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Abstract. We prove Lp-Hardy inequalities with distance to the boundary for
domains in the Heisenberg group Hn, n ≥ 1. Our results are based on a certain

geometric condition. This is first implemented for the Euclidean distance in
certain non-convex domains. It is then implemented for the distance defined

by the gauge quasi-norm related to the fundamental solution of the horizontal

Laplacian when the domain is a half-space or a convex polytope. Finally
it is implemented for the Carnot-Carathéodory distance on half-spaces and

arbitrary bounded convex domains of Hn. In all cases the constant ((p−1)/p)p

is obtained. In the more general context of a stratified Lie group of step two
we study the superharmonicity and the weak H-concavity of the Euclidean

distance to the boundary, thus obtaining an alternative proof for the L2-Hardy

inequality on convex domains.

1. Introduction

The classical Lp-Hardy inequality, p > 1, affirms that∫
Rn
|∇u|p dx ≥

∣∣∣∣n− pp
∣∣∣∣p ∫

Rn

|u|p

|x|p
dx ,

for u ∈ C∞c (Rn \ {0}), where the constant is sharp.
Another much studied type of Hardy inequality is where the Hardy potential

is the distance to the boundary of a reference domain. A well known such result
states that if Ω ⊂ Rn is a convex domain and d(x) = dist(x, ∂Ω), then for any
u ∈ C∞c (Ω) there holds∫

Ω

|∇u|p dx ≥
(
p− 1

p

)p ∫
Ω

|u|p

dp
dx ,

and the constant is sharp, cf. [MS97]. In [BFT04] the convexity condition was
replaced by the more general notion of weak mean convexity, namely the require-
ment that ∆d ≤ 0 in the distributional sense in Ω. The above inequality is not
valid without some geometric assumptions on Ω and for this reason inequalities of
this type are often called geometric Hardy inequalities. The literature on geometric
Hardy inequalities in Euclidean space is large and we refer the interested reader to
the works [Ba24, BEL15, Dav98, RS19] which provide an overview of the topic.
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On the other hand, subelliptic Hardy inequalities have been studied for quite a
long time and the work [GL90] of Garofallo and Lanconelli in the 90’s opened up the
research in this direction. By subelliptic Hardy inequalities, we mean Hardy-type
inequalities considered in the setting of homogeneous Lie groups, and in particular
stratified groups. The systematic analysis of homogeneous Lie groups goes back
to the seminal work [FS82] by Folland and Stein where the authors establish the
corresponding “anisotropic” non-commutative harmonic analysis, see also [S93].
In view of their importance in the area of partial differential equations, stratified
Lie groups, have been widely recognised as they play a key role in establishing
subelliptic estimates for differential operators on general manifolds.

As in the Euclidean case, Hardy inequalities on stratified groups may involve
either the distance to a point or the distance to the boundary. Moreover, one
may use the Euclidean distance, the Carnot-Carathéodory distance or the distance
related to the fundamental solution of the sub-Laplacian ∆H , often called the gauge
pseudodistance.

Concerning the distance to a point case we refer to [CCR15, D’A04, GL90,
GKY17, FP21, RS17, Y13]. For an overview of the works in Hardy inequalities of
all the above types we refer to the monograph [RS19]; see also the survey article
[Su22].

For Hardy inequalities involving the distance to the boundary the literature in
the stratified setting is limited and in most cases it involves the Euclidean distance.
In [Lar16] Hn, S. Larson shows that if Ω ⊂ Hn is either a half space or a convex
(in the Euclidean sense) domain, then for any u ∈ C∞c (Ω) we have

∫
Ω

|∇Hnu|2 dx ≥ 1

4

∫
Ω

|∇Hnd|2

d2
u2 dx ,

where d(x), x ∈ Ω, stands for the Euclidean distance to ∂Ω and the constant 1/4
is the best possible. Later on in [RSS20] Ruzhansky et al. proved that if Ω is a
half-space in any stratified group then for any p > 1 there holds∫

Ω

|∇Hu|pdx ≥
(p− 1

p

)p ∫
T

|∇Hd|p

dp
|u|pdx , u ∈ C∞c (Ω),

where ∇H denotes the horizontal gradient on H. For other results in this direction
see also [Rus18].

Our main interest in this work is to prove subelliptic geometric Hardy inequalities
with best constant on the Heisenberg group Hn, but also on any stratified group
of step two. Our approach is based on the general method of [BFT04] and in
particular in the Lp-superharmonicity of the distance function. The general result
is then implemented in different contexts.

In the case of the Euclidean distance on the Heisenberg group Hn we prove the
following result which goes beyond the convexity condition. The precise value of
the constant β(p, n) is given in Proposition 3.

Theorem A. Let R > ρ > 0 and let T denote the torus

T = {ξ = (x, y, t) ∈ Hn : (r −R)2 + t2 < ρ2}



GEOMETRIC HARDY INEQUALITIES ON THE HEISENBERG GROUPS VIA CONVEXITY 3

where r =
√
|x|2 + |y|2. For any p > 1 there exists a positive constant β(p, n) such

that if

(i) R ≥ ρ+
( (2n− 1)ρ

4

) 1
3

(ii) R ≥ β(p, n)ρ,

then ∫
T

|∇Hnu|pdξ ≥
(p− 1

p

)p ∫
T

|∇Hnd|p

dp
|u|pdξ , u ∈ C∞c (T ).

Another class of distances in a stratified group consists of those induced by a
homogenous quasi-norm. In the case of the Heisenberg group Hn there are two
particularly important such (quasi)-norms. The first is

(1) N(ξ) =
(

(|x|2 + |y|2)2 + t2
) 1

4

, ξ = (x, y, t) ∈ Hn.

We note that N2−Q, with Q = 2n+ 2 being the homogeneous dimension of Hn, is
(up to a multiplicative constant) the fundamental solution of the sub-Laplacian on
Hn [Fol73].

A second important homogeneous quasi-norm, which respects the sub-Riemannian
geometry of Hn, is the one arising from the Carnot-Carathéodory distance, de-
noted here by ρ. Let us recall the definition of the Carnot-Carathéodory distance
between two points x, y ∈ Rn: For a family {X1, · · · , Xm} of vector fields, the
Carnot-Carathéodory distance between x, y is given by

(2) ρ(x, y) = inf
γ∈Cx,y

{length(γ)} ,

where Cx,y is the set of horizontal curves joining x to y. In the case of a stratified
group when the set {X1, · · · , Xm} coincides with the first stratum V1 of its Lie
algebra (see Section 4 for related definitions) we always have d(x, y) <∞, and the
Carnot-Carathéodory distances induced by different choices of V1 are equivalent
[Pa89, Section 1.3].

Denoting by dN the distance to the boundary induced by N , cf. (13) below, we
have the following

Theorem B. (i) Let p > 1 and let D ⊂ Hn be a half-space. There holds∫
D

|∇Hnu|pdξ ≥
(
p− 1

p

)p ∫
D

|∇HndN |p

dpN
|u|p dξ , u ∈ C∞c (D) .

(ii) In case p = 2 the above inequality is also valid for any bounded convex polytope.
Moreover the constant is the best possible in both cases.

Denoting by dρ the Carnot-Carathéodory distance to the boundary, we obtain
the following

Theorem C. Let p > 1 and let D ⊂ Hn be a bounded and convex domain or a
half-space in Hn. There holds∫

D

|∇Hnu|pdξ ≥
(
p− 1

p

)p ∫
D

|u|p

dpρ
dξ , u ∈ C∞c (D) .

In the case of the half-space the constant is sharp.
The appereance of the factor |∇HndN | in Theorem B – while a similar factor

does not appear in Theorem C – should be seen in the light of a result of [MSC01]
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a special case of which states that |∇Hndρ| = 1 a.e. A more interesting difference
between the above two homogeneous norms relates to nearest boundary points in
the case of a subspace Π ⊂ Hn. The correspondence

Π 3 ξ ←→ (ξ′, s) ∈ ∂Π× R+

where s = dist(ξ, ∂Π) = d(ξ, ξ′) is different in the two cases. In the case of the
quasi-norm (1) the above is a simple 1-1 correspondance, as in the Euclidean case,
cf. Proposition 9. However in the case of the Carnot-Carathéodory distance the
situation is entirely different; see Proposition 16.

In Section 4 we extend our setting to that of an arbitrary stratified group of step
two. In this general setting, a certain notion of convexity plays a central role. There
are various notions of convexity in the sub-Riemannian setting and their properties
can vary significantly [DGN03, DLZ24, LMS03]. Notably, in [MR03] R. Monty and
M. Rickly prove that in the case of the Heisenberg group H, if a set is geodesically
convex and contains at least three points that do not lie on the same geodesic, then
it necessarily coincides with H.

In our context the relevant notions of convexity of sets and functions are the
ones introduced at the same time by Lu, Manfredi and Stroffolini in [LMS03] on
the Heisenberg group and by Danielli, Garofallo and Nhieu in [DGN03] on any
stratified group. These notions are the analogues of the corresponding ones in the
abelian case Rn but with a twist; the condition refers to a convex combination of
two elements g, g′ for which, additionally, g′ ∈ Hg, i.e. g′ lies in the horizontal plane
passing through g; see Section 4.1 for the precise definitions. Exploring properties
of the so-called weakly H-concave functions (see Definition 20) and using a result
from [DGN03] we prove the following theorem, part (iii) of which is contained in
[RSS20].

Theorem D. Let G be a stratified group of step two and let Ω ⊂ G be a bounded
domain which is convex in the Euclidean sense. Then

(i) The Euclidean distance to the boundary is weakly H-concave in Ω;

(ii) ∆Hnd ≤ 0 in the distributional sense in Ω;

(iii) The Hardy inequality∫
Ω

|∇Hnu|2dg ≥ 1

4

∫
Ω

|∇Hnd|2

d2
u2dg , u ∈ C∞c (Ω),

is valid.

