# SOBOLEV IMPROVEMENTS ON SHARP RELLICH INEQUALITIES 

G. BARBATIS AND A. TERTIKAS

Dedicated to E.B. Davies on the occasion of his 80th birthday


#### Abstract

There are two Rellich inequalities for the bilaplacian, that is for $\int(\Delta u)^{2} d x$, the one involving $|\nabla u|$ and the other involving $|u|$ at the RHS. In this article we consider these inequalities with sharp constants and obtain sharp Sobolev-type improvements. More precisely, in our first result we improve the Rellich inequality with $|\nabla u|$ obtained by Beckner in dimensions $n=3,4$ by a sharp Sobolev term thus complementing existing results for the case $n \geq 5$. In the second theorem the sharp constant of the Sobolev improvement for the Rellich inequality with $|u|$ is obtained.


## Introduction

The study of PDEs involving the bilaplacian is often related to functional inequalities for the associated energy, namely $\int(\Delta u)^{2} d x$. Two important such inequalities are the Sobolev inequality and the Rellich inequality.

There are two Rellich inequalities related to the bilaplacian. The first one asserts that for $n \geq 5$ there holds

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}(\Delta u)^{2} d x \geq \frac{n^{2}(n-4)^{2}}{16} \int_{\mathbb{R}^{n}} \frac{u^{2}}{|x|^{4}} d x, \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right) \tag{1}
\end{equation*}
$$

and the constant is the best possible. Inequality (1) was proved by F. Rellich, see [22]. For more results on inequalities of this type and related improvements we refer to $[1,2,4,6,10,11,12,14,17,18,19,20,23,25]$ and references therein.

The second Rellich inequality is valid not only for $n \geq 5$ but also for $n=3,4$ and reads

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}(\Delta u)^{2} d x \geq c_{n} \int_{\mathbb{R}^{n}} \frac{|\nabla u|^{2}}{|x|^{2}} d x, \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right) \tag{2}
\end{equation*}
$$

where

$$
c_{n}= \begin{cases}\frac{25}{36}, & n=3  \tag{3}\\ 3, & n=4 \\ \frac{n^{2}}{4}, & n \geq 5\end{cases}
$$

is the best possible constant. Inequality (2) was proved in [25] in case $n \geq 5$ and then by Beckner for any $n \geq 3$ [8]. An alternative proof for $n \geq 3$ was given by Cazacu [9]. We note that in cases $n=3,4$ there is a breaking of symmetry. For more information on Rellich inequalities in the spirit of (2) we refer to [9, 11, 13, 21, 25].

[^0]The Sobolev inequality for the bilaplacian in $\mathbb{R}^{n}, n \geq 5$, reads

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}(\Delta u)^{2} d x \geq S_{2, n}\left(\int_{\mathbb{R}^{n}}|u|^{\frac{2 n}{n-4}} d x\right)^{\frac{n-4}{n}}, \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right) \tag{4}
\end{equation*}
$$

The best constant $S_{2, n}$ in (4) has been computed in [15] and is given by

$$
S_{2, n}=\pi^{2}\left(n^{2}-4 n\right)\left(n^{2}-4\right)\left(\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma(n)}\right)^{4}
$$

The aim of this work is to improve the above Rellich inequalities by adding a Sobolev-type term. In [25] improved versions of (1) and (2) were obtained for a bounded domain $\Omega \subset \mathbb{R}^{n}, n \geq 5$. More precisely, let $X(r)=(1-\log r)^{-1}, 0<r<1$, and $D=\sup _{\Omega}|x|$. In [25, Theorem 1.1] it was shown that for $n \geq 5$ there exist constants $C_{n}$ and $C_{n}^{\prime}$ which depend only on $n$ such that for any $u \in C_{c}^{\infty}(\Omega)$ there holds

$$
\begin{equation*}
\int_{\Omega}(\Delta u)^{2} d x-\frac{n^{2}(n-4)^{2}}{16} \int_{\Omega} \frac{u^{2}}{|x|^{4}} d x \geq C_{n}\left(\int_{\Omega} X(|x| / D)^{\frac{2(n-2)}{n-4}}|u|^{\frac{2 n}{n-4}} d x\right)^{\frac{n-4}{n}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}(\Delta u)^{2} d x-\frac{n^{2}}{4} \int_{\Omega} \frac{|\nabla u|^{2}}{|x|^{2}} d x \geq C_{n}^{\prime}\left(\int_{\Omega} X(|x| / D)^{\frac{2(n-1)}{n-2}}|\nabla u|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}} \tag{6}
\end{equation*}
$$

The present article contains two main results. The first theorem extends inequality (6) to dimensions $n=3,4$.

Theorem 1. Let $\Omega \subset \mathbb{R}^{n}$, $n=3$ or $n=4$, be a bounded domain and let $D=$ $\sup _{x \in \Omega}|x|$. There exists $C>0$ such that:
(i) If $n=3$ then

$$
\int_{\Omega}(\Delta u)^{2} d x-\frac{25}{36} \int_{\Omega} \frac{|\nabla u|^{2}}{|x|^{2}} d x \geq C\left(\int_{\Omega}|\nabla u|^{6} X^{4}(|x| / D) d x\right)^{\frac{1}{3}}, \quad u \in C_{c}^{\infty}(\Omega)
$$

(ii) If $n=4$ then

$$
\int_{\Omega}(\Delta u)^{2} d x-3 \int_{\Omega} \frac{|\nabla u|^{2}}{|x|^{2}} d x \geq C\left(\int_{\Omega}|\nabla u|^{4} d x\right)^{\frac{1}{2}}, \quad u \in C_{c}^{\infty}(\Omega)
$$

Moreover the power $X^{4}$ in case $n=3$ is the best possible.
It is remarkable that in case $n=4$ no logarithmic factor is required at the RHS, as opposed to the cases $n=3$ and $n \geq 5$.

Concerning inequality (5), let us first recall what is known for the corresponding Hardy-Sobolev problem. In [3] it was shown that for any bounded domain $\Omega \subset \mathbb{R}^{n}, n \geq 3$, and for any $u \in C_{c}^{\infty}(\Omega)$ there holds

$$
\begin{aligned}
& \int_{\Omega}|\nabla u|^{2} d x-\left(\frac{n-2}{2}\right)^{2} \int_{\Omega} \frac{u^{2}}{|x|^{2}} d x \\
& \quad \geq(n-2)^{-\frac{2(n-1)}{n}} S_{1, n}\left(\int_{\Omega} X^{\frac{2(n-1)}{n-2}}(|x| / D)|u|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}}
\end{aligned}
$$

where

$$
S_{1, n}=\pi n(n-2)\left(\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma(n)}\right)^{\frac{2}{n}}
$$

is the best Sobolev constant for the standard Sobolev inequality in $\mathbb{R}^{n}$. Moreover the constant $(n-2)^{-\frac{2(n-1)}{n}} S_{1, n}$ is the best possible. Similarly, in the article [7] Sobolev
improvements with best constants were obtained to sharp Hardy inequalities in Euclidean and hyperbolic space. We note that by slightly adapting [7, Theorem 5] we obtain that if $\Omega$ is a bounded domain in $\mathbb{R}^{n}, n \geq 3$, then

$$
\begin{align*}
& \int_{\Omega}|\nabla u|^{2} d x-\left(\frac{n-2}{2}\right)^{2} \int_{\Omega} \frac{u^{2}}{|x|^{2}} d x+\frac{(n-1)(n-3)}{4} \int_{\Omega} \frac{u^{2}}{|x|^{2}} X^{2}(|x| / D) d x \\
\geq & S_{1, n}\left(\int_{\Omega} X^{\frac{2(n-1)}{n-2}}(|x| / D)|u|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}} \tag{7}
\end{align*}
$$

for all $u \in C_{c}^{\infty}(\Omega)$ and the constant $S_{1, n}$ is sharp.
The second theorem of this article provides an estimate with best Sobolev constant for a slightly modified version of (5) which is in the spirit of (7).

Theorem 2. Let $\Omega \subset \mathbb{R}^{n}$, $n \geq 5$, be a bounded domain and let $D=\sup _{\Omega}|x|$. For any $u \in C_{c}^{\infty}(\Omega)$ there holds

$$
\begin{aligned}
& \int_{\Omega}(\Delta u)^{2} d x-\frac{n^{2}(n-4)^{2}}{16} \int_{\Omega} \frac{u^{2}}{|x|^{4}} d x+\frac{n^{2}(n-4)^{2}}{16} \int_{\Omega} \frac{u^{2}}{|x|^{4}} X^{\frac{2(n-2)}{n-1}} d x \\
& \quad \geq S_{2, n}\left(\int_{\Omega} X^{\frac{2(n-2)}{n-4}}|u|^{\frac{2 n}{n-4}} d x\right)^{\frac{n-4}{n}}
\end{aligned}
$$

here $X=X(|x| / D)$. Moreover the constant $S_{2, n}$ is the best possible.
The proof of Theorem 1 is in Section 1 and the proof of Theorem 2 is in Section 2.

## 1. Rellich-Sobolev inequality I

In this section we shall prove Theorem 1. An important tool will be the decomposition of functions in spherical harmonics [24, Section IV.2].

We recall that the eigenvalues of the Laplace-Beltrami operator on the unit sphere $\mathrm{S}^{n-1}$ are given by

$$
\mu_{k}=k(k+n-2), \quad k=0,1,2 \ldots,
$$

Each $\mu_{k}$ has multiplicity

$$
d_{k}=\binom{n+k-1}{k}-\binom{n+k-3}{k-2}, \quad k \geq 2
$$

while $d_{0}=1$ and $d_{1}=n$.
Let $\left\{\phi_{k j}\right\}_{j=1}^{d_{k}}$ be an orthonormal basis of eigenfunctions for the eigenvalue $\mu_{k}$. Then any function $u \in L^{2}\left(\mathbb{R}^{n}\right)$ can be decomposed as

$$
\begin{equation*}
u(x)=\sum_{k=0}^{\infty} \sum_{j=1}^{d_{k}} u_{k j}(x)=\sum_{k=0}^{\infty} \sum_{j=1}^{d_{k}} f_{k j}(r) \phi_{k j}(\omega) \tag{8}
\end{equation*}
$$

where $x=r \omega, r>0, \omega \in \mathrm{~S}^{n-1}$, and

$$
f_{k j}(r)=\int_{\mathrm{S}^{n-1}} u(r \omega) \phi_{k j}(\omega) d S(\omega)
$$

We note that each $\phi_{k j}$ is the restriction on the unit sphere of a harmonic homogeneous polynomial of degree $k[24]$.

