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Abstract

We consider second-order uniformly elliptic operators subject to Dirichlet
boundary conditions. Such operators are considered on a bounded domain
Ω and on the domain φ(Ω) resulting from Ω by means of a bi-Lipschitz map
φ. We consider the solutions u and ũ of the corresponding elliptic equations
with the same right-hand side f ∈ L2(Ω ∪ φ(Ω)). Under certain assumptions
we estimate the difference ‖∇ũ−∇u‖L2(Ω∪φ(Ω)) in terms of certain measure of
vicinity of φ to the identity map. For domains within a certain class this pro-
vides estimates in terms of the Lebesgue measure of the symmetric difference
of φ(Ω) and Ω, that is |φ(Ω)4Ω|. We provide an example which shows that
the estimates obtained are in a certain sense sharp.
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1 Introduction

Let Ω be a bounded domain in RN and let A = {Aij(x)} be a measurable positive-
definite symmetric matrix-valued function on RN bounded away from zero and in-
finity. Let

Lu = −
N∑

i,j=1

∂

∂xi

{
Aij(x)

∂u

∂xj

}
, on Ω,

subject to Dirichlet boundary conditions. Let φ : Ω → φ(Ω) be a bi-Lipschitz map
and let L̃ be the analogous operator on L2(φ(Ω)). We fix f ∈ L2(Ω ∪ φ(Ω)) and
consider the functions u ∈ H1

0 (Ω) and ũ ∈ H1
0 (φ(Ω)) defined by

Lu = f, in Ω , L̃ũ = f , in φ(Ω).
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Our aim in this article is to estimate ‖∇ũ − ∇u‖L2(Ω∪φ(Ω)) in terms of a certain
measure of vicinity of φ to the identity map.

Domain perturbation problems are an important branch of the theory of PDEs.
Within spectral theory one is typically intersted on the stability of the eigenvalues
or eigenfunctions of differential operators. There are several recent results on this
type of problems; we refer to the article [7] and references therein for more on recent
progress on domain perturbation problems in spectral theory.

The problem we are interested in involves the stability of the solution u of the
equation Lu = f under perturbation of the domain Ω. In the article [9] Savaré and
Schimperna obtain very detailed sharp estimates on the variation in H1

0 of u for
operators with Lipschitz continuous coefficients. In [4] estimates are obtained on the
variation of u in L2 for operators with measurable coefficients. See also the articles
[1, 2, 5] where relevant results were obtained.

In the present article we consider uniformly elliptic operators with measurable co-
efficients and we prove stability estimates in H1

0 for the solution u of Lu = f . A
simple example shows that the estimates are in a certain sense sharp. Our main
assumptions are, roughly, that Ω is perturbed by a global bi-Lipschitz map φ and
that f and ∇u belong in Lq for some q > 2. We note that if f ∈ Lq and Ω has
Lipschitz boundary in the sense that there exists a bi-Lipschitz transformation that
maps Ω onto a domain with C1 boundary, then ∇u ∈ Lq by a well known result of
Meyers [8], so our results are applicable. The proof relies on the so-called pull-back
method. The operator L̃ that acts on φ(Ω) induces naturally an operator on Ω, and
it is that operator which is then compared with H. Hence, in the first section we
prove a stability estimate for operators acting on the same space under variation of
the coefficients.

The method of proof easily generalizes to other kinds of differential operators, such
as higher-order operators, operators subject to Neumann boundary conditions or
operators acting on Riemannan manifolds. For the sake of simplicity and brevity
we restrict our attention to second-order Dirichlet operators on bounded Euclidean
domains.

2 A general stability theorem

In this section we prove an auxiliary result which we believe is of independent interest.
Let Ω be a bounded domain in RN and for ε ≥ 0 let Aε = (Aijε ) be a family of real,
symmetric, matrix-valued measurable functions on Ω satisfying

1

c
|ξ|2 ≤

∑
i,j

Aijε (x)ξiξj ≤ c|ξ|2 , ε ≥ 0, x ∈ Ω, ξ ∈ Rn . (1)
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For ε ≥ 0 we define the self-adjoint operator

Hε = −
∑
i,j

∂

∂xj

(
Aijε (x)

∂

∂xi

)
, on L2(Ω),

subject to Dirichlet boundary conditions on ∂Ω. We now fix f ∈ L2(Ω) and we
denote by uε the solution of Hεuε = f , ε ≥ 0. Using a standard argument we obtain
from (1) that ‖uε‖H1(Ω) ≤ c for all ε > 0 hence, up to a subsequence, (uε) converges
weakly in H1

0 (Ω).

