
Gaussian estimates with best constants for higher-order

Schrödinger operators with Kato potentials

G. Barbatis∗

March 28, 2016

Abstract

We establish Gaussian estimates on the heat kernel of a higher-order uniformly elliptic
Schrödinger operator with variable highest order coefficients and with a Kato class potential.
The estimates involve the sharp constant in the Gaussian exponent.
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1 Introduction

Let Ω be a domain in Rn and let H0 be a uniformly elliptic operator of order 2m with L∞

coefficients acting on L2(Ω),

(H0u)(x) = (−1)m
∑
|α|≤m
|β|≤m

Dα{aαβ(x)Dβu},

subject to Dirichlet boundary conditions on ∂Ω. If 2m ≥ n then the semigroup generated by H0

has a continuous integral kernel K0(t, x, y) (also referred to as the heat kernel) which satisfies a
Gaussian estimate of the form

|K0(t, x, y)| < c1t
− n

2m exp
{
− c2

|x− y|
2m

2m−1

t
1

2m−1

+ c3t
}
, (1)

see [12, 8].
In the article [13] Davies and Hinz studied the operator H0+V for singular potentials V and

obtained conditions under which the L2 semigroup e−(H0+V )t extends to a strongly continuous
holomorphic semigroup in Lp, 1 ≤ p <∞. Amongst the potentials they considered are potentials
V that are Kato class with respect to H0, that is they satisfy

‖V (H0 + λ)−1‖L1→L1 −→ 0 , as λ→ +∞ ,

In the recent article [14] the authors consider the question of Gaussian heat kernel estimates for
H0 + V for Kato class potentials V . Under the assumption that H0 has constant coefficients
they prove that estimate (1) is also valid for the heat kernel K(t, x, y) of H0 + V . In the very
recent article [17] the authors consider the operator (−∆)m +V for Kato potentials V and apply
the methods of [14] together with Davies’ exponential perturbation technique as adpted in [7] in
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order to obtain estimates such as (1) for K(t, x, y) with the sharp constant c2 in the Gaussian
exponent.

The purpose of the present note is to show that if 2m > n then more can be achieved by an
adaptation of the methods of [6]. Using purely L2 methods we obtain a sharp Gaussian estimate
for the heat kernel of H0 + V for operators H0 with variable coefficients. Moreover, unlike the
three above mentioned articles, the Kato condition is imposed only on the negative part V− of
V , the positive part V+ being merely in L1

loc(Ω).
The sharpness of these estimates depends of course on using the right distance function

which is not the Euclidean but, rather, a Finsler distance induced by the operator. The sharp
constant σm, also obtained in [17], was first identified by Evgrafov and Postnikov [16] who
obtained short time asymptotics of K0(t, x, y) for operators with constant coefficients in Rn and
so-called strongly convex principal symbol (see definition below).

We prove two theorems which differ on the regularity assumptions imposed on the coef-
ficients. Theorem 1 applies to operators with strongly convex symbol and coefficients that are
bounded in the Hölder class Cm−2,1(Ω). Theorem 2 is a more general result were the coefficients
are merely in L∞(Ω) and the symbol need not be strongly convex; the price paid is that instead
of the sharp constant σm we now have a constant σ = σm − D, with D a certain measure of
regularity for H.

2 Setting and statement of results

Let Ω be a domain in Rn and let H0 be a uniformly elliptic operator of order 2m acting on L2(Ω),

(H0u)(x) = (−1)m
∑
|α|≤m
|β|≤m

Dα{aαβ(x)Dβu}

subject to Dirichlet boundary condintions on ∂Ω. The coefficients aαβ(x), |α|, |β| ≤ m, are as-
sumed to be real-valued functions in L∞(Ω) and the matrix {aαβ(x)} is assumed to be symmetric
for a.e. x ∈ Ω (the conditions on lower-order coefficients can easily be weakened). Under these
assumptions the quadratic form

Q0(u) =

∫
Ω

∑
|α|≤m
|β|≤m

aαβ(x)DαuDβ ū dx

is then defined on Dom(Q0) := Hm
0 (Ω); we assume that G̊arding’s inequality

Q0(u) ≥ c1‖u‖2Hm(Ω) − c2‖u‖
2
L2(Ω) , u ∈ Hm

0 (Ω), (2)

is satisfied for some c1, c2 > 0. The quadratic form Q0(·) is then closed and H0 is defined on
L2(Ω) as the self-adjoint operator associated to Q0(·). We note [1, Theorem 7.12] that inequality
(2) implies that the principal symbol of H0 satisfies∑

|α|=m
|β|=m

aαβ(x)ξα+β ≥ c1|ξ|2m, x ∈ Ω, ξ ∈ Rn.

