
Series Expansion for Lp Hardy Inequalities
G. BARBATIS, S. FILIPPAS, & A. TERTIKAS

ABSTRACT. We consider a general class of sharp Lp Hardy in-
equalities in RN involving distance from a surface of general codi-
mension 1 ≤ k ≤ N. We show that we can successively improve
them by adding to the right hand side a lower order term with
optimal weight and best constant. This leads to an infinite series
improvement of Lp Hardy inequalities.

1. INTRODUCTION

Let Ω be a bounded domain in RN containing the origin. Hardy’s inequality
asserts that for any p > 1

(1.1)
∫
Ω |∇u|p dx ≥

∣∣∣∣∣N − pp
∣∣∣∣∣
p ∫

Ω
|u|p
|x|p dx, u ∈ C∞c (Ω \ {0}),

with |(N − p)/p|p being the best constant, see for example [9], [13], [6]. An
analogous result asserts that for a convex domain Ω ⊂ RN with smooth boundary,
and d(x) = dist(x, ∂Ω), there holds

(1.2)
∫
Ω |∇u|p dx ≥

(
p − 1
p

)p ∫
Ω
|u|p
dp

dx, u ∈ C∞c (Ω),
with ((p − 1)/p)p being the best constant, cf [11], [10]. See [13] for a compre-
hensive account of Hardy inequalities and [5] for a review of recent results.

In the last few years improved versions of the above inequalities have been
obtained, in the sense that nonnegative terms are added in the right hand side of
(1.1) or (1.2). Improved Hardy inequalities are useful in the study of critical phe-
nomena in elliptic and parabolic PDE’s; see, e.g., [3, 4, 10, 14]. In this work we
obtain an infinite series improvement for general Hardy inequalities, that include
(1.1) or (1.2) as special cases.
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Before stating our main theorems let us first introduce some notation. Let Ω be a
domain in RN , N ≥ 2, and K a piecewise smooth surface of codimension k, k = 1,
. . . , N. In case k = N, we adopt the convention that K is a point, say, the origin.
We also set d(x) = dist(x,K), and we assume that the following inequality holds
in the weak sense:

(C) p ≠ k, ∆pd(p−k)/(p−1) ≤ 0, in Ω \K.
Here ∆p denotes the usual p-Laplace operator, ∆pw = div(|∇w|p−2∇w). When
k = N, (C) is satisfied as equality since d(p−k)/(p−1) = |x|(p−N)/(p−1) is the fun-
damental solution of the p-Laplacian. Also, if k = 1, Ω is convex and K = ∂Ω,
condition (C) is satisfied. For a detailed analysis of this condition, as well as for
examples in the intermediate cases 1 < k < N, we refer to [2].

We next define the function:

X1(t) = (1− log t)−1, t ∈ (0,1),(1.3)

and recursively
Xk(t) = X1(Xk−1(t)), k = 2,3, . . . ;

these are the iterated logarithm functions suitably normalized. We also set

(1.4) Im[u] :=
∫
Ω |∇u|p dx − |H|p

∫
Ω
|u|p
dp

dx

− p − 1
2p

|H|p−2
m∑
i=1

∫
Ω
|u|p
dp

X2
1X

2
2 · · ·X2

i dx,

where H = (k− p)/p. Our main result reads as follows.

Theorem A. Let Ω be a domain in RN and K a piecewise smooth surface of
codimension k, k = 1, . . . , N. Suppose that supx∈Ω d(x) < ∞ and condition (C) is
satisfied. Then:

(1) There exists a positive constant D0 = D0(k,p) ≥ supx∈Ω d(x) such that for any
D ≥ D0 and all u ∈ W 1,p

0 (Ω \K) there holds

(1.5)
∫
Ω |∇u|p dx − |H|p

∫
Ω
|u|p
dp

dx

≥ p − 1
2p

|H|p−2
( ∞∑
i=1

∫
Ω
|u|p
dp

X2
1

(
d
D

)
· · ·X2

i

(
d
D

)
dx

)
.

If in addition 2 ≤ p < k, then we can take D0 = supx∈Ω d(x).
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(2) Moreover, for each m = 1, 2, . . . the constant ((p− 1)/(2p))|H|p−2 is the best
constant for the corresponding m-Improved Hardy inequality, that is,

p − 1
2p

|H|p−2 = inf
u∈W 1,p

0 (Ω\K)
Im−1[u]∫

Ω
|u|p
dp

X2
1X

2
2 · · ·X2

m dx
,

in either of the following cases:
(a) k = N and K = {0} ⊂ Ω,
(b) k = 1 and K = ∂Ω,
(c) 2 ≤ k ≤ N − 1 and Ω∩K ≠∅.

We also note that the exponent two of the logarithmic corrections in (1.5) is
optimal; see Proposition 3.1 for the precise statement.