Assume now that $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. Since any homogeneous polynomial can be written as a linear combination of harmonic homogeneous polynomials, taking the Taylor expansion of $u$ near the origin we easily infer that

$$
\begin{equation*}
f_{k j}(r)=O\left(r^{k}\right), \quad f_{k j}^{\prime}(r)=O\left(r^{k-1}\right), \quad \text { as } r \rightarrow 0 \tag{9}
\end{equation*}
$$

for any $k \geq 1$ and any $j=1, \ldots, d_{k}$.
We note that

$$
\begin{equation*}
\mu_{k} \geq n-1, \quad \forall k \geq 1 \tag{10}
\end{equation*}
$$

an estimate that will be used several times in what follows.
In what follows we shall use $\sum_{k, j}$ as a shorthand for $\sum_{k=0}^{\infty} \sum_{j=1}^{d_{k}}$.
For simplicity we shall denote by $u_{0}$ (instead of $u_{01}$ ) the first (radial) term in the decomposition (8) of $u$ into spherical harmonics. We note the relation

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left(\Delta u-\Delta u_{0}\right)^{2} d x=\sum_{k=1}^{\infty} \sum_{j=1}^{d_{k}} \int_{\mathbb{R}^{n}}\left(\Delta u_{k j}\right)^{2} d x \tag{11}
\end{equation*}
$$

Lemma 1. Let $n \geq 3$. For any $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ there holds

$$
\begin{align*}
& \int_{\mathbb{R}^{n}}(\Delta u)^{2} d x=\sum_{k, j}\left\{\int_{0}^{\infty} r^{n-1} f_{k j}^{\prime \prime 2} d r\right.  \tag{i}\\
& \left.+\left(n-1+2 \mu_{k}\right) \int_{0}^{\infty} r^{n-3} f_{k j}^{\prime 2} d r+\left(2(n-4) \mu_{k}+\mu_{k}^{2}\right) \int_{0}^{\infty} r^{n-5} f_{k j}^{2} d r\right\} \\
& \int_{\mathbb{R}^{n}} \frac{|\nabla u|^{2}}{|x|^{2}} d x=\sum_{k, j}\left\{\int_{0}^{\infty} r^{n-3} f_{k j}^{\prime 2} d r+\mu_{k} \int_{0}^{\infty} r^{n-5} f_{k j}^{2} d r\right\}
\end{align*}
$$

Proof. Using the orthonormality of the set $\left\{\phi_{k j}\right\}$ we have

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}(\Delta u)^{2} d x & =\sum_{k, j} \int_{\mathbb{R}^{n}}\left(\Delta u_{k j}\right)^{2} d x \\
& =\sum_{k, j} \int_{0}^{\infty}\left(f_{k j}^{\prime \prime}+\frac{n-1}{r} f_{k j}^{\prime}-\frac{\mu_{k}}{r^{2}} f_{k j}\right)^{2} r^{n-1} d r
\end{aligned}
$$

Part (i) then follows by expanding the square and integrating by parts. Estimates (9) ensure that no terms appear from $r=0$. The proof of (ii) is similar and is omitted.

For $n \geq 3$ we set

$$
\mathbb{I}[u]=\int_{\mathbb{R}^{n}}(\Delta u)^{2} d x-c_{n} \int_{\mathbb{R}^{n}} \frac{|\nabla u|^{2}}{|x|^{2}} d x
$$

where the constant $c_{n}$ is given by (3).
Lemma 2. Assume that $n=3$ or $n=4$. There exists $c>0$ such that for any $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ there holds

$$
\begin{equation*}
\mathbb{I}[u] \geq \mathbb{I}\left[u_{0}\right]+\sum_{j=1}^{n} \mathbb{I}\left[u_{1 j}\right]+c \int_{\mathbb{R}^{n}}\left(\Delta u-\Delta u_{0}-\sum_{j=1}^{n} \Delta u_{1 j}\right)^{2} d x \tag{12}
\end{equation*}
$$

Proof. Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. Because of the relation

$$
\mathbb{I}[u]=\mathbb{I}\left[u_{0}\right]+\sum_{j=1}^{n} \mathbb{I}\left[u_{1 j}\right]+\sum_{k=2}^{\infty} \sum_{j=1}^{d_{k}} \mathbb{I}\left[u_{k j}\right]
$$

inequality (12) will follow if we establish the existence of $c>0$ such that

$$
\begin{equation*}
\mathbb{I}\left[u_{k j}\right] \geq c \int_{\mathbb{R}^{n}}\left(\Delta u_{k j}\right)^{2} d x, \quad k \geq 2, \quad 1 \leq j \leq d_{k} \tag{13}
\end{equation*}
$$

Assume first that $n=3$. Let $\lambda>0$ be fixed. For $k \geq 2$ we have $\mu_{k} \geq 6$ and therefore

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}}\left(\Delta u_{k j}\right)^{2} d x \\
= & \int_{0}^{\infty} r^{2} f_{k j}^{\prime \prime 2} d r+\left(2+2 \mu_{k}\right) \int_{0}^{\infty} f_{k j}^{\prime 2} d r+\left(-2 \mu_{k}+\mu_{k}^{2}\right) \int_{0}^{\infty} r^{-2} f_{k j}^{2} d r \\
\geq & \left(\frac{9}{4}+2 \lambda \mu_{k}\right) \int_{0}^{\infty} f_{k j}^{\prime 2} d r+\left(2(1-\lambda) \frac{1}{4} \mu_{k}-2 \mu_{k}+\mu_{k}^{2}\right) \int_{0}^{\infty} r^{-2} f_{k j}^{2} d r \\
\geq & \left(\frac{9}{4}+12 \lambda\right) \int_{0}^{\infty} f_{k j}^{\prime 2} d r+\left(\frac{9}{2}-\frac{\lambda}{2}\right) \mu_{k} \int_{0}^{\infty} r^{-2} f_{k j}^{2} d r .
\end{aligned}
$$

Choosing $\lambda=9 / 50$ we arrive at

$$
\int_{\mathbb{R}^{3}}\left(\Delta u_{k j}\right)^{2} d x \geq \frac{441}{100} \int_{\mathbb{R}^{3}} \frac{\left|\nabla u_{k j}\right|^{2}}{|x|^{2}} d x
$$

and (13) follows. In case $n=4$ we argue similarly. We now have $\mu_{k} \geq 8$, hence

$$
\begin{aligned}
\int_{\mathbb{R}^{4}}\left(\Delta u_{k j}\right)^{2} d x & =\int_{0}^{\infty} r^{3} f_{k j}^{\prime \prime 2} d r+\left(3+2 \mu_{k}\right) \int_{0}^{\infty} r f_{k j}^{\prime 2} d r+\mu_{k}^{2} \int_{0}^{\infty} r^{-1} f_{k j}^{2} d r \\
& \geq\left(4+2 \mu_{k}\right) \int_{0}^{\infty} r f_{k j}^{\prime 2} d r+\mu_{k}^{2} \int_{0}^{\infty} r^{-1} f_{k j}^{2} d r \\
& \geq 8 \int_{\mathbb{R}^{4}} \frac{\left|\nabla u_{k j}\right|^{2}}{|x|^{2}} d x
\end{aligned}
$$

as required.
Lemma 3. Let $n=3$ or $n=4$. Then there exists $c>0$ such that

$$
\begin{equation*}
\mathbb{I}\left[u_{0}\right] \geq c\left(\int_{B_{1}}\left|\nabla u_{0}\right|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}} \tag{14}
\end{equation*}
$$

Additionally for $n=3$ we have

$$
\begin{equation*}
\mathbb{I}\left[u_{1 j}\right] \geq c\left(\int_{B_{1}}\left|\nabla u_{1 j}\right|^{6} X^{4} d x\right)^{\frac{1}{3}}, \quad j=1,2,3 \tag{15}
\end{equation*}
$$

while for $n=4$

$$
\begin{equation*}
\mathbb{I}\left[u_{1 j}\right] \geq c\left(\int_{B_{1}}\left|\nabla u_{1 j}\right|^{4} d x\right)^{\frac{1}{2}}, \quad j=1,2,3,4 \tag{16}
\end{equation*}
$$

Here $X=X(|x|)$.

Proof. From Lemma 1 (i) and the standard Sobolev inequality we obtain

$$
\begin{aligned}
\mathbb{I}\left[u_{0}\right] & \geq \int_{0}^{1} f_{0}^{\prime \prime 2} r^{n-1} d r \\
& \geq c\left(\int_{0}^{1}\left|f_{0}^{\prime}\right|^{\frac{2 n}{n-2}} r^{n-1} d r\right)^{\frac{n-2}{n}} \\
& =c\left(\int_{B_{1}}\left|\nabla u_{0}\right|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}}
\end{aligned}
$$

as required.
Assume now that $n=3$. By Lemma 1 and the improved Hardy-Sobolev inequality of [3] we have

$$
\begin{aligned}
\mathbb{I}\left[u_{1 j}\right]= & \int_{0}^{1} f_{1 j}^{\prime \prime 2} r^{2} d r-\frac{1}{4} \int_{0}^{1} f_{1 j}^{\prime 2} d r \\
& +\frac{50}{9}\left(\int_{0}^{1} f_{1 j}^{\prime 2} d r-\frac{1}{4} \int_{0}^{1} r^{-2} f_{1 j}^{2} d r\right) \\
\geq & c\left(\int_{0}^{1}\left|f_{1 j}^{\prime}\right|^{6} X^{4} r^{2} d r\right)^{\frac{1}{3}}+c\left(\int_{0}^{1}\left|f_{1 j}\right|^{6} X^{4} d r\right)^{\frac{1}{3}} \\
\geq & c\left(\int_{B_{1}}\left|\nabla u_{1 j}\right|^{6} X^{4} d x\right)^{\frac{1}{3}} .
\end{aligned}
$$

In case $n=4$ we argue similarly applying again Lemma 1 and, now, the standard Sobolev inequality; we obtain

$$
\begin{aligned}
\mathbb{I}\left[u_{1 j}\right] & =\int_{0}^{1} f_{1 j}^{\prime \prime 2} r^{3} d r+6 \int_{0}^{1} f_{1 j}^{\prime 2} r d r \\
& \geq c\left(\int_{0}^{1}\left|f_{1 j}^{\prime}\right|^{4} r^{3} d r\right)^{\frac{1}{2}}+c\left(\int_{0}^{1}\left|f_{1 j}\right|^{4} r d r\right)^{\frac{1}{2}} \\
& \geq c\left(\int_{B_{1}}\left|\nabla u_{1 j}\right|^{4} d x\right)^{\frac{1}{2}}
\end{aligned}
$$

as required.