2. two general results on stratified groups

A stratified (or Carnot) group G ≡ Rn is naturally a homogeneous Lie group.
Denoting by g the corresponding Lie algebra we have dim(g) = n and g admits a
vector space decomposition of the form

(3) g =

r⊕
j=1

Vj , such that

{
[V1, Vi−1] = Vi , 2 ≤ i ≤ r,
[V1, Vr] = {0},

where

[Vi, Vj ] = span{[X,Y ] : X ∈ Vi, Y ∈ Vj}.
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Such a stratification naturally equips G with a non-anisotropic dilation structure
δλ : G → G, λ > 0, and makes G a homogeneous Lie group. The vector spaces Vi
are called the strata of the Lie algebra g. A symmetric homogeneous (quasi-)norm
on G is a function N : G→ [0,∞) such that (i) N(g) = 0 if and only if g = e, where
e is the identity element of G; (ii) N(g) = N(g−1); and (iii) N(δλ(g)) = λN(g). In
this article we shall use the term quasi-norm to indicate a symmetric homogeneous
quasi-norm.

If G is a stratified group, the system {X1, . . . , Xm}, m ≤ n, of vector fields in
the first stratum V1 of g generates, after iterated commutators, the whole of g, and
so it is a system of Hörmander vector fields on Rn. The vector space spanned by
{X1, . . . , Xm} is referred to as the horizontal hyperplane.

The first-order vector-valued differential operator

∇H = (X1, . . . , Xm)

is then called the horizontal gradient on G (or the subgradient on G). Similarly
divH will denote the horizontal divergence given by

divH(f1, . . . , fm) = X1f1 + . . . Xmfm.

The second-order differential operator

∆H = X2
1 + . . .+X2

m

is called the horizontal Laplacian (or sublaplacian) on G and is the sub- Riemannian
analogue of the Laplacian on Rn. By Hörmander’s Theorem, see [Hör67], the
operator ∆H is hypoelliptic. For p > 1 we also have the associated horizontal
p-Laplacian given by

∆p,H u = divH
(
|∇Hu|p−2∇Hu

)
.

Finally, let us also recall that the (bi-invariant) Haar measure in the case of a
stratified group is just, up to multiplication by a constant, the Lebesgue measure
on the underlying manifold Rn.

We first prove a general theorem which will be later applied in the case of the
Euclidean distance and of the pseudodistance induced by the quasi-norm (1).

In what follows, we will say that a function is CC-Lipschitz if it is Lipschitz
with respect to the Carnot-Carathéodory distance (equivalently, with respect to
the distance induced by any homogeneous quasi-norm).

Part (a) of the next theorem is essentially contained in [RSS20] but we include
the short proof of it because of its central role in the present article.

Theorem 1. Let G be a stratified group and let Ω ⊂ G be open and connected. Let
p > 1 and let d : Ω→ (0,∞) be a positive, locally CC-Lipschitz function.
(a) Assume that

∆p,H d ≤ 0 in Ω ,

where the inequality is understood in the distributional sense. Then∫
Ω

|∇Hu|pdx ≥
(p− 1

p

)p ∫
Ω

|∇Hd|p

dp
|u|p dx , u ∈ C∞c (Ω).
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(b) Assume that there exist x0 ∈ ∂Ω and two neighbourhoods A,A′ of x0 in G with
A′ ⊂⊂ A and such that

(i) There exists c > 0 such that |∇Hd| ≥ c in A ∩ Ω.

(ii) The integral
∫
A′∩Ω

d−1+εdx is finite for ε > 0 and diverges to +∞ as ε→ 0.

Then

inf
u∈C∞c (Ω)

∫
Ω
|∇Hu|pdx∫

Ω
|∇Hd|p
dp |u|pdx

≤
(p− 1

p

)p
.

Proof. First we note that in view of [MSC01, Theorem 2.5] ∇Hd exists a.e. in
Ω. Let T be a vector field in L1

loc(Ω) and u ∈ C∞c (Ω). Using an argument from
[BFT04], with the only difference that differential operators are replaced by the
corresponding horizontal ones, we obtain that∫

Ω

|∇Hu|pdx ≥
∫

Ω

(
divHT − (p− 1)|T |

p
p−1

)
|u|pdx,

where divHT is understood in the distributional sense. We now make the particular
choice

T = −
(p− 1

p

)p−1 1

dp−1
|∇Hd|p−2∇Hd.

For this choice we have

divHT − (p− 1)|T |
p
p−1 =

(p− 1

p

)p |∇Hd|p
dp

−
(p− 1

p

)p−1 1

dp
∆p,Hd ,

hence (a) follows.
To prove (b), let ψ be a smooth cut-off function supported in A and satisfying

0 ≤ ψ ≤ 1 and ψ(x) = 1 in A′. We fix ε > 0, which will eventually tend to zero,
and we define

uε(x) = d(x)
p−1
p +εψ(x), x ∈ Ω.

A standard argument shows that uε can be used as a test function. Applying the
elementary inequality |a+ b|p ≤ |a|p + cp(|a|p−1|b|+ |b|p), a, b ∈ Rn, we obtain

|∇uε|p =
∣∣∣(p− 1

p
+ ε
)
d−

1
p+εψ∇Hd+ d

p−1
p +ε∇Hψ

∣∣∣p
≤
(p− 1

p
+ ε
)p
d−1+εpψp|∇Hd|p+ c′pd

εp|∇Hd|p−1|∇Hψ|+ cpd
p−1+εp|∇Hψ|p.

It follows that∫
Ω

|∇Huε|pdx ≤
(p− 1

p
+ ε
)p ∫

Ω

d−1+εpψp|∇Hd|pdx

+ c′p

∫
Ω

dεp|∇Hd|p−1|∇Hψ|dx+ cp

∫
Ω

dp−1+εp|∇Hψ|pdx.

The last two integrals stay bounded as ε→ 0, so∫
Ω

|∇Huε|pdx ≤
(p− 1

p
+ ε
)p ∫

Ω

d−1+εpψp|∇Hd|pdx+O(1).

We also have ∫
Ω

|∇Hd|p

dp
upεdx =

∫
Ω

|∇Hd|pd−1+εpψpdx .
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Hence, since the last integral diverges to infinity as ε→ 0, we arrive at∫
Ω
|∇Huε|pdx∫

Ω
|∇Hd|p
dp upεdx

=
(p− 1

p
+ ε
)p

+ o(1), as ε→ 0.

Letting ε→ 0 concludes the proof. �

Given a quasi-norm N we may define a pseudodistance by

dN (x, y) = N(y−1x) , x, y ∈ G.
The following proposition allows us to apply Theorem 1 in the case of the gauge

quasi-norm (1).

Proposition 2. Let S be a closed set in a stratified group G and let N be any
quasi-norm on G that is smooth out of the origin. Then the pseudodistance

dN,S(g) = inf
b∈S

dN (b, g) = inf
b∈S

N(g−1b)

is CC-Lipschitz.

Proof. By the equivalence of all quasi-norms on a stratified group it is enough to
show that for g, g′ ∈ S we have

(4) |d(g)− d(g′)| ≤ KdN (g−1g′) ,

for some K > 0. By [BLU07, Proposition 5.14.1] there exists β ≥ 1 such that

N(xy) ≤ βN(x) +N(y) , for all x, y ∈ G .
Now, let (bn), (bn)′ ⊂ S be such that

d(g) = limN(g−1bn) , d(g′) = limN(g′−1b′n) ,

We then have

d(g)− d(g′) ≤ lim inf
[
N(g−1b′n)−N(g′−1b′n)

]
= lim inf

[
N(g−1g′g′−1b′n)−N(g′−1b′n)

]
≤ lim inf

[
βN(g−1g′) +N(g′−1b′n)−N(g′−1b′n)

]
= βN(g−1g′) .

Similarly we can show that

d(g′)− d(g) ≤ Cβ dNg′, g) ,

and (4) follows. �

3. Geometric Hardy inequalities on the Heisenberg group

In the section we consider geometric Hardy inequalities on the Heisenberg group
Hn. In the first part we consider the Euclidean distance and prove the validity of
the Hardy inequality with best constant on certain torii under suitable assumptions
on the radii. In the second part we study the geometric Hardy inequality for the
pseudodistance induced by the quasi-norm (1).

We recall that the Heisenberg group Hn is the manifold

Hn = {ξ = (x, y, t) : x, y ∈ Rn, t ∈ R}
equipped with the group operation

ξξ′ =
(
x+ x′, y + y′, t+ t′ + 2(x · y′ − y · x′)

)
.



8 G. BARBATIS, M. CHATZAKOU, AND A. TERTIKAS

The left-invariant vector fields

Xi = ∂xi + 2yi∂t , Yi = ∂yi − 2xi∂t , i = 1, . . . , n,

form the canonical basis basis of the first stratum and the associated horizontal
gradient and horizontal Laplacian on Hn are given respectively by

∇Hn = (X1, . . . , Xn, Y1, . . . , Yn),

and

∆Hn =

n∑
i=1

(X2
i + Y 2

i ) .

So in the current section we denote the horizontal gradient and Laplacian by ∇Hn

and ∆Hn , respectively, to emphasize that the obtained results refer to the particular
case of Hn.

3.1. Hardy inequalities with respect to the Euclidean distance on a torus.
We will see here that Theorem 1 can be applied in the case of the Euclidean distance
on a torus and thus goes beyond the convexity assumption of [Lar16].