For p = 2, Ω convex, and K = ∂Ω, the first term in the infinite series of (1.5)
was obtained in [3]. In the more general framework of Theorem A, the first term
in the above series was obtained in [2]. On the other hand, when p = 2 and
K = {0} the full series was obtained in [7] by a different method. For other types
of improved Hardy inequalities we refer to [4, 8, 12, 14]; in all these works one
correction term is added in the right hand side of the plain Hardy inequality.

We next consider the degenerate case p = k for which we do not have the
usual Hardy inequality. In [2] a substitute for Hardy inequality was given in that
case. The analogue of condition (C) is now:

(C′) p = k, ∆p(− lnd) ≤ 0, in Ω \K.
If (C′) is satisfied, then for any D ≥ supΩ d(x) there holds (cf [2], Theorems 4.2
and 5.4):

(1.6)
∫
Ω |∇u|k dx ≥

(
k− 1
k

)k ∫
Ω
|u|k
dk

Xk1
(
d
D

)
dx, u ∈ W 1,p

0 (Ω \K),
with ((k − 1)/k)k being the best constant. In our next result we obtain a series
improvement for inequality (1.6). We set

Ĩm[u] :=
∫
Ω |∇u|k dx −

(
k− 1
k

)k ∫
Ω
|u|k
dk

Xk1
(
d
D

)
dx

− 1
2

(
k− 1
k

)k−1 m∑
i=2

∫
Ω
|u|k
dk

Xk1
(
d
D

)
X2

2

(
d
D

)
· · ·X2

i

(
d
D

)
dx.

We then have the following result.

Theorem B. Let Ω be a domain in RN and K a piecewise smooth surface of
codimension k, k = 2, . . . , N. Suppose that supx∈Ω d(x) <∞ and condition (C′) is
satisfied. Then,
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(1) for any D ≥ supΩ d(x) and all u ∈ W 1,k
0 (Ω \K) there holds

(1.7)
∫
Ω |∇u|k dx −

(
k− 1
k

)k ∫
Ω
|u|k
dk

Xk1
(
d
D

)
dx

≥ 1
2

(
k− 1
k

)k−1 ∞∑
i=2

∫
Ω
|u|k
dk

Xk1
(
d
D

)
X2

2

(
d
D

)
· · ·X2

i

(
d
D

)
dx.

(2) Moreover, for eachm = 2, 3, . . . the constant 1
2((k−1)/k)k−1 is the best constant

for the corresponding m-improved inequality. That is,

1
2

(
k− 1
k

)k−1

= inf
u∈W 1,p

0 (Ω\K)
Ĩm−1[u]∫

Ω
|u|k
dk

Xk1X
2
2 · · ·X2

m dx
.

in either of the following cases:
(a) k = N and K = {0} ⊂ Ω,
(b) 2 ≤ k ≤ N − 1 and Ω∩K ≠∅.

To prove parts (1) of the above theorems, we make use of suitable vector
fields and elementary inequalities; this is carried out in Section 2. To prove the
second parts, we use a local argument and appropriate test functions; this is done
in Section 3.

2. THE SERIES EXPANSION

In this section we will derive the series improvement that appear in part (1) of
Theorems A and B. We shall repeatedly use the differentiation rule

(2.1)
d
dt
Xβi (t) =

β
t
X1X2 · · ·Xi−1X

1+β
i , β ≠ −1, i = 1,2, . . . ,

which is proved by induction. For i = 1 it follows immediately from the definition
of X1(t) (cf. (1.3)):

d
dt
Xβ1 (t) =

β
t
(1− log t)−β−1 = β

t
X1+β

1 (t).

Moreover, assuming (2.1) for a fixed i ≥ 1, we have

d
dt
Xβi+1(t) =

d
dt
[Xβ1 (Xi(t))] =

β
Xi(t)

X1+β
1 (Xi(t))

dXi(t)
dt

= β
Xi(t)

X1+β
i+1 (t)

1
t
X1(t) · · ·Xi−1(t)X2

i (t)

= β
t
X1(t) · · ·Xi(t)X1+β

i+1 (t);

hence, (2.1) is proved.
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Proof of Theorem A (1). We will make use of a suitable vector field as in [2].
If T is a C1 vector field in Ω, then, for any u ∈ C∞c (Ω \ K) we first integrate by
parts and then use Hölder’s inequality to obtain∫

Ω divT |u|p dx = −p
∫
Ω(T · ∇u)|u|p−2udx

≤ p
(∫

Ω |∇u|p dx
)1/p(∫

Ω |T |p/(p−1)|u|p dx
)(p−1)/p

≤
∫
Ω |∇u|p dx + (p − 1)

∫
Ω |T |p/(p−1)|u|p dx.