It is proved in [10] that if 2m > n then the semigroup e−H0t has a continuous integral kernel
K0(t, x, y) which satisfies (1). This result was later extended in the case 2m = n [15, 3]. Estimate
(1) implies that the semigroup e−H0z, Re z > 0, extends to a strongly continuous bounded
holomorphic semigroup Tp(z) on Lp(Ω) for all 1 ≤ p < ∞, and moreover the corresponding
generators have spectrum which is independent of p [10]. In the case 2m < n the estimate (1)
is not valid as is seen by the counterexamples constructed in [11]. We refer to the recent review
article [8] for more information.
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2.1 Finsler distance and strong convexity

To state our results we need to to define the distance function in terms of which our Gaussian
estimates will be expressed and also to introduce the notion of strong convexity.

The principal symbol

A(x, ξ) =
∑
|α|=m
|β|=m

aαβ(x)ξα+β , x ∈ Ω , ξ ∈ Rn,

of H induces canonically a Finsler distance d(·, ·) on Ω given by

d(y1, y2) = sup{φ(y2)− φ(y1) : φ Lipschitz in Ω and A(x,∇φ(x)) ≤ 1 a.e. x ∈ Ω}. (3)

If additional regularity is imposed on the coefficients then d(·, ·) is the distance induced by the
Finsler metric with length element ds = p(x, dx) where

p(x, η) = sup
ξ∈Rn
ξ 6=0

〈ξ, η〉
A(x, ξ)1/2m

, x ∈ Ω, η ∈ Rn.

This metric is Riemannian if m = 1 or, more generally, if A(x, ξ) is the mth power of a second
order polynomial in ξ; we refer to [2, 5] for a very short introduction to Finsler geometry and to
[4] for further reading.

Let the functions aγ , |γ| = 2m, be defined by

A(x, ξ) =
∑
|γ|=2m

(
2m
γ

)
aγ(x)ξγ , x ∈ Ω , ξ ∈ Rn,

where
(

2m
γ

)
= (2m)!/(γ1! . . . γn!). The following notion of strong convexity was first introduced

by Evgrafov and Postnikov [16].

Definition. The principal symbol A(x, ξ) is strongly convex if for a.e. x ∈ Ω the quadratic form

Γ(x; p) =
∑
|α|=m
|β|=m

aα+β(x)pαpβ

is positive semi-definite on ⊕|α|=mC.
Evgrafov and Postnikov [16] proved that if in addition to the assumptions above H0 has

constant coefficients on Rn and if the symbol A(ξ) is strongly convex then

K0(t, x, y) = exp
{
− σm

d(x, y)2m/(2m−1)

t1/(2m−1)

}
(1 + o(1)), as t→ 0+ ,

modulo subexponential terms, where

σm = (2m− 1)(2m)−
2m

2m−1 sin
( π

4m− 2

)
.

This was generalized to operators with smooth coefficients by Tintarev [19].
The Gaussian estimates of Theorems 1 and 2 are expressed not in terms of d(·, ·) but rather

in terms of an approximating family of distances: for any M > 0 we define the distance

dM (y1, y2) = sup{φ(y2)− φ(y1) : φ ∈ EA,M},

where

EA,M =
{
φ ∈ Cm(Ω) : A(x,∇φ(x)) ≤ 1 , |Dαφ(x)| ≤M , x ∈ Ω, 2 ≤ |α| ≤ m

}
.
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2.2 Kato potentials

Let H0 be an operator of order 2m > n as above. We consider a real potential V = V+ − V−
(V± ≥ 0) and we make the following

Hypothesis (H) The potentials V± belong in L1
loc(Ω). Moreover V− has zero form bound with

respect to H0, that is for any ε > 0 there exists cε such that∫
Ω

V−|u|2dx ≤ εQ0(u) + cε‖u‖2L2 , u ∈ Hm
0 (Ω). (4)

Under Hypothesis (H) the operator H = H0 + V is defined in a standard way by means of the
quadratic form

Q(u) = Q0(u) +

∫
Ω

V |u|2dx, (5)

defined initially in C∞c (Ω) and then extended by closure. We note that (4) implies

Q0(u) ≤ 1

1− ε

(
Q(u) + cε‖u‖2L2

)
, u ∈ Dom(Q), (6)

for any ε ∈ (0, 1).