Proof of Theorem 1. We first note that by the standard Sobolev inequality we have

$$
\int_{\Omega}\left(\Delta u-\Delta u_{0}-\sum_{j=1}^{n} \Delta u_{1 j}\right)^{2} d x \geq c\left(\int_{\Omega}\left|\nabla u-\nabla u_{0}-\sum_{j=1}^{n} \nabla u_{1 j}\right|^{\frac{2 n}{n-2}} d x\right)^{\frac{1}{3}}
$$

In case $n=3$ we apply (12), (14), (15) and the triangle inequality to obtain

$$
\begin{aligned}
\mathbb{I}[u] \geq & \mathbb{I}\left[u_{0}\right]+\sum_{j=1}^{n} \mathbb{I}\left[u_{1 j}\right]+c \int_{\mathbb{R}^{n}}\left(\Delta u-\Delta u_{0}-\sum_{j=1}^{n} \Delta u_{1 j}\right)^{2} d x \\
\geq & c\left(\int_{\Omega}\left|\nabla u_{0}\right|^{6} X^{4} d x\right)^{\frac{1}{3}}+c \sum_{j=1}^{n}\left(\int_{B_{1}}\left|\nabla u_{1 j}\right|^{6} X^{4} d x\right)^{\frac{1}{3}} \\
& +c\left(\int_{\Omega}\left|\nabla u-\nabla u_{0}-\sum_{j=1}^{n} \nabla u_{1 j}\right|^{6} d x\right)^{\frac{1}{3}} \\
\geq & c\left(\int_{\Omega}|\nabla u|^{6} X^{4} d x\right)^{\frac{1}{3}} .
\end{aligned}
$$

In case $n=4$ we argue similarly, the only difference being that we use (16) instead of (15).

We next prove the optimality of the power $X^{4}$ in (i), that is in case $n=3$. So let us assume instead that there exist $\mu<4$ and $c>0$ so that

$$
\begin{equation*}
\int_{\Omega}(\Delta u)^{2} d x-\frac{25}{36} \int_{\Omega} \frac{|\nabla u|^{2}}{|x|^{2}} d x \geq c\left(\int_{\Omega}|\nabla u|^{6} X^{\mu}(|x| / D) d x\right)^{\frac{1}{3}} \tag{17}
\end{equation*}
$$

for all $u \in C_{c}^{\infty}(\Omega)$. Without loss of generality we assume that $B_{1} \subset \Omega$. We consider small positive numbers $\epsilon$ and $\delta$ and define the functions

$$
u_{\epsilon, \delta}(x)=f_{\epsilon, \delta}(r) \phi_{1}(\omega):=r^{\frac{1}{2}+\epsilon} X(r)^{-\frac{1}{2}+\delta} \psi(r) \phi_{1}(\omega)
$$

where $\phi_{1}(\omega)$ is a normalized eigenfunction for the first non-zero eigenvalue of the Laplace-Beltrami operator on $\mathrm{S}^{2}$ and $\psi(r)$ is a smooth radially symmetric function supported in $B_{1}$ and equal to one near $r=0$.

Applying Lemma 1 we see that $\int\left(\Delta u_{\epsilon, \delta}\right)^{2} d x-\frac{25}{36} \int \frac{\left|\nabla u_{\epsilon, \delta}\right|^{2}}{|x|^{2}} d x$ is a linear combination of the integrals

$$
I_{\epsilon, \delta}^{(j)}=\int_{0}^{1} r^{-1+2 \epsilon} X^{-1+j+2 \delta} \psi^{2} d r, \quad 0 \leq j \leq 4
$$

and of integrals that contain at least one derivative of $\psi$ and are, therefore, uniformly bounded. Moreover simple computations yield that for $j=3,4$ the integrals $I_{\epsilon, \delta}^{(j)}$ are also uniformly bounded for small $\epsilon, \delta>0$.

Restricting attention to a small neighbourhood of the origin where $\psi=1$ we find

$$
f_{\epsilon, \delta}^{\prime}(r)=r^{-\frac{1}{2}+\epsilon}\left(\left(\frac{1}{2}+\epsilon\right) X^{-\frac{1}{2}+\delta}+\left(-\frac{1}{2}+\delta\right) X^{\frac{1}{2}+\delta}\right)
$$

and

$$
f_{\epsilon, \delta}^{\prime \prime}(r)=r^{-\frac{3}{2}+\epsilon}\left(\left(\epsilon^{2}-\frac{1}{4}\right) X^{-\frac{1}{2}+\delta}+2 \epsilon\left(-\frac{1}{2}+\delta\right) X^{\frac{1}{2}+\delta}+\left(\delta^{2}-\frac{1}{4}\right) X^{\frac{3}{2}+\delta}\right)
$$

Hence we arrive at

$$
\begin{aligned}
& \int_{B_{1}}\left(\Delta u_{\epsilon, \delta}\right)^{2} d x-\frac{25}{36} \int_{B_{1}} \frac{\left|\nabla u_{\epsilon, \delta}\right|^{2}}{|x|^{2}} d x \\
&=\left(\frac{191}{36} \epsilon+\frac{173}{36} \epsilon^{2}+\epsilon^{4}\right) I_{\epsilon, \delta}^{(0)} \\
&-\left(\frac{191}{72}-\frac{191}{36} \delta+\left(\frac{173}{36}-\frac{173}{18} \delta\right) \epsilon+(2-4 \delta) \epsilon^{3}\right) I_{\epsilon, \delta}^{(1)} \\
&+\left(\frac{209}{144}-\frac{191}{36} \delta+\frac{173}{36} \delta^{2}+\left(\frac{1}{2}-4 \delta+6 \delta^{2}\right) \epsilon^{2}\right) I_{\epsilon, \delta}^{(2)}+O(1)
\end{aligned}
$$

It is easily seen that

$$
I_{\epsilon, 0}^{(j)}=\frac{1}{2 \epsilon}+O(1), \quad j=0,1,2
$$

Hence, rearranging also terms we obtain

$$
\begin{aligned}
\int_{B_{1}}\left(\Delta u_{\epsilon, \delta}\right)^{2} d x-\frac{25}{36} \int_{B_{1}} \frac{\left|\nabla u_{\epsilon, \delta}\right|^{2}}{|x|^{2}} d x= & \frac{191}{72}\left(2 \epsilon I_{\epsilon, \delta}^{(0)}-(1-2 \delta) I_{\epsilon, \delta}^{(1)}\right) \\
& +\left(\frac{209}{144}-\frac{191}{36} \delta+\frac{173}{36} \delta^{2}\right) I_{\epsilon, \delta}^{(2)}+O(1)
\end{aligned}
$$

Now, by [5, p181] we have

$$
2 \epsilon I_{\epsilon, \delta}^{(0)}-(1-2 \delta) I_{\epsilon, \delta}^{(1)}=O(1)
$$

Hence, letting $\epsilon \rightarrow 0$ we obtain

$$
\begin{aligned}
\int_{B_{1}}\left(\Delta u_{\epsilon, \delta}\right)^{2} d x-\frac{25}{36} \int_{B_{1}} \frac{\left|\nabla u_{\epsilon, \delta}\right|^{2}}{|x|^{2}} d x & \rightarrow\left(\frac{209}{144}-\frac{191}{36} \delta+\frac{173}{36} \delta^{2}\right) I_{0, \delta}^{(2)}+O(1) \\
& =\frac{209}{144} \int_{0}^{1} r^{-1} X^{1+2 \delta} \psi^{2} d r+O(1)
\end{aligned}
$$

which is finite for any $\delta>0$ and diverges to infinity as $\delta \rightarrow 0+$.
Now, for $\delta>(4-\mu) / 6$ we have

$$
\int_{B_{1}}\left|\nabla u_{\epsilon, \delta}\right|^{6} X^{\mu} d x \geq c \int_{0}^{1 / 2} r^{-1+6 \epsilon} X^{\mu-3+6 \delta} d r
$$

Letting first $\epsilon \rightarrow 0$ and then $\delta \rightarrow \frac{4-\mu}{6}+$ the last integral tends to infinity. Hence the Rayleigh quotient tends to zero, which implies that the constant $c$ in (17) should be zero. This concludes the proof.

## 2. Rellich-Sobolev inequality II

In this section we shall prove Theorem 2. Throughout the proof we shall make use of spherical coordinates $(r, \omega), r>0, \omega \in \mathrm{~S}^{n-1}$. We denote by $\nabla_{\omega}$ and $\Delta_{\omega}$ the gradient and Laplacian on $\mathrm{S}^{n-1}$.

Lemma 4. Let $\theta \in \mathbb{R}$. For any $v \in C_{c}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ there holds

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}(\Delta v)^{2}|x|^{\theta} d x \\
& =\int_{0}^{\infty} \int_{\mathrm{S}^{n-1}} v_{r r}^{2} r^{n+\theta-1} d S d r+(n-1)(1-\theta) \int_{0}^{\infty} \int_{\mathrm{S}^{n-1}} v_{r}^{2} r^{n+\theta-3} d S d r \\
& \quad+\int_{0}^{\infty} \int_{\mathrm{S}^{n-1}}\left(\Delta_{\omega} v\right)^{2} r^{n+\theta-5} d S d r+2 \int_{0}^{\infty} \int_{\mathrm{S}^{n-1}}\left|\nabla_{\omega} v_{r}\right|^{2} r^{n+\theta-3} d S d r \\
& \quad-(\theta-2)(n+\theta-4) \int_{0}^{\infty} \int_{\mathrm{S}^{n-1}}\left|\nabla_{\omega} v\right|^{2} r^{n+\theta-5} d S d r
\end{aligned}
$$

Proof. This follows by writing

$$
\Delta v=v_{r r}+\frac{n-1}{r} v_{r}+\frac{1}{r^{2}} \Delta_{\omega} v
$$

and integrating by parts; we omit the details.
In the next lemma and also later, we shall use subscripts R and NR to denote the radial and non-radial component of a given functional.