We therefore arrive at

(2.2)
∫
Ω |∇u|p dx ≥

∫
Ω(divT − (p − 1)|T |p/(p−1))|u|p dx.

For m ≥ 1 we introduce the notation

η(t) =
m∑
i=1

X1(t) · · ·Xi(t), B(t) =
m∑
i=1

X2
1(t) · · ·X2

i (t).

In view of (2.2), in order to prove (1.5) it is enough to establish the following
pointwise estimate:

(2.3) divT − (p − 1)|T |p/(p−1) ≥ |H|p
dp

(
1+ p − 1

2pH2B
)
.

To proceed we now make a specific choice for T . We take

T(x) = H|H|p−2 ∇d(x)
dp−1(x)

(
1+ p − 1

pH
η
(
d(x)
D

)
+ aη2

(
d(x)
D

))
,

where a is a free parameter to be chosen later. In any case a will be such that the
quantity 1 + ((p − 1)/(pH))η(d/D) + aη2(d/D) is positive on Ω. Note that
T(x) is singular at x ∈ K, but since u ∈ C∞c (Ω \ K) all previous calculations are
legitimate.

When computing divT we need to differentiate η(d/D). Recalling (2.1), a
straightforward calculation gives

η′(t) = 1
t
(X2

1 + (X2
1X2 +X2

1X
2
2)+ · · · + (X2

1X2 · · ·Xm + · · · +X2
1 · · ·X2

m)),

from which the following relation follows:

(2.4) tη′(t) = 1
2
B(t)+ 1

2
η2(t).
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On the other hand, observing that, since |∇d| = 1,

∆pd(p−k)/(p−1) = p − k
p − 1

∣∣∣∣∣p − kp − 1

∣∣∣∣∣
p−2

d−k(d∆d+ (1− k)|∇d|2),
condition (C) implies

(2.5) (p − k)(d∆d+ 1− k) ≤ 0.

Using (2.4) and (2.5), a straightforward calculation shows that

(2.6) divT ≥ |H|p
dp

(
p + p − 1

H
η+ paη2 + p − 1

2pH2 (B + η2)+ a
H
(B + η2) η

)
.

It then follows that (2.3) will be established once we prove the following inequality

(p − 1)+ p − 1
H

η+
(
pa+ p − 1

2pH2

)
η2 + a

H
Bη

+ a
H
η3 − (p − 1)

(
1+ p − 1

pH
η+ aη2

)p/(p−1)

≥ 0.

We set for convenience

f(B, η) = (p − 1)+ p − 1
H

η+
(
pa+ p − 1

2pH2

)
η2 + a

H
Bη+ a

H
η3,

g(η) =
(

1+ p − 1
pH

η+ aη2

)p/(p−1)

,

and the previous inequality is written as

(2.7) f(B, η)− (p − 1)g(η) ≥ 0.

When η > 0 is small, the Taylor expansion of g(η) about η = 0, gives

(2.8) g(η) = 1+ 1
H
η+ 1

2

(
2ap
p − 1

+ 1
pH2

)
η2

+ 1
6

(
6a

(p − 1)H
+ 2− p
p2H3

)
η3 +O(η4).

Let us also note, that in the special case a = 0, there holds

(2.9) g(η) = 1+ 1
H
η+ 1

2pH2η
2

+ 2− p
6p2H3

(
1+ p − 1

pH
ξη

)(3−2p)/(p−1)

η3, (a = 0),
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for some ξη ∈ (0, η), without any smallness assumption on η.
In view of (2.8), if η is small, inequality (2.7) will be proved once we show:

(2.10)
a
H
≥
(
(2− p)(p − 1)

6p2H3 +O(η)
)
η2

B
.

From the definition of η and B it follows easily that

(2.11) m ≥ η2

B
≥ 1.

We will show that for any choice of H and p > 1, there exists an a ∈ R, such
that (2.7) holds true. We distinguish various cases.

(a) H > 0, 1 < p < 2. We assume that η is small, which amounts to taking
D big. It is enough to show that we can choose a such that (2.10) holds. In view
of (2.11) we see that for (2.10) to be valid, it is enough to take a to be big and
positive.

(b) H > 0, p ≥ 2. In this case we choose a = 0. Notice that, under our
current assumptions on H, p the last term in (2.9) is negative and therefore

(2.12) g(η) ≤ 1+ 1
H
η+ 1

2pH2η
2, (a = 0).

On the other hand

f(B, η) = (p − 1)+ p − 1
H

η+ p − 1
2pH2η

2, (a = 0),

and therefore (2.7) is satisfied, without any smallness assumption on η. In partic-
ular, we can take D0 = supx∈Ω d(x) in this case.

(c) H < 0, 1 < p < 2. We assume that η is small. In this case, the right hand
side of (2.10) is negative. Hence, we can choose a = 0 and (2.10) holds true.

