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SUMMARY

We study the periodic homogenization of Maxwell’s equations for dissipative bianisotropic media in
the time domain, both in R3 and in a bounded domain with the perfect conductor boundary condition.
We consider both local with respect to time (optical response region) and non-local in time (allowing
dispersive e�ects) constitutive laws; in the non-local case the explicit description of the homogenized
coe�cients is given in terms of the Laplace transform. The principal result of this work is the de-
scription of the asymptotic behaviour of the solutions of the considered problems as the period of the
electromagnetic parameters tends to zero. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In Mechanics, Physics, Chemistry and Engineering, in the study of composite materials, one
is often led to the study of boundary value problems in media with periodic structure. If the
period of the structure is small compared to the size of the region in which the system is to
be studied, then asymptotic analysis is called for in order to obtain an asymptotic expansion
of the solution in terms of a small parameter which is the ratio of the two length-scales. The
aim of homogenization theory is to establish the macroscopic behaviour of such a system.
This means that the non-homogeneous material is replaced by a homogeneous �ctitious one
(the ‘homogenized’ material) whose global characteristics are a good approximation of the
initial ones. From the mathematical point of view this signi�es mainly that the solutions of a
boundary value problem depending on a small parameter, converge to the solution of a limit
boundary value problem which is explicitly described. Representative of the mathematical
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1242 G. BARBATIS AND I. G. STRATIS

work on homogenization are the monographs [1–4]; see also [5] for optimization problems
leading to homogenization questions.
The concept of bianisotropic medium, which is actually synonymous to ‘general linear

medium’, was introduced in 1968 by Cheng and Kong. The bianisotropic description of ma-
terials has fundamental importance from the point of view of relativity [6]. In recent years,
the study of linear complex media (of which bianisotropic media constitute the more general
form) is very intensive in the electromagnetic community both at theoretical level and in
relation to experimental work related to important new technologies [7,8].
Within the electromagnetic community, homogenization of composites has a huge literature

—see [9,10] and references therein—the biggest part of which is devoted to dielectrics. The
literature on bianisotropic composites is much less. Among the recent developments are the
work on Maxwell Garnett and Bruggeman formalisms for di�erent classes of bianisotropic
inclusions (see References [11,12] and the references therein) and the work on the strong
property �uctuation theory for bianisotropic composites (see References [11,13] and the ref-
erences therein).
The mathematical literature on electromagnetics in complex media is not, as yet, very

extended. The bigger part deals with the study of time-harmonic waves in chiral media, which
leads to frequency domain studies; the references in Reference [14] give a comprehensive
account of research activity in this direction. The literature in the time domain is even more
restricted; we refer to [15–17] and references therein.
We work in the time domain and consider dissipative bianisotropic media. This is a large

class and besides isotropic media it also contains chiral and bi-isotropic media, uniaxial
dielectric=magnetic media, uniaxial bianisotropic media, gyrotropic media, biaxial anisotropic
media, biaxial bianisotropic media and general anisotropic media. To the best of our knowl-
edge, our results are knew for these special cases too. For the corresponding problem for
isotropic media see References [4,18–21] and the references therein.
In Section 2 we formulate the problem to be studied, introduce some notation and state

a compensated compactness result which will be used in the sequel. In Section 3 we con-
sider the problem in the optical response region, i.e. assuming local with respect to time
constitutive relations, establish its unique solvability and describe the asymptotic behaviour of
its solution as the period of the electromagnetic parameters tends to zero. The proof of the
main result makes use of an auxiliary elliptic system with the aid of which the homogenized
coe�cients are expressed. We note that the latter can also be obtained formally if one postu-
lates a double-scale expansion for the periodic problem. Finally, in Section 4 we extend the
results of Section 3 to general (not necessarily in the optical response region) bianisotropic
media.