Lemma 5. Let $n \geq 5, \beta>0$ and define

$$
A=\frac{1}{\beta^{2}}(2 n-4-\beta(n-4+\beta))
$$

Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. Changing variables by $u(r, \omega)=y(t, \omega), t=r^{\beta}$, we have

$$
\frac{\int_{\mathbb{R}^{n}}(\Delta u)^{2} d x}{\left(\int_{\mathbb{R}^{n}}|u|^{\frac{2 n}{n-4}} d x\right)^{\frac{n-4}{n}}}=\beta^{\frac{4(n-1)}{n}} \frac{\mathcal{A}_{\mathrm{R}}[y]+\mathcal{A}_{\mathrm{NR}}[y]}{\left(\int_{0}^{\infty} \int_{\mathrm{S}^{n-1}} t^{\frac{n-\beta}{\beta}}|y|^{\frac{2 n}{n-4}} d S d t\right)^{\frac{n-4}{n}}}
$$

where

$$
\begin{aligned}
\mathcal{A}_{\mathrm{R}}[y]= & \int_{0}^{\infty} \int_{\mathrm{S}^{n-1}}\left(t^{\frac{3 \beta+n-4}{\beta}} y_{t t}^{2}+A t^{\frac{\beta+n-4}{\beta}} y_{t}^{2}\right) d S d t \\
\mathcal{A}_{\mathrm{NR}}[y]= & \int_{0}^{\infty} \int_{\mathrm{S}^{n-1}}\left(\frac{1}{\beta^{4}} t^{\frac{n-\beta-4}{\beta}}\left(\Delta_{\omega} y\right)^{2}+\frac{2}{\beta^{2}} t^{\frac{\beta+n-4}{\beta}}\left|\nabla_{\omega} y_{t}\right|^{2}\right. \\
& \left.\quad+\frac{2(n-4)}{\beta^{4}} t^{\frac{n-\beta-4}{\beta}}\left|\nabla_{\omega} y\right|^{2}\right) d S d t
\end{aligned}
$$

Proof. After some lengthy but otherwise elementary computations we find

$$
\int_{0}^{\infty}\left(u_{r r}+\frac{n-1}{r} u_{r}\right)^{2} r^{n-1} d r=\beta^{3} \int_{0}^{\infty}\left(t^{\frac{3 \beta+n-4}{\beta}} y_{t t}^{2}+A t^{\frac{\beta+n-4}{\beta}} y_{t}^{2}\right) d t
$$

and

$$
\int_{0}^{\infty}|u|^{\frac{2 n}{n-4}} r^{n-1} d r=\frac{1}{\beta} \int_{0}^{\infty}|y|^{\frac{2 n}{n-4}} t^{\frac{n-\beta}{\beta}} d t
$$

Similar computations involving the non-radial (tangential) derivatives yield the term $\mathcal{A}_{\mathrm{NR}}[y]$. We omit the details.

We now consider the Rayleigh quotient for the Rellich-Sobolev inequality (5). Changing variables by $u(x)=|x|^{-\frac{n-4}{2}} v(x)$ we obtain (cf. [25, Lemma 2.3 (ii)])

$$
\begin{align*}
& \int_{\Omega}(\Delta u)^{2} d x-\frac{n^{2}(n-4)^{2}}{16} \int_{\Omega} \frac{u^{2}}{|x|^{4}} d x  \tag{18}\\
= & \int_{\Omega}\left(|x|^{4-n}(\Delta v)^{2}+\frac{n(n-4)}{2}|x|^{2-n}|\nabla v|^{2}-n(n-4)|x|^{-n}(x \cdot \nabla v)^{2}\right) d x . \\
= & J[v] \tag{19}
\end{align*}
$$

Applying Lemma 4 we find that

$$
\begin{align*}
J[v]= & \int_{0}^{1} \int_{\mathrm{S}^{n-1}} r^{3} v_{r r}^{2} d S d r+\frac{n^{2}-4 n+6}{2} \int_{0}^{1} \int_{\mathrm{S}^{n-1}} r v_{r}^{2} d S d r \\
& +\int_{0}^{1} \int_{\mathrm{S}^{n-1}} r^{-1}\left(\Delta_{\omega} v\right)^{2} d S d r+2 \int_{0}^{1} \int_{\mathrm{S}^{n-1}}\left|\nabla_{\omega} v_{r}\right|^{2} r d S d r \\
& +\frac{n(n-4)}{2} \int_{0}^{1} \int_{\mathrm{S}^{n-1}} r^{-1}\left|\nabla_{\omega} v\right|^{2} d S d r \tag{20}
\end{align*}
$$

In view of (20) we set

$$
\begin{aligned}
J_{\mathrm{R}}[v]= & \int_{0}^{1} \int_{\mathrm{S}^{n-1}} r^{3} v_{r r}^{2} d S d r+\frac{n^{2}-4 n+6}{2} \int_{0}^{1} \int_{\mathrm{S}^{n-1}} r v_{r}^{2} d S d r \\
J_{\mathrm{NR}}[v]= & \int_{0}^{1} \int_{\mathrm{S}^{n-1}} r^{-1}\left(\Delta_{\omega} v\right)^{2} d S d r+2 \int_{0}^{1} \int_{\mathrm{S}^{n-1}} r\left|\nabla_{\omega} v_{r}\right|^{2} d S d r \\
& +\frac{n(n-4)}{2} \int_{0}^{1} \int_{\mathrm{S}^{n-1}} r^{-1}\left|\nabla_{\omega} v\right|^{2} d S d r
\end{aligned}
$$

the radial and non-radial parts of $J[v]$, so that,

$$
J[v]=J_{\mathrm{R}}[v]+J_{\mathrm{NR}}[v] .
$$

We shall change variables once more and for this we define the functions

$$
\begin{equation*}
g(r)=\exp \left(1-X(r)^{-\frac{n}{2(n-1)}}\right), \quad \alpha(r)=X(r)^{-\frac{3(n-2)}{4(n-1)}} g(r)^{\frac{n-4}{2 \beta}} \tag{21}
\end{equation*}
$$

Lemma 6. Let $n \geq 5, \beta>0$ and set

$$
s=\frac{n-4}{2 \beta}
$$

Let $v \in C_{c}^{\infty}\left(B_{1} \backslash\{0\}\right)$. Changing variables by

$$
\begin{equation*}
v(r, \omega)=\alpha(r) w(t, \omega), \quad t=g(r) \tag{22}
\end{equation*}
$$

we have

$$
\text { (i) } \begin{array}{r}
J_{\mathrm{R}}[v]=\int_{0}^{1} \int_{\mathrm{S}^{n-1}}\left\{\left(\frac{n}{2(n-1)}\right)^{3} t^{\frac{3 \beta+n-4}{\beta}} w_{t t}^{2}+t^{\frac{\beta+n-4}{\beta}} G(t) w_{t}^{2}\right. \\
\left.+t^{\frac{-\beta+n-4}{\beta}} H(t) w^{2}\right\} d S d t
\end{array}
$$

(ii) $J_{\mathrm{NR}}[v]=\frac{2(n-1)}{n} \int_{0}^{1} \int_{\mathrm{S}^{n-1}} t^{\frac{n-\beta-4}{\beta}} X(t)^{\frac{8-4 n}{n}}\left(\Delta_{\omega} w\right)^{2} d S d t$ $+\frac{n}{n-1} \int_{0}^{1} \int_{\mathrm{S}^{n-1}} t^{\frac{n+\beta-4}{\beta}} X(t)^{\frac{4-2 n}{n}}\left|\nabla_{\omega} w_{t}\right|^{2} d S d t$ $+\int_{0}^{1} \int_{\mathrm{S}^{n-1}} t^{\frac{n-\beta-4}{\beta}}\left|\nabla_{\omega} w\right|^{2} K(t) d S d t$
(iii) $\quad \int_{0}^{1} \int_{\mathrm{S}^{n-1}} r^{-1} X(r)^{\frac{2 n-4}{n-4}}|v|^{\frac{2 n}{n-4}} d S d r=\frac{2(n-1)}{n} \int_{0}^{1} \int_{\mathrm{S}^{n-1}}|w|^{\frac{2 n}{n-4}} t^{\frac{n-\beta}{\beta}} d S d t$,
where the functions $G(t), H(t)$ and $K(t)$ are given by

$$
\begin{aligned}
& G(t)= \frac{n\left(n^{2}-4 n+8\right)}{4(n-1)} X(t)^{\frac{4-2 n}{n}}-\frac{n^{3}\left(2 s^{2}+2 s+1\right)}{8(n-1)^{3}}+\frac{5 n(n-2)(3 n-2)}{16(n-1)^{3}} X(t)^{2} \\
& H(t)=- \frac{s^{2} n\left(n^{2}-4 n+8\right)}{4(n-1)} X(t)^{\frac{4-2 n}{n}}+\frac{s(n-2)\left(n^{2}-4 n+8\right)}{2(n-1)} X(t)^{\frac{4-n}{n}} \\
&+\frac{s^{4} n^{3}}{8(n-1)^{3}}+\frac{3\left(n^{2}-4\right)\left(n^{2}-4 n+8\right)}{16 n(n-1)} X(t)^{\frac{4}{n}} \\
&-\frac{5 s^{2} n(n-2)(3 n-2)}{16(n-1)^{3}} X(t)^{2}-\frac{5 \operatorname{sn}(n-2)(3 n-2)}{8(n-1)^{3}} X(t)^{3} \\
&-\frac{9(3 n-2)(5 n-2)\left(n^{2}-4\right)}{128 n(n-1)^{3}} X(t)^{4} \\
& K(t)=(n-1)(n-4) X(t)^{\frac{8-4 n}{n}}-\frac{n(n-4)^{2}}{4(n-1) \beta^{2}} X(t)^{\frac{4-2 n}{n}} \\
&+\frac{(n-2)(n-4)}{(n-1) \beta} X(t)^{\frac{4-n}{n}}+\frac{3\left(n^{2}-4\right)}{4 n(n-1)} X(t)^{\frac{4}{n}} .
\end{aligned}
$$

Proof. To prove (i) we set for simplicity

$$
J_{\mathrm{R}}^{*}[v]=\int_{0}^{1} r^{3} v_{r r}^{2} d r+\frac{n^{2}-4 n+6}{2} \int_{0}^{1} r v_{r}^{2} d r
$$

We first note that $r$ and $t=g(r)$ are also related by the relation

$$
\begin{equation*}
X(t)=X(r)^{\frac{n}{2(n-1)}} \tag{23}
\end{equation*}
$$

and that

$$
d t=\frac{n}{2(n-1)} \frac{g(r)}{r} X(r)^{\frac{n-2}{2(n-1)}} d r
$$

Expressing $J_{\mathrm{R}}^{*}[v]$ in terms of the function $w(t)$ involves some lengthy computations, of which we include only the main steps.