(d) H < 0, p ≥ 2. Arguing as in case (a) we take a to be big and negative,
and (2.10) holds true. ❐

We next consider the degenerate case p = k.

Proof of Theorem B (1). We assume that p = k ≥ 2 and that condition (C′)
is satisfied. The proof is quite similar to the previous one.

An easy calculation shows that condition (C′) implies that

(2.13) d∆d+ 1− k ≥ 0.
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We now choose the vector field

(2.14) T(x) =
(
k− 1
k

)k−1 ∇d
dk−1

(
Xk−1

1 +
m∑
i=2

Xk−1
1 X2 · · ·Xi

)
.

Taking into account (2.13), a straightforward calculation yields that

divT − (p − 1)|T |p/(p−1) ≥ (k− 1)k

kk−1
Xk1
dk

(2.15)

×
(

1+
m∑
i=2

X2 · · ·Xi + 1
k− 1

m∑
i=2

i∑
j=2

X2
2 · · ·X2

jXj+1 · · ·Xi

− k− 1
k

(
1+

m∑
i=2

X2 · · ·Xi
)k/(k−1)

)
.

To estimate the last term in the right hand side of (2.15) we use Taylor’s expansion
to obtain the inequality

(
1+

m∑
i=2

X2 · · ·Xi
)k/(k−1) ≤ 1+ k

k− 1

m∑
i=2

X2 · · ·Xi+ k
2(k− 1)2

( m∑
i=2

X2 · · ·Xi
)2
.

It then follows that

(2.16) divT − (p − 1)|T |p/(p−1) ≥ (k− 1)k−1

kk−1
Xk1
dk

×
(
k− 1
k

+
m∑
i=2

i∑
j=2

X2
2 · · ·X2

jXj+1 · · ·Xi − 1
2

( m∑
i=2

X2 · · ·Xi
)2
)
.

Expanding the square in the last term in (2.16) we conclude that

divT − (p − 1)|T |p/(p−1) ≥
(
k− 1
k

)k−1 Xk1
dk

(
k− 1
k

+ 1
2

m∑
i=2

X2
2 · · ·X2

i

)
,

and the result follows. ❐

3. BEST CONSTANTS

In this section we are going to prove the optimality of the Improved Hardy In-
equality of Section 2. More precisely, for any m ≥ 1 let us recall that

Im[u] =
∫
Ω |∇u|p dx − |H|p

∫
Ω
|u|p
dp

dx

− p − 1
2p

|H|p−2
∫
Ω
|u|p
dp

(
X2

1 +X2
1X

2
2 + · · · +X2

1 · · ·X2
m

)
dx.
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We have the following result.

Proposition 3.1. Let Ω be a domain in RN .
(i) If 2 ≤ k ≤ N−1, then we take K to be a piecewise smooth surface of codimension

k and assume K ∩Ω ≠∅.
(ii) If k = N, then we take K = {0} ⊂ Ω.

(iii) If k = 1, then we assume K = ∂Ω.
Let D ≥ supΩ d(x) be fixed and suppose that, for some constants B > 0 and γ ∈ R,
the following inequality holds true for all u ∈ W 1,p

0 (Ω \K)
(3.1) Im−1[u] ≥ B

∫
Ω
|u|p
dp

X2
1

(
d
D

)
· · ·X2

m−1

(
d
D

)
Xγm

(
d
D

)
dx.

Then
(i) γ ≥ 2,

(ii) If γ = 2, then B ≤ ((p − 1)/(2p))|H|p−2.

Proof. All our analysis will be local, say, in a fixed ball of radius δ (denoted by
Bδ) centered at the origin, for some fixed small δ. The proof we present works for
any k = 1, 2, . . . , N. We note, however, that for k = N (distance from a point) the
subsequent calculations are substantially simplified, whereas for k = 1 (distance
from the boundary) one should replace Bδ by Bδ ∩ Ω. This last change entails
some minor modifications, the arguments otherwise being the same. Without any
loss of generality we may assume that 0 ∈ K ∩Ω (k ≠ 1), or 0 ∈ ∂Ω if k = 1. We
divide the proof into several steps.

Step 1. Let ϕ ∈ C∞c (Bδ) be such that 0 ≤ ϕ ≤ 1 in Bδ and ϕ = 1 in Bδ/2.
We fix small parameters α0, α1, . . . , αm > 0 and define the functions

w(x) = d−H+α0/pX(−1+α1)/p
1

(
d
D

)
· · ·X(−1+αm)/p

m

(
d
D

)

and
u(x) =ϕ(x)w(x).