Example 1. If V− is Kato class with respect to H0, that is if

lim
λ→+∞

‖V−(H0 + λ)−1‖L1→L1 = 0 , (7)

then Hypothesis (H) is satisfied. This well known fact is seen by considering the weighted Lp

spaces LpV− := Lp(Ω, V−dx) (the fact that V− may be zero on a set of positive measure can easily

be dealt with). We then have

‖(H0 + λ)−1V−‖L1
V−
→L1

V−
= sup

w∈L1
V−

∫
Ω
V−(x)

∣∣∣{(H0 + λ)−1(V−w)}(x)
∣∣∣dx∫

Ω
V−(x)|w(x)|dx

= sup
w∈L1

V−

∫
Ω
V−(x)

∣∣∣{(H0 + λ)−1u}(x)
∣∣∣dx∫

Ω
|u(x)|dx

= ‖V−(H0 + λ)−1‖L1→L1

and
‖(H0 + λ)−1V−‖L∞V−→L∞V− = ‖(H0 + λ)−1V−‖L∞→L∞ = ‖V−(H0 + λ)−1‖L1→L1 .

By the Stein interpolation theorem we then obtain

‖(H0 + λ)−1V−‖L2
V−
→L2

V−
≤ ‖(H0 + λ)−1V−‖1/2L1

V−
→L1

V−
‖(H0 + λ)−1V−‖1/2L∞V−

→L∞V−

= ‖V−(H0 + λ)−1‖L1→L1 ,

so V− has zero operator bound with respect to H0. Applying [9, Lemma 4.20] we conclude that
Hypothesis (H) is satisfied. Let us note here that condition (7) is also related to certain integral
conditions on V ; see also [13, 21].

Example 2. Suppose V− satisfies the weak Miyadera condition with respect to H0: for any ε > 0
there exists δ > 0 such that ∫ δ

0

‖V−e−tH0u‖L1dt ≤ ε‖u‖L1 (8)
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for all u ∈ L1(Ω)∩L2(Ω). It is known [18, 20] that condition (7) is then satisfied, hence Hypothesis
(H) is satisfied.

Our first theorem reads:

Theorem 1 Let 2m > n. Let V be a real potential satisfying Hypothesis (H). Assume that the
principal symbol A(x, ξ) is strongly convex and that the principal coefficients aαβ, |α| = |β| = m,
belong in Wm−1,∞(Ω). Then for any ε > 0 and M > 0 there exists a constant Γε,M such that the
heat kernel of H satisfies

|K(t, x, y)| < Γε,M t
− n

2m exp
{
− (σm − ε)

dM (x, y)
2m

2m−1

t
1

2m−1

+ Γε,M t
}
,

for all t > 0 and x, y ∈ Ω.

Under additional assumptions we can obtain a better estimate that involves the actual
Finsler distance d(x, y) defined by (3) rather than the distances dM (x, y):

Corollary 1 In addition to the assumptions of Theorem 1 assume that (i) Ω is bounded with
Cm+1 boundary or Ω = Rn and (ii) the coefficients aαβ belong in Cm+1(Ω) and have bounded all
derivatives of order up to m+ 1. Then for any ε > 0 there exists Γε such that

|K(t, x, y)| < Γεt
− n

2m exp
{
− (σm − ε)

d(x, y)
2m

2m−1

t
1

2m−1

+ Γεt
}
, (9)

for all t > 0 and x, y ∈ Ω.

Proof of Corollary 1. It is proved in [5, Proposition 8 and Example p.595] that under the
assumptions of the corollary there holds

dM (x, y)

d(x, y)
−→ 1, as M → +∞, (10)

uniformly in x, y ∈ Ω. Estimate (9) then follows directly from Theorem 1 and (10). 2

We next state a variation of Theorem 1 which applies to a wider class of operators. Let DA

denote the distance in L∞(Ω) of the symbol A(x, ξ) to the class of all strongly convex symbols
with coefficients in Wm−1,∞(Ω); more precisely,

DA = inf max
|α|=m
|β|=m

‖aαβ − âαβ‖L∞(Ω),

where the infimum is taken over all coefficient matrices {âαβ} whose entries belong in Wm−1,∞(Ω)

and for which the symbol Â(x, ξ) =
∑
âαβξ

α+β is strongly convex; in particular DA = 0 if the
symbol is strongly convex and the principal coefficients are uniformly continuous. We then have

Theorem 2 Let 2m > n. Let V be a real potential satisfying Hypothesis (H). For any ε > 0 and
M > 0 the heat kernel estimate

|K(t, x, y)| < Γε,M t
− n

2m exp
{
− (σm − cDA − ε)

dM (x, y)
2m

2m−1

t
1

2m−1

+ Γε,M t
}
,

is valid for some Γε,M and all t > 0 and x, y ∈ Ω; here c is a positive constant that depends on
the operator H but not on ε or M .
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3 Proofs of Theorems

Throughout this section we assume that H is an operator defined via of the quadratic form (5)
where V is a potential satisfying Hypothesis (H). We do not yet assume that the the coefficients
belong in Wm−1,∞(Ω) or that the symbol A(x, ξ) is strongly convex; these assumptions will only
be made when we arrive at equation (15).

