)&:�2m, d( y)&:�2m] |x"& y"|

+min[d(x)1&:�2m, d( y)1&:�2m] dK (x$, y$),

for all x=(x$, x") and y=( y$, y") near K.

Example B:

d(x, y)�c min[(x) &:�2m, ( y) &:�2m] |x& y|

for all x, y # RN.

Proof of Example A. As mentioned in the proof of Proposition 3, the
smoothness of K implies that there exists a $-neighbourhood U of K that
is diffeomorphic to the product K_[BN&M"[0]], where BN&M is an
(N&M)-dimensional ball. BN&M"[0] itself is diffeomorphic to S N&M&1_
(0, $), $>0. Hence, we shall write points x in U as

x=(x$, |x , rx), x$ # K, |x= # SN&M&1, rx # (0, $)

and, taking $>0 to be small enough, we may further assume that the
diffeomorphisms are such that rx=d(x).

We consider functions on 0 that on U have the form

,(x)={�(x$) /(|x) g(rx),

where {>0, g(r)=r1&:�2m, � # C �(K) is such that

&�&Wm, �(K) := sup
0�i�k

sup
x$ # K

|{i�(x$)|�1,

and, similarly, / # C�(SN&M&1) satisfies &/&Wm, �(SN&M&1)�1. The behaviour
of , outside U (where a(x)t1) can be prescribed by means of a cut-off
function and poses non problem. Using subindices to indicate the variable
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with respect to which differentiation is performed, one can see that for
k�1 we have

|{k
x�(x$)|=|{k

x$�(x$)|, (22)

|{k
x/(|x)|�cr&k[ |{|/|+ } } } +|{k

|/|] (23)

and

|{k
x g(r)|�c[ | g (k)|+r&1 | g(k&1)|+ } } } +r&k+1 | g$|]. (24)

It follows that for x # U

|{k
x,(x)|�c{ :

i+ j+l=k

|{ l
x�(x$)| |{ i

x/(|x)| |{ j
xg(rx)|

�c{ :
i+ j�k

r&i
x [ | g( j)|+r&1

x | g( j&1)|+ } } } +r& j+1
x | g$|]

�c{ :
k

s=0

r&k+s
x | g(s)(rx)| (since rx is bounded)

�c{ :
k

s=0

r&k+s
x r1&:�2m&s

x =c{ d(x)&k+1&:�2m.

The condition :>2m implies that for 1�k�m we have

d(x)&k+1&:�2m�cd(x)&:k�2m

and we conclude that , # E* provided { is small enough. Hence d(x, y)�
,(x)&,( y). We shall now estimate this difference. Without any loss of
generality we assume that d(x)�d( y) (i.e., rx�ry).

Now, by a compactness argument we have

dK (x$, y$)tsup[�(x$)&�( y$) | &�&Wm, �(K)�1].

Hence we can take the function � to be such that �(x$)&�( y$)� 1
2dK (x$, y$),

and, moreover, �(x$)=1. Similarly we can find a sufficiently small constant
c1 and choose the function / so that it satisfies

/(|x)&/(|y)�c1 dSN&M&1(|x , |y)

(where dSN&M&1 is the standard metric on S N&M&1) as well as

/(|x)�c1 , /(|y)�c1 .
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Moreover, there exists ! # [rx , ry] such that g(rx)& g(ry)= g$(!)(rx&ry),
and therefore, since g$(!)<0,

g(rx)& g(ry)= g$(!)(rx&ry)�cr&:�2m
y (ry&rx).

It follows that

,(x)&,( y)=�(x$) /(|x) g(rx)&�( y$) /(|y) g(ry)

=�(x$) /(|x)[ g(rx)& g(ry)]+�(x$)[/(|x)&/(|y)] g(ry)

+[�(x$)&�( y$)] /(|y) g(ry)

�cr&:�2m
y (ry&rx)+c1r1&:�2m

y dS N&M&1(|x , |y)

+c1r1&:�2m
y dK (x$, y$).