It is an immediate consequence of (3.17) below that u ∈ W 1,p(Ω). Moreover, if
k < p, then H < 0 and therefore u|K = 0. On the other hand, if k > p, then a
standard approximation argument–using cut-off functions–shows that W 1,p

0 (Ω \
K) = W 1,p(Ω \ K). Hence u ∈ W 1,p

0 (Ω \ K). To prove the proposition we shall
estimate the corresponding Rayleigh quotient of u in the limit α0 → 0, α1 → 0,
. . . , αm → 0 in this order.

It is easily seen that

(3.2) ∇w = −d(−k+α0)/pX(−1+α1)/p
1 · · ·X(−1+αm)/p

m

(
H + η(x)

p

)
∇d,
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where

(3.3) η(x) = −α0 + (1−α1)X1 + · · · + (1−αm)X1X2 · · ·Xm,

with Xi = Xi(d/D). Since δ is small the Xi’s are also small. Hence η(x) can be
thought as a small parameter in the rest of the proof.

Now ∇u =ϕ∇w +∇ϕw and hence, using the elementary inequality

(3.4) |a+ b|p ≤ |a|p + cp(|a|p−1|b| + |b|p), a, b ∈ RN, p > 1,

we obtain

(3.5)
∫
Ω |∇u|p dx ≤

∫
Ωϕp|∇w|p dx

+ cp
∫
Bδ
|∇ϕ| |ϕ|p−1|∇w|p−1|w|dx + cp

∫
Bδ
|∇ϕ|p |w|p dx

=: I1 + I2 + I3.

We claim that

(3.6) I2, I3 = O(1) uniformly as α0, α1, . . . , αm tend to zero.

Let us give the proof for I2. Using the definition of w(x) and the regularity of ϕ
we obtain

I2 ≤ c
∫
Bδ
d1−k+α0X−1+α1

1 · · ·X−1+αm
m

∣∣∣∣∣H + η(x)p
∣∣∣∣∣
p−1

dx.

The appearance of d−k+1 together with the fact that η is small compared to H im-
plies that I2 is uniformly bounded (see Step 2). The integral I3 is treated similarly.

Step 2. We shall repeatedly deal with integrals of the form

(3.7) Q =
∫
Ωϕpd−k+β0X1+β1

1

(
d
D

)
· · ·X1+βm

m

(
d
D

)
dx, βi ∈ R;

we therefore provide precise conditions under which Q < ∞. From our assump-
tions on ϕ we have∫

Bδ/2
d−k+β0X1+β1

1 · · ·X1+βm
m dx ≤ Q ≤

∫
Bδ
d−k+β0X1+β1

1 · · ·X1+βm
m dx.

Using the coarea formula and the fact that

c1rk−1 ≤
∫
{d=r}∩Bδ

dS < c2rk−1
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we conclude that

c1

∫ δ/2
0

r−1+β0X1+β1
1 · · ·X1+βm

m dr ≤ Q ≤ c2

∫ δ
0
r−1+β0X1+β1

1 · · ·X1+βm
m dr,

where Xi = Xi(r/D). Hence, recalling (2.1) we conclude that

(3.8) Q <∞ ⇐⇒



β0 > 0, or
β0 = 0 and β1 > 0, or
β0 = β1 = 0 and β2 > 0, or

...
β0 = β1 = · · · = βm−1 = 0 and βm > 0.

Step 3. We introduce some auxiliary quantities and prove some simple rela-
tions about them. For 0 ≤ i ≤ j ≤m we define

A0 =
∫
Ωϕpd−k+α0X−1+α1

1 · · ·X−1+αm
m dx,

Ai =
∫
Ωϕpd−k+α0X1+α1

1 · · ·X1+αi
i X−1+αi+1

i+1 · · ·X−1+αm
m dx,

Γ0j = ∫Ωϕpd−k+α0Xα1
1 · · ·Xαii X−1+αi+1

i+1 · · ·X−1+αm
m dx,

Γij = ∫Ωϕpd−k+α0X1+α1
1 · · ·X1+αi

i Xαi+1
i+1 · · ·X

αj
j X

−1+αj+1

j+1 · · ·X−1+αm
m dx,

with Γii = Ai. We have the following two identities. Let 0 ≤ i ≤m − 1 be given
and assume that α0 = α1 = · · · = αi−1 = 0. Then

αiAi =
m∑

j=i+1

(1−αj)Γij +O(1),(3.9)

αiΓij = − j∑
k=i+1

αkΓkj + m∑
k=j+1

(1−αk)Γjk +O(1),(3.10)

where the O(1) is uniform as the αi’s tend to zero. Let us give the proof for (3.9).
We assume that i > 0, the case i = 0 being a straightforward adaptation. A direct
computation gives

(3.11) αid−kX1 · · ·Xi−1X
1+αi
i = div(d−k+1Xαii ∇d)− d−k(d∆d+ 1− k)Xiαi ,
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hence

αiAi =
∫
Ωϕp div(d−k+1Xαii ∇d)X−1+αi+1

i+1 · · ·X−1+αm
m dx

−
∫
Ωϕpd−k(d∆d+ 1− k)Xαii X−1+αi+1

i+1 · · ·X−1+αm
m dx

=: E1 − E2.