Our approach is based on Davies’ exponential perturbation technique. For any M > 0 we
define

EM = {φ ∈ Cm(Ω) : |Dαφ(x)| ≤M, x ∈ Ω , 1 ≤ |α| ≤ m}.
Let φ ∈ EM be fixed. We define a sesquilinear form Qφ by Dom(Qφ) = Dom(Q) and

Qφ(u, v) = Q(eφu, e−φv);

here Q(·, ·) denotes the sesquilinear form associated with the quadratic form Q(·). We denote by
Qφ(·) the quadratic form corresponding to the sesquilinear form Qφ(·, ·). Let Hφ be the (non-self
adjoint) operator associated to the form Qφ(·, ·), so that Hφ = e−φHeφ. This conjugation induces
canonically a functional calculus for Hφ via the relation f(Hφ) = e−φf(H)eφ. In particular Hφ

is the generator of a strongly continuous semigroup given by

e−Hφt = e−φe−Hteφ. (11)

Lemma 1 Assume that 2m > n. Let φ ∈ EM be fixed and let k ∈ R be such that

ReQφ(u) ≥ −k‖u‖2L2 , all u ∈ C∞c (Ω).

Then the heat kernel of H satisfies

|K(t, x, y)| ≤ cδ,M t−
N
2m exp

{
φ(y)− φ(x) + (1 + δ)kt

}
(12)

for any δ > 0, all t > 0 and x, y ∈ Ω and some constant cδ,M which depends only on δ and M .

Proof. Let Q0,φ(·) denote the quadratic form defined as above for the free operator H0 (rather
than H). The difference Q0,φ(·)−Q0(·) is of order smaller than 2m and this yields (see also [10,
Lemma 2])

|Q0,φ(u)−Q0(u)| ≤ εQ0(u) + cε,M‖u‖2L2 ,

for any ε > 0 and all u ∈ C∞c (Ω). Hence we have from (6)

|Qφ(u)−Q(u)| = |Q0,φ(u)−Q0(u)|
≤ εQ0(u) + cε,M‖u‖2L2

≤ ε

1− ε
Q(u) +

( εcε
1− ε

+ cε,M

)
‖u‖2L2 ,

and therefore
Q(u) ≤ 2ReQφ(u) + cM‖u‖2L2 , all u ∈ C∞c (Ω). (13)

Now, let u ∈ L2(Ω) be given and for t > 0 let ut = e−Hφtu. By the multiplicative Sobolev
inequality [10, Lemma 16] and by inequalities (6) and (13) we have

‖ut‖L∞ ≤ cQ0(ut)
n

4m ‖ut‖
1− n

2m

L2

≤ c
(
Q(ut) + ‖ut‖2L2

) n
4m ‖ut‖

1− n
2m

L2

≤ cM

(
ReQφ(ut) + ‖ut‖2L2

) n
4m ‖ut‖

1− n
2m

L2

≤ cM

(
‖Hφut‖L2‖ut‖L2 + ‖ut‖2L2

) n
4m ‖ut‖

1− n
2m

L2

≤ cM

(
‖Hφut‖

n
4m

L2 ‖ut‖
1− n

4m

L2 + ‖ut‖L2

)
. (14)
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Now, it follows from (6) and (13) that for any δ > 0 there exists cδ such that

‖ut‖L2 ≤ ekt‖u‖L2 , ‖Hφut‖L2 ≤ cδ
t
e(k+δ)t‖u‖L2 , t > 0 .

This has been proved in [7, Lemma 2.1] in the case V = 0; since the proof in our case is identical,
we omit further details.

Renaming nδ/4m as δ it follows from (14) that

‖e−Hφtu‖L∞ ≤ cδ,Mekt
(
t−

n
4m eδt + 1

)
‖u‖L2 ≤ c′δ,M t−

n
4m e(k+δ)t‖u‖L2 .

Using duality we conclude that the semigroup e−Hφt maps L1 ∩ L2 into L∞ and

‖e−Hφt‖L1→L∞ ≤ cδ,M t−
n

2m e(k+δ)t.