We now assume that ‖Aε−A0‖Lp(Ω) ≡ supi,j{‖Aijε −A
ij
0 ‖Lp(Ω)} → 0 for some (equiv-

alently, for all) 1 ≤ p < ∞. We then easily deduce that the weak H1-limit of (uε)
is precisely u0. This implies in particular that the full sequence (uε) converges to
u0 weakly in H1

0 (Ω). It is a natural question to seek conditions under which the
convergence uε → u0 is strong in H1

0 (Ω). To our knowledge this problem has not
been studied. In the next theorem we provide four conditions each one of which
guarantees strong convergence in H1

0 (Ω). The first of these conditions also provides
an estimate for the rate of convergence uε → u0 in H1

0 (Ω), and is the one that will
be used for the domain perturbation problem in the next section.

Given a real symmetric matrix A, the matrix A+ is defined by means of the spectral
theorem: if A =

∑
λn(en ⊗ en) is the spectral representation of A, then A+ :=∑

(λn)+(en ⊗ en).

Theorem 1 Assume that any one of the following four conditions is satisfied:

(1) ∇u0 ∈ Lq(Ω) for some q > 2.

(2) The eigenfunctions {φn} of H0 satisfy ‖∇φn‖Lq(Ω) ≤ cλγn for

some q > 2, γ > 0 and all n ∈ N.

(3) There exists a compact set K ⊂ Ω such that Aε → A0 in L∞(Ω \K).

(4) (A0 − Aε)+ → 0 in L∞(Ω).

Then uε → u0 in H1
0 (Ω) as ε→ 0. Moreover, in case (1) we have the estimate

‖∇uε −∇u0‖L2(Ω) ≤ c‖∇u0‖Lq(Ω)‖aε − a0‖L2q/(q−2)(Ω) , ε > 0. (2)

Proof of Theorem 1. Part (1). Using the standard notation of repeated indices, we
have ∫

Ω

Aijε
∂uε
∂xi
· (∂uε
∂xj
− ∂u0

∂xj
)dx =

∫
Ω

f(uε − u0)dx ,∫
Ω

Aij0
∂u0

∂xi
· (∂uε
∂xj
− ∂u0

∂xj
)dx =

∫
Ω

f(uε − u0)dx .
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Subtracting yields∫
Ω

Aijε (
∂uε
∂xi
− ∂u0

∂xi
)(
∂uε
∂xj
− ∂u0

∂xj
)dx =

∫
Ω

(Aij0 − Aijε )
∂u0

∂xi
(
∂uε
∂xj
− ∂u0

∂xj
)dx , (3)

hence, by (1) and Hölder’s inequality we obtain

‖∇uε −∇u0‖L2(Ω) ≤ c‖∇u0‖Lq(Ω)‖Aε − A0‖L2q/(q−2)(Ω).

Part (2). Let us denote by ∇ the gradient operator, from H1
0 (Ω) to L2(Ω). By

[3, Lemma 3] we have

uε−u0 = ∇∗A1/2
ε (A1/2

ε ∇∇∗A1/2
ε +1)−1A−1/2

ε (A0−Aε)A−1/2
0 (A

1/2
0 ∇∇∗A

1/2
0 +1)−1A

1/2
0 ∇f,

therefore

‖∇uε −∇u0‖L2(Ω) ≤ ‖A−1/2
ε ‖ · ‖A1/2

ε ∇∇∗A1/2
ε (A1/2

ε ∇∇∗A1/2
ε + 1)−1‖ ×

‖A−1/2
ε (A0 − Aε)A−1/2

0 (A
1/2
0 ∇∇∗A

1/2
0 + 1)−1A

1/2
0 ∇‖ · ‖f‖L2(Ω)

≤ c‖(A0 − Aε)A−1/2
0 (A

1/2
0 ∇∇∗A

1/2
0 + 1)−1A

1/2
0 ∇‖ ,

where non-indexed norms are operator norms on L2(Ω). By [3, Lemma 4] we conclude
that

‖∇uε −∇u0‖L2(Ω) ≤ c‖Aε − A0‖Lr(Ω) , all r >
2q

q − 2
(
N

2
+ 2γ − 1), (4)

and the result follows.