We first note that for any u ∈ C2(Hn) we have

(5) ∆Hnu =

n∑
i=1

(uxixi + uyiyi) + 4(|x|2 + |y|2)utt − 2

n∑
i=1

(yiuxit − xiuyit)

We now use cylindrical coordinates (r, ω, t) in Hn, that is spherical coordinates
(r, ω) in R2n,

(x, y) = rω , r > 0, ω ∈ S2n−1,

where S2n−1 denotes the unit sphere in R2n. The Euclidean gradient in R2n is then
given by

∇u = ur ω +
1

r
∇ωu.

Suppose now that a function u ∈ C2(Hn) is independent of ω, that is u = u(r, t).
In this case ∇u = ur ω, so

n∑
i=1

(yiuxi − xiuyi) =

n∑
i=1

(yi
ur
r
xi − xi

ur
r
yi) = 0.

Hence, for such functions, (5) gives

∆Hnu = urr +
2n− 1

r
ur + 4r2utt.

Consider now a torus T ⊂ Hn which is symmetric with respect to the t-axis and
is centered at the origin. Letting R, ρ (R > ρ) denote the two radii, T is described
in cylindrical coordinates as

(6) T = {ξ = (r, ω, t) : (r −R)2 + t2 < ρ2}.

The Euclidean distance to the boundary is given by

d(ξ) = ρ−
√

(r −R)2 + t2, ξ ∈ T,

and is smooth in T except on the (2n− 1)-dimensional ‘circle’

S = {ξ = (r, ω, t) : t = 0, r = R}.
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The horizontal Laplacian of d is then given by

(7) ∆Hnd = drr +
2n− 1

r
dr + 4r2dtt, in T \ S.

In T \ S we have

dr = − r −R√
(r −R)2 + t2

drr = −
(
(r −R)2 + t2

)− 3
2 t2

dtt = −
(
(r −R)2 + t2

)− 3
2 (r −R)2.

Substituting in (7) we conclude that in T \ S there holds

∆Hnd =−
(
(r −R)2 + t2

)− 3
2

1

r

×
{[

(2n− 1)(r −R) + 4r3
]
(r −R)2 +

[
r + (2n− 1)(r −R)

]
t2
}
.(8)

Proposition 3. Let p > 1. Let R > ρ > 0 and let T be the torus (6). Then there
exists a positive constant β(p, n) such that if

(i) R ≥ ρ+
( (2n− 1)ρ

4

) 1
3

(ii) R ≥ β(p, n)ρ,

then ∆p,Hnd ≤ 0 in T \ S. Moreover we can take

β(p, n) =


max

{
2n+p−2
p−1 , 2n−p+1

2(2−p)

}
, if 1 < p < 2,

2n if p = 2,

2n+ p− 2 if p ≥ 13+
√

32n−7
8 .

whereas for 2 < p < 13+
√

32n−7
8 we have β(p, n) = 1 + 1

a(p,n) , where a(p, n) is the

positive solution of

(2n+ p− 3)2a2 + 4
(

(p− 2)(2n+ p− 3) + (p− 1)(2n− 1)
)
a− 4(2p− 3) = 0

Proof. Let A = |∇Hnd|2. We then have

(9) ∆p,Hnd = A
p−4
2

(
A∆Hnd+

p− 2

2
(drAr + 4r2dtAt)

)
.

Now, simple computations give

(10) A = d2
r + 4r2d2

t =
(r −R)2 + 4r2t2

(r −R)2 + t2
.

and

Ar =
2(r −R)(1− 4rR)t2 + 8rt4(

(r −R)2 + t2
)2 , At =

2t(r −R)2(4r2 − 1)(
(r −R)2 + t2

)2 .

Hence

drAr+4r2dtAt = −
(

(r−R)2+t2
)− 5

2

{
(r−R)2t2(2−8r2−8rR+32r4)+8r(r−R)t4

}
.

Substituting in (9) and recalling (8) we obtain after some more computations that

∆p,Hnd = −A
p−4
2

(
(r −R)2 + t2

)− 5
2W ,
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where

W =
1

r

(
(r −R)2 + 4r2t2

)(
(r −R)2

[
(2n− 1)(r −R) + 4r3

]
+
[
(2n− 1)(r −R) + r

]
t2
)

+ (p− 2)

(
(r −R)2

[
1− 4rR− 4r2 + 16r4

]
t2 + 4r(r −R)t4

)
.

In case p = 2 we note that our assumption implies that

(2n− 1)(r −R) + 4r3 ≥ 0 , (2n− 1)(r −R) + r ≥ 0

in T , hence W ≥ 0, as required.
For p 6= 2 we collect similar powers of t to obtain

rW = (r −R)4
(

(2n− 1)(r −R) + 4r3
)

+ (r −R)2

{(
2n− 1 + 4(2n+ p− 3)r2

)
(r −R)

+ 16(p− 1)r5 − 8(p− 2)r3 + (p− 1)r

}
t2

+ 4r2
(

(2n+ p− 3)(r −R) + r
)
t4

=: C0 + C1t
2 + C2t

4.

Assumption (i) implies that C0 ≥ 0. Similarly, assumption (ii) implies that R ≥
(2n+ p− 2)ρ in all cases and therefore C2 ≥ 0.

We shall prove that C1 ≥ 0. Equivalently, that

r −R+ r
16(p− 1)r4 − 8(p− 2)r2 + p− 1

2n− 1 + 4(2n+ p− 3)r2
≥ 0, for all R− ρ ≤ r ≤ R+ ρ.

For this we shall find a positive constant a = a(p, n) such that

16(p− 1)r4 − 8(p− 2)r2 + p− 1

2n− 1 + 4(2n+ p− 3)r2
≥ a , r > 0,

or equivalently

(11) 16(p− 1)r4−
(

8(p− 2) + 4a(2n+ p− 3)
)
r2 + p− 1− a(2n− 1) ≥ 0 , r > 0.

If such an a has been found then we shall have C1 ≥ 0 provided the radii of T
satisfy

r −R+ ar ≥ 0, for all r ∈ [R− ρ,R+ ρ],

which is equivalent to

R ≥ (1 +
1

a
)ρ.

At this point we need to distinguish different cases.

Case 1 < p < 2. In this case we choose

a = a1(p, n) := min
{ p− 1

2n− 1
,

2(2− p)
2n+ p− 3

}
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which makes all coefficients in (11) non-negative. The requirement on the radii
then is

R ≥
(

1 +
1

a1(p, n)

)
ρ = max

{2n+ p− 2

p− 1
,

2n− p+ 1

2(2− p)

}
ρ,

and it is satisfied by our assumptions.

Case p > 2. In this case the coefficient of r2 in (11) is negative, so we consider the
discriminant. We have(

8(p− 2) + 4a(2n+ p− 3)
)2

− 64(p− 1)
(
p− 1− a(2n− 1)

)
=16

{
− 4(2p− 3) + 4

(
(p− 2)(2n+ p− 3) + (p− 1)(2n− 1)

)
a+ (2n+ p− 3)2a2

}
.

We now choose a = a(p, n) to be the positive root of the quadratic polynomial
above. So the requirement on the radii for (11) is

R ≥
(

1 +
1

a(p, n)

)
ρ

and β(p, n) is given by

β(p, n) = max
{

2n+ p− 2 , 1 +
1

a(p, n)

}
.

Finally we to note that for p > 2,

2n+ p− 2 ≥ 1 +
1

a(p, n)
⇐⇒ a(p, n) ≥ 1

2n+ p− 3

⇐⇒ 4p2 − 13p+ 11− 2n ≥ 0

⇐⇒ p ≥ 13 +
√

32n− 7

8
.

This completes the proof. �

Remark 1. For 1 < p < 2 we have that

2n− p+ 1

2(2− p)
≥ 2n+ p− 2 iff

3

2
≤ p < 2.

Moreover if we define p0 =
√

9n2 − 8n+ 2 − 3(n − 1) then 3/2 < p0 < 2 and for
1 < p < 2 we have

max
{2n+ p− 2

p− 1
,

2n− p+ 1

2(2− p)

}
=

{
2n+p−2
p−1 , if 1 < p ≤ p0,

2n−p+1
2(2−p) , if p0 ≤ p < 2.

Theorem 4. Let R > ρ > 0 and let T denote the torus (6). Let p > 1 and assume
that conditions (i) and (ii) of Proposition 3 are satisfied. Then

(i) There holds ∆p,Hnd ≤ 0 in the distributional sense in T .

(ii) For any u ∈ C∞c (T ) there holds∫
T

|∇Hnu|pdξ ≥
(p− 1

p

)p ∫
T

|∇Hnd|p

dp
|u|pdξ.

Moreover the constant in (ii) is the best possible.
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Proof. Let p > 1. By Proposition 3 we have ∆p,Hnd ≤ 0 in T \ S. Hence the
inequality in (ii) for any u ∈ C∞c (T \ S) follows from Theorem 1.

In order to extend this to any u ∈ C∞c (T ) it is enough to establish that ∆p,Hnd ≤
0 in the distributional sense in T . That is, we must prove that given a non-negative
function φ ∈ C∞c (T ) there holds

(12)

∫
T

|∇Hnd|p−2∇Hnd · ∇Hnφ dξ ≥ 0.

For this we shall use a standard approximation argument. Let

q(ξ) =
√

(r −R)2 + t2 , ξ = (r, ω, t) ∈ T,
be the (Euclidean) distance of ξ ∈ T to the ‘circle’ S. For ε > 0 small we consider
a smooth function ψε on T such that

ψε(ξ) =

{
0, if q(ξ) < ε,
1, if q(ξ) > 2ε

and |∇ψε| ≤ c/ε. Then φε := ψεφ is a non-negative smooth function in C∞c (T \ S)
and hence, by Proposition 3,∫

T

|∇Hnd|p−2∇Hnd · ∇Hnφε dξ ≥ 0.

