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Abstract

We prove two improved versions of the Hardy-Rellich inequality for the polyhar-
monic operator (−∆)m involving the distance to the boundary. The first involves
an infinite series improvement using logarithmic functions, while the second con-
tains L2 norms and involves as a coefficient the volume of the domain. We find
explicit constants for these inequalities, and we prove their optimality in the first
case.
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1 Introduction

Let Ω be a convex domain in RN and let d(x) = dist(x, ∂Ω). The classical Hardy’s
inequality asserts that∫

Ω
|∇u|2dx ≥ 1

4

∫
Ω

u2

d2
dx , u ∈ C∞

c (Ω). (1)

There has recently been an increased interest in so-called inproved Hardy’s inequalities,
where additional non-negative terms appear in the right-hand side of (1). Such inequal-
ities were first established by Maz’ya [M] in the case where Ω is a half-space. Renewed
interest in such inequalities followed the work of Brezis and Marcus [BM] where (1) was
improved in two ways. More precisely, let X1(s) = (1− log s)−1, s ∈ (0, 1], a function
that vanishes at logarithmic speed at s = 0. It is shown in [BM] that if Ω is bounded
with diameter D then there holds∫

Ω
|∇u|2dx ≥ 1

4

∫
Ω

u2

d2
dx +

1
4

∫
Ω

u2

d2
X2

1 (d/D)dx , u ∈ C∞
c (Ω), (2)

and also ∫
Ω
|∇u|2dx ≥ 1

4

∫
Ω

u2

d2
dx +

1
4D2

∫
Ω

u2dx , u ∈ C∞
c (Ω). (3)

Inequalities (2) and (3) subsequently led to additional improvements and generaliza-
tions, which broadly can be termed logarithmic and non-logarithmic respectively.

Let us define recursively Xi(s) = X1(Xi−1(s)), i ≥ 2, s ∈ (0, 1]. Hence the Xi’s
are iterated logarithmic functions that vanish at an increasingly slow rate at s = 0
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and satisfy Xi(1) = 1. In was proved in [BFT1] that for any p > 1 there exists
D ≥ supΩ d(x) such that∫

Ω
|∇u|pdx ≥

(p− 1
p

)p
∫
Ω

|u|p

dp
dx +

1
2

(p− 1
p

)p−1
∞∑
i=1

∫
Ω

|u|p

dp
X2

1 (d/D) . . . X2
i (d/D)dx,

(4)
for all u ∈ C∞

c (Ω). Each new term in this series is optimal, with respect to both the
exponent two of Xi and the constant (1/2)((p− 1)/p)p−1. An analogous result for the
bilaplacian is obtained in [BT] where it is shown that∫

Ω
(∆u)2dx ≥ 9

16

∫
Ω

u2

d4
dx +

5
8

∞∑
i=1

∫
Ω

u2

d2
X2

1 (d/D) . . . X2
i (d/D)dx, (5)

which is, again, sharp.

Concerning non-logarithmic inequalities and answering a question of [BM], Hoffmann-
Ostenhof et al. [HHL] proved that diam(Ω)−2 in (3) can be replaced by c|Ω|−2/N , where
|Ω| stands for the volume of Ω; more precisely, they showed that∫

Ω
|∇u|2dx ≥ 1

4

∫
Ω

u2

d2
dx +

N

4

( |Ω|
aN

)−2/N
∫
Ω

u2dx, (6)

where, here and below, aN stands for the volume of the unit ball in RN . This was
generlized to p 6= 2 by Tidblom [T1] who obtained∫

Ω
|∇u|pdx ≥

(p− 1
p

)p
∫
Ω

|u|p

dp
dx+(p−1)

(p− 1
p

)p
√

πΓ(N+p
2 )

Γ(p+1
2 )Γ(N

2 )

(aN

|Ω|

) p
N

∫
Ω
|u|pdx. (7)

Such inequalities, where the volume of Ω appears in the right-hand side, have also been
called geometric, and we follow this terminology. In the case of geometric improvements
the identification of best constants is significantly more complex, since the problem has
a global character as opposed to local in the logarithmic case. Results in this direction
where obtained in [BFT2] in the linear case and when Ω is the unit ball B; in particular,
the best constant was identified in dimension N = 3. The constants appearing in (6)
and (7) are not sharp. A different type of non-logarithmic Lp improvemnts, rather in
the spirit of [M], is obtained in [T2]. See also [FMT1, FMT2] for recent results on
improved Lp Hardy-Sobolev inequalities, where an Lq norm, q > p, is added to the
right-hand side of Hardy’s inequality.

The Hardy-Rellich inequalities have various applications in the study of elliptic and
parabolic PDE’s. Improved Rellich inequalities are useful if critical potentials are
additionally present and they also serve to identify such potentials. As the simplest
example, one obtains information on the existence of solution and asymptotic behavior
for the equation ut = ∆ + V (or ut = −∆2 + V ) for critical potentials V . We refer to
[D, BM, O, MMP, BT] and references therein for more on applications.