But on RN&M, using spherical coordinates, x"=(|x , rx), we have the
equivalence

|x"& y"|t |rx&ry |+- rxry dSN&M&1(|x , |y)

from which follows that

r&:�2m
y (ry&rx)+r1&:�2m

y dS N&M&1(|x , |y)

�c min {r&:�2m
y ,

r1&:�2m
y

- rxry
= |x"& y"|=cr&:�2m

y |x"& y"|. (25)

A combination of the above implies the required inequality. K

Proof of Example B. The proof is essentially contained in that of Example
A and we therefore only give a sketch of it. We use spherical coordinates
x=(r, |) where

r=|x| # [0, �), and |=x�|x| # SN&1.

We define the function g(r) by

g(r)=(1+r2)1�2&:�4m

and let ,(x) be such that

,(x)={�(|) g(r), all |x|>1,

144 GERASSIMOS BARBATIS



File: DISTL2 319521 . By:CV . Date:21:04:98 . Time:08:00 LOP8M. V8.B. Page 01:01
Codes: 2457 Signs: 1270 . Length: 45 pic 0 pts, 190 mm

where � # C�(SN&1) satisfies &�&Wm, �(SN&1)�1. Using relations (23) and (24)
(with SN&M&1 replaced now by SN&1) we conlcude that for k # N we have

|{k
x,(x)|�c{ &�&Wm, � :

k

j=0

1
rk& j | g( j)(r)|�c{ :

k

j=0

1
rk& j rm& j(r) 1&:�2m&m

�c{(r)&k+1&:�2m

for all x # RN, x{0. The assumption :<2m then implies

|{k,(x)|�c{(x) &:k�2m

for all 1�k�m&1. Therefore , # E* if { is small enough. Hence d(x, y)�
,( y)&,(x). The rest of the proof is exactly as in Example A, the main point
being estimate (25). K

4. Lp THEORY

In this section we shall use the heat kernel estimates obtained in Section 3
to extend the semigroup e&Ht from L2

b(0) to L p
b(0) for p{2. Moreover we

give sufficient conditions for the spectrum of the corresponding generator
&Hp to be independent of p. We shall make use of the following two lemmas
from [Da3].

Lemma 14. Let g(z) by analytic on [z | Re z>0] and suppose that

| g(rei%)|�c(r cos %)&;

| g(r)|�cr&; exp[&kr&:]

for some constants k, : and ; and all r>0, |%|<?�2. Then there exists a
constant k$ such that

| g(rei%)|�c(r cos %)&; exp[&k$r&: cos %]

for all r>0 and |%|<?�2.

Lemma 15. Let Tp(z) and Tq(z) be two consistent strongly continuous
holomorphic semigroups of angle ?�2 on the spaces L p

b and Lq
b respectively.

If they both satisfy estimates of the form

&T(rei%)&�c(cos %)&M exp[kr cos %]
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for some positive M and k and all r>0 and |%|<?�2, then

Sp(Hp)=Sp(Hq),

where &Hi is the generator of Ti (z).

We are now in a position to prove the main theorem of this section. We
shall only deal with the extension of the semigroup on L1

p . Intermediate
values of p are then treated by means of the interpolation inequality

&T&p � p�&T& (2& p)�p
1 � 1 &T& (2p&2)�p

2 � 2 .

We set

\t(x)=exp[&t |x| 2m�(2m&1)], x # RN, t>0.

Moreover we denote by b� the function on RN which is equal to b(x) on 0
and zero on RN"0.

Theorem 16. Suppose hypotheses (H1) and (H2) are valid. Suppose further
that (i) there exists a constant c1>0 such that

a(x)�c1 , all x # 0, (26)

and (ii) that the convolution \t V b� is a bounded function for all t>0. Then
the operator e&Hz on L2

b & L1
b can be extended to a bounded operator T1(z)

on L1
b and we have

&T1(rei%)&1 � 1�c(r cos %)&s ekr cos % &\t(z) V b� &� (27)

for all z=rei%, |%|<?�2, where

t(z)=c2r&1�(2m&1) cos %. (28)

Proof. Let

g(z)=K(z, x, y) e&kz,

where k is as in Theorem 10. Inequalities (13) and (19) tell us that the
conditions of Lemma 14 are satisfied, and we thus conclude that

|K(rei%, x, y)|

�c(r cos %)&s exp[&c2 d(x, y)2m�(2m&1) r&1�(2m&1) cos %+kr cos %].
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Since we also have d(x, y)�c |x& y| (by Example 12) it follows that

&T1(z)&1 � 1=sup
x # 0

|
0

|K(z, x, y)| b( y) dy

�c(r cos %)&s ekr cos %

_sup
x # 0

|
0

exp[&c2 |x& y| 2m�(2m&1) r&1�(2m&1) cos %] b( y) dy

�c(r cos %)&s ekr cos % &\t(z) V b� &�

as required. K

Corollary 17. If a(x)�c1 and b # Lq(0) for some 1�q�� then

&T1(z)&1 � 1�cr(N�2mq$)&s(cos %)&s&((2m&1) N�2mq$) ekr cos %.