From (22) we have

$$
\begin{aligned}
v_{r} & =\alpha g^{\prime} w_{t}+\alpha^{\prime} w \\
v_{r r} & =\alpha g^{\prime 2} w_{t t}+\left(2 \alpha^{\prime} g^{\prime}+\alpha g^{\prime \prime}\right) w_{t}+\alpha^{\prime \prime} w
\end{aligned}
$$

Substuting in $J_{\mathrm{R}}^{*}[v]$ and expanding we find that

$$
\begin{align*}
J_{\mathrm{R}}^{*}[v]= & \left(\frac{n}{2(n-1)}\right)^{3} \int_{0}^{1} t^{\frac{3 \beta+n-4}{\beta}} w_{t t}^{2} d t+\int_{0}^{1} B(t) w_{t}^{2} d t+\int_{0}^{1} C(t) w^{2} d t \\
& +\int_{0}^{1} D(t) w_{t t} w_{t} d t+\int_{0}^{1} E(t) w_{t t} w d t+\int_{0}^{1} F(t) w_{t} w d t \tag{24}
\end{align*}
$$

where the functions $B(t), \ldots, F(t)$ will be described below in terms of the variable $r$. Integrating by parts we obtain from (24) that

$$
J_{\mathrm{R}}^{*}[v]=\left(\frac{n}{2(n-1)}\right)^{3} \int_{0}^{1} t^{\frac{3 \beta+n-4}{\beta}} w_{t t}^{2} d t+\int_{0}^{1} P(t) w_{t}^{2} d t+\int_{0}^{1} Q(t) w^{2} d t
$$

where

$$
\begin{equation*}
P(t)=B(t)-\frac{1}{2} D_{t}(t)-E(t), \quad Q(t)=C(t)+\frac{1}{2} E_{t t}(t)-\frac{1}{2} F_{t}(t) . \tag{25}
\end{equation*}
$$

To compute the functions $P(t)$ and $Q(t)$ it is convenient to regard them as functions of the variable $r$. To do this we consider the functions $B, C, D, E$ and $F$ also as functions of $r$ and indicate this with tildes; we shall thus write $B(t)=\tilde{B}(r)$, etc. Relations (25) then take the form

$$
\begin{equation*}
\tilde{P}(r)=\tilde{B}-\frac{1}{2 g^{\prime}} \tilde{D}_{r}-\tilde{E}, \quad \tilde{Q}(r)=\tilde{C}+\frac{1}{2}\left(\frac{\tilde{E}_{r r}}{g^{\prime 2}}-\frac{g^{\prime \prime} \tilde{E}_{r}}{g^{\prime 3}}\right)-\frac{1}{2 g^{\prime}} \tilde{F}_{r} \tag{26}
\end{equation*}
$$

After some computations we eventually find

$$
\begin{aligned}
& \tilde{B}(r)=\frac{r^{3}}{g^{\prime}}\left(2 \alpha^{\prime} g^{\prime}+\frac{n-1}{r} \alpha g^{\prime}+\alpha g^{\prime \prime}\right)^{2}-\frac{n(n-4)}{2} r \alpha^{2} g^{\prime} \\
& \tilde{C}(r)=\frac{r^{3}}{g^{\prime}}\left(\alpha^{\prime \prime}+\frac{n-1}{r} \alpha^{\prime}\right)^{2}-\frac{n(n-4)}{2} \frac{r}{g^{\prime}} \alpha^{\prime 2} \\
& \tilde{D}(r)=2 r^{3} \alpha g^{\prime}\left(2 \alpha^{\prime} g^{\prime}+\frac{n-1}{r} \alpha g^{\prime}+\alpha g^{\prime \prime}\right) \\
& \tilde{E}(r)=2 r^{3} \alpha g^{\prime}\left(\alpha^{\prime \prime}+\frac{n-1}{r} \alpha^{\prime}\right) \\
& \tilde{F}(r)=2 r^{3}\left(2 \alpha^{\prime}+\frac{n-1}{r} \alpha+\alpha \frac{g^{\prime \prime}}{g^{\prime}}\right)\left(\alpha^{\prime \prime}+\frac{n-1}{r} \alpha^{\prime}\right)-n(n-4) r \alpha \alpha^{\prime} .
\end{aligned}
$$

Substituting in (26) we arrive at

$$
\begin{aligned}
\tilde{P}(r)= & 2 r^{3} \alpha^{\prime 2} g^{\prime}-6 r^{2} \alpha \alpha^{\prime} g^{\prime}+\frac{n^{2}-4 n+6}{2} r \alpha^{2} g^{\prime}-3 r^{2} \alpha^{2} g^{\prime \prime} \\
& \quad-4 r^{3} \alpha \alpha^{\prime \prime} g^{\prime}-2 r^{3} \alpha \alpha^{\prime} g^{\prime \prime}-r^{3} \alpha^{2} g^{\prime \prime \prime} \\
\tilde{Q}(r)= & \frac{1}{g^{\prime}}\left(6 r^{2} \alpha \alpha^{\prime \prime \prime}-\frac{n^{2}-4 n-6}{2} r \alpha \alpha^{\prime \prime}-\frac{n^{2}-4 n+6}{2} \alpha \alpha^{\prime}+r^{3} \alpha \alpha^{(4)}\right) .
\end{aligned}
$$

Now, some more computations give

$$
\begin{aligned}
g^{\prime}(r)= & \frac{n}{2(n-1)} \frac{g(r)}{r} X(r)^{\frac{n-2}{2(n-1)}} \\
g^{\prime \prime}(r)= & \left(-\frac{n}{2(n-1)} X^{\frac{n-2}{2(n-1)}}+\frac{n^{2}}{4(n-1)^{2}} X(r)^{\frac{n-2}{n-1}}+\frac{n(n-2)}{4(n-1)^{2}} X(r)^{\frac{3 n-4}{2(n-1)}}\right) \frac{g(r)}{r^{2}} \\
g^{\prime \prime \prime}(r)= & \left(-\frac{3 n(n-2)}{4(n-1)^{2}} X(r)^{\frac{3 n-4}{2(n-1)}}+\frac{3 n^{2}(n-2)}{8(n-1)^{3}} X^{\frac{2 n-3}{n-1}}+\frac{n(n-2)(3 n-4)}{8(n-1)^{3}} X^{\frac{5 n-6}{2(n-1)}}\right. \\
& \left.+\frac{n}{n-1} X(r)^{\frac{n-2}{2(n-1)}}-\frac{3 n^{2}}{4(n-1)^{2}} X(r)^{\frac{n-2}{n-1}}+\frac{n^{3}}{8(n-1)^{3}} X(r)^{\frac{3 n-6}{2(n-1)}}\right) \frac{g(r)}{r^{3}} .
\end{aligned}
$$

Moreover,

$$
\begin{align*}
\alpha^{\prime}(r)= & \frac{g(r)^{s}}{r}\left(\frac{s}{2(n-1)} X^{\frac{2-n}{4(n-1)}}-\frac{3(n-2)}{4(n-1)} X(r)^{\frac{n+2}{4(n-1)}}\right) \\
\alpha^{\prime \prime}(r)= & \frac{g(r)^{s}}{r^{2}}\left(-\frac{s n}{2(n-1)} X(r)^{\frac{2-n}{4(n-1)}}+\frac{s^{2} n^{2}}{4(n-1)^{2}} X(r)^{\frac{n-2}{4(n-1)}}\right. \\
& \left.+\frac{3(n-2)}{4(n-1)} X(r)^{\frac{n+2}{4(n-1)}}-\frac{s n(n-2)}{2(n-1)^{2}} X(r)^{\frac{3 n-2}{4(n-1)}}-\frac{3\left(n^{2}-4\right)}{16(n-1)^{2}} X(r)^{\frac{5 n-2}{4(n-1)}}\right) \\
\alpha^{\prime \prime \prime}(r)= & \frac{g(r)^{s}}{r^{3}}\left(\frac{s n}{n-1} X^{\frac{2-n}{4(n-1)}}-\frac{3 s^{2} n^{2}}{4(n-1)^{2}} X(r)^{\frac{n-2}{4(n-1)}}\right. \\
& -\frac{3(n-2)}{2(n-1)} X(r)^{\frac{n+2}{4(n-1)}}+\frac{s^{3} n^{3}}{8(n-1)^{3}} X^{\frac{3 n-6}{4(n-1)}}+\frac{3 s n(n-2)}{2(n-1)^{2}} X^{\frac{3 n-2}{4(n-1)}} \\
& -\frac{3 s^{2} n^{2}(n-2)}{16(n-1)^{3}} X(r)^{\frac{5 n-6}{4(n-1)}}+\frac{9\left(n^{2}\right.}{16(n-4)} X(r)^{\frac{5 n-2}{4(n-1)}} \\
& \left.-\frac{s n(n-2)(15 n-2)}{32(n-1)^{3}} X(r)^{\frac{7 n-6}{4(n-1)}}-\frac{3\left(n^{2}-4\right)(5 n-2)}{64(n-1)^{3}} X(r)^{\frac{9 n-6}{4(n-1)}}\right) \tag{27}
\end{align*}
$$

and

$$
\begin{aligned}
\alpha^{(4)}(r)= & \frac{g(r)^{s}}{r^{4}}\left(\frac{3 s n}{n-1} X(r)^{\frac{2-n}{4(n-1)}}-\frac{11 s^{2} n^{2}}{4(n-1)^{2}} X(r)^{\frac{n-2}{4(n-1)}}\right. \\
& -\frac{9(n-2)}{2(n-1)} X(r)^{\frac{n+2}{4(n-1)}}+\frac{3 s^{3} n^{3}}{4(n-1)^{3}} X(r)^{\frac{3 n-6}{4(n-1)}} \\
& +\frac{11 s n(n-2)}{2(n-1)^{2}} X(r)^{\frac{3 n-2}{4(n-1)}}-\frac{s^{4} n^{4}}{16(n-1)^{4}} X(r)^{\frac{5 n-10}{4(n-1)}} \\
& -\frac{9 s^{2} n^{2}(n-2)}{8(n-1)^{3}} X(r)^{\frac{5 n-6}{4(n-1)}}+\frac{33\left(n^{2}-4\right)}{16(n-1)^{2}} X(r)^{\frac{5 n-2}{4(n-1)}} \\
& -\frac{3 \operatorname{sn}(n-2)(15 n-2)}{16(n-1)^{3}} X(r)^{\frac{7 n-6}{4(n-1)}}+\frac{5 s^{2} n^{2}(n-2)(3 n-2)}{32(n-1)^{4}} X(r)^{\frac{9 n-10}{4(n-1)}} \\
& -\frac{9(5 n-2)\left(n^{2}-4\right)}{32(n-1)^{3}} X(r)^{\frac{9 n-6}{4(n-1)}}+\frac{5 s n^{2}(n-2)(3 n-2)}{16(n-1)^{4}} X(r)^{\frac{11 n-10}{4(n-1)}} \\
& \left.+\frac{9(3 n-2)(5 n-2)\left(n^{2}-4\right)}{256(n-1)^{4}} X(r)^{\frac{13 n-10}{4(n-1)}}\right) .
\end{aligned}
$$