Our aim in this article is the study of analogous problems for the polyharmonic operator
(−∆)m. The Hardy-Rellich inequality for (−∆)m was established by Owen [O] who
showed that if Ω is convex then∫

Ω
(∆m/2u)2dx ≥ A(m)

∫
Ω

u2

d2m
dx , u ∈ C∞

c (Ω), (8)
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where

A(m) =
12 · 32 · . . . · (2m− 1)2

4m

is sharp. Here and below we abuse the notation and write
∫
(∆m/2u)2dx to stand for∫

|∇∆(m−1)/2u|2dx when m is odd. In the main theorems of this paper we obtain two
improvements of (8), a logarithmic and a geometric improvement. To state our results,
let us define the constants

B(m) =
1

4m

m∑
i=1

m∏
k=1
k 6=i

(2k − 1)2,

Γ(m) =
N(N + 2) . . . (N + 2m− 2)

1 · 3 · · · (2m− 1)

( m∑
i=1

1
2m+i

i∏
k=1

(2k − 1)2
)
a

2m/N
N .

Our first theorem yields a logarithmic series improvement:

Theorem 1 Let Ω be convex and such that d(x) is bounded in Ω. Then there exists
D ≥ supΩ d(x) such that∫

Ω
(∆m/2u)2dx ≥ A(m)

∫
Ω

u2

d2m
dx + B(m)

∞∑
i=1

∫
Ω

u2

d2m
X2

1 (d/D) . . . X2
i (d/D)dx ,

for all functions u ∈ C∞
c (Ω).

In the direction of geometric improvement we have

Theorem 2 Let Ω be bounded and convex. Then there holds∫
Ω
(∆m/2u)2dx ≥ A(m)

∫
Ω

u2

d2m
dx + Γ(m)|Ω|−2m/N

∫
Ω

u2dx ,

for all functions u ∈ C∞
c (Ω).

For m = 2 Theorem 1 recovers inequality (5), while for m = 1 Theorem 2 recovers (6).
The constant B(m) of Theorem 1 is sharp; this is contained in the next theorem: we
set

Ir[u] =
∫
Ω
(∆m/2u)2dx−A(m)

∫
Ω

u2

d2m
dx−B(m)

r∑
i=1

∫
Ω

u2

d2m
X2

1 (d/D) . . . X2
i (d/D)dx .

Theorem 3 Let r ≥ 1 and suppose that for some constants C > 0, θ ∈ R and D ≥
supΩ d(x) the following inequality holds true,

Ir−1[u] ≥ C

∫
Ω

u2

d2m
X2

1 (d/D) . . . X2
r−1(d/D)Xθ

r (d/D)dx. (9)

for all u ∈ C∞
c (Ω). Then (i) θ ≥ 2. (ii) If θ = 2 then C ≤ B(m).
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We point out that the value of D does not affect the optimality of Theorem 2 in the
sense that for any D1, D2 ≥ supΩ d(x) there holds lim(Xi(d/D1))/(Xi(d/D2)) = 1 as
x → ∂Ω.

Our proofs of Theorems 1 and 2 are surprisingly simple once some one-dimensional
inequalities are available. These inequalities are obtained in Section 2. With these in
hand the proof is completed using the mean-distance function introduced by Davies
[D], as adapted by Owen in [O]; this is carried out in Section 3. What is significantly
more involved is the proof of the optimality of the constant B(m) in Theorem 3. This
is established in Section 4.

2 One dimensional estimates

For γ > −1 we define the constants

A(m, γ) =
(γ + 1)2(γ + 3)2 . . . (γ + 2m− 1)2

4m
,

B(m, γ) =
1

4m

m∑
i=1

m∏
k=1
k 6=i

(γ + 2k − 1)2 ,

Γ(m, γ) =
N(N + 2) . . . (N + 2m− 2)

(γ + 1)(γ + 3) . . . (γ + 2m− 1)

( m∑
i=1

1
2m+i

i∏
k=1

(γ + 2k − 1
)2

)
a

2m/N
N .

Note that when γ = 0 these reduce to the constants A(m), B(m) and Γ(m) defined in
the introduction. In relation to the case m = 1 of this definition, throughout the paper
we adopt the convention that empty sums equal zero and empty products equal one.

To simplify the notation we define

ζ(s) =
∞∑
i=1

X2
1 (s) . . . X2

i (s) , s ∈ (0, 1) (10)

We claim that that the series converges for all s ∈ (0, 1). Indeed, let us define the
functions

Y1(s) = (2− log s)−1 , Y1(s) = Y1(Yi−1(s)) , i ≥ 2 , s ∈ (0, 1) .

Let s∗ be the unique fixed point of Y1 in (0, 1), that is s∗ ∈ (0, 1) satisfies 2s∗ −
s∗ log s∗ = 1, and let s ∈ (0, e) be given. Then a simple argument shows that Yi(s)
is monotone convergent (incresing, decreasing or constant, according to whether s is
smaller, larger or equal to s∗, respectively) and its limit is precisely s∗. Hence it follows
from the ratio test that the series

∑∞
i=1 Y 2

1 (s) . . . Y 2
i (s) converges for all s ∈ (0, e). Since

Yi(es) = Xi(s), we conclude that the series (10) converges for all s ∈ (0, 1), as claimed.

Throughout this section we fix an open interval (0, 2b) and let ρ(t) = min{t, 2b − t},
the distance of t to the boundary of [0, 2b]. We have

Proposition 4 Let m ≥ 1 be fixed. Then there exists D ≥ b such that for any γ > −1
and λ ≥ 0 there holds∫ 2b

0
(1 + λζ(ρ/D))

(u(m))2

ργ(t)
dt ≥ A(m, γ)

∫ 2b

0

u2

ργ+2m
dt +

4



+
[
B(m, γ) + λA(m, γ)

] ∫ 2b

0

u2

ργ+2m
ζ(ρ/D) dt , (11)

for all u ∈ C∞
c (0, 2b).