If, further, b is bounded and s=N�2m, then the spectrum of the generator
&Hp of Tp(z) is independent of p # [1, �].

Proof. The first statement follows from Theorem 16 and the inequality

&\t V b� &��&\t&q$ &b� &q�ct&(2m&1) N�2mq$ &b&q

applied for t=t(z) and q=�. The second statement is then an immediate
consequence of Lemma 15. K

We finally prove a proposition about the spectrum of the operator H in
either of the two Examples A and B. The case 2m=2 of Example B has
been first proved in [P]. We also point out that the main theorem of
[BS1] contains what is almost the converse for Example A, in the special
case where K is the boundary of a domain 0: It is proved there that if
:<2m then H has discrete spectrum.

Proposition 18. For the two examples (Examples A and B) of Section 2
we have 0 # EssSp(H).

Proof of Example A. Let v: R � [0, 1] be a smooth function such that
v(t)=1 for |t|�1 and v(t)=0 if |t|�2. We fix a parameter # # (0, 1) and
for k # N we let ,k be a function in C �

c (0) such that ,k(x)=0 on 0"U and

,k(x)=v \d(x)&2m&k
k# + , x # U, k=1, 2, ... .

Then

supp(,k)/Ak :=[x # 0 | (k+k#)&1�2m�d(x)�(k+2k#)&1�2m].
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For g # L2
b an application of the Cauchy�Schwarz inequality yields

&,k&&2
L2

b
|(,k , g) | 2�c |

Ak

| g| 2 d(x); dx � 0,

that is, the sequence &,k&&1
L 2

b
,k converges weakly to zero. Moreover, we

observe that for any \ we have

|
Ak

d(x)\ dx=|
(k+2k #)&1�2m

(k+k#)&1�2m
r\rN&M&1 dr

=(k+2k#)&(\+N&M)�2m&(k+k#)&(\+N&M)�2m

and therefore

|
Ak

d(x)\ dxtk&(\+N&M)�2m+#&1. (29)

Further, a simple argument shows that for any multiindex : we have

D:,k(x)= :
|:|

j=1

k& j#w:, j (x) d(x)&2 jm&|:|

where w:, j (x) are uniformly bounded functions. Hence

|{m,k(x)| 2�c :
m

j=1

k&2 j# d(x)&2m(2 j+1).

Therefore, making use of (29) with \=&2m(2 j+1)+:+;,

Q(,k)�c :
m

j=1

k&2 j# |
Ak

d(x)&2m(2 j+1) d(x):+; dx

�c :
m

j=1

k&2 j#k2 j+#&(:+;+N&M)�2m

while, again from (29), with \=; this time,

&,k&2
L2

b
�ck&(;+N&M)�2m+#&1.

It follows that

&,k&&2
L2

b
Q(,k)�c :

m

j=1

k2 j(1&#)+1&(:�2m).

Since :>2m, this tends to zero provided we choose # to be close enough
to one. K
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Proof of Example B. As before, let v: R � [0, 1] be a smooth function
such that v(t)=1 if |t|�1 and v(t)=0 of |t|>2. We fix # # (0, 1) and define
the functions

,k(x)=v \ |x| 2m&k
k# + , k=1, 2, ...;

Then

supp(,k)/Ak :=[x | (k+k#)1�2m�|x|�(k+2k#)1�2m].

Clearly for any g # L2
b we have

&,k&&2
L2

b
|(,k , g) | 2�c |

Ak

| g| 2 (x) ;,

and so &,k &&1
L 2

b
,k converges weakly to zero.