Part (3). Going back to (3), applying (1) to the left-hand side and decomposing the
integral in the right-hand side by integrating in K and in Ω \K, we get by Hölder
inequality for any q > 2,

1

c
‖∇uε −∇u0‖2

L2(Ω) ≤ C‖Aε − A0‖L∞(Ω\K)‖∇uε −∇u0‖L2(Ω) +

C‖Aε − A0‖L2q/(q−2)(K)‖∇u0‖Lq(K)‖∇uε −∇u0‖L2(Ω)

which implies,

‖∇uε −∇u0‖L2(Ω) ≤ C̃(‖Aε − A0‖L∞(Ω\K) + ‖Aε − A0‖L2q/(q−2)(K)‖∇u0‖Lq(K))

But interior estimates for the limit problem imply, see [8, Theorem 2], that there
exists a q > 2 such that ‖∇u0‖Lq(K) ≤ C. Hence, we obtain the stated result.

Part (4). Let us start noticing that in general, since uε → u0 weakly in H1(Ω) and
in particular in L2(Ω), we get

∫
Ω

Aijε
∂uε
∂xi

∂uε
∂xj

=

∫
Ω

fuε →
∫

Ω

fu0 =

∫
Ω

Aij0
∂u0

∂xi

∂u0

∂xj
(5)
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Hence we have∫
Ω

Aij0
∂uε
∂xi

∂uε
∂xj

dx ≤
∫

Ω

(A0 − Aε)ij+
∂uε
∂xi

∂uε
∂xj

dx+

∫
Ω

Aijε
∂uε
∂xi

∂uε
∂xj

dx

→
∫

Ω

Aij0
∂u0

∂xi

∂u0

∂xj
dx as ε→ 0.

where we have used the hypothesis and (5). Hence

lim sup
ε→0

∫
Ω

(Aij0
∂uε
∂xi

∂uε
∂xj

+ |uε|2)dx ≤
∫

Ω

(Aij0
∂u0

∂xi

∂u0

∂xj
+ |u0|2)dx .

Let us now consider the space H1(Ω) with the Hilbert norm

|||u|||2 =

∫
Ω

(Aij0
∂u

∂xi

∂u

∂xj
+ |u|2)dx.

We have thus proved that lim sup |||uε||| ≤ |||u0|||. Moreover, the weak convergence in
H1

0 (Ω) with respect to the standard norm implies the weak convergence with respect
to the equivalent norm |||·|||, hence lim inf |||uε||| ≥ |||u0|||. We thus conclude that
|||uε||| → |||u0|||, and therefore uε → u0 strongly in H1

0 (Ω), as required. 2

Remark. If Ω has a Lipschitz boundary, in the sense that there exists a bi-Lipschitz
transformation that maps Ω onto a domain with C1 boundary, then condition (2) is
satisfied. This follows easily from [8, Theorem 1].

Remark. It is an interesting problem to prove or disprove that uε → u0 in H1
0 (Ω)

without any assumptions other than those stated before Theorem 1.

We now present an example that shows that estimate (2) is sharp. We fix an angle
π < β < 2π and denote by Ωβ the circular sector of radius one and angle β,

Ωβ = {(r, θ) : 0 < r < 1 , 0 < θ < β}.

Let u0 be the solution of the problem,{
−∆u0 = 4β2−π2

β2 sin(πθ
β

), in Ωβ,

u0 = 0, on ∂Ωβ.
(6)

(The factor (4β2−π2)/β2 is introduced to simplify subsequent calculations.) Simple
computations give

u0(x) = (r
π
β − r2) sin(

πθ

β
) , 0 < r < 1, 0 < θ < β . (7)

This implies in particular that ∇u0 ∈ Lq(Ωβ) if and only if q < 2β/(β− π). We now
fix α > 0 and for 0 < ε < 1 we set

aε(x) =

{
α, 0 < |x| < ε,

1, ε < |x| < 1.
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We note that aε → 1 in Lp(Ωβ), 1 ≤ p < ∞, but not in L∞(Ωβ). Let us denote by
uε the solution of the perturbed boundary-value problem{

−div(aε∇uε) = 4β2−π2

β2 sin(πθ
β

), in Ωβ,

uε = 0, on ∂Ωβ.
(8)

From part (2) of Theorem 1 follows that

‖∇uε −∇u0‖L2(Ωβ) ≤ c‖aε − a0‖Lp(Ωβ) = cε
2
p , all p >

2β

π
.

Now, simple computations give that uε(x) = vε(r) sin(πθ/β), where

vε(r) =


( 1
α
− 1)(ε2 + ε2−

2π
β ) + 2ε−

π
β

(1− α)ε
π
β + (1 + α)ε−

π
β

r
π
β − 1

α
r2, 0 < r < ε,

(1− α)ε2 + (1 + α)ε−
π
β

(1− α)ε
π
β + (1 + α)ε−

π
β

r
π
β +

(1− α)(ε
π
β − ε2)

(1− α)ε
π
β + (1 + α)ε−

π
β

r−
π
β − r2, ε < r < 1.

