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1. Introduction

For a convex domain Ω ⊂ RN the Hardy inequality
∫

Ω

|∇u|pdx ≥
(

p − 1

p

)p ∫

Ω

|u|p
dp

dx , d(x) = dist(x, ∂Ω) u ∈ W 1,p
0 (Ω) (1.1)

is valid. The constant ( p−1
p )p is optimal as was shown by Matskewich and

Sobolevskii [11], Marcus, Mizel and Pinchover [10]. Brezis and Marcus [2] have

established an improved version of (1.1) when p = 2: they showed that for bounded

and convex Ω there holds
∫

Ω

|∇u|2dx ≥ 1

4

∫

Ω

u2

d2
dx +

1

4diam2(Ω)

∫

Ω

u2dx , u ∈ H1
0 (Ω) . (1.2)

The question was asked in that paper as to whether it is possible to replace

diam−2(Ω) by c|Ω|−2/N , where |Ω| denotes the volume of Ω. A positive answer
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was given by M . and T . Hoffmann–Ostenhof and Laptev [9], who showed that

∫

Ω

|∇u|2dx ≥ 1

4

∫

Ω

u2

d2
dx + k2

(

aN

|Ω|

)
2
N
∫

Ω

u2dx , u ∈ H1
0 (Ω) , (1.3)

where aN is the volume of the unit ball and k2 = N/4.

In connection with this let us notice that when we take as d(x) the distance

from a point of Ω, say the origin, the following improved Hardy inequality was

established by Brezis and Vazquez [3]

∫

Ω

|∇u|2dx ≥
(

N − 2

2

)2 ∫

Ω

u2

|x|2 dx + µ2

(

aN

|Ω|

)
2
N
∫

Ω

u2dx , u ∈ H1
0 (Ω) ; (1.4)

here µ2 ' 5.783 is the first eigenvalue of the Dirichlet Laplacian for the unit disk in

R2. This constant is optimal when Ω is a ball centered at the origin, independently

of the dimension N ≥ 2, cf. [3], whereas for general Ω this constant is not optimal,

cf. [8, Proposition 5.1].

An Lp -version of (1.3) was recently obtained by Tidblom [12] who showed that

for convex Ω there holds
∫

Ω

|∇u|pdx ≥
(

p − 1

p

)p ∫

Ω

|u|p
dp

dx + kp

(

aN

|Ω|

)

p

N
∫

Ω

|u|pdx , u ∈ W 1,p
0 (Ω) (1.5)

with

kp = (p − 1)

(

p − 1

p

)p √
πΓ(N+p

2 )

Γ(p+1
2 )Γ(N

2 )
. (1.6)

For p = 2 this reduces to (1.3); in particular k2 = N/4.

In addition to (1.3) it was shown in [9, Theorem 3.4] that if

X1(t) = (1 − log t)−1 , t ∈ (0, 1) , (1.7)

the following more refined improvement of (1.3) is true: for any D ≥ diam(Ω)/2

there holds
∫

Ω

|∇u|2dx ≥ 1

4

∫

Ω

u2

d2
dx +

1

4

∫

Ω

u2

d2
X2

1 (d/D)dx

+ k2(1 − X1(diam(Ω)/(2D))2|Ω|−2/N

∫

Ω

u2dx (1.8)

for all u ∈ H1
0 (Ω). Note that if we let D → ∞ in (1.8) we regain (1.3).

Improved Hardy inequalities have recently been used in many contexts and in

particular in the study of the existence and asymptotic behavior of solutions of

the heat equation with singular potential. See for instance the work of Cabré and

Martel [4] as well as Vázquez and Zuazua [13]. Moreover, Davies in [5] showed that

the Hardy inequality implies stability of the eigenvalues of the Dirichlet Laplacian

under perturbation of the boundary; the precise rate of convergence was shown to

depend on the coefficient of u2/d2 (which, in general, is not 1/4 if Ω is not convex).