It is a direct consequence of [1, Theorem 3.2] that

(3.12) d∆d+ 1− k = O(d), as d→ 0,

hence E2 is estimated by a constant times

∫
Ωϕpd−k+1Xαii X

−1+αi+1
i+1 · · ·X−1+αm

m dx,

and therefore is bounded uniformly in α0, α1, . . . , αm. To handle E1 we integrate
by parts obtaining

E1 = −
∫
Ω∇ϕp · ∇dd−k+1Xαii X

−1+αi+1
i+1 · · ·X−1+αm

m dx

−
∫
Ωϕpd−k+1Xαii ∇d · ∇(X−1+α1

1 · · ·X−1+αm
m )dx.

The first integral is of order O(1) (similarly to I2, I3 above), while the second is
equal to

∑m
j=i+1(1−αj)Γij . Hence (3.9) has been proved. To prove (3.10) we use

(3.11) once more and proceed similarly; we omit the details.

Step 4. We proceed to estimate I1. It follows from (3.2) that

I1 =
∫
Ωϕpd−k+α0X−1+α1

1 · · ·X−1+αm
m

∣∣∣∣∣H + ηp
∣∣∣∣∣
p

dx.

Since η is small compared to H we may use Taylor’s expansion to obtain

(3.13)

∣∣∣∣∣H + ηp
∣∣∣∣∣
p

≤ |H|p + |H|p−2Hη+ p − 1
2p

|H|p−2η2 + c|η|3.

Using this inequality we can bound I1 by

(3.14) I1 ≤ I10 + I11 + I12 + I13,
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where

I10 = |H|p
∫
Bδ
ϕpd−k+α0X−1+α1

1 · · ·X−1+αm
m dx = |H|p

∫
Ω
|u|p
dp

dx,(3.15)

I11 = |H|p−2H
∫
Bδ
ϕpd−k+α0X−1+α1

1 · · ·X−1+αm
m η(x)dx,

I12 = p − 1
2p

|H|p−2
∫
Bδ
ϕpd−k+α0X−1+α1

1 · · ·X−1+αm
m η2(x)dx,

I13 = c
∫
Bδ
ϕpd−k+α0X−1+α1

1 · · ·X−1+αm
m |η(x)|3 dx.

Step 5. We shall prove that

(3.16) I11, I13 = O(1) uniformly in α0, α1, . . . , αm.

Indeed, substituting for η in I11 we see by a direct application of (3.9) (for
i = 0) that I11 = O(1). To estimate I13 we observe that X1 · · ·Xi ≤ cX1 for some
c > 0 and thus obtain

I13 ≤ c1α3
0

∫
Ωϕpd−k+α0X−1+α1

1 · · ·X−1+αm
m dx

+ c2

∫
Ωϕpd−k+α0X2+α1

1 X−1+α2
2 · · ·X−1+αm

m dx.

The second integral is bounded uniformly in the αi’s due to the factor X2
1 .

Moreover, using the fact 0 ≤ ϕ ≤ 1 and
∫
{d=r}∩Bδ dS < cr

k−1 we obtain

α3
0

∫
Ωϕpd−k+α0X−1+α1

1 · · ·X−1+αm
m dx

≤ cα3
0

∫ δ
0
r−1+α0X−1+α1

1

(
r
D

)
· · ·X−1+αm

m

(
r
D

)
dr

≤ cα3
0

∫ δ
0
r−1+α0X−2

1

(
r
D

)
dr (r = Ds1/α0)

= cDα0α2
0

∫ (δ/D)α0

0

(
1− 1

α0
log s

)2

ds

= O(1)
uniformly as α0 → 0. Hence (3.16) has been proved. Combining (3.5), (3.6),
(3.14), (3.15), and (3.16) we conclude that

(3.17)
∫
Ω |∇u|p dx − |H|p

∫
Ω
|u|p
dp

dx ≤ I12 +O(1),

uniformly in the αi’s.
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Step 6. Recalling the definition of Im−1[·] we obtain from (3.17)

(3.18) Im−1[u] ≤ p − 1
2p

|H|p−2

×
∫
Ωϕpd−k+α0X−1+α1

1 · · ·X−1+αm
m

(
η2(x)−

m−1∑
i=1

X2
1 · · ·X2

i

)
dx +O(1)

=:
p − 1

2p
|H|p−2J +O(1).