2. FORMULATION

Let � be a domain in R3. We consider Maxwell’s equations

@tD= curlH+ F(x; t) (1)

@tB=−curlE+G(x; t); x∈�; t¿0 (2)
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HOMOGENIZATION OF MAXWELL’S EQUATIONS 1243

with initial conditions

E(x; 0)= 0; H(x; 0)= 0; x∈� (3)

and the perfect conductor boundary condition

n×E= 0; x∈ @�; t¿0 (4)

where n is the outward unit normal on @�. This boundary condition is, of course, only
considered if � �= R3, in which case we further assume that the boundary @� is C1.
In this paper, we shall investigate the homogenization of the above system when the mate-

rial involved is bianisotropic. The constitutive relations for a bianisotropic medium have the
following general form [16]:

D= �E+ �H+ �d ∗ E+ �d ∗H
B= �E+ �H+ �d ∗ E+ �d ∗H

(5)

where ∗ stands for temporal convolution, i.e. u∗v= ∫ t−∞ u(t−s)v(s) ds. The functions �; �; � and
� take values in the space M3(R) of 3× 3 real matrices and describe the optical (instantaneous)
response of the material. The susceptibility functions �d; �d; �d and �d have an additional
explicit time dependence and also take values in M3(R); they vanish for t¡0 due to causality.
The symbols ” and ”d are usually used instead of � and �d, but, as is typical in homogenization
problems, we reserve the letter � to stand for a typical length at the microscopic scale. We do
not include electric and magnetic current densities in Maxwell’s equations, since in view of
[22], such terms can be incorporated in the dispersion terms by a suitable gauge transformation.
In what follows we will use boldface capital letters to denote three-vectors and calligraphic

capital letters to denote six-vectors.
Using the electromagnetic six-vector �eld E and the six-vector �ux density D, given, re-

spectively, by

E=

(
E

H

)
; D=

(
D

B

)

the constitutive relations (5) are written as a single six-vector equation

D=AE+K ∗ E (6)

where

A(x)=

(
� �

� �

)
; K(x; t)=

(
�d �d

�d �d

)

are, respectively, the six-dyadic of the optical response and the susceptibility kernel six-dyadic
which models the dispersive e�ects. It is known [23] that in certain frequency ranges one can
ignore the dispersive component and work in the optical response region (K= 0). A study
of the error in the optical response approximation for chiral media is performed in Reference
[24]. We will �rst treat the optical response approximation for dissipative media and then the
general case.
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1244 G. BARBATIS AND I. G. STRATIS

To complete this section, let us introduce some notation. Given a domain V ⊂R3 we denote
by H (V; div) (resp. H (V; curl)) the closure of C∞

0 (V ) (in�nitely di�erentiable functions of
compact support) in the norm {‖u‖22 + ‖div u‖22}1=2 (resp. {‖u‖22 + ‖curl u‖22}1=2). We recall the
following compensated compactness result of Tartar [1, Chapter 1, Section 11.4]:

Theorem 1
Let V ⊂ R3 be bounded and let (Tn) and (Sn) be two sequences of vector �elds in H (V; div)
and H (V; curl), respectively. Suppose that

Tn→T weakly in H (V; div)

Sn→S weakly in H (V; curl)

Then

Tn · Sn→T · S in D′(V )

3. DISSIPATIVE MEDIA IN THE OPTICAL RESPONSE REGION

We consider dissipative bianisotropic media in the optical response region. By Frid�en et al.
[22] the matrix A in (6) is symmetric and uniformly coercive. Hence, denoting by �T the
transpose of a matrix �, we have

D= �E+ �H

B= �TE+ �H
(7)

where �, � and � are 3× 3 real matrices with entries in L∞(�) and there exists c¿0 such
that

〈A(x)U;U〉¿c‖U‖2; x∈�; U∈R6 (8)

Of course the submatrices � and � are also symmetric and uniformly coercive. We then have

Theorem 2
Assume that F;G : (0;∞)→L2(�) are locally H�older continuous and that

∫∞
0 (‖F‖2+‖G‖2) dt

¡ +∞. Then the Maxwell system (1)–(3) subject to the constitutive relations (7) has a
unique solution (E;H) in C((0;∞), L2(�)).
Proof
The operator

Q :=−i
(

0 curl

−curl 0

)

with domain H (�; curl)⊕H (�; curl) is self-adjoint on L2(�) [25, Lemma VII 4.4]. Writing

E=

(
E

H

)
; F=

(
F

G

)
(9)
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HOMOGENIZATION OF MAXWELL’S EQUATIONS 1245

the Maxwell system takes the form

AE′= iQE+F; E(0)= 0 (10)

and has a unique solution in L2(�) by standard semigroup theory [26, Theorem 1.16].