This is useful in the numerical computation of eigenvalues.
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In this work we derive more refined improved Hardy inequalities. Before stating

our results we introduce some notation. With X1(t) as in (1.7) we define recursively

Xk(t) = X1(Xk−1(t)) , k = 2, 3, . . . , t ∈ (0, 1) . (1.9)

These are iterated logarithmic functions that vanish at an increasingly low rate at

t = 0. Let us fix k ≥ 1 and set

a =











0 , if 1 < p ≤ 2 ,

(p − 2)k

3(p − 1)
> 0 , if p > 2 ,

(1.10)

and

η(t) =

k
∑

i=1

X1(t) · · ·Xi(t) ,

whereas for k = 0 we set η = 0. For D ≥ diam(Ω)/2 we also set

ηD = η

(

diam(Ω)

2D

)

.

Then our main result reads:

Theorem 1.1. Assume that Ω is convex and bounded. Let k ≥ 0 be a fixed integer.

Then, there exists D0 = D0(k, p, diam(Ω)) ≥ diam(Ω)/2 such that for D ≥ D0

there holds
∫

Ω

|∇u|pdx

≥
(

p − 1

p

)p ∫

Ω

|u|p
dp

dx +
1

2

(

p − 1

p

)p−1 k
∑

i=1

∫

Ω

|u|p
dp

X2
1 (d/D) · · ·X2

i (d/D)dx

+ kp(1 − ηD − aη2
D)

p

p−1

(

aN

|Ω|

)

p

N
∫

Ω

|u|pdx , (1.11)

for all u ∈ W 1,p
0 (Ω). When p = 2 we can take as D0 the unique solution of ηD0 = 1.

Note that if we let D → +∞ in (1.11) we recover (1.5). Also, for p = 2 and

k = 1 we recover (1.8). Moreover, the terms in the series are sharp: it was shown

in [1, Theorem A] that for each k ≥ 1 the relation

∫

Ω

|∇u|pdx −
(

p − 1

p

)p ∫

Ω

|u|p
dp

dx +
1

2

(

p − 1

p

)p−1 k−1
∑

i=1

∫

Ω

|u|p
dp

X2
1 · · ·X2

i dx

≥ c

∫

Ω

|u|p
dp

X2
1 · · ·Xγ

k dx (1.12)

is not valid for γ < 2; In addition, the best constant c in (1.12) when γ = 2 is equal

to 1
2 (p−1

p )p−1, for any k = 1, 2, . . ..
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A natural question is whether the constants appearing in (1.5) or (1.11) are

optimal. Working towards this we consider the simplest case (1.3) (corresponding

to p = 2, k = 0). Let Ω = B, be the unit ball in RN , and denote by CN the best

constant of (1.3), that is

CN = inf
u∈H1

0 (B)

∫

B
|∇u|2dx − 1

4

∫

B
u2

d2 dx
∫

B u2dx
. (1.13)

We then show that in this case the constant k2 = N
4 appearing in (1.3) is far from

being optimal. In particular we have:

Theorem 1.2. For N = 3, C3 = µ2, whereas for any N ≥ 3 there holds:

CN ≥ µ2 +
(N − 1)(N − 3)

4
, (1.14)

where µ2 ' 5.783 is the best constant of inequality (1.4).

It is remarkable that when Ω is a ball and N = 3 inequalities (1.3) and (1.4)

have the same best constant. For any N ≥ 3 the lower bound (1.14) on CN improves

the estimate CN ≥ k2 = N
4 .

To prove Theorem 1.1 we combine a vector field approach (cf. [1]) along with

ideas of [9] or [12]. It is worth noting that the “mean distance” method of Davies

(cf. [5, 6]) plays an essential role. For Theorem 1.2 after restricting to radial func-

tions we use a suitable change of variables.