Proof. We use induction. For m = 1 the result is contained in [BT, Theorem 1];
crucially, the constant D does not depend on γ. We assume that (11) is valid for m−1
(for the same D and for any γ > −1) and writing for simplicity ζ for ζ(ρ(t)/D), we
have ∫ 2b

0
(1 + λζ)

(u(m))2

ργ
dt

≥ A(m− 1, γ)
∫ 2b

0

(u′)2

ργ+2m−2
dt +

+
[
B(m− 1, γ) + λA(m− 1, γ)

] ∫ 2b

0

(u′)2

ργ+2m−2
ζ dt

= A(m− 1, γ)

{∫ 2b

0

(
1 +

[
λ +

B(m− 1, γ)
A(m− 1, γ)

]
ζ

)
(u′)2

ργ+2m−2
dt

}

≥ A(m− 1, γ)

{
A(1, γ + 2m− 2)

∫ 2b

0

u2

ργ+2m
dt+

+
[
B(1, γ + 2m− 2) +

[
λ +

B(m− 1, γ)
A(m− 1, γ)

]
A(1, γ + 2m− 2)

] ∫ 2b

0

u2

ργ+2m
ζ dt

}

= A(m− 1, γ)A(1, γ + 2m− 2)
∫ 2b

0

u2

ργ+2m
dt +

+
{ [

A(m− 1, γ)B(1, γ + 2m− 2) + B(m− 1, γ)A(1, γ + 2m− 2)
]
+

+λA(m− 1, γ)A(1, γ + 2m− 2)
∫ 2b

0

u2

ργ+2m
ζ dt .

Now, simple calculations together with the relations A(1, γ) = (γ+1)2/4 and B(1, γ) =
1/4 show that

A(m, γ) = A(m− 1, γ)A(1, γ + 2m− 2) ,

B(m, γ) = A(m− 1, γ)B(1, γ + 2m− 2) + B(m− 1, γ)A(1, γ + 2m− 2) .

This concludes the proof. //

Lemma 5 Let γ > −1 be fixed. Then∫ 2b

0

(u′)2

ργ
dt ≥ (γ + 1)2

4

∫ 2b

0

u2

ργ+2
dt +

(γ + 1)2

4
1

bγ+2

∫ 2b

0
u2dt, (12)

for all functions u ∈ C∞
c (0, 2b).

Proof. Let u ∈ C∞
c (0, 2b) be given and let g be a differentiable function on (0, b]. There

holds ∫ b

0
g′(ρ(t))u2dt = g(b)u2(b)− 2

∫ b

0
g(ρ(t))uu′dt

≤ g(b)u2(b) +
∫ b

0
g2(ρ(t))ργu2dt +

∫ b

0

(u′)2

ργ
dt,
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that is ∫ b

0

(u′)2

ργ
dt ≥

∫ b

0

(
g′(ρ(t))− g2(ρ(t))ργ

)
u2dt− g(b)u2(b).

Similarly, ∫ 2b

b

(u′)2

ργ
dt ≥

∫ 2b

b

(
g′(ρ(t))− g2(ρ(t))ργ

)
u2dt− g(b)u2(b).

Adding up we obtain∫ 2b

0

(u′)2

ργ
dt ≥

∫ 2b

0

(
g′(ρ(t))− g2(ρ(t))ργ

)
u2dt− 2g(b)u2(b).

Replacing g(·) by g(·)− g(b) we conclude that∫ 2b

0

(u′)2

ργ
dt ≥

∫ 2b

0

(
g′(ρ(t))− [g(ρ(t))− g(b)]2ργ

)
u2dt. (13)

Choosing

g(s) = −γ + 1
2

s−γ−1,

yields after some simple calculations∫ 2b

0

(u′)2

ργ
dt ≥ (γ + 1)2

4

∫ 2b

0

u2

ργ+2
dt +

(γ + 1)2

2

∫ 2b

0

u2

bγ+1ρ
dt− (γ + 1)2

4

∫ 2b

0

ργu2

b2γ+2
dt

≥ (γ + 1)2

4

∫ 2b

0

u2

ργ+2
dt +

(γ + 1)2

4

∫ 2b

0

u2

bγ+2
dt, (14)

as required. //

For γ > −1 we define

E(m, γ) =
m∑

i=1

1
2m+i

i∏
k=1

(γ + 2k − 1)2.

Proposition 6 For any γ > −1 there holds∫ 2b

0

(u(m))2

ργ
dt ≥ A(m, γ)

∫ 2b

0

u2

ργ+2m
dt + E(m, γ)

1
bγ+2m

∫ 2b

0
u2dt, (15)

for all functions u ∈ C∞
c (0, 2b).

Proof. For m = 1 this has been proved in the last lemma. Assuming (15) to be true
for m− 1 we compute∫ 2b

0

(u(m))2

ργ
dt ≥ A(m− 1, γ)

∫ 2b

0

(u′)2

ργ+2m−2
dt + E(m− 1, γ)

∫ 2b

0

(u′)2

bγ+2m−2
dt

≥ A(m− 1, γ)
(2m− 1 + γ)2

4

∫ 2b

0

u2

ργ+2m
dt +

+
(

A(m− 1, γ)
(2m− 1 + γ)2

4
+

1
2

E(m− 1, γ)
2

)
1

bγ+2m

∫ 2b

0
u2dt .
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The result follows if we note that

A(m, γ) = A(m− 1, γ)
(2m− 1 + γ)2

4
, E(m, γ) = A(m, γ) +

1
2
E(m− 1, γ). //

Remark. We could use the intermediate inequality in (14), hence obtaining b−γ−1ρ−1

instead of b−γ−2 in (12). This would lead to a better constant Ê(m, γ), defined induc-
tively by

Ê(1, γ) =
(γ + 1)2

4
, Ê(m, γ) =

(γ + 1)2

4

[
Ê(m−1, γ+2)+Ê(m−1, 1)+A(m−1, 1)

]
.