In this section, we will consider a homogenization problem associated to the Maxwell
system (2). More precisely for �¿0 we consider the system:

@tD� = curlH� + F(x; t)

@tB� =−curlE� +G(x; t); x∈�; t¿0
E�(x; 0) = 0; H�(x; 0)= 0

n×E� = 0; x∈ @�; t¿0

(11)

subject to the constitutive laws

D�(x; t) = ��(x)E�(x; t) + ��(x)H�(x; t)

B�(x; t) = ��T(x)E�(x; t) + ��(x)H�(x; t)
(12)

In addition to the assumptions of Section 2, we assume that ��, �� and �� are periodic with
period of small scale �¿0; more precisely we assume that

��(x)= �(x=�); ��(x)=�(x=�); ��(x)= �(x=�)

where �, � and � are periodic matrix-valued functions on R3 of common period Y , say (so Y
is a parallelepiped). Our aim is to describe the asymptotic behaviour of the solution (E�;H�)
of the above system in the limit �→ 0.
We let H 1

per(Y ) denote the closed subspace of H
1(Y ) that consists of periodic functions and

de�ne the operator Lper : H 1
per(Y )→ (H 1

per(Y ))
∗ by

Lper =

(−div(� grad) −div(� grad)
−div(�T grad) −div(� grad)

)

The coercivity assumption (8) implies that Lper is invertible modulo constants. In particular,
we can de�ne (modulo constants) the functions uj1, u

j
2, v

j
1 and v

j
2, j=1; 2; 3, by the relations

Lper

(
uj1

uj2

)
=

(
@�ij=@yi

@�ji=@yi

)
; Lper

(
vj1

vj2

)
=

(
@�ij=@yi

@�ij=@yi

)

We de�ne the homogenized constant coe�cient matrices �h; �h and �h by

�hij = 〈�ij + �ik@ykuj1 + �ik@ykuj2〉
�hij = 〈�ij + �ik@ykv j2 + �ik@ykv j1〉
�hij = 〈�ij + �ik@ykv j2 + �ki@ykv j1〉

(13)
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1246 G. BARBATIS AND I. G. STRATIS

where 〈g〉 := |Y |−1 ∫Y g. Note that de�nition (13) is independent of the additive constants
modulo which the functions uj1 ; u

j
2 ; v

j
1 and v

j
2 ; j=1; 2; 3, are de�ned. It is not obvious but it

is easy to prove that the block matrix

Ah=

(
�h �h

�hT �h

)

is symmetric and positive de�nite. We note here that one can also deduce relations (13)
formally by postulating a double-scale expansion for E� and H�. We shall prove the following:

Theorem 3
Let F;G satisfy the assumptions of Theorem 2 and let (E�;H�) be the solution of the Maxwell
system (1)–(4) subject to the constitutive laws (12). Then

E�→E∗; H�→H∗ ∗ -weakly in L∞((0;∞); L2(�))
where (E∗;H∗) is the unique solution of the Maxwell system

@tD∗ = curlH∗ + F

@tB∗ =−curlE∗ +G; x∈�; t¿0
E∗(x; 0) = 0; H∗(x; 0)= 0; x∈�
n×E∗ = 0; x∈ @�; t¿0

(14)

subject to the homogeneous constitutive laws

D∗(x; t) = �hE∗(x; t) + �hH∗(x; t)

B∗(x; t) = �hTE∗(x; t) + �hH∗(x; t)
(15)

Proof
We take the inner product of the �rst and second Maxwell equation (11) with E� and H�

correspondingly and then add the resulting relations. Using the identity∫
�
curlH� · E�=

∫
�
curlE� ·H� +

∫
@�
curlH� · (E�× n)

and the boundary condition of (11) we obtain

〈@tD�;E�〉+ 〈@tB�;H�〉= 〈F;E�〉+ 〈G;H�〉 (16)