2. Preliminary Inequalities

In this section we will prove some auxiliary one-dimensional inequalities. Through-

out this section b ≤ diam(Ω)
2 is a fixed positive constant. We have the following

Lemma 2.1. Let ρ(t) = min{t, 2b− t}. For any function g ∈ C1((0, b]) there holds

(i)

∫ 2b

0

|u′(t)|pdt ≥
∫ 2b

0

{g′(ρ(t)) − (p − 1)|g(ρ(t))|
p

p−1 }|u(t)|pdt − 2g(b)|u(b)|p,

(ii)

∫ 2b

0

|u′(t)|pdt ≥
∫ 2b

0

{g′(ρ(t)) − (p − 1)|g(ρ(t)) − g(b)|
p

p−1 }|u(t)|pdt (2.1)

for all u ∈ C∞

c (0, 2b).

Proof. We first prove (i). For u ∈ C∞

c (0, 2b) we have
∫ b

0

g′(t)|u(t)|pdt = g(b)|u(b)|p − p

∫ b

0

g(t)|u|p−2u′udt

≤ g(b)|u(b)|p + p

(

∫ b

0

|u′|pdt

)
1
p
(

∫ b

0

|g|
p

p−1 |u|pdt

)

p−1
p

≤ g(b)|u(b)|p +

∫ b

0

|u′|pdt + (p − 1)

∫ b

0

|g|
p

p−1 |u|pdt ,
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hence
∫ b

0

|u′(t)|pdt ≥
∫ b

0

{g′(t) − (p − 1)|g(t)|
p

p−1 }|u(t)|pdt − g(b)|u(b)|p .

A similar argument on (b, 2b) gives

∫ 2b

b

|u′(t)|pdt ≥
∫ 2b

b

{g′(2b − t) − (p − 1)|g(2b− t)|
p

p−1 }|u|pdt − g(b)|u(b)|p

and (i) follows by adding up the last two inequalities.

Part (ii) follows immediately from (i) by using the function g(x) − g(b) in the

place of g(x).

In order to apply the above lemma we fix a positive integer k and define the

functions

η(t) =
k
∑

i=1

X1(t) · · ·Xi(t) ,

B(t) =

k
∑

i=1

X2
1 (t) · · ·X2

i (t) , t ∈ (0, 1) ,

where the Xi’s are given by (1.9). It is easy to check that both η and B are increasing

functions of t with η(0+) = B(0+) = 0 and η(1−) = B(1−) = k. We also note that

1

k
η2(t) ≤ B(t) ≤ η2(t) , t ∈ (0, 1) . (2.2)

For 0 < b ≤ diam(Ω)
2 ≤ D we define the following functions of s ∈ (0, b):

g(s) = −
(

p − 1

p

)p−1

s−(p−1)(1 − η(s/D) − aη2(s/D))

A(s) = g′(s)− (p − 1)|g(s)− g(b)|
p

p−1 −
(

p − 1

p

)p

s−p− 1

2

(

p − 1

p

)p−1

s−pB(s/D) .

(2.3)

Recall that a is defined in (1.10). We then have the following

Lemma 2.2. There exists D0 = D0(k, p, diam(Ω)) ≥ diam(Ω)
2 , such that for all

D ≥ D0 there holds:

(i) 1 − η

(

diam(Ω)

2D

)

− aη2

(

diam(Ω)

2D

)

≥ 0,

(ii) g′(s) −
(

p − 1

p

)p

s−p − 1

2

(

p − 1

p

)p−1

s−pB(s/D) ≥ (p − 1)|g(s)|
p

p−1 ,

(iii) A(s) is a decreasing function of s ∈ (0, b).
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For p = 2, (ii) becomes equality. Also, for p = 2, we can take as D0 the unique

solution of 1 = η(diam(Ω)
2D0

).

Proof. A straightforward calculation shows that

d

ds
η(s/D) =

1

s

[

B(s/D)

2
+

η2(s/D)

2

]

. (2.4)

Setting Γ(t) = tB′(t) we also have

d

ds
B(s/D) =

1

s
Γ(s/D) > 0 ; (2.5)

the positivity follows from the fact that B(t) is an increasing function of t.

Since η(t) is an increasing function of t with η(0) = 0, (i) is immediate.