Expanding η2(x) (cf (3.3)) and collecting similar terms we obtain

J =
∫
Ωϕpd−k+α0X−1+α1

1 · · ·X−1+αm
m

{
α2

0 +
m∑
i=1

(1−αi)2X2
1 · · ·X2

i(3.19)

−
m−1∑
i=1

X2
1 · · ·X2

i − 2α0

m∑
j=1

(1−αj)X1 · · ·Xj

+ 2
m−1∑
i=1

m∑
j=i+1

(1−αi)(1−αj)X2
1 · · ·X2

i Xi+1 · · ·Xj
}
dx

= α2
0A0 +Am +

m∑
i=1

(α2
i − 2αi)Ai − 2α0

m∑
j=1

(1−αj)Γ0j
+
m−1∑
i=1

m∑
j=i+1

2(1−αi)(1−αj)Γij .
Step 7. We intend to take the limit α0 → 0 in (3.19). All terms have finite

limits except those containing A0 and Γ0j which, when viewed separately, diverge.
When combined however, they give

α2
0A0 − 2α0

m∑
j=1

(1−αj)Γ0j
= −α0

m∑
j=1

(1−αj)Γ0j +O(1) by (3.9)

= −
m∑
j=1

(1−αj)
(
−

j∑
i=1

αiΓij + m∑
i=j+1

(1−αi)Γji)+O(1) by (3.10)

=
m∑
i=1

(αi −α2
i )Ai +

m−1∑
i=1

m∑
j=i+1

(2αi − 1)(1−αj)Γij +O(1).
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All the terms in the last expression remain bounded as α0 → 0; hence taking the
limit in (3.19) we obtain

(3.20) J = Am −
m∑
i=1

αiAi +
m−1∑
i=1

m∑
j=i+1

(1−αj)Γij +O(1) (α0 = 0),

where the O(1) is uniform with respect to α1, . . . , αm.

Step 8. We next let α1 → 0 in (3.20). All terms have finite limits except
those involving A1 and Γ1j , which diverge. Using (3.9) once more–this time for
i = 1–we see that, when combined, these terms stay bounded in the limit α1 → 0.
Hence

(3.21) J = Am −
m∑
i=2

αiAi +
m−1∑
i=2

m∑
j=i+1

(1−αj)Γij +O(1) (α0 = α1 = 0).

We proceed in this way, and after letting αm−1 → 0 we are left with

(3.22) J = (1−αm)Am +O(1), (α0 = α1 = · · · = αm−1 = 0),

uniformly in αm.
Combining (3.1), (3.18) and (3.22) we conclude that

(3.23) B ≤ p − 1
2p

|H|p−2 (1−αm)Am +O(1)∫
Ωϕpd−kX1 · · ·Xm−1X

γ−1+αm
m dx

.

Suppose now that γ < 2. Then letting αm → 2 − γ > 0 we observe that the
denominator in (3.23) tends to infinity, while the numerator stays bounded. This
implies B = 0, proving part (i) of the proposition.

Now, if γ = 2 then the denominator in (3.23) is equal to Am. Hence letting
αm → 0 we have Am →∞ (by (3.8)) and hence

B ≤ p − 1
2p

|H|p−2.

This concludes the proof. ❐

We next consider the degenerate case p = k. We have the following result.

Proposition 3.2. Let Ω be a domain in RN .
(i) If 2 ≤ k ≤ N−1, then we take K to be a piecewise smooth surface of codimension

k and assume K ∩Ω ≠∅;
(ii) if k = N, then we take K = {0} ⊂ Ω.
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LetD ≥ supx∈Ω d(x) be fixed and suppose that, for some constants B > 0 and γ ∈ R,
the following inequality holds true for all u ∈ C∞c (Ω \K)
(3.24) Ĩm−1[u] ≥ B

∫
Ω
|u|k
dk

Xk1
(
d
D

)
X2

2

(
d
D

)
· · ·Xγm

(
d
D

)
dx.

Then:
(i) γ ≥ 2;

(ii) if γ = 2, then B ≤ 1
2((k− 1)/k)k−1.

Proof. The proof is similar to that of Proposition 3.1. Without any loss of
generality we assume that 0 ∈ K ∩ Ω. As in the previous theorem we let ϕ be a
non-negative, smooth cut-off function supported in Bδ = {|x| < δ}, equal to one
on Bδ/2 and taking values in [0,1].

Given small parameters α1, . . . , αm > 0 we define

w(x) = X(−k+1+α1)/k
1

(
d
D

)
X(−1+α2)/k

2

(
d
D

)
· · ·X(−1+αm)/k

m

(
d
D

)
,

and
u(x) =ϕ(x)w(x).

Subsequent calculations will establish that u ∈ W 1,k(Ω) (see (3.29)). We will
prove that u ∈ W 1,k

0 (Ω \K) by showing that

(3.25) dα0/ku→ u in W 1,k(Ω), as α0 → 0.