Using the constitutive laws (12) and recalling the six-vector notation (9) we write (16) as

〈A�@tE�;E�〉= 〈F;E�〉 (17)

Letting f(t)= 1
2 〈A�E�;E�〉 we have

f′(t) = 〈A�@tE�;E�〉
= 〈E�;F〉
6 ‖E�‖2‖F‖2
6 c‖F‖2f1=2(t)

Copyright ? 2003 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2003; 26:1241–1253



HOMOGENIZATION OF MAXWELL’S EQUATIONS 1247

where the last inequality follows from (8). Hence, using the fact that
∫ ‖F‖2 dt¡∞ and using

(8) once more, we conclude that there exists c¿0 such that

‖E�‖26c; ‖H�‖26c; �¿0; t¿0 (18)

The boundedness of A� together with (18) imply that D� and B� are also bounded in L2(�) uni-
formly in �; t¿0. It is then standard [2, Theorem 1.26] that there exists E∗;H∗;D∗;B∗ ∈L∞((0;
∞); L2(�)) such that, up to taking a subsequence �→ 0, there holds

E�→E∗; H�→H∗

D�→D∗; B�→B∗

}
∗ -weakly in L∞((0;∞); L2(�)) (19)

The ensuing arguments will identify (E∗;H∗) and will show that any ∗-weakly convergent
subsequence of (E�;H�) has (E∗;H∗) as its limit. This implies the convergence of the full
sequence (E�;H�); see Reference [2, Theorem 1.26].
Let us take the Laplace transform g(t) �→ ĝ(p); p∈C+ := {Rep¿0}, of Maxwell’s equations

(11); we obtain

pD̂� = curl Ĥ� + F̂

pB̂� =−curl Ê� + Ĝ; p∈C+; x∈�
(20)

Moreover (19) implies that

Ê�→ Ê∗ Ĥ�→ Ĥ∗

D̂�→ D̂∗ B̂�→ B̂∗

}
weakly in L2(�) (�xed p∈C+:) (21)

Combining (20) and (21) implies that for �xed p∈C+ the vector �elds curl Ê� and curl Ĥ�

have L2 norms that remain bounded as �→ 0. Hence they have weak limits in L2(�). It then
follows from (21) that Ê∗ and Ĥ∗ belong to H (�; curl) and moreover

Ê�→ Ê∗; Ĥ�→ Ĥ∗ weakly in H (�; curl) (22)

Letting �→ 0 in (20) then yields

pD̂
∗
= curl Ĥ∗ + F̂

pB̂∗ =−curl Ê∗ + Ĝ; p∈C+; x∈�
(23)

which implies that E∗, H∗, D∗ and B∗ satisfy the Maxwell system:

@tD∗ = curlH∗ + F

@tB∗ =−curlE∗ +G; x∈�; t¿0 (24)

E∗(x; 0) = 0; H∗(x; 0)= 0; x∈� (25)

Hence it remains to establish that the boundary condition n×E∗= 0 is also satis�ed and that
the vector �elds E∗, H∗, D∗ and B∗ are related by the constitutive laws (15).

Copyright ? 2003 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2003; 26:1241–1253



1248 G. BARBATIS AND I. G. STRATIS

Validity of the boundary condition: We �rst note that the boundary condition is understood
in the sense of the trace operator H (curl;�)→H−1=2(@�), U �→ n×U|@�. Let us �x a function
�∈H 1=2(@�). There exists [25, p. 341] �∈H 1(�) such that �|@� =�. Now, for �¿0 there
holds

∫
�
curl� · E� =

∫
�
curlE� ·�+

∫
@�
�(n×E�)

∫
�
curl� · E∗ =

∫
�
curlE∗ ·�+

∫
@�
�(n×E∗)