First we observe that for k large enough we have

|
Ak

(x) \ dxtc |
(k+2k #)1�2m

(k+k #)1�2m
r\+N&1 dr

tck(\+N)�2m[(1+2k#&1)(\+N)�2m&(1+k#&1)(\+N)�2m]

tck(\+N)�2m+#&1. (30)

Similar calculations, but now restricting the integral on the set where ,k=1,
show that

&,k&2
L2

b
�ck&(;+N)�2m&#+1, all k.

Now it is easily seen that if k is large enough then

|{m,k(x)|�c :
m

j=1

k& j# |x|m(2 j&1), all x # Ak .

Hence, putting \=2m(2 j&1)+:+; in (30),

&,k &&2
L 2b Q(,k)�ck&(;+N)�2m&#+1 |

R N
|{m,k(x)| 2 (x) :+; dx

�ck&(;+N)�2m&#+1 :
m

j=1

k&2 j# |
Ak

|x| 2m(2 j&1) |x|:+; dx

� :
m

j=1

k&(;+N)�2m&#+1&2 j#k2 j&1+(:+;+N)�2m+#&1

= :
m

j=1

k2 j(1&#)&1+:�2m.
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Since :<2m the exponent of k can be made negative (for each j) by
taking # to be close enough enough to one. Hence for such # we have
&,k&&2

L2
b

Q(,k) � 0, proving that 0 # EssSp(H). K

APPENDIX

In this Appendix we prove the Claim that is used in the proof of
Proposition 3. For the proof we follow closely a similar proof in [F].

Claim. Let R=[0, h1]_ } } } _[0, hN] be a rectangle in RN and let
h=mini hi . There exists an absolute constant c such that the inequality

|
R

|{kf | 2 dx<= |
R

|{mf | 2 dx+c=&k�(m&k) |
R

| f | 2 dx (31)

is valid for all 0�k�m&1, all = # (0, h2m&2k) and all f # C�(R� ).

Proof. We start from the standard inequality [A]

|
1

0
|u$(x)| 2 dx<= |

1

0
|u"(x)| 2 dx+c=&1 |

1

0
|u(x)| 2 dx,

which is valid for some absolute constant c and all = # (0, 1) and u # C([0, 1]).
A simple scaling argument implies that for any h>0 the inequality

|
h

0
|u$(x)| 2 dx<= |

h

0
|u"(x)| 2 dx+c=&1 |

h

0
|u(x)| 2 dx, (32)

is valid for all = # (0, h2) and all u # C([0, h]). Suppose now that
R=[0, h1] _ } } } _[0, hN] is a rectangle in RN and let h=mini hi . Let
u # C�(R� ) be given. For any fixed values of x2 , ..., xN we have from (32)

|
h1

0 } �u
�x1 }

2

dx1<= |
h1

0 } �
2u

�x2
1 }

2

dx1+c=&1 |
h1

0
|u| 2 dx1 ,

for all = # (0, h2
1). Integrating with respect to the other variables it follows

that

|
R }

�u
�x1 }

2

dx<= |
R }

�2u
�x2

1 }
2

dx+c=&1 |
R

|u| 2 dx, 0<=<h2
1 .
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Doing the same with the other variables and adding the resulting inequalities
we conclude that

&{u&2
L2(R)<= &{2u&2

L2(R)+c=&1 &u&2
L 2(R) (33)

for all = # (0, h2), and all u # C�(R� ).
To generalize this to the higher order case we use induction on m. So,

suppose (31) is true for all 0�k�m&1 and for all = # (0, h2m&2k). We
shall prove that it is true when m is replaced by m+1 and for all 0�k�m
and = # (0, h2m+2&2k). If k=m, then

&{mu&2
L2(R)<= &{m+1u&2

L2(R)+c=&1 &u&2
L2(R) , = # (0, h2), (34)

simply by replacing u by {m&1u in (33). If 0�k�m&1 and =<h2m+2&2k

are given, we define

=1==(m&k)�(m+1&k), =2==1�(m+1&k).

Then =1<h2m&2k, =2<h2 and therefore, using the induction hypothesis
and (34),

&{ku&2
L2(R)<=1 &{mu&2

L2 (R)+c=k�(m&k)
1 &u&2

L2 (R)

<=1[= &{m+1u&2
L2 (R)+c=&1 &u&2

L2 (R)]+c=k�(m&k)
1 &u&2

L2 (R)

== &{m+1u&2
L2(R)+c$=k�(m+1&k) &u&2

L2(R) ,

as claimed. K
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