3 Higher dimensions

Let Ω be a convex domain in RN . We introduce some additional notation (see [D,
HHL]). For ω ∈ SN−1 and x ∈ Ω we define the following functions with values in
(0,+∞]:

τω(x) = inf{s > 0 | x + sω 6∈ Ω}
ρω(x) = min{τω(x), τ−ω(x)} (16)

bω(x) =
1
2
(τω(x) + τ−ω(x)).

We can now prove Theorems 1 and 2.

Proof of Theorem 1. Let u ∈ C∞
c (Ω) be given. Let us fix a direction ω ∈ SN−1 and

let Ωω be the orthogonal projection of Ω on the hyperplane perpendicular to ω. For
each z ∈ Ωω we apply Proposition 4 (with γ = 0) on the segment defined by z and
ω. By continuity and compactness, D can be chosen to be independent of ω. We then
integrate over z ∈ Ωω and using the convexity of Ω we conclude that∫

Ω
(∂m

ω u)2dx ≥ A(m)
∫
Ω

u2

ρ2m
ω

dx + B(m)
∫
Ω

u2

ρ2m
ω

ζ(ρω(x)/D)dx .

Since ζ is an increasing function, this implies∫
Ω
(∂m

ω u)2dx ≥ A(m)
∫
Ω

u2

ρ2m
ω

dx + B(m)
∫
Ω

u2

ρ2m
ω

ζ(d(x)/D)dx . (17)

We now integrate over ω ∈ SN−1. It is shown in [O] that∫
SN−1

∫
Ω
(∂m

ω u)2dx dS(ω) = C(m,N)
∫
Ω
(∆m/2u)2dx , (18)

where
C(m,N) =

1 · 3 . . . (2m− 1)
N(N + 2) . . . (N + 2m− 2)

.

In the same article it was shown that the convexity of Ω implies∫
SN−1

dS(ω)
ρ2m

ω (x)
≥ C(m, N)

1
d2m(x)

. (19)
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Combining (17), (18) and (19) we obtain the stated inequality. //

Proof of Theorem 2. Let u ∈ C∞
c (Ω) be given. Arguing as before, but using now

Proposition 6 instead of Proposition 4, we have∫
Ω
(∂m

ω u)2dx ≥ A(m)
∫
Ω

u2

ρ2m
ω

dx + E(m)
∫
Ω

u2

b2m
ω

dx , ω ∈ SN−1.

Integrating over ω ∈ SN−1 and using (18) and (19) yields∫
Ω
(∆m/2u)2dx ≥ A(m)

∫
Ω

u2

d2m
dx +

E(m)
C(m,N)

∫
Ω

∫
SN−1

u2

b2m
ω

dS(ω)dx . (20)

But [T1, Lemma 2.1] the convexity of Ω implies that∫
SN−1

1
bω(x)2m

dS(ω) ≥
( |Ω|
aN

)−2m/N
. (21)

Combining (20) and (21) and observing that

Γ(m) =
E(m)

C(m,N)
a

2m/N
N ,

concludes the proof of the theorem. //

4 Optimality of the constants

This section is more technical than the previous ones. Our main purpose will be the
computation of Ir−1[u] for an appropriate test function u. Throughout the section we
shall repeatedly use the differentiation rule

d

dt
Xβ

i (t) =
β

t
X1(t)X2(t) . . . Xi−1(t)X

1+β
i (t), i = 1, 2, . . . , β ∈ R, (22)

which is easily proved by induction.

Let m ∈ N. We recall our convention about empty sums or products and define the
functions

σ
(m)
0 (x) = x(x− 1) . . . (x−m + 1) , σ

(m)
1 (x) =

m∑
i=1

∏
k 6=i

(x− k + 1)

σ
(m)
2 (x) =

m∑
1≤i<j≤r

∏
k 6=i,j

(x− k + 1).

Lemma 7 Let s0, s1, . . . , sr ∈ R and u(t) = ts0Xs1
1 . . . Xsr

r . Let

Yij = X2
1 . . . X2

i Xi+1 . . . Xj 0 ≤ i ≤ j ≤ r,

with the conventions Y00 = 1, Yii = X2
1 . . . X2

i , Y0j = X1 . . . Xj. Then there holds

u(m)(t) = ts0−mXs1
1 . . . Xsr

r

∑
0≤i≤j≤r

c
(m)
ij Yij(t) + ts0−mO(Xs1+3

1 Xs2
2 . . . Xsr

r ), (23)
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where:

c
(m)
00 = σ

(m)
0 (s0), c

(m)
0j = sjσ

(m)
1 (s0), j ≥ 1,

c
(m)
ii = si(si + 1)σ(m)

2 (s0) , 1 ≤ i ≤ r, c
(m)
ij = (2si + 1)sjσ

(m)
2 (s0), 1 ≤ i < j ≤ r .