Let us denote u0(x) = v0(r) sin(πθ/β) (cf. (7)). We then have

‖∇uε −∇u0‖2
L2(Ωβ) ≥ c

∫ ε

0

(v′ε − v′0)2r dr

=
π(1− α)2

2β(1 + α)2
ε
2π
β (1 + o(1)) , as ε→ 0.

We conclude that the index 2q/(q−2) in (2) cannot be replaced by any smaller index.

3 Stability estimates in H1
0 under domain pertur-

bation

Let Ω be a bounded domain in RN . We fix M > 0. Let φ : Ω → φ(Ω) =: Ω̃ be a
bi-Lipschitz transformation such that

‖Dφ‖L∞(Ω) ≤M, ‖(Dφ)−1‖L∞(Ω) ≤M . (9)

We set E = {x ∈ Ω : φ(x) 6= x} and we note that

‖F ◦ φ− F‖L2(Ω) ≤ ‖F‖Lq(Ω)|E|
q−2
2q , ‖(Dφ)±1 − I‖Lq(Ω) ≤ c|E|

q−2
2q . (10)

Let A = {Aij(x)} be measurable and symmetric on Ω ∪ Ω̃ satisfying

1

M
|ξ|2 ≤

∑
i,j

Aij(x)ξiξj ≤M |ξ|2, x ∈ Ω ∪ Ω̃ , ξ ∈ RN .
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Let L (resp. L̃) denote the operator −
∑

i,j ∂xj{Aij∂xi} on L2(Ω) (resp. L2(Ω̃))

subject to Dirichlet boundary conditions. We fix f ∈ L2(Ω∪ Ω̃) and we denote by u
(resp. ũ) the solution of Lu = f (resp. L̃ũ = f). We extend ∇u and ∇ũ to be zero
outside their respective domains. We then have the following

Theorem 2 Assume that there exists q > 2 such that ‖f‖Lq(Ω∪Ω̃) ≤M , ‖∇u‖Lq(Ω) ≤
M and ‖∇ũ‖Lq(Ω̃) ≤ M . Then there exists a constant c depending only on M such
that

‖∇ũ−∇u‖L2(Ω∪Ω̃) ≤ c|E|
q−2
2q . (11)

Proof. We set g(x) = | detDφ(x)|, x ∈ Ω. We note that given v ∈ H1
0 (Ω̃) and letting

u = v ◦ φ we have ∫
Ω̃

|v|2dy =

∫
Ω

|u|2g dx

and ∫
Ω̃

N∑
i,j=1

Aij
∂v

∂yi

∂v̄

∂yj
dy =

∫
Ω

N∑
i,j=1

aij
∂u

∂xi

∂ū

∂xj
g dx ,

where a = (aij)i,j=1,...,N is defined on Ω by

aij =
N∑

r,s=1

(
Ars

∂φ
(−1)
i

∂yr

∂φ
(−1)
j

∂ys

)
◦ φ = ((Dφ)−1(A ◦ φ)(Dφ)−t)ij . (12)

This leads to the notion of the pull-back: the pull-back of L̃ to Ω is the self-adjoint
operator H̃ on L2(Ω, g dx) associated with the sesquilinear form Q̃ with Dom(Q̃) =
H1

0 (Ω) and

Q̃(u1, u2) =

∫
Ω

N∑
i,j=1

aij
∂u1

∂xi

∂ū2

∂xj
g dx, u1, u2 ∈ H1

0 (Ω).

So formally H̃U = −g−1
∑

i,j(gaijUxi)xj . Equivalently, H̃ can be defined as H̃ =

CφL̃C
−1
φ , where Cφ : L2(Ω̃) → L2(Ω, g dx) denotes composition by φ (a unitary

operator).

It then follows that H̃ = g−1Ĥ, where Ĥ is the self-adjoint operator on L2(Ω)
associated to the form Q̃ defined above on H1

0 (Ω). Now, let û ∈ L2(Ω) be defined by
Ĥû = f . Using (1) of Theorem 1 and also (10) we obtain

‖∇û−∇u‖L2(Ω) ≤ c‖a− A‖
L

2q
q−2 (Ω)

≤ c|E|
q−2
2q .
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Morover we have {
H̃(ũ ◦ φ) = f ◦ φ,

H̃û = gf.
(13)

Hence, by (10),

‖∇(ũ ◦ φ)−∇û‖L2(Ω) ≤ c‖f ◦ φ− gf‖L2(Ω) ≤ c|E|
q−2
2q . (14)

