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Introduct ion  

Let f~ be a bounded domain of R ~v with Lipschitz boundary and H a second- 

order uniformly elliptic operator on L2(f~) with measurable coefficients satisfying 

Dirichlet boundary conditions. In [ 1 ] we established the stability of the resolvent 

of H in trace norms as the coefficients vary in// '-spaces. 

This paper further develops and improves the ideas used in [1], thus making 

possible the extension of the above results in different directions. First, we extend 

the range of possible applications by working on Riemannian manifolds instead of 

Euclidean domains. Second, we work with weighted operators and, third, we deal 

with more general boundary conditions. In order to prove our main result, we also 

prove a regularity theorem which generalizes the main theorem of [7] and, partly, 

of [6]. There is a straight-forward physical interpretation of our results; given a 

curved surface, Theorems 8 and 16 provide estimates on the effect on the heat flow 

produced by narrowly localised irregularities. We refer to [1] for details in the 

Euclidean case. 

We work on a compact Riemannian manifold (M, G), which may have a bound- 

ary. For a positive measurable weight cr 2 on M, we consider weighted Laplace- 

Beltrami operators of the form 

Ho,,~2 f = - ~ - 2 V o .  (cr2Vc, f )  + f  

satisfying mixed Dirichlet-Neumann boundary conditions (we shall use the term 

Laplace-Beltrami operators, despite it being usually used only for the operator 

- A ,  without the extra constant). In our main result we obtain explicit bounds 

on IIw-1H~12w - H~12 II for various operator norms in terms of appropriate Lp- 
2, 2 I~ 

norms of Gl - G2 and o~ ~1 - rr2. The operator w is the natural isometry between 

the (different) weighted L2-spaces where the two operators are self-adjoint and is 

also needed in order to obtain eigenvalue stability as a corollary. 
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The paper is organised as follows: We make the initial assumption that M has no 

boundary and in Section 1 we prove that the resolvent H -1 maps LP continuously 

into W 1,p i f p  is close enough to 2. This generalizes the main theorem of  [7] and, 

partly, of  [6]. 

Using this, we prove in Section 2 our main result; quantitative estimates for the 

stability of  the resolvent in trace norms as G and 0. vary in LP. Such estimates are 

immediate for  p = + ~ .  The case p < +oo is harder and is the one relevant for 

applications. 

We work with measurable metrics and weights, and this enables us in Section 3 

to generalize our theorem to the case of  manifolds with boundary satisfying mixed 

boundary conditions. The method used is to replace the manifold with boundary 

by its double and then to deduce the required results f rom those of  Section 2. As a 

by-product,  we further extend the main theorem of  [7] to this context. 

Acknowledgments: I wish to thank E.B. Davies for  suggesting the problem and 

for all his valuable help during the preparation of  this work. I also wish to thank 

the referee for several useful suggestions. 

Technical  setting and notat ion 

In the first two sections of  this paper M will be anN-dimensional  smooth compact  

manifold without boundary. We shall be considering Riemannian metrics on M 

that belong to a class R(M) defined as follows: a measurable metric G lies in R(M) 
i f  and only if  there exists a smooth metric G on M such that 

AG < G < #G 

for some positive constants )~ and #. We shall also denote by W(M) the class of  all 

measurable weights 0.2 on M such that 

)~.2 ~ 0.2 ~ #~2 

for some positive smooth weight ~ r2. By compactness, if  such a ~.2 exists then we 

may as well choose ~2 = 1. We do not make this particular choice since the actual 

values of  the constants A and # will turn out to be important. 

We shall use the same notation, G, for both the metric and its representation 

G = {gij} as a matrix with respect to a given local coordinate system (xi) on M: 

a s  2 = g,jd ,d j 

We also set g = det(G). Similarly, if  ~ = {~x} is a vector field on M, we shall also 

denote by ~ the vector field (~i) in R N whose components  for each x E M are the 
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components of (x relative to a basis of the tangent space Tx induced by a given 
local coordinate system (xi): 

y ' r  a 
O X  i " 

It will be clear from the context which meaning is intended. Finally, we shall 

denote by x~ the 'Euclidean' gradient x~ = (O/Oxl,..., O/OxN) relative to some 
local coordinates, while a dot will denote the Euclidean inner product, except in 

the symbol V., which will stand for the divergence operator induced by G. The 
inner product in T~, x E M shall be denoted by ( , ) x  or simply ( , ) ;  this last 
symbol shall also be used to denote the inner product on various L2-spaces. 

We shall also use the same notation, LP(M, G, a2), for the space of  various fields 

on M that are p-integrable with respect to the volume element ~r2d~vol: functions, 
vector fields or operator fields. One or more of the arguments will often be dropped 
when the meaning is clear. 