Since |∇Hnd| is bounded, in order to complete the proof it is enough to show that∫
T

|∇Hnφε −∇Hnφ|dξ −→ 0 , as ε→ 0,

since (12) will then follow by letting ε→ 0.
In fact, since |∇Hnu| ≤ c|∇u| in T , it is enough to consider the Euclidean gradi-

ent. We have

‖∇φε −∇φ‖L1(T ) ≤ ‖(1− ψε)φ‖L1(T ) + ‖φ∇ψε‖L1(T ).

The first norm in the RHS tends to zero as ε → 0 by the Dominated Convergence
Theorem. For the second one we have∫

T

|φ∇ψε|dξ ≤
c

ε

∫
{ε<q(ξ)<2ε}

dξ

≤ c1
ε
ε2

→ 0.

Hence the Hardy inequality (ii) has been proved.
To establish the optimality of the constant we apply part (b) of Theorem 1.

Assumption (i) is satisfied by (10). The fact that (ii) is satisfied is well known, see
[BFT04, Lemma 5.2]. This completes the proof of the theorem. �

Remark 2. It is evident from the argument in the above proof that if Ω ⊂ Hn is a
domain with C2 boundary then the corresponding Hardy constant connot be larger
than ((p − 1)/p)p, provided there exists a point ξ0 ∈ ∂Ω such that ∇Hnd(ξ0) 6= 0.
This, of course, is very generic. We do not pursue this any further here, but we
make two comments.

1. Assume that Ω possesses cylindrical symmetry so that d = d(r, t). Suppose
that at a point ξ0 ∈ ∂Ω we have ∇Hnd(ξ0) = 0, that is

dxi + 2yidt = 0 , dyi − 2xidt = 0 , i = 1, . . . , n.
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Multiplying by xi and yi respectively and adding we obtain
n∑
i=1

(xidxi + yidyi) = 0, at the point ξ0.

Using cylindrical coordinates (r, ω, t) we then obtain that dr(ξ0) = 0. By cylindrical
symmetry we have

d2
r + d2

t = |∇d|2 = 1 , in T,

hence dt(ξ0) = 1 and therefore the tangent hyperplane at ξ0 must be parallel to the
hyperplane {t = 0}. Hence generically we have ∇Hnd 6= 0 on ∂Ω

2. Let Ω be a domain which does not necessarily possess some kind of symmetry.
If ξ0 ∈ ∂Ω is a boundary point with ∇Hnd(ξ0) = 0, then we have

d2
xi = 4y2

i d
2
t , d2

yi = 4x2
i d

2
t , i = 1, . . . , n, at the point ξ0.

Since |∇d| = 1, adding implies

(1 + 4r2)d2
t = 1, at the point ξ0.

It follows that if in addition the tangent hyperplane at ξ0 is parallel to the hyper-
plane {t = 0} (and so dt(ξ0) = 1), then we must necessarily have r = 0, that is the
point ξ0 must lie on the t-axis.

3.2. Hardy inequalities with respect to the gauge pseudodistance. In this
section we consider geometric Hardy inequalities in the Heiseberg group with re-
spect to the gauge quasi-norm

N(ξ) =
(

(|x|2 + |y|2)2 + t2
) 1

4

, ξ = (x, y, t) ∈ Hn .

For a given domain Ω ⊂ Hn the induced distance to the boundary is given by

(13) dN (ξ) = distN (ξ, ∂Ω) = inf{N((ξ′)−1ξ), ξ′ ∈ ∂Ω}, ξ ∈ Ω.

We first consider the case where our domain is the half-space

Π0 = {(x, y, t) ∈ Hn : t > 0}.

It is then easy to see that for ξ = (x, y, t) ∈ Π0 and ξ′ = (x′, y′, 0) ∈ ∂Π0 we have

(14) dN (ξ, ξ′) =

((
|x′ − x|2 + |y′ − y|2

)2

+
(
t+ 2(x · y′ − y · x′)

)2
) 1

4

.

Lemma 5. Let Π0 = {(x, y, t) ∈ Hn : t > 0} and let

(15) dN (ξ) = inf{N((ξ′)−1ξ), ξ′ ∈ ∂Π0} , ξ ∈ Π0,

denote the corresponding pseudodistance to the boundary. Then, for any ξ =
(x, y, t) ∈ Π0, dN (ξ) depends only on r =

√
|x|2 + |y|2 and t > 0. More precisely,

we have

dN (ξ) = dN (r, t) =

{ (
2r4s2 − 3tr2s+ t2

) 1
4 , r > 0, t > 0,

t
1
2 , r = 0, t > 0,

where for fixed r, t > 0 the real number s ∈ R is the unique solution of the equation

(16) s3 + 2s− t

r2
= 0 .
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Proof. The case r = 0 is immediate, so we assume that r > 0. By (14) the infimum
in (15) is attained at a point (x′, y′) which is a critical point of the function

F (x′, y′) =
(
|x′ − x|2 + |y′ − y|2

)2

+
(
t+ 2(x · y′ − y · x′)

)2

, (x′, y′) ∈ R2n.

For i = 1, . . . , n we have

Fx′i = 4
(
|x′ − x|2 + |y′ − y|2

)
(x′i − xi)− 4

(
t+ 2(x · y′ − y · x′)

)
yi ,

Fy′i = 4
(
|x′ − x|2 + |y′ − y|2

)
(y′i − yi) + 4

(
t+ 2(x · y′ − y · x′)

)
xi .

Assume now that (x′, y′) is a critical point of F . Then necessarily (x′, y′) 6= (x, y).
From the last two relations we then obtain

xi(x
′
i − xi) + yi(y

′
i − yi) = 0, i = 1, . . . , n.

We set

s =
t+ 2(x · y′ − y · x′)
|x′ − x|2 + |y′ − y|2

.

and note that

(17) x′i − xi = syi , y′i − yi = −sxi , i = 1, . . . , n.

We then have

(18) x · y′ − y · x′ =

n∑
j=1

[
xj(y

′
j − yj)− yj(x′j − xj)

]
= −r2s

and

|x′ − x|2 + |y′ − y|2 = s2
n∑
j=1

(y2
j + x2

j ) = r2s2.

Hence for i = 1, . . . , n, we have

Fx′i = 4yi(r
2s3 + 2r2s− t), Fy′i = −4xi(r

2s3 + 2r2s− t)

and we thus conclude that s must solve (16).
Since the cubic equation has a unique solution, there exists a unique critical

point (x′, y′) of F given by (17).
Finally, by (18) we have

d4
N (ξ) =

(
|x′ − x|2 + |y′ − y|2

)2

+
(
t+ 2(x · y′ − x′ · y)

)2

=
(
|x′ − x|2 + |y′ − y|2

)2

+
(
t− 2r2s

)2

= 2r4s2 − 3tr2s+ t2,(19)

where we have also used (16). This completes the proof.
�

Proposition 6. Let Π ⊂ Hn be an arbitrary half-space and let dN (ξ), ξ ∈ Π,
denote the pseudodistance to the boundary with respect to the quasi-norm N . Then
for any p > 1 there holds ∆p,HndN ≤ 0 in the distributional sense in Π.
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Proof. For simplicity we will write d instead of dN . By group action (see also
[Lar16, p340]) it is enough to consider the case Π = Π0. Also, it is preferable to
work with the function

G(r, t) = d(r, t)4

instead of d(r, t). To compute the various derivatives of G(r, t) we recall from
Lemma 5 that

(20) G(r, t) = 2r4s2 − 3tr2s+ t2 = (t− r2s)(t− 2r2s) in Π0 \ {r = 0},

where s = s(r, t) is defined by (16). Since t = r2(s3 + 2s) we may eliminate t from
(20) and we obtain

(21) G(r, t) = r4s4(s2 + 1).

By (16) we have

(22) st =
1

r2(3s2 + 2)
, sr = −2s(s2 + 2)

r(3s2 + 2)
.

Hence

Gr = 4r3s4(s2 + 1) + r4(6s5 + 4s3)sr

= 4r3s4(s2 + 1)− r4(6s5 + 4s3)
2s(s2 + 2)

r(3s2 + 2)

= −4r3s4.(23)

Similarly we obtain

Gt = 2r2s3, Grr = −4r2s4(s2 − 10)

3s2 + 2
(24)

Gtt =
6s2

3s2 + 2
, Grt = − 16rs3

3s2 + 2
.

Setting A = |∇Hnd|2 we have, cf. (9),

(25) ∆p,Hnd = A
p−4
2

(
A∆Hnd+

p− 2

2

(
drAr + 4r2dtAt

))
.

We have

dr =
1

4
G−

3
4Gr, dt =

1

4
G−

3
4Gt, drr = − 3

16
G−

7
4G2

r +
1

4
G−

3
4Grr

and

dtt = − 3

16
G−

7
4G2

t +
1

4
G−

3
4Gtt, drt = − 3

16
G−

7
4GrGt +

1

4
G−

3
4Grt.

Moreover

A = d2
r + 4r2d2

t =
1

16
G−

3
2 (G2

r + 4r2G2
t ) = G−

3
2 r6s6(s2 + 1),

Ar = 2drdrr + 8rd2
t + 8r2dtdrt

= G−
5
2

(
− 3

32
G3
r +

1

8
GGrGrr +

r

2
GG2

t −
3r2

8
GrG

2
t +

r2

2
GGtGrt

)
= G−

5
2

2r9s12(s2 + 2)(s2 + 1)

3s2 + 2
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and

At = 2drdrt + 8r2dtdtt

= G−
5
2

(
− 3

32
G2
rGt +

1

8
GGrGrt −

3r2

8
G3
t +

r2

2
GGtGtt

)
= −G− 5

2
r8s11(s2 + 1)

3s2 + 2
.