Finally by (10) we also have

‖∇(ũ ◦ φ)−∇ũ‖L2(Ω) ≤ c|E|
q−2
2q . (15)

Combining (13), (14) and (15) we obtain that ‖∇ũ −∇u‖L2(Ω) ≤ c|E|
q−2
2q . We also

have
|Ω̃ \ Ω| ≤ c|φ−1(Ω̃ \ Ω)| ≤ c|E|,

hence ‖∇ũ−∇u‖L2(Ω̃) ≤ c|E|
q−2
2q by Hölder inequality. This concludes the proof. 2

Using Theorem 2 we can now prove stability estimates in H1
0 for localized perturba-

tions in terms of the Lebesgue measure. We consider the following class of domains
(see also [6]):

Definition 3 Let V be a bounded open cylinder, i.e., there exists a rotation R such
that R(V ) = W×]a, b[, where W is a bounded convex open set in RN−1. Let M,ρ > 0.
We say that a bounded open set Ω ⊂ RN belongs to C0,1

M (V,R) if Ω is of class C0,1 (i.e.,
Ω is locally a subgraph of C0,1 functions) and there exists a function h ∈ C0,1(W )
such that a+ (b− a)/10 ≤ h ≤ b, Lip(h) ≤M , and

R(Ω ∩ V ) = {(x̄, xN) : x̄ ∈ W , a < xN < h(x̄)}. (16)

In the following theorem, again, ∇u and ∇ũ are extended to be zero outside Ω and
Ω̃ respectively.

Theorem 4 Let Ω, Ω̃ be domains of class C0,1
M (V,R) with Ω \ V = Ω̃ \ V . Let f ∈

L2(Ω ∪ Ω̃) and let u ∈ H1
0 (Ω) and ũ ∈ H1

0 (Ω̃) solve Lu = f and L̃ũ = f respectively.
Assume that there exists q > 2 such that ‖f‖Lq(Ω∪Ω̃) ≤ M , ‖∇u‖Lq(Ω) ≤ M and
‖∇ũ‖Lq(Ω̃) ≤M . Then there exists a constant c depending only on M such that

‖∇ũ−∇u‖L2(Ω∪Ω̃) ≤ c|Ω̃4Ω|
q−2
2q . (17)

8



Proof. It has been proved in [4], following earlier work of Burenkov and Lamberti
[6], that if Ω and Ω̃ are in C0,1

M (V,R) then there exists a bi-Lipschitz diffeomorphism
φ : Ω→ Ω̃ whose Lipschitz constants are estimated in terms of M only and such that
|E| ≤ c|Ω̃4Ω|, where c also depends only on M . Hence (17) follows from Theorem
2. 2

We now present an example that shows that estimate (2) is sharp. It is a variation
of the example in Section 2. We fix π < β < 2π and 0 ≤ ε < 1 and denote by Ωε,β

the planar domain

Ωε,β = {(r, θ) : ε < r < 1 , 0 < θ < β}.

We denote by uε be the solution of the problem{
−∆uε = 4β2−π2

β2 sin(πθ
β

), in Ωε,β,

uε = 0, on ∂Ωε,β.
(18)

The function u0 has been computed in (7). For ε > 0 a direct computation gives
that uε(x) = vε(r) sin(πθ/β), where

vε(r) =
ε−π/β − ε2

ε−π/β − επ/β
r
π
β +

ε2 − επ/β

ε−π/β − επ/β
r−

π
β − r2 , ε < r < 1.

We then easily obtain the asymptotic formula

‖∇uε −∇u0‖L2(Ω0) = Aεπ/β(1 + o(1)), (19)

for some A > 0.

Let us now see what our theorem gives. We note that the domains are not of some
class C0,1

M (V,R) uniformly in ε, so we cannot directly apply Theorem 4. Instead, let
sε : (0, 1)→ (ε, 1),

sε(r) =

{
r
2

+ ε , 0 < r < 2ε,

r, 2ε < r < 1.

We define the bi-Lipschitz map φε : Ω0 → Ωε, given in polar coordinates by

φε(r, θ) = (sε(r), θ) , 0 < r < 1 , 0 < θ < β.

Using the explicit computation of u0 and uε we easily see that the assumptions of
Theorem 2 are satisfied for any (fixed) q < 2β/(β − π). Hence Theorem 2 gives

‖∇uε −∇u0‖L2(Ω0∪Ωε) ≤ cq|Eε|
q−2
2q = cqε

q−2
q = cδε

π
β
−δ,

for any δ > 0. Because of (19), this shows that the exponent of |E| in (11) cannot
be replaced by a smaller one.
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