This together with (11) implies (12). 2

Proof of Theorem 1. We shall now make use of the assumptions that aαβ ∈Wm−1,∞(Ω) and
that A(x, ξ) is strongly convex. Let

km =
(

sin(
π

4m− 2
)
)1−2m

.

It has been proved in [6, Proposition 6 and Lemma 7] that for any ε,M > 0 there exists a constant
cε,M such that

ReQ0,λφ(u) ≥ −
(
λ2m(km + ε) + cε,M

)
‖u‖2L2 , (15)

for all φ ∈ EA,M , all λ > 0 and all u ∈ C∞c (Ω) (the constant cε,M also depends on
maxα,β max0≤k≤m−1 ‖∇kaαβ‖L∞). Moreover, using (4) and recalling (13) (for H0 rather than
H) we obtain

ReQλφ(u) = ReQ0,λφ(u) +

∫
Ω

V |u|2dx

≥ ReQ0,λφ(u)− εQ0(u)− cε‖u‖2L2

≥ (1− 2ε)ReQ0,λφ(u)− (εcM + cε)‖u‖2L2 . (16)

From (15) and (16) follows that for all ε > 0 small enough and for any M > 0 there exists cε,M
such that

ReQλφ(u) ≥ −
(
λ2m(km + ε) + cε,M

)
‖u‖2L2 , u ∈ C∞c (Ω). (17)

We complete the standard argument by first applying Lemma 1 and then optimizing over all
φ ∈ EA,M and all λ > 0. Noting that

inf
λ>0

(
− λdM (x, y) + λ2mkmt

)
= −σm

dM (x, y)
2m

2m−1

t
1

2m−1

completes the proof of the theorem. 2

Proof of Theorem 2. The main idea in the proof is that estimate (17) is stable under per-
turbations of that are small in the L∞ norm: a perturbation of order δ (in L∞) results to a
perturbation of order δ on the lower bound k of Lemma 1, and this results to a perturbation of

order δ of the coefficient of d
2m/(2m1)
M t−1/(2m−1) in the Gaussian estimate. To see this, suppose

Ĥ is an operator with coefficients {âαβ} for which

Re Q̂λφ(u) ≥ −
(
λ2m(km + ε) + cε,M

)
‖u‖2L2 , u ∈ C∞c (Ω). (18)
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for all φ ∈ EÂ,M and all ε,M > 0. Suppose now that H is another operator satisfying the

assumptions in Section 2 and such that ‖aαβ − âαβ‖L∞ < δ, |α| = |β| = m, where δ > 0 is small.
For any u ∈ C∞c (Ω) we then have∣∣∣ReQλφ(u)− ReQ̂λφ(u)

∣∣∣ ≤ cδ{Q(u) + λ2m‖u‖2L2}+ cMδ(1 + λ2m−1)‖u‖2L2

This has been proved in detail in (cf. also [6, eqn. (18)]). The fact that the coefficient of λ2m can
be estimated independently of M is due to the fact that when Qλφ(u) and Q̂λφ(u) are expanded
into a polynomial of λ, the coefficient of λ2m involves only first-order derivatives of φ and not
higher-order derivatives (see also [6, Lemma 3]). Recalling also (13) (with φ replaced by λφ) we
thus obtain

Re Q̂λφ(u) ≥ ReQλφ(u)− cδ{Q(u) + λ2m‖u‖2L2} − cMδ(1 + λ2m−1)‖u‖2L2

≥ (1− 2cδ)ReQλφ(u)−
[
cδλ2m + cMδ(1 + λ2m−1)

]
‖u‖2L2

≥ −
[
(1− 2cδ)

(
λ2m(km + ε) + cε,M

)
+ cδλ2m + cMδ(1 + λ2m−1)

]
‖u‖2L2 .

We note that given ε1 > 0 the term in square brackets can be made smaller than λ2m(km + cδ +
ε1) + cε1,M , so estimate (17) is true for the operator H with km being replaced by km + cδ.

This leads to an estimate involving a constant σm − cδ and the distance d̂M (x, y). To

obtain an estimate with dM (x, y) we note that there exists c > 0 such that if φ̂ ∈ EÂ,M then

(1 + cδ)−1φ ∈ EA,M . From this follows that

d̂M (x, y) = sup{φ̃(y)− φ̃(x) : φ̃ ∈ EÂ,M}

≥ sup{(1 + cδ)−1
(
φ(y)− φ(x)

)
: φ ∈ EÂ,M}

= (1 + cδ)−1dM (x, y).

Combining the above concludes the proof of the theorem. 2

Acknowledgment I thank Jürgen Voigt and Hendrik Vogt for useful comments. I also thank
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