Combining the above we arrive at

(26) drAr + 4r2dtAt = −2G−
13
4
r12s14(s2 + 1)3

3s2 + 2
.

On the other hand in Π0 \ {r = 0} we have, cf. (7),

∆Hnd = drr +
2n− 1

r
dr + 4r2dtt

=
1

4
G−

7
4

{
GGrr −

3

4
G2
r +

2n− 1

r
GGr + 4r2GGtt − 3r2G2

t

}
= −G− 7

4
r6s8(s2 + 1)

(
(6n− 2)s2 + 4n− 3

)
3s2 + 2

.(27)

From (25), (26) and (27) we obtain

∆p,Hnd = −G−
3p+1

4
r3ps3p+2(s2 + 1)

p
2

(
(6n+ p− 4)s2 + 4n+ p− 5

)
3s2 + 2

≤ 0,

and the desired inequality has been proved pointwise in Π0 \ {r = 0} (where dN is
smooth). To complete the proof we argue as in the proof of Theorem 4, using in
particular functions ψε, ε > 0, as in that proof. Part (i) is also used at this point
since the local boundedness of |∇Hd| is required when letting ε→ 0. �

Proposition 7. Let Π0 = {(x, y, t) ∈ Hn : t > 0} and let dN = dN (r, t) denote the
corresponding gauge pseudodistance to the boundary ∂Π0 of the point ξ = (r, ω, t) ∈
Π0 expressed in cylindrical coordinates. Then for any fixed r 6= 0 we have

(i) dN (r, t) =
t

2r
+O(t3)

(ii) |∇HndN (r, t)| = 1 +O(t2)

as t→ 0+.

Proof. For simplicity we write d instead of dN . Differentiating (19) we get

4d3dt = 2t− 3r2s+ (4r4s− 3tr2)st.

Now using the first part of (22) and the fact that s solves (16) we obtain

dt =
6ts2 − 2r2s+ t− 9r2s3

4d3(3s2 + 2)
=

6ts2 + 16r2s− 8t

4d3(3s2 + 2)
.

Similarly we find that

dr =
24r4s4 + 16r4s2 − 18tr2s3 − 20tr2s+ 6t2

4d3r(3s2 + 2)
=

40r2ts− 32r4s2 − 12t2

4d3r(3s2 + 2)
.

We now let t→ 0+. From (16) we find

s =
t

2r2
− t3

16r6
+O(t5).



GEOMETRIC HARDY INEQUALITIES ON THE HEISENBERG GROUPS VIA CONVEXITY17

Plugging this in (19) we have

d4(r, t) =
t4

16r4
− t6

64r8
+O(t8)

and (i) follows. We then also have

1

d6(r, t)
=

64r6

t6
+O(

1

t4
)

and combining the above we obtain

d2
t =

1

4r2
+O(t2) , d2

r =
t2

4r4
+O(t4).

We thus conclude that

|∇Hnd|2 = d2
r + 4r2d2

t = 1 +O(t2),

as required. �

Theorem 8. Let p > 1 and Π be an arbitrary half-space in Hn. Let dN (ξ) =
distN (ξ, ∂Π) denote the corresponding pseudodistance of ξ ∈ Π to the boundary ∂Π.
Then there holds∫

Π

|∇Hnu|pdξ ≥
(p− 1

p

)p ∫
Π

|∇HndN |p

dpN
|u|pdξ , u ∈ C∞c (Π).

Moreover the constant is the best possible.

Proof. Action by an appropriate group element reduces the proof to the case Π =
Π0 = {(x, y, t) : t > 0}. The validity of the Hardy inequality is a consequence of
Theorem 1 (a) and Proposition 6. The sharpness of the constant follows from the
second part of Theorem 1 (b) and Proposition 7. �

In case p = 2 we will extend the above to the case of a bounded convex polytope.
For this we will need the following lemma where, as above, Π0 = {(x, y, t) ∈ Hn :
t > 0}.

Proposition 9. Any point ξ ∈ Π0 has a unique nearest boundary point (x′, y′, 0) ∈
∂Π. Moreover, given a point ξ′ = (x′, y′, 0) ∈ ∂Π0 and ρ > 0, there exists a unique
point ξ = (x, y, t) ∈ Π0 whose nearest boundary point is ξ′ and for which dN (ξ) = ρ.

Proof. We have already seen in the proof of Lemma 5 that given ξ ∈ Π0 the nearest
boundary point ξ′ ∈ ∂Π is uniquely defined.

Suppose now that a point ξ′ = (x′, y′, 0) ∈ ∂Π0 and ρ > 0 are given. Assume
that ξ ∈ Π0 has ξ′ as its nearest boundary point and that dN (ξ) = ρ. Denoting
r2 = |x|2 + |y|2 and r′2 = |x′|2 + |y′|2 we have from (17) that

r′2 = (1 + s2)r2 ,

where s > 0 is defined in terms of r, t by (16). We also have (cf. (21)) ρ4 =
r4s4(1 + s2). We thus conclude that

r′4

ρ4
=

1 + s2

s4
,

and this relation uniquely determines s > 0. Now going back to (17) we obtain

xi =
x′i − sy′i
1 + s2

, yi =
sx′i + y′i
1 + s2

.
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We also have t = r2(s3 + 2s), hence the point ξ = (x, y, t) ∈ Π0 has been uniquely
determined. It is not difficult now to see that this point has indeed (x′, y′, 0) as its
nearest boundary point and dN (ξ) = ρ. This completes the proof. �

Remark 3. Let us point out that the convexity of a set Ω ⊂ G in a stratified
group G is a genuine geometric notion in the sense that it is invariant under left
translations; i.e., if Ω ⊂ G is convex and g ∈ G, then gΩ is also convex.

Theorem 10. Let Ω ⊂ Hn be a bounded convex polytope and let dN (ξ), ξ ∈ Ω,
denote the corresponding gauge pseudodistance to the boundary. Then

(i) ∆HndN ≤ 0 in the distributional sense in Ω.

(ii) The Hardy inequality∫
Ω

|∇Hnu|2dξ ≥ 1

4

∫
Ω

|∇HndN |2

d2
N

u2dξ , u ∈ C∞c (Ω),

is valid, and the constant 1/4 is sharp.

Proof. For simplicity we write d instead of dN . Let E1, . . . , Em denote the sides of
Ω. We define

Ak = {ξ ∈ Ω : d(ξ) = dist(ξ, Ek), }, k = 1, . . . ,m.

Hence the sets Ak have pairwise disjoint interiors and ∪mk=1Ak = Ω. Let Πk,
k = 1, . . . ,m, denote the half-spaces determined by Ω so that

Ek ⊂ ∂Πk, k = 1, . . . ,m, and Ω =

m⋂
k=1

Πk.

We then have

(28) d(ξ) = dist(ξ, ∂Πk) =: dk(ξ) , for all ξ ∈ Ak.

It immediately follows from (28) that

d(ξ) = min
1≤k≤m

dk(ξ), ξ ∈ Ω.

We fix a non-negative function φ ∈ C∞c (Ω) and we aim to show that

(29)

∫
Ω

∇Hd · ∇Hφdξ =

m∑
k=1

∫
Ak

∇Hdk · ∇Hφ dξ ≥ 0.

We recall the divergence theorem in the stratified setting: if the vector field F takes
values in the first stratum and sufficient regularity is assumed then∫

A

divHF dξ =

∫
∂A

F · νHdS ,

where

(30) νH = (νx + 2νty, νy − 2νtx)

and ν = (νx, νy, νt) denotes the usual outer normal vector.
We cannot directly apply integration by part to each of the integrals in the RHS

of (29) due to the fact that, as is seen from Lemma 5, there is a halfline Lk ⊂ Πk

on which each function dk is not differentiable (the halfline Lk is the image of the
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halfline {(0, 0, t) : t > 0} under the group action that maps Π0 onto Πk). We define
the set

K =

m⋃
k=1

Lk

and so d is C1 in Ω \K.
We now use a standard cut-off argument. We denote by dE(·,K) the Euclidean

distance to the set K and we consider smooth functions ψε, ε > 0, such that
0 ≤ ψε ≤ 1 and 

ψε(ξ) = 0, if dE(ξ,K) < ε,

ψε(ξ) = 1, if dE(ξ,K) > 2ε,

|∇ψε(ξ)| ≤ c
ε , for all ξ ∈ H.

We then define φε = φψε.
Let k ∈ {1, . . . ,m}. Integrating by parts and using Proposition 6 we obtain∫

Ak

∇Hdk · ∇Hφε dξ =−
∫
Ak

φε ∆Hdk dξ +

∫
∂Ak

φε∇Hdk · νk,H dS

≥
∫
∂Ak

φε∇Hdk · νk,H dS.

where νk,H is defined as above relative to Ak. Adding over k we arrive at

(31)

∫
Ω

∇Hd · ∇Hφε dξ ≥
m∑
k=1

∫
∂Ak

φε∇Hdk · νk,H dS.

Now, each boundary ∂Ak consists of outer parts where φ vanishes as well as of
common boundaries with other sets Aj , j 6= k. Let us fix k, j such a set Ak and Aj
share such a common boundary Skj . Letting, as above, νH = (νx + 2νty, νy− 2νtx)
where ν is the normal vector on Skj which is outer with respect to Ak, we conclude
that the two contributions on the surface Skj from Ak and Aj add up to∫

Skj

φε (∇Hdk −∇Hdj) · νHdS.

The surface Skj is a level set for the function dk − dj and at each point ξ ∈ Skj
there holds ∇dk −∇dj = λν where λ = λ(ξ) ≥ 0. We therefore have on Skj

(∇H dk −∇H dj) · νH
=
(
∇x dk −∇x dj + 2dk,ty − 2dj,ty,∇y dk −∇y dj − 2dk,tx+ 2dj,tx

)
·
(
νx + 2yνt, νy − 2xνt

)
=
(
λνx + 2λνty, λνy − 2λνtx

)
·
(
νx + 2νty, νy − 2νtx

)
= λ

(
(νx + 2νty)2 + (νy − 2νtx)2

)
≥ 0.