Combining the above we eventually arrive at

$$
\begin{aligned}
& \tilde{P}(r)=g(r)^{\frac{\beta+n-4}{\beta}}\left(\frac{n\left(n^{2}-4 n+8\right)}{4(n-1)} X(r)^{\frac{2-n}{n-1}}-\frac{n^{3}\left(2 s^{2}+2 s+1\right)}{8(n-1)^{3}}\right. \\
&\left.+\frac{5 n(n-2)(3 n-2)}{16(n-1)^{3}} X(r)^{\frac{n}{n-1}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \tilde{Q}(r)=g(r)^{\frac{-\beta+n-4}{\beta}}\left(-\frac{s^{2} n\left(n^{2}-4 n+8\right)}{4(n-1)} X(r)^{\frac{2-n}{n-1}}+\frac{s(n-2)\left(n^{2}-4 n+8\right)}{2(n-1)} X(r)^{\frac{4-n}{2(n-1)}}\right. \\
&+\frac{s^{4} n^{3}}{8(n-1)^{3}}+\frac{3\left(n^{2}-4\right)\left(n^{2}-4 n+8\right)}{16 n(n-1)} X(r)^{\frac{2}{n-1}} \\
&-\frac{5 s^{2} n(n-2)(3 n-2)}{16(n-1)^{3}} X(r)^{\frac{n}{n-1}}-\frac{5 s n(n-2)(3 n-2)}{8(n-1)^{3}} X(r)^{\frac{3 n}{2(n-1)}} \\
&\left.-\frac{9(3 n-2)(5 n-2)\left(n^{2}-4\right)}{128 n(n-1)^{3}} X(r)^{\frac{2 n}{n-1}}\right) .
\end{aligned}
$$

Part (i) now follows by recalling (23) and noting that

$$
P(t)=t^{\frac{\beta+n-4}{\beta}} G(t), \quad Q(t)=t^{\frac{-\beta+n-4}{\beta}} H(t) .
$$

To prove part (ii) we first note that

$$
\begin{aligned}
\int_{0}^{1} \int_{\mathrm{S}^{n-1}} r^{-1}\left(\Delta_{\omega} v\right)^{2} d S d r & =\int_{0}^{1} \int_{\mathrm{S}^{n-1}} r^{-1} \alpha(r)^{2}\left(\Delta_{\omega} w\right)^{2} \frac{1}{g^{\prime}(r)} d S d t \\
& =\frac{2(n-1)}{n} \int_{0}^{1} \int_{\mathrm{S}^{n-1}} t^{\frac{n-\beta-4}{\beta}} X(t)^{\frac{8-4 n}{n}}\left(\Delta_{\omega} w\right)^{2} d S d t
\end{aligned}
$$

and similarly

$$
\int_{0}^{1} \int_{\mathrm{S}^{n-1}} r^{-1}\left|\nabla_{\omega} v\right|^{2} d S d r=\frac{2(n-1)}{n} \int_{0}^{1} \int_{\mathrm{S}^{n-1}} t^{\frac{n-\beta-4}{\beta}} X(t)^{\frac{8-4 n}{n}}\left|\nabla_{\omega} w\right|^{2} d S d t
$$

For the remaining term in $J_{\mathrm{NR}}[v]$ we compute

$$
\begin{aligned}
& \int_{0}^{1} \int_{\mathrm{S}^{n-1}} r\left|\nabla_{\omega} v_{r}\right|^{2} d S d r \\
= & \int_{0}^{1} \int_{\mathrm{S}^{n-1}} r \alpha^{2} g^{\prime}\left|\nabla_{\omega} w_{t}\right|^{2} d S d t-\int_{0}^{1} \int_{\mathrm{S}^{n-1}}\left|\nabla_{\omega} w\right|^{2} \frac{1}{g^{\prime}}\left(\alpha \alpha^{\prime \prime} r+\alpha \alpha^{\prime}\right) d S d t
\end{aligned}
$$

On the one hand we have

$$
\int_{0}^{1} \int_{\mathrm{S}^{n-1}} \alpha^{2} g^{\prime} r\left|\nabla_{\omega} w_{t}\right|^{2} d S d t=\frac{n}{2(n-1)} \int_{0}^{1} \int_{\mathrm{S}^{n-1}} t^{\frac{n+\beta-4}{\beta}} X(t)^{\frac{4-2 n}{n}}\left|\nabla_{\omega} w_{t}\right|^{2} d S d t
$$

and on the other hand, recalling (27),

$$
\begin{aligned}
\int_{0}^{1} \int_{\mathrm{S}^{n-1}} & \left|\nabla_{\omega} w\right|^{2} \frac{1}{g^{\prime}}\left(\alpha \alpha^{\prime \prime} r+\alpha \alpha^{\prime}\right) d S d t \\
= & \frac{n(n-4)^{2}}{8(n-1) \beta^{2}} \int_{0}^{1} \int_{\mathrm{S}^{n-1}} t^{\frac{n-\beta-4}{\beta}} X(t)^{\frac{4-2 n}{n}}\left|\nabla_{\omega} w\right|^{2} d S d t \\
& \quad-\frac{(n-2)(n-4)}{2(n-1) \beta} \int_{0}^{1} \int_{\mathrm{S}^{n-1}} t^{\frac{n-\beta-4}{\beta}} X(t)^{\frac{4-n}{n}}\left|\nabla_{\omega} w\right|^{2} d S d t \\
& \quad-\frac{3\left(n^{2}-4\right)}{8 n(n-1)} \int_{0}^{1} \int_{\mathrm{S}^{n-1}} t^{\frac{n-\beta-4}{\beta}} X(t)^{\frac{4}{n}}\left|\nabla_{\omega} w\right|^{2} d S d t
\end{aligned}
$$

Combining the above we obtain (ii). The proof of (iii) is much simpler and is omitted.

To proceed we define

$$
G^{\#}(t)=G(t)-\left(\frac{n}{2(n-1)}\right)^{3} A, \quad t \in(0,1)
$$

where we recall that $A$ has been defined in Lemma 5 .
Lemma 7. Let $v \in C_{c}^{\infty}\left(B_{1} \backslash\{0\}\right)$ and let $w$ be defined by (22). There holds

$$
\begin{aligned}
J_{\mathrm{R}}[v]= & \left(\frac{n}{2(n-1)}\right)^{3} \mathcal{A}_{\mathrm{R}}[w] \\
& +\int_{0}^{1} \int_{\mathrm{S}^{n-1}} t^{\frac{\beta+n-4}{\beta}} w_{t}^{2} G^{\#}(t) d S d t+\int_{0}^{1} \int_{\mathrm{S}^{n-1}} t^{\frac{-\beta+n-4}{\beta}} w^{2} H(t) d S d t
\end{aligned}
$$

Proof. This is a direct consequence of Lemma 6 (i).
Lemma 8. Let $n \geq 5$. If

$$
\begin{equation*}
\beta \geq \beta_{n}:=n\left(\frac{n^{2}-4 n+8}{4 n^{4}-24 n^{3}+83 n^{2}-120 n+52}\right)^{1 / 2} \tag{28}
\end{equation*}
$$

then the function $G^{\#}(t)$ is non-negative in $(0,1)$.
Proof. We first note that

$$
\begin{align*}
G^{\#}(t) & =\frac{n\left(n^{2}-4 n+8\right)}{4(n-1)} X(t)^{\frac{4-2 n}{n}}-\frac{n^{3}\left(n^{2}-4 n+8\right)}{16(n-1)^{3} \beta^{2}}+\frac{5 n(n-2)(3 n-2)}{16(n-1)^{3}} X(t)^{2} \\
& =: p_{1} X(t)^{\frac{4-2 n}{n}}+p_{2}+p_{3} X(t)^{2} \tag{29}
\end{align*}
$$

Now, it easily follows from (29) that $G^{\#}(t)$ is monotone decreasing in ( 0,1 ]. Hence its minimum equal to

$$
p_{1}+p_{2}+p_{3}=\frac{n\left(4 n^{4}-24 n^{3}+83 n^{2}-120 n+52\right)}{16(n-1)^{3}}-\frac{n^{3}\left(n^{2}-4 n+8\right)}{16(n-1)^{3} \beta^{2}}
$$

which is non-negative if $\beta \geq \beta_{n}$.
Lemma 9. Let $n \geq 5$ and $\beta \geq \beta_{n}$. For any $w \in C_{c}^{\infty}(0,1)$ there holds

$$
\int_{0}^{1} t^{\frac{\beta+n-4}{\beta}} G^{\#}(t) w_{t}^{2} d t+\int_{0}^{1} t^{\frac{-\beta+n-4}{\beta}} H^{\#}(t) w^{2} d t \geq 0
$$

where

$$
\begin{aligned}
H^{\#}(t)= & -\frac{n(n-4)^{2}\left(n^{2}-4 n+8\right)}{16(n-1) \beta^{2}} X^{\frac{4-2 n}{n}}+\frac{(n-2)(n-4)\left(n^{2}-4 n+8\right)}{4(n-1) \beta} X^{\frac{4-n}{n}} \\
& +\frac{n^{3}(n-4)^{2}\left(n^{2}-4 n+8\right)}{64(n-1)^{3} \beta^{4}}+\frac{3\left(n^{2}-4\right)\left(n^{2}-4 n+8\right)}{16 n(n-1)} X^{\frac{4}{n}} \\
& -\frac{n(n-2)\left(15 n^{3}-104 n^{2}+256 n-152\right)}{32(n-1)^{3} \beta^{2}} X^{2} \\
& -\frac{5 n(n-2)(n-4)(3 n-2)}{16(n-1)^{3} \beta} X^{3}+\frac{45(n-2)^{2}(3 n-2)^{2}}{n(n-1)^{3}} X^{4} .
\end{aligned}
$$