We shall henceforth omit the argument s/D from η, B, Γ in the subsequent

formulas. We next prove (ii). For p = 2 an easy calculation shows that (ii) becomes

equality. For p 6= 2 the left hand side of (ii) is equal to

g′(s) −
(

p − 1

p

)p

s−p − 1

2

(

p − 1

p

)p−1

s−pB(s/D)

=

(

p − 1

p

)p

(p − 1)s−p

[

1 − pη

p − 1
+

(

p

2(p − 1)2
− ap

p − 1

)

η2

+
ap

(p − 1)2
η3 +

ap

(p − 1)2
ηB

]

. (2.6)

On the other hand, taking the Taylor expansion of (1 − t)
p

p−1 about t = 0, we see

that the right hand side of (ii) is written as (for η small)

(

p − 1

p

)p

(p − 1)s−p(1 − η − aη2)
p

p−1

=

(

p − 1

p

)p

(p − 1)s−p

[

1 − pη

p − 1
− ap

p − 1
η2 +

pη2

2(p − 1)2
+

paη3

(p − 1)2

+
p(p − 2)η3

6(p − 1)3
+ O(η4)

]

. (2.7)

Comparing (2.6) and (2.7) we see that the corresponding right-hand sides agree to

order O(η2). Recalling (2.2) and the choice of a (cf. (1.10)) we see that the cubic

term in (2.6) is larger than the cubic term of (2.7). Hence (ii) is true provided η is

small enough, which amounts to D0 being large enough.

We now prove (iii). Note that (ii) implies that g′ is positive in (0, b) if D0 is

large enough. Hence for s ∈ (0, b) we have
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A′(s) = g′′(s) + p[g(b) − g(s)]
1

p−1 g′(s) +

(

p − 1

p

)p−1

(p − 1)s−p−1

+
1

2

(

p − 1

p

)p−1

ps−p−1B − 1

2

(

p − 1

p

)

s−p−1Γ

≤ g′′(s) + p|g(s)| 1
p−1 g′(s) +

(

p − 1

p

)p−1

(p − 1)s−p−1

+
1

2

(

p − 1

p

)p−1

ps−p−1B − 1

2

(

p − 1

p

)

s−p−1Γ . (2.8)

Using Taylor’s expansion we have

|g(s)| 1
p−1 =

p − 1

p
s−1(1 − η − aη2)

1
p−1

=
p − 1

p
s−1

{

1 − 1

p − 1
η −

[

a

p − 1
+

p − 2

2(p − 1)2

]

η2 −

−
[

(p − 2)a

(p − 1)2
− (p − 2)(3 − 2p)

6(p − 1)3

]

η3 + O(η4)

}

. (2.9)

From (2.4), (2.5), (2.8) and (2.9) we obtain

A′(s) ≤ (p−1)2
(

p − 1

p

)p−1

s−p−1

{

p(p − 2)

6(p − 1)3
η3 − ap

(p − 1)2
ηB + O(η4)

}

. (2.10)

From this and the fact that

1

k
η2 ≤ B ≤ η2 , s ∈ (0, b)

we end up with

A′(s) ≤ p

(

p − 1

p

)p−1

s−p−1η3

{

p − 2

6(p − 1)
− a

k
+ O(η)

}

. (2.11)

To conclude the proof we distinguish various cases:

(a) 1 < p < 2. Then a = 0 and it follows from (2.11) that A′(s) < 0 in (0, b),

provided D0 is chosen large enough.

(b) p = 2. Again a = 0. A straightforward calculation shows that the right hand

side of (2.8) is identically equal to zero. The only restriction here comes from

(i), whence the choice of D0.

(c) p > 2. Now a = (p−2)k
3(p−1) and the result follows again from (2.11).

This completes the proof.
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3. The Hardy Inequality

Throughout the rest of the paper we assume that Ω ⊂ RN is convex and set

d(x) = dist(x, ∂Ω).