Hence the LHS of (31) is non-negative. Noting that ∇φε → ∇φ in L1(Ω) as ε→ 0
completes the proof. Combining the above completes the proof of (i). Part (ii) is an
immediate consequence of part (i) and Theorem 1.The optimality of the constant
follows from Theorem 8. �
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As an immediate consequence of Theorem 10 we obtain the geometric uncertainty
principle on the convex set Ω ⊂ Hn with respect to the gauge pseudo-distance on
Hn.

Corollary 11. Let D ⊂ Hn be either a bounded convex polytope or an arbitrary
half-space in Hn and let

dN (ξ) = distN (ξ, ∂D)

denote the corresponding pseudodistance of ξ ∈ D to the boundary ∂D. Then for
any u ∈ C∞c (D) we have(∫

D

|∇Hnu|2dξ

) 1
2
(∫

D

d2
Nu

2dξ

) 1
2

≥ 1

2

∫
D

u2dξ .

Proof. A combination of Theorem 10, Part (ii) and of the Cauchy-Schwarz inequal-
ity yields(∫

D

|∇Hnu|2dξ

)(∫
D

d2
Nu

2dξ

)
≥ 1

4

(∫
D

u2

d2
N

dξ

)(∫
D

d2
Nu

2dξ

)
≥ 1

4

(∫
D

u2dξ

)2

.

�

3.3. Hardy inequalities with respect to the Carnot-Carathéodory dis-
tance. In this section we consider geometric Hardy inequalities in the Heisenberg
group with respect to the Carnot-Carathéodory distance.

In the case of the Heisenberg group Hn, it has been proved in [BGG00, CCG07]
(see also [DLZ24]) that the Carnot-Carathéodory distance of a point ξ = (x, y, t)
to the origin is given by

(32) ρ(ξ) =

{
φ

sinφr, if (x, y) 6= (0, 0),√
π|t|, if (x, y) = (0, 0),

where r =
√
|x|2 + |y|2 and the angle φ ∈ (0, π) is uniquely determined by the

requirement

(33) µ(φ) :=
2φ− sin(2φ)

2 sin2 φ
=

t

r2
.

For a given domain Ω ⊂ Hn the induced distance to the boundary is given by

(34) dρ(ξ) = distρ(ξ, ∂Ω) = inf{ρ((ξ′)−1ξ), ξ′ ∈ ∂Ω}, ξ ∈ Ω.

As in Section 3.2, we first consider the case of the half-space

Π0 = {(x, y, t) ∈ Hn : t > 0}.

By the above, it is then easy to see that for ξ = (x, y, t) ∈ Π0 and ξ′ = (x′, y′, 0) ∈
∂Π0 we have

(35) dρ(ξ, ξ
′) =

{
φ

sinφ

√
|x′ − x|2 + |y′ − y|2, (x′, y′) 6= (x, y),

√
πt , (x′, y′) = (x, y),
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where φ ∈ (0, π) is implicitly given by

(36) µ(φ) =
t+ 2(x · y′ − x′ · y)

|x′ − x|2 + |y′ − y|2
.

We set

g(φ) =
φ

sinφ

and define the function

F (x′, y′) = g(φ)
√
|x′ − x|2 + |y′ − y|2, (x′, y′) 6= (x, y).

where φ ∈ (0, π) is determined by (36) with ξ ∈ Π0 being fixed.

Lemma 12. Let ξ = (x, y, t) ∈ Π0 with (x, y) 6= (0, 0). The function F (x′, y′) has
a unique critical point (x′, y′) in the set R2n \ {(x, y)}. Moreover this critical point
is given by

(37)

{
(x′i − xi) cotφ = yi ,
(y′i − yi) cotφ = −xi , i = 1, . . . , n,

where φ is the unique solution in (0, π/2) of the equation

(38)
2φ+ sin(2φ)

2 cos2 φ
=

t

r2
.

Proof. For notational simplicity we set X = (x, y) and X ′ = (x′, y′) 6= X. We then
have

(39) Fx′i(x
′, y′) = g′(φ)φx′i |X

′ −X|+ g(φ)
x′i − xi
|X ′ −X|

.

Differentiating (36) we get

µ′(φ)φx′i =− 2yi
|X ′ −X|2

−
2
(
t+ 2(x · y′ − x′ · y)

)
)(x′i − xi)

|X ′ −X|4

=
−2yi − 2µ(φ) (x′i − xi)

|X ′ −X|2
.

Hence going back to (39) we see that Fx′i(x
′, y′) = 0 if and only if

(40)
(
g(φ)µ′(φ)− 2g′(φ)µ(φ)

)
(x′i − xi) = 2g′(φ)yi.

But

µ′(φ) =
2(sinφ− φ cosφ)

sin3 φ
, g′(φ) =

sinφ− φ cosφ

sin2 φ

and

g(φ)µ′(φ)− 2g′(φ)µ(φ) = 2
cosφ(sinφ− t cosφ)

sin3 φ
.

so (40) takes the form (x′i − xi) cotφ = yi. Similar considerations show that
Fy′i(x

′, y′) = 0 if and only if (y′i − yi) cotφ = −xi. Hence we conclude that a

point (x′, y′) 6= (x, y) is a critical point of F if and only if (37) is satisfied where
φ ∈ (0, π) is given by (36).

Assume now that (x′, y′) 6= (x, y) is a critical point of the function F . From (37)
we then have that φ 6= π/2. Moreover, again from (37),

xi(x
′
i − xi) + yi(y

′
i − yi) = 0 , i = 1, . . . , n.
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and

x · y′ − x′ · y = x · (y′ − y)− (x′ − x) · y = −r2 tanφ.

It then follows that

(41) |x′ − x|2 + |y′ − y|2 = r2 tan2 φ.

These together with (36) give

µ(φ) =
t− 2r2 tanφ

(r2 tan2 φ
.

Recalling the definition of the function µ, cf. (33), we conclude that φ satisfies (38).
This procedure defines a map

Π0 \ {(0, 0, t) : t > 0} 3 (x, y, t) 7→ φ = φ(x, y, t) ∈ (0, π).

We shall write φ = φ(r, t), r =
√
|x|2 + |y|2. This map is clearly continuous and,

as we have seen, we have φ(r, t) 6= π/2 for all r, t > 0. But, by (38), φ(r, t) → 0
as t→ 0+ for any fixed r > 0, hence by continuity we obtain that in fact φ(r, t) ∈
(0, π/2) for all r, t > 0.

Hence given (x, y, t) ∈ Π0 with (x, y) 6= (0, 0), if a critical point (x′, y′) 6= (x, y)
exists then it is unique and it is determined by (38) and (37).

To complete the proof we observe that the argument works both ways: if φ ∈
(0, π/2) is defined by (38) then the point (x′, y′) defined by (37) is different from
(x, y) and is indeed a critical point of F . �

Lemma 13. The Carnot-Carathéodory distance of a point ξ = (x, y, t) ∈ Π0 to the
boundary ∂Π0 is given by

dρ(ξ) =


φ

cosφr, if (x, y) 6= (0, 0),√
πt
2 , if (x, y) = (0, 0),

where r =
√
|x|2 + |y|2 and in the first case φ ∈ (0, π/2) is uniquely determined by

the requirement

(42)
2φ+ sin(2φ)

2 cos2 φ
=

t

r2
.

Moreover in case (x, y) 6= (0, 0) the distance is realized at a unique point ξ′ ∈ ∂Π0

while in case (x, y) = (0, 0) it is realized at all points of the circle with center at the

origin and radius
√

2t/π.

Proof. (i) Case (x, y) 6= (0, 0). Let ξ = (x, y, t) ∈ Π0 with (x, y) 6= (0, 0) be given
and let (x′, y′) 6= (x, y) be the critical point of F determined in Lemma 12. Writing
ξ′ = (x′, y′, 0) and recalling (35) and (41) we have

dρ(ξ, ξ
′) =F (x′, y′)

=
φ

sinφ

√
|x′ − x|2 + |y′ − y|2

=
φ

sinφ
r tanφ

=
φ

cosφ
r.(43)
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The proof will be complete if we prove that the distance of ξ to the point (x, y, 0)
is strictly larger than dρ(ξ, ξ

′). To see this we recall that, by (35),

dρ
(
ξ , (x, y, 0)

)
=
√
πt.

Applying the elementary inequality

φ2 <
π

2

(
2φ+ sin(2φ)

)
, 0 < φ <

π

2
.

we thus have

d2
ρ(ξ, ξ

′) =
φ2

cos2 φ
r2

<
2φ+ sin(2φ)

2 cos2 φ
πr2

=
t

r2
πr2

= d2
ρ

(
ξ , (x, y, 0)

)
.

(ii) Case (x, y) = (0, 0). Let t > 0 be fixed. We recall that

dρ
(
(0, 0, t) , (0, 0, 0)

)
=
√
πt.

Now, for (x′, y′) 6= (0, 0) we define

G(x′, y′) = d2
ρ

(
(x′, y′, 0) , (0, 0, t)

)
=

φ2

sin2 φ
r′2

where r′2 = x′2 + y′2 and φ ∈ (0, π) is defined by

2φ− sin(2φ)

2 sin2 φ
=

t

r′2
.

Hence

G(x′, y′) =
2φ2

2φ− sin(2φ)
t.