Proof. We use induction. When m = 1 (23) follows directly from (22). Let us assume
that

u(m−1)(t) = ts0−m+1Xs1
1 . . . Xsr

r

∑
0≤i≤j≤r

c
(m−1)
ij Yij(t) + ts0−m+1O(Xs1+3

1 Xs2
2 . . . Xsr

r ).

We differentiate and again use (22). The ts0−m+1O(Xs1+3
1 Xs2

2 . . . Xsr
r ) will give a

term ts0−mO(Xs1+3
1 Xs2

2 . . . Xsr
r ). After some simple calculations we obtain modulo

O(Xs1+3
1 Xs2

2 . . . Xsr
r ),

u(m)(t) = ts0−mXs1
1 . . . Xsr

r

{ ∑
0≤i≤j≤r

c
(m−1)
ij (s0 −m + 1)Yij +

r∑
j=i

c
(m−1)
00 sjY0j

+
r∑

j=1

r∑
k=1

c
(m−1)
0j Ykj +

r∑
j=1

r∑
k=j+1

c
(m−1)
0j skYjk

}

= ts0−mXs1
1 . . . Xsr

r

{
(s0 −m + 1)c(m−1)

00 Y00

+
r∑

j=1

[
(s0 −m + 1)c(m−1)

0j + sjc
(m−1)
00

]
Y0j

+
r∑

i=1

[
(s0 −m + 1)c(m−1)

ii + (si + 1)c(m−1)
0i

]
Yii

+
∑

1≤i<j≤r

[
(s0 −m + 1)c(m−1)

ij + (si + 1)c(m−1)
0j + sjc

(m−1)
0i

]
Yij

}
.

The proof is concluded by observing that the constants c
(k)
ij , 0 ≤ i ≤ j ≤ r, satisfy the

induction relations

c
(m)
00 = (s0 −m + 1)c(m−1)

00 ,

c
(m)
0j = (s0 −m + 1)c(m−1)

0j + sjc
(m−1)
00 , 1 ≤ j ≤ r,

c
(m)
ii = (s0 −m + 1)c(m−1)

ii + (si + 1)c(m−1)
0i , 1 ≤ i ≤ r,

c
(m)
ij = (s0 −m + 1)c(m−1)

ij + (si + 1)c(m−1)
0j + sjc

(m−1)
0i , 1 ≤ i < j ≤ r.

//

In the sequel we shall denote the constants c
(m)
ij simply by cij , since only the mth order

derivative of u will appear. Similarly, we shall write σi(x) instead of σ
(m)
i (x), i = 0, 1, 2.

Let s0 > (2m− 1)/2, s1, . . . , sr ∈ R be fixed. For 0 ≤ i ≤ j ≤ r we define

Γij =
∫ 1

0
t2s0−2mX2s1

1 . . . X2sr
r Yijdt

=
∫ 1

0
t2s0−2mX2s1+2

1 . . . X2si+2
i X

2si+1+1
i+1 . . . X

2sj+1
j X

2sj+1

j+1 . . . X2sr
r dt.

9



Lemma 8 Let u(t) = ts0Xs1
1 . . . Xsr

r . There holds

Ir−1[u] =
∑

0≤i≤j≤r

aijΓij +
∫ 1

0
t2s0−2mO(Xs1+3

1 Xs2
2 . . . Xsr

r )dt. (24)

where

a00 = c2
00 −A(m), a0j = 2c00c0j , 1 ≤ j ≤ r,

aii = c2
0i + 2c00cii −B(m), 1 ≤ i ≤ r − 1, arr = c2

0r + 2c00crr,

aij = 2c00cij + 2c0ic0j , 1 ≤ i < j ≤ r.

(25)

Proof. From Lemma 7 we have modulo
∫ 1
0 t2s0−2mO(Xs1+3

1 Xs2
2 . . . Xsr

r )dt,∫ 1

0
(u(m))2dt =

∫ 1

0
t2s0−2mX2s1

1 . . . X2sr
r

( ∑
0≤i≤j≤r

cijYij

)2

dt .

We expand the square and hence obtain a linear combination of terms of the form∫ 1
0 t2s0−2mX2s1

1 . . . X2sr
r YijYkldt, where 0 ≤ i ≤ j ≤ r, 0 ≤ k ≤ l ≤ r. Now, we observe

that YijYkl = O(X3
1 ) unless (1) i = j = 0 or (2) k = l = 0 or (3) i = k = 0. Hence,

denoting by S the last parenthesis above we have

S = c2
00 + 2

∑
0≤i≤j≤r
(i,j) 6=(0,0)

c00cijYij +
r∑

j,l=1

c0jc0lY0jY0l + O(X3
1 )

= c2
00 + 2

r∑
j=1

c00c0jY0j + 2
∑

1≤i≤j≤r

c00cijYij +
r∑

i=1

c2
0iY

2
0i + 2

∑
1≤i<j≤r

c0ic0jY0iY0j + O(X3
1 ).

Using the fact that Y0iY0j = Yij , i ≤ j, we thus conclude that

S = c2
00 + 2

r∑
j=1

c00c0jY0j +
r∑

i=1

(c2
0i + 2c00cii)Yii + 2

∑
1≤i<j≤r

(c00cij + 2c0ic0j)Yij .