Combining these with the fact that n×E�|@� = 0 and the relations

∫
�
curl� · E� →

∫
�
curl� · E∗

∫
�
curlE� ·�→

∫
�
curlE∗ ·� (�→ 0)

we obtain ∫
@�
�(n×E∗)=

∫
@�
�(n×E∗)=0

Since �∈H 1=2(@�) was arbitrary, we conclude that n×E∗= 0 on @�.
Validity of the constitutive laws: Let us �x a bounded domain V with �V ⊂�. Since

div curl = 0, (20) and (23) imply that div D̂
�
=div D̂

∗
and div B̂�=div B̂∗, and (21) then yields

D̂
�→ D̂

∗
; B̂�→ B̂∗ weakly in H (V; div) (26)

Let L� denote the elliptic operator H 1
0 (V )→H−1(V ) given in block form by

L�=

(−div(�� grad) −div(�� grad)
−div(��T grad) −div(�� grad)

)

Then L� is invertible for all �¿0. Now, let g1; g2 ∈H−1(V ) be �xed and let u�; v� ∈H 1
0 (V )

solve the system

L�
(
u�

v�

)
=

(
g1

g2

)

Moreover, let Lh :H 1
0 (V )→H−1(V ) be the constant coe�cient operator

Lh=

(−div(�h grad) −div(�h grad)
−div(�hT grad) −div(�h grad)

)

Copyright ? 2003 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2003; 26:1241–1253



HOMOGENIZATION OF MAXWELL’S EQUATIONS 1249

By standard homogenization theory, [1], Lh is the limit as �→ 0 of L� in the following sense:
if (u; v) is the unique solution of

Lh
(
u

v

)
=

(
g1

g2

)

then

grad u�→ grad u;

grad v�→ grad v;

}
weakly in L2(V ) (27)

and moreover

�� grad u� + �� grad v�→ �h grad u+ �h grad v

��T grad u� + �� grad v�→ �hT grad u+ �h grad v

}
weakly in L2(V ) (28)

Relations (27) together with the fact that curl grad =0 imply that

grad u�→ grad u; grad v�→ grad v weakly in H (V; curl) (29)

Combining (26) and (29) and applying Theorem 1 we obtain

D̂
� · grad u�→ D̂

∗ · grad u (30)

B̂� · grad v�→ B̂∗ · grad v (31)

in D′(V ). Moreover, we have

−div(�� grad u� + �� grad v�) = g1 = − div(�h grad u+ �h grad v)
−div(��T grad u� + �� grad v�) = g2 = − div(�hT grad u+ �h grad v)

and these together with (28) imply

�� grad u� + �� grad v�→ �h grad u+ �h grad v

��T grad u� + �� grad v�→ �hT grad u+ �h grad v

}
weakly in H (V; div)

Combining these with (22) and applying Theorem 1 we obtain

(�� grad u� + �� grad v�) · Ê�→ (�h grad u+ �h grad v) · Ê∗ (32)

(��T grad u� + �� grad v�) · Ĥ�→ (�hT grad u+ �h grad v) · Ĥ∗ (33)

in D′(V ).
Now we observe that the left-hand side of the sum of (30) and (31) coincides with the

left-hand side of the sum of (32) and (33). Hence the corresponding right-hand sides are
equal, that is

D̂
∗ · grad u+ B̂∗ · grad v=(�h grad u+ �h grad v) · Ê∗ + (�hT grad u+ �h grad v) · Ĥ∗

Copyright ? 2003 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2003; 26:1241–1253



1250 G. BARBATIS AND I. G. STRATIS

The fact that g1 and g2 were arbitrary, together with the symmetry of �h and �h imply that

D̂
∗
= �hÊ∗ + �hĤ∗

B̂∗ = �hTÊ∗ + �hĤ∗; x∈V; p∈C+

Since V is arbitrary, we obtain the Laplace transforms of the stated constitutive laws; this
completes the proof.