The function φ 7→ φ2/(2φ − sin(2φ)) is minimized for φ = π/2 in which case it is

equal to π/2. Hence dρ(0, 0, t) =
√
πt/2. Moreover we have φ = π/2 precisely for

the points (x′, y′) for which r′2 = 2t/π. This completes the proof. �

Proposition 14. Let Π0 = {(x, y, t) ∈ Hn, t > 0} and let dρ = dρ(ξ), ξ ∈ Π0,
denote the corresponding Carnot-Carathéodory distance to the boundary ∂Π0. Then
for any fixed r 6= 0 we have

dρ(ξ) =
t

2r
+ o(t) , as t→ 0+.

Proof. The proof follows using standard arguments by Lemma 13, since by (42)
t→ 0 implies that φ→ 0. �
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Theorem 15. Let Π be an arbitrary half-space in Hn and let dρ(ξ), ξ ∈ Hn, denote
the Carnot-Carathéodory distance to the boundary ∂Π. Then

(i) ∆Hndρ ≤ 0 in the distributional sense in Π.

(ii) For any p > 1 the Hardy inequality∫
Π

|∇Hnu|pdξ ≥
(p− 1

p

)p ∫
Π

|u|p

dpρ
dξ , u ∈ C∞c (Π),

is valid. Moreover the constant is the best possible.

Proof. For simplicity we write d instead of dρ. (i) We first note that by invariance
under group action we may assume that Π = Π0. By Lemma 13 the distance to
the boundary of a point ξ = (x, y, t), (x, y) 6= (0, 0), is given by

d(r, t) =
φ

cosφ
r =: B(φ)r.

We will see below that dr(r, t) ≤ 0. Therefore, we have

∆Hnd = drr +
2n− 1

r
dr + 4r2dtt(44)

≤ drr +
1

r
dr + 4r2dtt

= B′′(φ)
(
rφ2

r + 4r3φ2
t

)
+B′(φ)

(
rφrr + 3φr + 4r3φtt

)
+

1

r
B(φ).

The various partial derivatives of φ = φ(r, t) are computed from the relation

(45) Q(φ) :=
2φ+ sin(2φ)

2 cos2 φ
=

t

r2
.

Differentiating we find

φt =
1

r2Q′(φ)
, φtt = − Q′′(φ)

r4 (Q′(φ))3
, φr = − 2Q(φ)

r Q′(φ)
,

φrr =
Q(φ)

r2(Q′(φ))3

(
6 (Q′(φ))2 − 4Q′′(φ)Q(φ)

)
.

Substituting in (44) we arrive at

(46) ∆Hnd ≤
1

r(Q′)3

(
4(Q2 + 1)(B′′Q′ −Q′′B′) +B (Q′)3

)
.

Let A denote the term in large brackets in (46). We have

B′(φ) =
cosφ+ φ sinφ

cos2 φ
, B′′(φ) =

φ+ φ sin2 φ+ sin(2φ)

cos3 φ
,

Q′(φ) = 2
cosφ+ φ sinφ

cos3 φ
, Q′′(φ) = 2

φ+ 2φ sin2 φ+ 3 sin(2φ)

cos4 φ
.

Therefore

dr(r, t) = B(φ) +B′(φ)φr r = − sinφ ≤ 0
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as claimed. Substituting we find after some computations that

A =− 8

cos9 φ
·
(

(1 + 2 cos4 φ− 3 cos2 φ)φ3 + cosφ sinφ (3− 5 cos2 φ)φ2

+ cos2 φ (3− 4 cos2 φ)φ+ cos3 φ sinφ

)
.

Now, the term in the large brackets above can be written as

φ3 sin4 φ+ φ2 sin2 φ cosφ (3 sinφ− φ cosφ)

+ φ sinφ cos2 φ (3 sinφ− 2φ cosφ) + cos3 φ (sinφ− φ cosφ)

Each of these four terms is non-negative for φ ∈ (0, π/2); hence A ≤ 0 and (i) has
been proved.

(ii) The required Hardy inequality will follow by applying Theorem 1 provided
we establish that ∆p,Hnd ≤ 0 in the distributional sense in Π. Now, by [MSC01,
Theorem 3.1] (or by a direct computation for r 6= 0) we have |∇Hnd| = 1 a.e.

Hence the above condition can be simplified to ∆Hnd ≤ 0 which is in particular
independent of p > 1; see also [BFT04]. So the result follows from (i). The
sharpness of the constant follows from Theorem 1 (b), Proposition 14 and the fact
that |∇Hndρ| = 1 a.e., cf. [MSC01]. �

The next proposition provides a more detailed picture concerning nearest bound-
ary points. We denote r′2 = |x′|2 + |y′|2.

Proposition 16. (1a) Any point ξ = (x, y, t) ∈ Π0 with (x, y) 6= (0, 0) has a unique
nearest boundary point (x′, y′, 0) ∈ ∂Π0. Moreover (x′, y′) is different from (x, y)
and from (0, 0) and there holds dρ(ξ) < πr′/2.
(1b) Let t > 0. The point (0, 0, t) has as nearest boundary points all points (x′, y′, 0)
with x′2 + y′2 = 2t/π.
(2a) Conversely, let ξ′ = (x′, y′, 0) ∈ ∂Π0 with (x′, y′) 6= (0, 0) and ρ > 0 be given.
If ρ < πr′/2 then there are exactly two points ξ = (x, y, t) ∈ Π0 whose nearest
boundary point is ξ′ and for which dρ(ξ) = ρ. Moreover exactly one of these points
lies on the t-axis. If ρ ≥ πr′/2 then there is only one such point and it lies on the
t-axis.
(2b) No point in Π0 has (0, 0, 0) as its nearest boundary point.

Proof. (1a) We have already seen in the proof of Theorem 13 that given ξ ∈ Π0 the
nearest boundary point ξ′ = (x′, y′, 0) ∈ ∂Π0 is uniquely defined. Moreover, setting
r′2 = x′2 + y′2 we have from (37) that

r′2 = (1 + tan2 φ) r2 =
r2

cos2 φ

where φ ∈ (0, π/2) is given by (42). Hence

(47) dρ(ξ) =
φ

cosφ
r = φr′ <

πr′

2
.

(1b) This is contained in Theorem 13.
(2a) Assume that ξ = (x, y, t) ∈ Π0 with (x, y) 6= (x′, y′) has ξ′ as its nearest
boundary point and that d(ξ) = ρ. By (47) φ = ρ/r′ and the point ξ is now
uniquely determined by (37) and (42). It is now easy to see that this point ξ has
indeed ξ′ as its nearest boundary point and dρ(ξ) = ρ.
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Moreover, by Theorem 13, the point (0, 0, 2ρ2/π) also has (x′, y′, 0) as one of its
nearest boundary points and its distance to the boundary is ρ. In case ρ ≥ πr′/2
the first of these two points is not defined. Hence (2a) has been proved.
(2b) We note that in case (1a) the nearest boundary point (x′, y′, 0) is not the origin
since (0, 0) is not a critical point of the function F in Lemma 12. In case (1b) the
nearest boundary points are also different from the origin.

�

Lemma 17. Let Ω ⊂ Hn be a bounded convex polytope. The corresponding Carnot-
Carathéodory distance to the boundary satisfies ∆Hndρ ≤ 0 in the distributional
sense in Ω.

Proof. The proof follows exactly the lines of the proof of Theorem 10 using Lemma
13 and Theorem 15 instead. �

Theorem 18. Let Ω ⊂ Hn be bounded and convex and let dρ(ξ), ξ ∈ Ω, denote the
corresponding Carnot-Carathéodory distance to the boundary. Then for any p > 1
the Hardy inequality∫

Ω

|∇Hnu|pdξ ≥
(p− 1

p

)p ∫
Ω

|u|p

dpρ
dξ , u ∈ C∞c (Ω),

is valid.

Proof. For simplicity we write d instead of dρ. Let u ∈ C∞c (Ω) be fixed. We
consider a bounded convex polytope Ω′ such that

supp(u) ⊂⊂ Ω′ ⊂⊂ Ω.

Let us denote by d′ the Carnot-Carathéodory distance to ∂Ω′. Combining Theorem
1 and Lemma 17 we obtain that∫

Ω′
|∇Hnu|pdξ ≥

(p− 1

p

)p ∫
Ω′

|u|p

d′p
dξ .

Hence, since d′ ≤ d in Ω′,∫
Ω

|∇Hnu|pdξ =

∫
Ω′
|∇Hnu|pdξ ≥

(p− 1

p

)p ∫
Ω′

|u|p

d′p
dξ ≥

(p− 1

p

)p ∫
Ω

|u|p

dp
dξ

and the proof is complete. �

Remark 4. We point that the fact that the key property that d′ ≤ d, for d and d′

as in the proof of Theorem 18 in the bounded convex polytope Ω′ and reflects the
geometric nature of the Carnot-Carathéodory distance, meaning in particular that
that the latter is a “true” distance respecting the geometry of Hn.

The proof of the following corollary, which is the geometric uncertainty principle
with respect to the Carnot-Carathéodory distance, follows the lines of Corollary 11
in the case of the gauge pseudodistance.