The proof is complete if we recall that∫ 1

0

u2

t2m
dt = Γ00 and

∫ 1

0

u2

t2m
X2

1 . . . X2
i dt = Γii , 1 ≤ i ≤ r − 1 . //

Up to this point the parameters s0, s1, . . . , sr where arbitrary subject only to s0 >
(2m− 1)/2. We now make a more specific choice, taking

s0 =
2m− 1 + ε0

2
, sj =

−1 + εj

2
, 1 ≤ j ≤ r ,

where ε0, . . . , εr are small parameters. We consider the functional Ir−1[u] as a function
of these parameters and intend to take succesively the limits ε0 ↘ 0, . . . , εr ↘ 0. In
taking these limits we shall ignore terms that are bounded uniformly in the εi’s. In

10



order to distinguish such terms we shall make use of the following fact: we have [BFT1,
(3.8)]:

∫ 1

0
t−1+ε0X1+ε1

1 . . . X1+εr
r dt < ∞⇐⇒



ε0 > 0
or ε0 = 0 and ε1 > 0
or ε0 = ε1 = 0 and ε2 > 0

· · ·
or ε0 = ε1 = . . . = εr−1 = 0 and εr > 0.

(26)

For the terms that diverge as the εi’s tend to zero, we shall need some quantitive
information on the rate of divergence. This is contained in the following

Lemma 9 For any β < 1 there exists cβ > 0 such that

(i)
∫ 1

0
t−1+ε0Xβ

1 dt ≤ cβε−1+β
0 ,

(ii)
∫ 1

0
t−1X1 . . . Xi−1X

1+εi
i Xβ

i+1dt ≤ cβε−1+β
i , 1 ≤ i ≤ r − 1 .

Proof. (i) Setting s = ε−1
0 X1(t) we have t = exp(1 − ε−1

0 s−1), ds = ε−1
0 t−1X2

1dt, and
therefore ∫ 1

0
t−1+ε0Xβ

1 dt = eε0ε−1+β
0

∫ 1
ε0

0
e−

1
s s−2+βds

≤ eε0ε−1+β
0

∫ ∞

0
e−

1
s s−2+βds.

(ii) Similarly, we set s = ε−1
i Xi+1(t). Then

Xi(t) = exp(1− ε−1
i s−1) , ds = ε−1

i t−1X1 . . . XiX
2
i+1dt.

Hence (22) gives∫ 1

0
t−1X1 . . . Xi−1X

1+εi
i Xβ

i+1dt = eεiε−1+β
i

∫ 1
εi

0
e−

1
s s−2+βds,

yielding the stated estimate. //

We shall also need the following

Lemma 10 (i) There holds

ε20Γ00 − 2ε0

r∑
j=i+1

(1− εj)Γ0j =
r∑

i=1

(εi − ε2i )Γii −
∑

1≤i<j≤r

(1− εj)(1− 2εi)Γij + O(1),

where the O(1) is uniform in ε0, . . . , εr.
(ii) Let i ≥ 0 and (if i ≥ 1) assume that ε0 = . . . = εi−1 = 0. Then

εiΓii =
r∑

j=i+1

(1− εj)Γij + O(1),

where the O(1) is uniform in εi, . . . , εr.

11



Proof. The two parts of the lemma have been proved in [BFT1, p184] and [BFT1,
p181] respectively. //

Remark. We are now in position to prove Theorem 3, but before proceeding some
comments are necessary. The proof of the theorem is local: we fix a point x0 ∈ ∂Ω
and work entirely in a small ball B(x0, δ) using a cut-off function φ. The sequence of
functions that is used is then given by

u(x) = φ(x)d(x)
−1+2m+ε0

2 X1(d(x)/D)
−1+ε1

2 . . . Xr(d(x)/D)
−1+εr

2 , (ε0, . . . , εr > 0)

and, as already mentioned, we take the successive limits ε0 ↘ 0, . . . , εr ↘ 0; in taking
this limits, we work modulo terms that are bounded uniformly in the remaining εi’s.
Such are any terms that contain derivatives of φ; such are also any terms that contain
derivatives of d(x) of order higher than one since such derivatives are bounded near ∂Ω;
see, e.g. [LN, Section 1.3]. These considerations are to a large extent the justification of
the fact that, for the proof of Theorem 3 we can, without any loss of generality, restrict
ourselves to the one-dimensional case. We shall thus take Ω = (0, 1), and consider the
sequence

u(t) = t
−1+2m+ε0

2 X1(t)
−1+ε1

2 . . . Xr(t)
−1+εr

2 .

discussed earlier; multiplication by an appropriate cut-off function shows that u lies in
the appropriate Sobolev space. Note that u does not vanish at t = 1, but the cut-off
function φ would take care of that. For a complete picture of what the full proof would
look like, we refer to [BT] where the case m = 2 has been carried out in every detail.

Proof of Theorem 3 (see also the remark above) We define

u(t) = t
−1+2m+ε0

2 X1(t)
−1+ε1

2 . . . Xr(t)
−1+εr

2 , (27)

where ε0, . . . , εr are small positive parameters. For the reader’s convenience we recall
from Lemma 8 that

Ir−1[u] =
∑

0≤i≤j≤r

aijΓij + O(1), (28)

where the O(1) is uniform in ε0, . . . εr (by (26)) and the constants aij are given by

a00 = c2
00 −A(m), a0j = 2c00c0j , 1 ≤ j ≤ r,

aii = c2
0i + 2c00cii −B(m), 1 ≤ i ≤ r − 1, arr = c2

0r + 2c00crr,

aij = 2c00cij + 2c0ic0j , 1 ≤ i < j ≤ r.