Proof. Let $r_{1}, r_{2}$ be real numbers to be fixed later. We have

$$
\begin{aligned}
0 \leq & \int_{0}^{1} t^{\frac{\beta+n-4}{\beta}} G^{\#}(t)\left(w_{t}+\frac{r_{1}+r_{2} X(t)}{t} w\right)^{2} d t \\
= & \int_{0}^{1} t^{\frac{\beta+n-4}{\beta}} G^{\#}(t) w_{t}^{2} d t+\int_{0}^{1}\left\{t^{\frac{-\beta+n-4}{\beta}} G^{\#}(t)\left(r_{1}^{2}+2 r_{1} r_{2} X+r_{2}^{2} X^{2}\right)\right. \\
& \left.\quad-\left(t^{\frac{n-4}{\beta}} G^{\#}(t)\left(r_{1}+r_{2} X(t)\right)\right)_{t}\right\} w^{2} d t
\end{aligned}
$$

Substituting from (29) and carrying out the computations we arrive at

$$
\begin{aligned}
& 0 \leq \int_{0}^{1} t^{\frac{\beta+n-4}{\beta}} G^{\#}(t) w_{t}^{2} d t+ \\
& \int_{0}^{1} t^{\frac{-\beta+n-4}{\beta}}\left\{p_{1} r_{1}\left(r_{1}-\frac{n-4}{\beta}\right) X^{\frac{4-2 n}{n}}+p_{1}\left(2 r_{1} r_{2}-r_{2} \frac{n-4}{\beta}+\frac{2 n-4}{n} r_{1}\right) X^{\frac{4-n}{n}}\right. \\
&+p_{2} r_{1}\left(r_{1}-\frac{n-4}{\beta}\right)+p_{1} r_{2}\left(r_{2}+\frac{n-4}{n}\right) X^{\frac{4}{n}}+p_{2} r_{2}\left(2 r_{1}-\frac{n-4}{\beta}\right) X \\
&+\left(p_{2} r_{2}^{2}-p_{2} r_{2}+p_{3} r_{1}^{2}-p_{3} r_{1} \frac{n-4}{\beta}\right) X^{2}+\left(2 p_{3} r_{1} r_{2}-2 p_{3} r_{1}-p_{3} r_{2} \frac{n-4}{\beta}\right) X^{3} \\
&\left.+\left(p_{3} r_{2}^{2}-3 p_{3} r_{2}\right) X^{4}\right\} w^{2} d t .
\end{aligned}
$$

We now choose

$$
r_{1}=\frac{n-4}{2 \beta}, \quad r_{2}=-\frac{3(n-2)}{2 n} .
$$

The choice for $r_{1}$ minimizes the coefficient of the leading term in the last integral; the parameter $r_{2}$ is less important and the choice is made for convenience.

Substituting we obtain

$$
\begin{aligned}
& 0 \leq \int_{0}^{1} t^{\frac{\beta+n-4}{\beta}} G^{\#}(t) w_{t}^{2} d t+ \\
& \\
& \quad \int_{0}^{1} t^{\frac{-\beta+n-4}{\beta}}\left\{-\frac{n(n-4)^{2}\left(n^{2}-4 n+8\right)}{16(n-1) \beta^{2}} X^{\frac{4-2 n}{n}}+\frac{(n-2)(n-4)\left(n^{2}-4 n+8\right)}{4(n-1) \beta} X^{\frac{4-n}{n}}\right. \\
& \quad \\
& \quad+\frac{n^{3}(n-4)^{2}\left(n^{2}-4 n+8\right)}{64(n-1)^{3} \beta^{4}}+\frac{3\left(n^{2}-4\right)\left(n^{2}-4 n+8\right)}{16 n(n-1)} X^{\frac{4}{n}} \\
& \\
& \quad \\
& \quad-\frac{n(n-2)\left(15 n^{3}-104 n^{2}+256 n-152\right)}{32(n-1)^{3} \beta^{2}} X^{2}-\frac{5 n(n-2)(n-4)(3 n-2)}{16(n-1)^{3} \beta} X^{3} \\
& \\
& \left.\quad+\frac{45(n-2)^{2}(3 n-2)^{2}}{n(n-1)^{3}} X^{4}\right\} w^{2} d t .
\end{aligned}
$$

which is the stated inequality.
We next define the positive constants

$$
\begin{align*}
& \gamma_{1}=\frac{n^{6}(n-4)^{2}}{256(n-1)^{4}}, \quad \gamma_{2}=\frac{3 n^{2}(n-2)(5 n-6)\left(n^{2}-4 n+8\right)}{128(n-1)^{4}} \\
& \gamma_{3}=\frac{9(n-2)(3 n-2)(5 n-6)(7 n-6)}{256(n-1)^{4}} \tag{30}
\end{align*}
$$

Lemma 10. Let $n \geq 5$ and $\beta \geq \beta_{n}$. Let $v \in C_{c}^{\infty}\left(B_{1} \backslash\{0\}\right)$ and let $w$ be defined by (22). We then have

$$
\begin{aligned}
& J_{\mathrm{R}}[v]+\int_{0}^{\infty} \int_{\mathrm{S}^{n-1}} v^{2} r^{-1}\left(\frac{\gamma_{1}}{\beta^{4}} X(r)^{\frac{2(n-2)}{n-1}}-\frac{\gamma_{2}}{\beta^{2}} X(r)^{\frac{3 n-4}{n-1}}+\gamma_{3} X(r)^{4}\right) d S d t \\
& \geq\left(\frac{n}{2(n-1)}\right)^{3} \mathcal{A}_{\mathrm{R}}[w]
\end{aligned}
$$

Proof. From Lemmas 7 and 9 we have

$$
J_{\mathrm{R}}[v] \geq\left(\frac{n}{2(n-1)}\right)^{3} \mathcal{A}_{\mathrm{R}}[w]+\int_{0}^{1} \int_{\mathrm{S}^{n-1}} t^{\frac{n-\beta-4}{\beta}} w^{2}\left(H(t)-H^{\#}(t)\right) d S d t
$$

But we easily see that

$$
\frac{n}{2(n-1)}\left(H(t)-H^{\#}(t)\right)=-\frac{\gamma_{1}}{\beta^{4}}+\frac{\gamma_{2}}{\beta^{2}} X(t)^{2}-\gamma_{3} X(t)^{4}
$$

hence

$$
\begin{aligned}
J_{\mathrm{R}}[v] & +\frac{2(n-1)}{n} \int_{0}^{1} \int_{\mathrm{S}^{n-1}} t^{\frac{n-\beta-4}{\beta}} w^{2}\left(\frac{\gamma_{1}}{\beta^{4}}-\frac{\gamma_{2}}{\beta^{2}} X(t)^{2}+\gamma_{3} X(t)^{4}\right) d S d t \\
& \geq\left(\frac{n}{2(n-1)}\right)^{3} \mathcal{A}_{\mathrm{R}}[w]
\end{aligned}
$$

We now express the double integral above in terms of the function $v$ using once again (22). We note that for any $\sigma \geq 0$ we have

$$
\int_{0}^{1} t^{\frac{n-\beta-4}{\beta}} w^{2} X(t)^{\sigma} d t=\frac{n}{2(n-1)} \int_{0}^{1} r^{-1} v^{2} X(r)^{\frac{\sigma n+4(n-2)}{2(n-1)}} d r
$$

Applying this for $\sigma=0,2,4$ we obtain the required inequality.

Proof of Theorem 2. Let $u \in C_{c}^{\infty}(\Omega)$. Without loss of generality we may assume that $\Omega=B_{1}$ and that $u \in C_{c}^{\infty}\left(B_{1} \backslash\{0\}\right)$. Let $v=|x|^{\frac{n-4}{2}} u$. By the discussion following Lemma 5 , the required inequality is written

$$
\frac{J_{\mathrm{R}}[v]+\frac{n^{2}(n-4)^{2}}{16} \int_{0}^{1} \int_{\mathrm{S}^{n-1}} r^{-1} v^{2} X(r)^{\frac{2(n-2)}{n-1}} d S d r+J_{\mathrm{NR}}[v]}{\left(\int_{0}^{1} \int_{\mathrm{S}^{n-1}} r^{-1} X(r)^{\frac{2 n-4}{n-4}}|v|^{\frac{2 n}{n-4}} d S d r\right)^{\frac{n-4}{n}}} \geq S_{2, n}
$$

We make the choice

$$
\beta=\frac{n}{2(n-1)} .
$$

We shall prove the following two inequalities where $v$ and $w$ are related by the change of variables (22):

$$
\begin{align*}
& J_{\mathrm{R}}[v]+\frac{n^{2}(n-4)^{2}}{16} \int_{0}^{1} \int_{\mathrm{S}^{n-1}} r^{-1} v^{2} X(r)^{\frac{2(n-2)}{n-1}} d S d r \geq\left(\frac{n}{2(n-1)}\right)^{3} \mathcal{A}_{\mathrm{R}}[w]  \tag{31}\\
& J_{\mathrm{NR}}[v] \geq\left(\frac{n}{2(n-1)}\right)^{3} \mathcal{A}_{\mathrm{NR}}[w] \tag{32}
\end{align*}
$$