4. GENERAL BIANISOTROPIC MEDIA

If we observe carefully the proof of Theorem 3 we see that the special form (12) of the
constitutive laws was used at two points and in order to guarantee (i) existence and uniqueness
for Maxwell’s equations; and (ii) the validity of the �nite energy condition (18) on the solution
(E�;H�). If one assumes a priori that properties (i) and (ii) are valid then the arguments of
the proof go through without essential modi�cations for the wider class of constitutive laws
(5) that take into account dispersive e�ects.
Consider the initial boundary value problem for Maxwell’s equations:

@tD� = curlH� + F(x; t)

@tB� =−curlE� +G(x; t); x∈�; t¿0
E�(x; 0) = 0; H�(x; 0)= 0; x∈�
n×E� = 0; x∈ @�; t¿0

(34)

subject to the constitutive laws

D� = ��E� + ��H� + ��d ∗ E� + ��d ∗H�

B� = ��E� + ��H� + ��d ∗ E� + ��d ∗H�
(35)

The functions ��(x); ��(x); ��(x); ��(x) as well as the functions ��d(x; t), �
�
d(x; t), �

�
d(x; t),

��d(x; t) are periodic in x of period �Y . As in Section 3 we denote by �̂(p) the Laplace
transform of a function �(t). We assume that there exists c¿0 such that the block matrix

�+ �̂d �+ �̂d

�+ �̂d �+ �̂d


 =:A(x; p) (36)

satis�es

〈A(x; p)U;U〉¿c‖U‖2; x∈�; p∈C+; U∈R6

We �x a domain V with �V ⊂ � and consider the operator

L�=


−div((�+ �̂d) grad) −div((�+ �̂d) grad)

−div((�+ �̂d) grad) −div((�+ �̂d) grad)


 :H 1

0 (V )→H−1(V )

Copyright ? 2003 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2003; 26:1241–1253



HOMOGENIZATION OF MAXWELL’S EQUATIONS 1251

and the corresponding homogenization limit

Lh=:

(−div(�̃h grad) −div(�̃h grad)
−div(�̃h grad) −div(�̃h grad)

)

Note that while the coe�cients of Lh are spatially constant, they do depend on p∈C+. We
assume that for �xed x∈� the functions �̃h; �̃h; �̃h and �̃h are the Laplace transforms of
functions �h; �h; �h; �h on (0;∞). We then have
Theorem 4
Assume that the Maxwell system (34) and (35) is uniquely solvable for all �¿0 and that
‖E�‖2; ‖H�‖26c for all �; t¿0. Then the solution (E�;H�) of the above system satis�es

E�→E∗; H�→H∗ ∗ -weakly in L∞((0;∞); L2(�))
where (E∗;H∗) is the unique solution of the Maxwell system

@tD∗ = curlH∗ + F

@tB∗ =−curlE∗ +G; x ∈ �; t¿0
E∗(x; 0) = 0; H∗(x; 0)= 0

n×E∗ = 0; x ∈ @�; t¿0

(37)

subject to the constitutive laws

D∗ = �h ∗ E∗ + �h ∗H∗

B∗ = �h ∗ E∗ + �h ∗H∗ (38)

Proof
Arguing as in the proof of Theorem 3 we �rst prove that there exist vector �elds E∗;H∗;D∗

and B∗ that are limits as �→ 0 of E�;H�;D� and B� and that E∗;H∗ satisfy the stated initial
condition. It then remains to establish the boundary condition and the constitutive laws (38).
For the boundary condition, one works in the space of Laplace transforms and argues as in
the proof of Theorem 3.
To prove (38) we take the Laplace transform of (35). Recalling de�nition (36) we obtain

D̂�
B̂�


 =A(x; p)

(
Ê�

Ĥ�

)
; x ∈ �; p ∈ C+

The argument of Theorem 3 goes through, p ∈ C+ being carried along as a parameter. We
conclude that

D̂
∗
= �̃hÊ∗ + �̃hĤ∗

B̂∗ = �̃hÊ∗ + �̃hĤ∗; x ∈ �; p ∈ C+
(39)

from which (38) follows.
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Remark

(1) The above theorem gives the homogenized coe�cients as inverse Laplace transforms of
certain functions. In concrete cases one can use numerical schemes to obtain precise
approximations of �h, �h, �h, �h.

(2) Clearly both Theorems 3 and 4 have, additionally, versions non-global in time, where
(0;+∞) is everywhere replaced by (0; T ).

(3) It is clear that the functions F and G can also depend on �¿0, provided one makes
suitable assumptions on their behaviour as �→ 0.
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