(29)

The cij ’s are given by

c00 = σ0(s0), c0j = sjσ1(s0), j ≥ 1,
cii = si(si + 1)σ2(s0) , 1 ≤ i ≤ r, cij = (2si + 1)sjσ2(s0), 1 ≤ i < j ≤ r .

where, in turn,

s0 =
2m− 1 + ε0

2
, sj =

εj − 1
2

, 1 ≤ j ≤ r,

12



and

σ0(x) = x(x− 1) . . . (x−m + 1) , σ1(x) =
m∑

i=1

∏
k 6=i

(x− k + 1)

σ2(x) =
∑

1≤i<j≤m

∏
k 6=i,j

(x− k + 1).

We observe that
σ′0(x) = σ1(x) , σ′1(x) = 2σ2(x).

We now let ε0 ↘ 0 in (28). It follows from (26) that all Γij ’s with i ≥ 1 have finite
limits. As for the remaining terms Γ0j , applying Lemma 9 with β = −3/2 (for j = 0)
and with β = −1/2 (for j ≥ 1) we obtain respectively

Γ00 =
∫ 1

0
t−1+ε0X−1+ε1

1 . . . . . . X−1+εr
r dt

≤ c

∫ 1

0
t−1+ε0X

− 3
2

1 dt (30)

≤ cε
− 5

2
0

and

Γ0j =
∫ 1

0
t−1+ε0Xε1

1 . . . X
εj

j X
−1+εj+1

j+1 . . . X−1+εr
r dt

≤ c

∫ 1

0
t−1+ε0X

− 1
2

1 dt (31)

≤ cε
− 3

2
0 ,

where in both cases c > 0 is independent of ε1, . . . , εr. Now, we think of the contants
a0j and c0j as functions of ε0, writting a0j = a0j(ε0), c0j = c0j(ε0) and considering
ε1, . . . , εr as small positive parameters. Using Taylor’s theorem we shall expand the
coefficient a0j of Γ0j , j = 0 (resp. j ≥ 1) in powers of ε0, and relation (30) (resp. (31))
shows that we can discard powers with exponent ≥ 3 (resp. ≥ 2). We compute the
remaining ones. Denoting by Ak,0j the coefficient of εk

0 in a0j we have:

- Constant term in a00: We have A0,00 = a00(0) = c2
00(0)−A(m) = 0.

- Coefficient of ε0 in a00: We have c00(ε0) = σ0(2m−1+ε0
2 ) and therefore c′00(0) =

1
2σ1(2m−1

2 ). Hence a′00(ε0) = 2c00(ε0)c′00(ε0) = σ0(2m−1+ε0
2 )σ1(2m−1+ε0

2 ) and the coeffi-
cient is

A1,00 = a′00(0) = σ0(
2m− 1

2
)σ1(

2m− 1
2

).

We henceforth write σi for σi((2m− 1)/2), i = 0, 1, 2.

- Coefficient of ε20 in a00: The coefficient is

A2,00 =
1
2
a′′00(0) = [c′00(0)]2 + c00(0)c′′00(0) =

1
4
σ2

1 +
1
2
σ0σ2.

- Constant term in a0j, j ≥ 1: This is

A0,0j = a0j(0) = 2c00(0)c0j(0) = −(1− εj)σ0σ1 .
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- Coefficient of ε0 in a0j: This is

A1,0j = a′0j(0) = 2c′00(0)c0j(0) + 2c00(0)c′0j(0)

= −1
2
(1− εj)σ2

1 − (1− εj)σ0σ2.

Now, we observe that A0,0j = −(1− εj)A1,00. Hence (ii) of Lemma 10 implies that

A1,00ε0Γ00 +
r∑

j=1

A0,0jΓ0j = O(1) (32)

uniformly in ε1, . . . , εr. Similarly, we observe that A1,0j = −2(1 − εj)A2,00. Hence, by
(i) of Lemma 10, the remaining ‘bad’ terms when combined give

A2,00ε
2
0Γ00 + ε0

r∑
j=1

A1,0jΓ0j =

= A2,00

(
ε20Γ00 − 2ε0

r∑
j=1

(1− εj)Γ0j

)
(33)

= A2,00

( r∑
i=1

(εi − ε2i )Γii −
∑

1≤i<j≤r

(1− εj)(1− 2εi)Γij

)
+ O(1),

uniformly in ε1, . . . , εr. Note that the right-hand side of (33) has a finite limit as ε0 ↘ 0.
Combining (29) , (32) and (33) we conclude that, after letting ε0 ↘ 0, we are left with

Ir−1[u]

=
r∑

i=1

(
aii + A2,00(εi − ε2i )

)
Γii +

∑
1≤i<j≤r

(
aij −A2,00(1− εj)(1− 2εi)

)
Γij + O(1)

=:
r∑

i=1

biiΓii +
∑

1≤i<j≤r

bijΓij + O(1) , (ε0 = 0), (34)

where the O(1) is uniform in ε1, . . . , εr.