We have ∫
Ω |∇(dα0/ku)−∇u|k dx ≤ cαk0

∫
Ω d−k+α0uk dx(3.26)

+
∫
Ω |dα0/k − 1|k |∇u|k dx.

The second term in the right hand side of (3.26) tends to zero as α0 → 0 by the
dominated convergence theorem. Moreover, there exists a constant cα1 such that
Xα1/2

1 X−1
2 · · ·X−1

m ≤ cα1 . Hence the first term in the right hand side of (3.26) is
estimated by

cα1α
k
0

∫
Ω d−k+α0X−k+1+α1/2

1 dx.

A direct application of [2, Lemma 5.2] shows that this tends to zero as α0 → 0.
Hence u ∈ W 1,p

0 (Ω \K).
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To proceed we use (3.4) obtaining

(3.27)
∫
Ω |∇u|k dx ≤

∫
Ωϕk|∇w|k dx

+ ck
∫
Ω |∇ϕ| |ϕ|k−1|∇w|k−1|w|dx + ck

∫
Ω |∇ϕ|k |w|k dx

=: I1 + I2 + I3.

Arguing as in the proof of the previous proposition (cf Step 1) we see that I2 and
I3 are bounded uniformly with respect to the αi’s. Hence

(3.28)
∫
Ω |∇u|k dx ≤

∫
Ωϕk|∇w|k dx +O(1)

uniformly as α1, . . . , αm → 0.
Now, a direct computation yields

∇w = −d−1X(1+α1)/k
1 X(−1+α2)/k

2 · · ·X(−1+αm)/k
m

(
k− 1
k

+ η(x)
k

)
∇d,

where

η(x) = −α1 +
m∑
i=2

(1−αi)X2

(
d
D

)
· · ·Xi

(
d
D

)
.

From (3.28) and recalling (3.13) we have∫
Ω |∇u|k dx ≤

∫
Ωϕkd−kX1+α1

1 X−1+α2
2 · · ·X−1+αm

m(3.29)

×
{(
k− 1
k

)k
+
(
k− 1
k

)k−1

η

+ 1
2

(
k− 1
k

)k−1

η2 + c|η|3
}
dx.

The term containing |η|3 is bounded uniformly with respect to α1, . . . , αm (cf
Step 4 in the previous proposition). Moreover, it is immediately seen that

(3.30) ϕkd−kX1+α1
1 X−1+α2

2 · · ·X−1+αm
m = |u|k

dk
Xk1 ,

Hence
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Ĩm−1[u] ≤
∫
Ωϕkd−kX1+α1

1 X−1+α2
2 · · ·X−1+αm

m(3.31)

×

(
k− 1
k

)k−1 (
−α1 +

m∑
i=2

(1−αi)X2 · · ·Xi
)

+ 1
2

(
k− 1
k

)k−1 (
−α1 +

m∑
i=2

(1−αi)X2 · · ·Xi
)2

− 1
2

(
k− 1
k

)k−1 m−1∑
i=2

X2
2 · · ·X2

i

 dx +O(1),

where the O(1) is uniform with respect to all the αi’s. Expanding the square and
collecting similar terms we conclude that

(3.32) Ĩm−1[u] ≤ 1
2

(
k− 1
k

)k−1

J̃ +O(1), uniformly in α1, . . . , αm,

where

(3.33) J̃ = Am +
m∑
i=1

(α2
i − 2αi)Ai + 2

m−1∑
i=1

m∑
j=i+1

(1−αi)(1−αj)Γij .
We intend to take the limit α1 → 0 in (3.33). All terms have a finite limit

except A1 and Γ1j , which do not contain the factor X1+α2
2 . When combined they

give

(α2
1 − 2α1)A1 + 2

m∑
j=2

(1−α1)(1−αj)Γ1j
= α2

1A1 − 2α1

m∑
j=2

(1−αj)Γ1j +O(1) = − m∑
j=2

(1−αj)α1Γ1j +O(1) by (3.9)

=
m∑
j=2

(1−αj)
( j∑
i=2

αiΓij − m∑
i=j+1

(1−αi)Γji)+O(1) by (3.10)

=
m∑
i=2

(αi −α2
i )Ai +

m−1∑
i=2

m∑
j=i+1

(2αi − 1)(1−αj)Γij +O(1).
In this expression we can let α1 → 0. Hence (3.33) becomes

(3.34) J̃ = Am −
m∑
i=2

αiAi +
m−1∑
i=2

m∑
j=i+1

(1−αj)Γij +O(1), (α1 = 0).
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This relation is completely analogous to (3.20). For the rest of the proof we argue
as in the proof of Proposition 3.1; we omit the details. ❐
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