Following [9], for ω ∈ SN−1 and x ∈ Ω we define the following functions with

values in (0, +∞]:

τω(x) = inf{s > 0|x + sω 6∈ Ω} ,

ρω(x) = min{τω(x), τ−ω(x)} ,

bω(x) =
1

2
(τω(x) + τ−ω(x)) .

We denote by dS(ω) the standard measure on SN−1 normalized so that the total

measure is one. Let Kp > 0 be defined by
∫

SN−1

|v · ω|pdS(ω) = Kp|v|p , ∀ v ∈ RN . (3.1)

The constant Kp can be computed in terms of kp (cf (1.6)) and is given by Kp =

(p − 1)( p−1
p )pk−1

p . We have the following

Lemma 3.1. Assume that Ω is convex. Then for all x ∈ Ω there holds
∫

SN−1

ρ−p
ω (x)dS(ω) ≥ Kpd(x)−p . (3.2)

Proof. Let y ∈ ∂Ω be such that |y − x| = d(x) and let Py be the supporting

hyper-plane through y which is orthogonal to y − x. We define the half-sphere

S+ = {ω ∈ SN−1|ω · (y − x) > 0}
and for ω ∈ S+ define σω(x) > 0 by requiring that x + σω(x)ω ∈ Py, so that

ω · y − x

|y − x| =
|y − x|
σω(x)

.

The convexity of Ω implies that τω(x) ≤ σω(x) and hence
∫

SN−1

1

ρω(x)p
dS(ω) ≥ 2

∫

S+

1

τω(x)p
dS(ω)

≥ 2

∫

S+

1

σω(x)p
dS(ω)

=
2

d(x)2p

∫

S+

|(y − x) · ω|pdS(ω)

=
Kp

d(x)p
,

as required.

We now give the proof of Theorem 1.1.
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Proof of Theorem 1.1. We fix a direction ω ∈ SN−1 and let Ωω be the orthogonal

projection of Ω on the hyper-plane perpendicular to ω. For each z ∈ Ωω we apply

Lemma 2.1 on the segment defined by z and ω and we then integrate over z ∈ Ωω.

We conclude that for any u ∈ C∞

c (Ω) there holds
∫

Ω

|∇u · ω|pdx ≥
∫

Ω

{

g′(ρω(x)) − (p − 1)|g(ρω(x)) − g(bω(x))|
p

p−1

}

|u|pdx .

Integrating over ω ∈ SN−1 and recalling definition (3.1) we obtain
∫

Ω

|∇u|pdx ≥ K−1
p

∫

Ω

∫

SN−1

{

g′(ρω(x))

−(p − 1)|g(ρω(x)) − g(bω(x))|
p

p−1

}

dS(ω)|u|pdx . (3.3)

Now, let us choose g as in (2.3). Since Ω is bounded, Lemma 2.2 implies the existence

of a D0 > 0 such that for D ≥ D0, each of the functions

Aω,x(s) := g′(s) − (p − 1)|g(s) − g(bω(x))|
p

p−1

−
(

p − 1

p

)p

s−p − 1

2

(

p − 1

p

)p−1

s−pB(s/D)

— defined for s ∈ (0, bω(x)) — is a decreasing function of s ∈ (0, bω(x)). In partic-

ular Aω,x(ρω(x)) ≥ Aω,x(bω(x)), i.e.

g′(ρω(x)) − (p − 1)|g(ρω(x)) − g(bω(x))|
p

p−1

≥
(

p − 1

p

)p

ρω(x)−p +
1

2

(

p − 1

p

)p−1

ρω(x)−pB(ρω(x)/D) + Aω,x(bω(x)) .