Corollary 19. Let D ⊂ Hn be either a bounded convex domain or an arbitrary
half-space in Hn and let

dρ(ξ) = distρ(ξ, ∂D)

denote the corresponding Carnot-Carathéodory distance of ξ ∈ D to the boundary
∂D. Then for any u ∈ C∞c (D) we have(∫

D

|∇Hnu|2dξ

) 1
2
(∫

D

d2
ρu

2dξ

) 1
2

≥ 1

2

∫
D

u2dξ .
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4. Hardy inequalities on stratified groups of step two

In this section we consider stratified groups of step two. If G ≡ Rn is such a
group with (cf. (3)) dim(V1) = m < n, then each element g ∈ G can be written as

g = (g(1), g(2)) = (g1, · · · , gm, gm+1, · · · , gn),

where g(1) ∈ Rm and g(2) ∈ Rn−m belong in the first and the second stratum of G,
respectively. It is known that the group law has the form

(48) (g′g)i =

{
gi + g′i , i = 1, · · · ,m,
gi + g′i + 1

2 〈B
(i)g′(1), g(1)〉 , i = m+ 1, · · · , n,

where the B(i)’s are m×m matrices, and 〈·, ·〉 stands for the standard inner product
in Rm, see e.g. [BLU07, Remark 17.3.1]. The group law (48) can also be written
as

(49) g′g = (g(1) + g′(1), g(2) + g′(2) +
1

2
〈Bg′(1), g(1)〉) ,

where 〈Bg(1), g′(1)〉 denotes the (n−m)-tuple

(〈B(m+1)g(1), g′(1)〉, · · · , 〈B(n)g(1), g′(1)〉) .
The inverse element is then given by

(g(1), g(2))−1 = (−g(1),−g(2) +
1

2
〈Bg(1), g(1)〉) .

We note that the (anisotropic) dilations on a stratified group G of step two are
given by the maps δλ, λ > 0, defined by

δλ((g(1), g(2))) = (λg(1), λ2g(2)).

In the first part of this section we prove some results on the concavity, in the
sense of [DGN03, LMS03], of the Euclidean distance to the boundary on a convex
set Ω ⊂ G. This, combined with results for [DGN03], yields Theorem C of the
introduction and in particular the L2 Hardy inequality on convex domains Ω ⊂ G.

4.1. On the distance function from the boundary of bounded convex do-
mains in stratified groups. To develop the subsequent analysis we first need to
clarify the notions of convexity of sets and functions in the stratified setting. Even
though, as mentioned above, these notions were introduced at the same time in
[DGN03] and in [LMS03], here we adopt the notation of [DGN03] since in [LMS03]
these notions are developed in the viscosity sense, while for us the weak sense is
more suitable. To this end let us first introduce the following auxiliary notion.

Let G be a stratified group with dim(G) = n and dim(V1) = m. Given a point
g ∈ G the horizontal plane Hg passing through g is defined by

Hg = Lg(exp(V1 ⊕ {0})) ,
where Lg denotes the left translation by g ∈ G and exp : g→ G is the exponential
map for the group G. In particular, we have that

He = exp(V1 ⊕ {0}) ,
where e ∈ G is the identity element of G.

Following [DGN03], for given g, g′ ∈ G and λ ∈ [0, 1] we denote by gλ the
anisotropic analogue of the standard Euclidean convex combination, that is

gλ = gλ(g; g′) := gδλ(g−1g′).
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The following definition was given in [DGN03, Definition 5.5].

Definition 20. A function u : G → (−∞,∞] is called weakly H-convex if {g ∈
G : u(g) =∞} 6= G, and if for every g ∈ G and g′ ∈ Hg one has

u(gλ) ≤ u(g) + λ(u(g′)− u(g)) , λ ∈ [0, 1].

The notion of a weakly H-concave function can be defined accordingly.
In [DGN03, Definition 7.1] the authors introduced the following definition of

convexity of sets in the stratified setting.

Definition 21. A subset Ω ⊂ G of a stratified group G is called weakly H-convex
if for any g ∈ Ω and for any g′ ∈ Ω ∩Hg one has gλ ∈ Ω for every λ ∈ [0, 1].

Remark 5. It is easy to prove that if Ω ⊂ Rn is convex in the Euclidean sense then
Ω is a weakly H-convex set in a stratified group G ≡ Rn of step two. To see this
we first observe that by the identification

exp(g1X1 + · · ·+ gnXn) = (g1, · · · , gn) ,

between G and the corresponding Lie algebra g via the exponential map, we have
g ∈ He if and only if g is of the form g = (g1, · · · , gm, 0, · · · , 0). Since Hg = LgHe,
we obtain from (49) that g′ ∈ Hg if and only if g′ is of the form

g′ = (g′(1), g′(2)) = (g(1) + v(1), g(2) +
1

2
〈Bg(1), v(1)〉)(50)

for some v(1) ∈ Rm. Suppose now that g ∈ Ω and let g′ ∈ Ω∩Hg. Then g−1g′ ∈ He,
which in turn implies that

δλ(g−1g′) = (λ(g′(1) − g(1)), 0) .

So

gλ = (g(1) + λ(g′(1) − g(1)), g(2) +
1

2
〈Bg(1), λ(g′(1) − g(1)))

= (g(1) + λ(g′(1) − g(1)), g(2) +
1

2
λ〈Bg(1), v(1)〉 )

since by (50) we have g′(1) = g(1) + v(1), for some v ∈ He. Using (50) we conclude
that

(51) gλ = (1− λ)g + λg′ .

Hence if Ω is convex (in the Euclidean sense) it is also weakly H-convex.

In the following example we show that the distance to a hyperplane with respect
to the quasi-norm (1) is not weakly H-concave.

Example 1. Let Hn be the Heisenberg group and Π0 = {(x, y, t) ∈ Hn : t > 0}. We
shall prove that the the distance dN (cf. (13)) is not necessarily weakly H-concave.

Actually, we shall show that the weak H-concavity fails in a neighbourhood
of any boundary point. Indeed, let ξ = (x, y, t) ∈ Π0, and for fixed α > 0 let
ξ′ = (x′, y′, t) = (ax, ay, t). Then ξ−1ξ′ = (x′ − x, y′ − y, 0) ∈ He, hence ξ′ ∈ Hξ.
Given λ ∈ (0, 1) we have by (51)

ξλ =
(
λx′ + (1− λ)x, λy′ + (1− λ)y, t

)
.

We use cylindrical coordinates (cf. Section 3) and write

ξ = (r, ω, t), ξ′ = (r′, ω, t), ξλ = (rλ, ω, t)
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Assume now for contradiction that dN is weakly H-convex. Then

dN (rλ, t) ≥ (1− λ)dN (r, t) + λdN (r′, t).

Using the asymptotics of Proposition 7 we then have

t

2rλ
≥ (1− λ)

t

2r
+ λ

t

2r′
+O(t3), as t→ 0 + .

Hence
1

rλ
≥ (1− λ)

1

r
+ λ

1

r′
,

which contradicts the strict convexity of the function 1/r. We note that the above
argument can be implemented in a small neighbourood of any boundary point
ξ0 ∈ ∂Π0.

4.2. Hardy inequalities with respect to the Euclidean distance. In this
section we prove that the Euclidean distance to the boundary on a convex, bounded
domain Ω is weakly H-concave and superharmonic. This provides an alternative
proof of the L2-Hardy inequality for such domains.

Theorem 22. Let G be a stratified group of step two and let Ω ⊂ G be a convex,
in the Euclidean sense, bounded domain in G. Then the Euclidean distance to the
boundary is a weakly H-concave function on Ω.

Proof. Let Ω be as in the hypothesis and let g, g′ ∈ Ω, with g′ ∈ Hg. We want to
show that for any λ ∈ [0, 1] we have

(52) d(gδλ(g−1g′)) ≥ (1− λ)d(g) + λd(g′) .

Notice that showing Brλ(gλ) ⊂ Ω, where Brλ(gλ) is the Euclidean ball of radius
rλ = (1−λ)d(g)+λd(g′) centered at gλ, we would have the desired inequality (52).
Let h ∈ Brλ(gλ). Then |h− gλ| = ρ ≤ rλ. We define

v =
h− gλ
ρ

, g1 = g + ρ1v , g′1 = g′ + ρ2v,

where

ρ1 :=
d(g)

(1− λ)d(g) + λd(g′)
ρ , and ρ2 :=

d(g′)

(1− λ)d(g) + λd(g′)
ρ .

Then g1 ∈ Bd(g)(g) ⊂ Ω and g′1 ∈ Bd(g′)(g
′) ⊂ Ω, since |v| = 1, ρ1 ≤ d(g), and

ρ2 ≤ d(g′). Recalling also (51) we then have

(1− λ)g1 + λg′1 = (1− λ)(g + ρ1v) + λ(g′ + ρ2v)

= (1− λ)g + λg′ + (1− λ)ρ1v + λρ2v

= gλ + ρv

= h ,

where the last inequality follows by the choice of v. Hence, by the Euclidean
convexity of Ω, we have h ∈ Ω, and the proof is complete. �

From Theorem 22 we immediately obtain the following result; the sharpness of
the constant 1/4 follows under the hypotheses of part (b) of Theorem 1.
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Theorem 23. Let G be a stratified group of step two and let Ω ⊂ G be a bounded
domain which is convex in the Euclidean sense. Then

(i) ∆Hd ≤ 0 in the distributional sense in Ω;

(ii) The Hardy inequality∫
Ω

|∇Hu|2dg ≥ 1

4

∫
Ω

|∇Hd|2

d2
u2dg , u ∈ C∞c (Ω),

is valid.

Proof. By Theorem 22 the distance function is weakly H-concave. Let X1, . . . ,
Xm be the vector fields that generate the first stratum V1 of the corresponding Lie
algebra. By Theorem [DGN03, Theorem 8.1] each X2

kd, k = 1, . . . ,m, is a non-
positive Radon measure on Ω; this proves (i). Part (ii) now follows from Theorem
1. �

References

[BEL15] A.A. Balinsky, W.D. Evans, R.T. Lewis. The analysis and geometry of Hardy’s in-

equality, Universitext Springer, Cham, 2015, xv+263 pp.

[Ba24] G. Barbatis. The Hardy Constant: A Review. In: Chatzakou, M., Restrepo, J.,
Ruzhansky, M., Torebek, B., Van Bockstal, K. (eds) Modern Problems in PDEs and

Applications. Trends in Mathematics, vol 4. Birkhäuser, 2024.
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