We claim that if these are proved then the result will follow. Indeed, by Lemma 6 (iii) the Sobolev terms are related by

$$
\left.\int_{0}^{1} \int_{\mathrm{S}^{n-1}} r^{-1} X(r)^{\frac{2 n-4}{n-4}}|v|^{\frac{2 n}{n-4}} d S d r=\frac{2(n-1)}{n} \int_{0}^{1} \int_{\mathrm{S}^{n-1}} \right\rvert\, w^{\frac{2 n}{n-4}} t^{\frac{n-\beta}{\beta}} d S d t
$$

Hence, applying Lemma 5 we shall obtain

$$
\begin{aligned}
& J_{\mathrm{R}}[v]+ \frac{n^{2}(n-4)^{2}}{16} \int_{0}^{1} \int_{\mathrm{S}^{n-1}} r^{-1} v^{2} X(r)^{\frac{2(n-2)}{n-1}} d S d r+J_{\mathrm{NR}}[v] \\
&\left(\int_{0}^{1} \int_{\mathrm{S}^{n-1}} r^{-1} X(r)^{\frac{2 n-4}{n-4}}|v|^{\frac{2 n}{n-4}} d S d r\right)^{\frac{n-4}{n}} \\
& \geq\left(\frac{n}{2(n-1)}\right)^{\frac{4(n-1)}{n}} \frac{\mathcal{A}_{\mathrm{R}}[w]+\mathcal{A}_{\mathrm{NR}}[w]}{\left(\int_{0}^{1} \int_{\mathrm{S}^{n-1}}|w|^{\frac{2 n}{n-4}} t^{\frac{n-\beta}{\beta}} d S d t\right)^{\frac{n-4}{n}}} \\
& \quad \geq\left(\frac{n}{2(n-1) \beta}\right)^{\frac{4(n-1)}{n}} S_{2, n} \\
& \quad=S_{2, n}
\end{aligned}
$$

and the proof will be complete.
Proof of (31). For the specific choice of $\beta$ we have

$$
\begin{gathered}
\frac{\gamma_{1}}{\beta^{4}} X(r)^{\frac{2(n-2)}{n-1}}-\frac{\gamma_{2}}{\beta^{2}} X(r)^{\frac{3 n-4}{n-1}}+\gamma_{3} X(r)^{4} \\
=\frac{\gamma_{1}}{\beta^{4}} X(r)^{\frac{2(n-2)}{n-1}}\left(1-\frac{\gamma_{2}}{\gamma_{1}} \beta^{2} X(r)^{\frac{n}{n-1}}+\frac{\gamma_{3}}{\gamma_{1}} \beta^{4} X(r)^{\frac{2 n}{n-1}}\right) \\
=\frac{n^{2}(n-4)^{2}}{16} X(r)^{\frac{2(n-2)}{n-1}}\left(1-\frac{3(n-2)(5 n-6)\left(n^{2}-4 n+8\right)}{2 n^{2}(n-1)^{2}(n-4)^{2}} X(r)^{\frac{n}{n-1}}\right. \\
\left.\quad+\frac{9(n-2)(3 n-2)(5 n-6)(7 n-6)}{16 n^{2}(n-1)^{4}(n-4)^{2}} X(r)^{\frac{2 n}{n-1}}\right)
\end{gathered}
$$

The function

$$
y \mapsto 1-\frac{3(n-2)(5 n-6)\left(n^{2}-4 n+8\right)}{2 n^{2}(n-1)^{2}(n-4)^{2}} y+\frac{9(n-2)(3 n-2)(5 n-6)(7 n-6)}{16 n^{2}(n-1)^{4}(n-4)^{2}} y^{2}
$$

is convex and its values at the endpoints $y=0$ and $y=1$ do not exceed one. Noting that $n /(2 n-2)>\beta_{n}$ the result follows by Lemma 10 .
Proof of (32). We recall that the functional $\mathcal{A}_{\mathrm{NR}}[w]$ has been defined in Lemma 5 and the functional $J_{\mathrm{NR}}[v]$ is expressed in terms of the function $w$ in Lemma 6 .

We observe that the coefficients of the terms involving $\left(\Delta_{\omega} w\right)^{2}$ in the two sides of (32) are equal. The same is true for the coefficients of the terms involving $\left|\nabla_{\omega} w_{t}\right|^{2}$. Hence the result will follow if we establish that

$$
K(t) \geq\left(\frac{n}{2(n-1)}\right)^{3} \cdot \frac{2(n-4)}{\beta^{4}}=\frac{4(n-1)(n-4)}{n}
$$

Indeed, the first two terms of $K(t)$ are enough for this, that is there holds

$$
(n-1)(n-4) X(t)^{\frac{8-4 n}{n}}-\frac{(n-1)(n-4)^{2}}{n} X(t)^{\frac{4-2 n}{n}}-\frac{4(n-1)(n-4)}{n} \geq 0
$$

for all $t \in(0,1)$. This completes the proof of the Rellich-Sobolev inequality of Theorem 2.

The sharpness of the constant $S_{2, n}$ in the Rellich-Sobolev inequality follows easily by concentrating near a point $x_{0} \in \partial \Omega$ with $\left|x_{0}\right|=D$.

Acknowledgement. We wish to thank the anonymous referee for a very careful reading of the initial manuscript and for bringing to our attention the relevance of article [8].

## References

[1] Adimurthi; Santra, S. Generalized Hardy-Rellich inequalities in critical dimension and its applications. Commun. Contemp. Math. 11 (2009), no.3, 367-394.
[2] Adimurthi; Grossi, M.; Santra, S. Optimal Hardy-Rellich inequalities, maximum principle and related eigenvalue problem. J. Funct. Anal. 240 (2006), no.1, 36-83.
[3] Adimurthi; Filippas, S.; Tertikas, A. On the best constant of Hardy-Sobolev inequalities. Nonlinear Anal. 70 (2009), no. 8, 2826-2833
[4] Barbatis, G. Best constants for higher-order Rellich inequalities in $L^{p}(\Omega)$. Math. Z. 255 (2007), 877-896
[5] Barbatis, G.; Filippas, S; Tertikas, A. Series expansion for $L^{p}$ Hardy inequalities. Indiana Univ. Math. J. 52 (2003), no.1, 171-190
[6] Barbatis, G.; Tertikas, A. On a class of Rellich inequalities. J. Comput. Appl. Math. 194 (2006), no.1, 156-172
[7] Barbatis, G.; Tertikas, A. Best Sobolev constants in the presence of sharp Hardy terms in Euclidean and hyperbolic space. Bull. Hellenic Math. Soc. 63 (2019), 64-96
[8] Beckner, W. Weighted inequalities and Stein-Weiss potentials. Forum Math. 20 (2008), 587-606
[9] Cazacu, C. A new proof of the Hardy-Rellich inequality in any dimension. Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 6, 2894-2904
[10] Caldiroli, P.; Musina, R. Rellich inequalities with weights. Calc. Var. Partial Differential Equations 45 (2012), 147-164
[11] Dan, S.; Ma, X.; Yang, Q. Sharp Rellich-Sobolev inequalities and weighted Adams inequalities involving Hardy terms for bi-Laplacian. Nonlinear Anal. 200 (2020), 112068, 18 pp.
[12] Davies, E.B.; Hinz A.M. Explicit constants for Rellich inequalities in $L_{p}(\Omega)$. Math. Z. 227 (1998), 511-523
[13] Deng, S.; Tian X. Stability of Rellich-Sobolev type inequality involving Hardy term for bi-Laplacian. arXiv:2306.02232
[14] Duy, N.T.; Lam, N.; Triet, N.A. Improved Hardy and Hardy-Rellich type inequalities with Bessel pairs via factorizations. J. Spectr. Theory 10 (2020), 1277-1302
[15] Edmunds, D.E.; Fortunato, D.; Jannelli, E. Critical exponents, critical dimensions and the biharmonic operator. Arch. Rational Mech. Anal. 112 (1990), 269-289
[16] Filippas, S.; Tertikas, A. Optimizing improved Hardy inequalities. J. Funct. Anal. 192 (2002), 186-233
[17] Gazzola, F.; Grunau, H.-C.; Mitidieri, E. Hardy inequalities with optimal constants and remainder terms. Trans. Amer. Math. Soc. 356 (2004), 2149-2168
[18] Gesztesy, F.; Littlejohn, L. Factorizations and Hardy-Rellich-type inequalities. Non-linear partial differential equations, mathematical physics, and stochastic analysis, 207-226. EMS Ser. Congr. Rep. European Mathematical Society (EMS), Zürich, 2018
[19] Gesztesy, F; Michael I.; Pang M.M.H. Extended power weighted Rellich-type inequalities with logarithmic refinements, Pure and Appl. Funct. Anal., to appear.
[20] Ghoussoub, N.; Moradifam, A. Bessel pairs and optimal Hardy and Hardy-Rellich inequalities. Math. Ann. 349 (2011), 1-57.
[21] Kombe, I.; Özaydin, M. Hardy-Poincaré, Rellich and uncertainty principle inequalities on Riemannian manifolds. Trans. Amer. Math. Soc. 365 (2013), 5035-5050.
[22] Rellich, F. Halbbeschränkte Differentialoperatoren höherer Ordnung Rellich, Franz Erven P. Noordhoff N. V., Groningen, 1956, pp. 243-250.
[23] Sano, M; Takahashi, F. Improved Rellich type inequalities in $\mathbb{R}^{N}$. Geometric properties for parabolic and elliptic PDE's, 241-255. Springer Proc. Math. Stat., 176 Springer, [Cham], 2016
[24] Stein, E.M.; Weiss, G. Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, No. 32. Princeton University Press, Princeton, N.J., 1971. x+297 pp.
[25] Tertikas, A.; Zographopoulos, N.B. Best constants in the Hardy-Rellich inequalities and related improvements. Adv. Math. 209 (2007), no. 2, 407-459

Department of Mathematics, National and Kapodistrian University of Athens, 15784 Athens, Greece

Email address: gbarbatis@math.uoa.gr
Department of Mathematics and Applied Mathematics, University of Crete, 70013
Heraklion, Crete, Greece \&
Institute of Applied and Computational Mathematics, FORTH, 71110 Heraklion, Crete, Greece

Email address: tertikas@uoc.gr


[^0]:    2020 Mathematics Subject Classification. Primary 35A23, 35G05, 35G20; Secondary 31B30, 35J30, 46E35.

    Key words and phrases. Rellich inequality; Sobolev inequality; best constant
    To appear in the Journal of Spectral Theory.