Hence (3.3) yields

∫

Ω

|∇u|pdx ≥ K−1
p

∫

Ω

∫

SN−1

{

(

p − 1

p

)p

ρω(x)−p +
1

2

(

p − 1

p

)p−1

× ρω(x)−pB(ρω(x)/D) + g′(bω(x)) −
(

p − 1

p

)p

bω(x)−p

− 1

2

(

p − 1

p

)p−1

bω(x)−pB(bω(x)/D)

}

dS(ω)|u|pdx . (3.4)

We first estimate the first two terms of (3.4). For each x ∈ Ω and ω ∈ SN−1 there

holds B(ρω(x)/D) ≥ B(d(x)/D), and Lemma 3.1 yields

K−1
p

∫

SN−1

{

(

p − 1

p

)p

ρω(x)−p +
1

2

(

p − 1

p

)p−1

ρω(x)−pB(ρω(x)/D)

}

dS(ω)

≥
(

p − 1

p

)p

d(x)−p +
1

2

(

p − 1

p

)p−1

d(x)−pB(d(x)/D) , (3.5)
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for all x ∈ Ω. The remaining three terms in the right-hand side of (3.4) are estimated

using Lemma 2.2(ii)

g′(bω(x)) −
(

p − 1

p

)p

bω(x)−p − 1

2

(

p − 1

p

)p−1

bω(x)−pB(bω(x)/D)

≥ (p − 1)|g(bω(x))|
p

p−1

≥
(

p − 1

p

)p

(p − 1)(1 − ηD − aη2
D)

p

p−1 bω(x)−p .

Combining this with (3.4) and (3.5) we obtain

∫

Ω

|∇u|pdx ≥
(

p − 1

p

)p ∫

Ω

|u|p
dp

dx +
1

2

(

p − 1

p

)p−1 ∫

Ω

|u|p
dp

B(d/D)

+ K−1
p

(

p − 1

p

)p

(p − 1)(1 − ηD − aη2
D)

p

p−1

×
∫

Ω

∫

SN−1

1

bω(x)p
dS(ω)|u|pdx . (3.6)

We estimate the last integral using a variation of an argument of [9]. Elementary

analysis shows that mint>0(1 + tN )/(1 + t)N = 2−(N−1) and therefore for x ∈ Ω

2−
(N−1)p

N+p ≤
∫

SN−1

(τω(x)N + τ−ω(x)N )p/(N+p)

(τω(x) + τ−ω(x))Np/(N+p)
dS(ω)

≤
(
∫

SN−1

(τN
ω + τN

−ω)dS(ω)

)

p

N+p
(
∫

SN−1

1

(τω + τ−ω)p
dS(ω)

)
N

N+p

= 2
p−pN

N+p

(
∫

SN−1

τN
ω dS(ω)

)

p

N+p
(
∫

SN−1

1

bp
ω

dS(ω)

)
N

N+p

,

that is
∫

SN−1

1

bω(x)p
dS(ω) ≥

(
∫

SN−1

τω(x)NdS(ω)

)−p/N

. (3.7)

The convexity of Ω implies aN

∫

SN−1 τω(x)NdS(ω) = |Ω|. Hence the proof is con-

cluded by combining (3.6) and (3.7). �

4. On the Best Constant for p = 2

In this section we will prove Theorem 1.2. We recall that CN is the best constant

of inequality (1.3), in case Ω is the unit ball, defined by:

CN = inf
u∈H1

0 (B)

∫

B
|∇u|2dx − 1

4

∫

B
u2

d2 dx
∫

B u2dx
. (4.1)

We first establish
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Lemma 4.1. The infimum in (4.1) remains the same if it is taken over all radially

symmetric functions u = u(r) ∈ H1
0 (B).

Proof. Let us denote by C̃N the infimum over radial functions. Clearly C̃N ≥ CN .

Suppose now that u ∈ H1
0 (B) and let

u(x) = u0(r) +

∞
∑

m=1

fm(σ)um(r) , r = |x| ,

be its decomposition into spherical harmonics; here um are radially symmetric func-

tions in H1
0 (B) and fm are orthonormal in L2(SN−1) eigenfunctions of the Laplace–

Beltrami operator on {|x| = 1}, with corresponding eigenvalues cm = m(N−2+m),

m ≥ 1. It is easily seen that

∫

B

|∇u|2dx =

∫

B

(

|∇u0|2dx +

∞
∑

m=1

∫

B

(|∇um|2 +
cm

|x|2 u2
m

)

dx , (4.2)

and hence
∫

B

(|∇u|2 − u2

d2
)dx =

∫

B

{

|∇u0|2 −
u2

0

4(1 − |x|)2
}

dx

+

∞
∑

m=1

∫

B

{

(|∇um|2 +

(

cm

|x|2 − 1

4(1 − |x|)2
)

u2
m

}

dx

≥ C̃N

∫

B

u2
0dx + C̃N

∞
∑

m=1

∫

B

u2
mdx

= C̃N

∫

B

u2dx .