We next let ε1 ↘ 0 in (34). It follows from (26) that all the Γij ’s have a finite limit,
except those with i = 1 which diverge to +∞. The latter terms are again estimated
with the aid of Lemma 9, this time with i = 1. Part (i) of the lemma (with β = −3/2)
yields

Γ11 =
∫ 1

0
t−1X1+ε1

1 X−1+ε2
2 . . . X−1+εr

r dt

≤ c

∫ 1

0
t−1X1+ε1

1 X
− 3

2
2 dt (35)

≤ cε
− 5

2
1 ,

uniformly in ε2, . . . , εr. For j ≥ 2 it also yields (now with β = −1/2)

Γ1j =
∫ 1

0
t−1X1+ε1

1 Xε2
2 . . . X

εj

j X
−1+εj+1

j+1 . . . X−1+εr
r dt

≤ c

∫ 1

0
t−1X1+ε1

1 X
− 1

2
2 dt (36)

≤ cε
− 3

2
1 ,
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again, uniformly in ε2, . . . , εr. We think of the coefficients b1j and a1j as functions of
ε1 and we expand these in powers of ε1. Estimate (35) (resp. (36)) implies that only
the terms 1, ε1 and ε21 (resp. 1 and ε1) give contributions for Γ11 (resp. Γ1j , j ≥ 2) that
do not vanish as ε1 ↘ 0. We shall compute the coefficients of these terms; note that
c00 is now treated simply as a constant. Denoting by Bk,1j the coefficient of εk

1 in b1j ,
j ≥ 1, we have:

- Constant term in b11: For ε1 = 0 we have s1 = −1/2. Hence

B0,11 = b11(0)
= c2

01(0) + 2c00c11(0)−B(m)

=
1
4
σ2

1 −
1
2
σ0σ2 −B(m)

=
1
4

( m∑
i=1

∏
k 6=i

2k − 1
2

)2
− 1

2

( m∏
k=1

2k − 1
2

)( ∑
1≤i<j≤m

∏
k 6=i,j

2k − 1
2

)
−

−1
4

m∑
i=1

∏
k 6=i

(2k − 1
2

)2
.

This is zero as is seen by expanding the square:

( m∑
i=1

∏
k 6=i

2k − 1
2

)2
=

m∑
i=1

∏
k 6=i

(2k − 1
2

)2
+ 2

∑
i<j

( ∏
k 6=i

2k − 1
2

)( ∏
k 6=j

2k − 1
2

)
.

- Coefficient of ε1 in b11: We have

b′11(ε1) = a′11(ε1) + A2,00 − 2A2,00ε1

= 2c01(ε1)c′01(ε1) + 2c00c
′
11(ε1) + A2,00(1− 2ε1)

=
ε1 − 1

2
σ2

1 + ε1σ0σ2 +
(1
4
σ2

1 +
1
2
σ0σ2

)
(1− 2ε1),

and therefore the coefficient is

B1,11 = b′11(0) = −1
4
σ2

1 +
1
2
σ0σ2 = −B(m).

- Coefficient of ε21 in b11: The coefficient is

B2,11 =
1
2
b′′11(0) =

1
2
a′′11(0)−A2,00 =

1
4
σ2

1 +
1
2
σ0σ2 −A2,00 = 0.

- Constant term in b1j, j ≥ 2: We have

b1j(ε1) = 2c00c1j(ε1) + 2c01(ε1)c0j(ε1)−A2,00(1− εj)(1− 2ε1)

= ε1(εj − 1)σ0σ2 +
(ε1 − 1)(εj − 1)

2
σ2

1 −A2,00(1− εj)(1− 2ε1),

and therefore the constant term is

B0,1j = b1j(0) = (1− εj)
(

σ2
1

2
−A2,00

)
= (1− εj)B(m).
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- Coefficient of ε1 in b1j, j ≥ 2: The coefficient is

B1,1j = b′1j(0) = (εj − 1)σ0σ2 +
εj − 1

2
σ2

1 + 2A2,00(1− εj) = 0.

We obsrerve that B0,1j = −(1− εj)B1,11, j ≥ 2. Hence part (ii)of Lemma 10 gives

ε1B1,11Γ11 +
r∑

j=2

B0,1jΓ1j = O(1), (37)

uniformly in ε2, . . . , εr. Combining (34) and (37) we conclude that after letting ε1 ↘ 0
we are left with

Ir−1[u] =
∑

2≤i≤j≤r

bijΓij + O(1) , (ε0 = ε1 = 0), (38)

uniformly in ε2, . . . , εr. Note that we have the same coefficients bij as in (34), unlike
the case where the limit ε0 ↘ 0 was taken, in which case we passed from the original
coefficients aij to the coefficients bij .

We proceed in this way. At the ith step we denote by Bk,ij the coefficient of εk
i in bij ,

j ≥ i, and observe that (exactly as in the case i = 1) there holds

B0,ij = −(1− εj)B1,ii , B2,ii = B1,ij = 0 , j ≥ i + 1.

Hence (ii) of Lemma 10 implies the cancelation (modulo uniformly bounded terms) of
all terms that, individually, diverge as εi ↘ 0. Eventually, after letting εr−1 ↘ 0, we
arrive at

Ir−1[u] = brrΓrr + O(1) , (ε0 = ε1 = . . . = εr−1 = 0), (39)

where brr has been defined in (34). We observe now that∫ 1

0

u2

t2
X2

1 . . . X2
r dt = Γrr.

Hence, using the fact that Γrr → +∞ as εr ↘ 0 (cf (26)) we obtain

inf
C∞c (0,1)

Ir−1[v]∫ 1
0

v2

t2
X2

1 . . . X2
r dt

≤ lim
εr→0+

brrΓrr + O(1)
Γrr

= lim
εr→0+

arr

= lim
εr→0

(c2
0r + 2c00crr)

=
1
4
σ2

1 −
1
2
σ0σ2

= B(m).

This proves part (ii) of the theorem. Part (i) follows from (39) by slightly varying the
above argument. //
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