This implies CN ≥ C̃N and Lemma 4.1 is proved.

Proof of Theorem 1.2. By Lemma 4.1 we restrict attention to radially symmetric

functions. Let u = u(r) ∈ C∞

c (B) be a radial function and define v by

u(r) = r−
N−1

2 (1 − r)1/2v(r) , r ∈ (0, 1) .

Then v(0) = v(1) = 0. We compute

1

NaN

∫

B

|∇u|2dx =

∫ 1

0

(u′)2rN−1dr

=

∫ 1

0

(1 − r)

(

− (N − 1)v

2r
− v

2(1 − r)
+ v′

)2

dr .

Using integration by parts for the terms involving vv′ = (v2)′/2 we conclude after

some simple calculations that
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1

NaN

(
∫

B

|∇u|2dx − 1

4

∫

B

u2

d2
dx

)

=

∫ 1

0

(1 − r)(v′)2dr +
(N − 1)(N − 3)

4

∫ 1

0

1 − r

r2
v2dr

≥
∫ 1

0

(1 − r)(v′)2dr +
(N − 1)(N − 3)

4

∫ 1

0

(1 − r)v2dr .

But (cf. [3, Sec. 4])

inf
v(0)=v(1)=0

∫ 1

0 (1 − r)(v′)2dr
∫ 1

0
(1 − r)v2dr

= inf
v(0)=v(1)=0

∫ 1

0 r(v′)2dr
∫ 1

0
rv2dr

= µ2 ,

and estimate (1.14) of Theorem 1.2 follows.

To prove that C3 = µ2, let us define

uε(r) = r−1(1 − r)
1
2+εw(1 − r) , r ∈ (0, 1) ,

where ε > 0 and w(|x|) is the first eigenfunction of the Dirichlet Laplacian for the

unit disk in R2. Then

u′

ε(r) = −r−1(1 − r)
1
2+ε

{

w

r
+

(

1

2
+ ε

)

w

1 − r
+ w′

}

and hence uε ∈ H1
0 (B) and

∫ 1

0

(u′

ε)
2rN−1dr

=

∫ 1

0

(1 − r)1+2ε

{

w2

r2
+

(

1

2
+ ε

)2
w2

(1 − r)2
+ (w′)2

+ (1 + 2ε)
w2

r(1 − r)
+

2ww′

r
+

(1 + 2ε)ww′

1 − r

}

dr (where w = w(1 − r)) .

To handle the terms containing ww′ we integrate by parts: the boundary terms are

equal to zero and making the change of variables s = 1 − r we eventually obtain

∫ 1

0

(

(u′

ε(r))
2 − 1

4

u2
ε(r)

(1 − r)2

)

r2dr =

∫ 1

0

s1+2ε

(

(w′(s))2 − ε2
w2(s)

s2

)

ds .

Now, there holds

ε2
∫ 1

0

s−1+2εw2ds −→ 0 , as ε → 0 ,

hence
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lim
ε→0

∫

B(|∇uε|2 − u2
ε

4d2 )dx
∫

B
u2

εdx
= lim

ε→0

∫ 1

0 (w′)2s1+2εds
∫ 1

0
w2s1+2εds

=

∫ 1

0
(w′)2s ds
∫ 1

0 w2s ds

= µ2 .

It follows that C̃3 ≤ µ2; in view of (1.14) and Lemma 4.1 we conclude that C3 = µ2.

�
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