For G E 7"Z(M), cr 2 E W(M), we shall be considering operators given formally 
by 

H = -~r-2V �9 (~2V) + 1. 

By definition, H is the self-adjoint operator on L2(M, G,a 2) associated to the 
quadratic form Q given by 

Dom(Q) = W1,2(M), 

Q(f)  = fM(If  12 + I Vf  IZ) 2dvol. 

It is well-known that such an operator has a discrete spectrum {An} and that 

(1) A~,'~n 2/N as n , + ~ .  

1. wl,q-estimates on solutions o f  equations 

In this section we prove a regularity theorem for operators in the class defined 

above. The basic idea is that used in [7], but working on a manifold instead of a 
Euclidean domain adds several technical complications. 

Let fo , f  E L 1 (M). We say that the function u E W 1'1 (M) solves the equation 

(2) Hu :--fo + V . (crZf) 

if 

(3) Q( u, (b ) =/M(fofb -- ( f ,  XTq~))cr2dvol, all <p E C ~ (M). 



(4) 

and 

(5 )  I I T l / - l , q  ' = Iigllq'. 

For 1 < q < 0r we define the operator 

Hq : W l'q 

by 

(Hqu, (b) = [(udp + (Vu, Vg~))a2dvol, 
d 
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Here and below, we use the notation Q(u, ~k) for the integral 

M(Udp + (Vu, VqS))6r2dvol 

provided that it exists, without necessarily having u, ~b E W 1'2 

Let q' denote the conjugate exponent of  q. We denote by W -1,q' the dual of  
W l'q -----: wI'q(M, G, o'2) ., where 

= s ]q "Jr- [ ~Tf [q)l/qtr2dvol. IIflIw',,(M,C,~' 

Using a standard argument one can prove that for T E W -l'q' there exists g = 

(go, ~) E L q' such that 

(T, (b) = [(gofb  + (~, V~b))tr2dvol, all ~b E W l'q 
d 

w- l ,q  

all ~b E W l'q' , 

The family {nq}q is self-adjoint in the sense that 

(6) Hq = Hq,, all 1 < q < oo. 

Finally, for 1 < q < +oo we set 

1 
- -  = inf  sup I Q(~b,q~)l. 
gq I1~0111,r =1 ii,~lh,q=l 

u E W Lq. 

For 1 < q < oo we define the properties: 

(Pl,q) nq  is invertible with a bounded inverse. 

(P2,q) For f = (f0,f) E L q the equation Hu = f0 + V .  (O'2f) has a unique 
solution u =: Tt~f E W l'q and the operator Tq : L q ~ W 1,q is bounded. 
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(P3,q) g q  < +oo.  

We have the following 

Proposition 1 For 2 <_ q < +c~, properties (Pl,q), (P2,q), (P3,q), (Pl,q') and 
(P2,q') are  equivalent, and i f  they are valid, then 

I lnql l l  = IIH~7111 = IlZqll = IITq'll = gq. 

Proof (Pl,q) r (Pl,q'). Follows directly from (6). 
(Pl,q) ~ (PE,q), (Pl,q') ~ (P2,q'). L e t p  be either q or q' and l e t f  E LP. Define 

T E W-I,P by 

( r  = ( f  v )) 2dvo, all W l'p' 

so that, in particular, IlT[l_l,p ~ Ilfllp- 
Setting u = H p  1T we have 

Q(u, (a) = / ( f o ( a  - ( f ,  V~b))a2dvol, all ~b E W l'p' , 

that is, Hu = f 0  + V -  (a2f). This solution is unique in W I'p since Hp is 1-1 and if 

Tp is defined by 
T J = u  

it follows that IITpll <- IIn~-~ll �9 
(P2,q) ::~ (Pl,q), (P2,q') :=~ (Pl,q')- L e t p  be either q or q' and let T E W -l 'p. Let  

f E LP be such that 

(r, 6) = f ( f o r  - ( f ,  v r  all r e W ~'p! 

and IITH-I,p = Ilfllp- Letting u = Tpf E W I'p we see that Hpu = T, so Hp is onto, 

and it is 1-1 since Tp is 1-1. Moreover, 

Ilnpl Zll~,p = llulll ,p ~ IlZpllll fllp = IlZplllIZll-l,p 

andso IIn~-'ll ~ IITpII. 
(P3,q) =~ (P2,q'). Let  g E L q'. 

uk E W 1'2 be the solution of  
Let  (gk) C L 2 satisfy I Ig -  gkl[q' , 0  and let 

a u k  = gO,k -I- V . (o'2gk), k = 1 , 2 , . . . .  
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Then 

(7) 
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Q(Uk, r = f (go ,kr  -- (gk, 17~b))aZdvol, all r �9 W 1'2. 

Taking absolute values of  both sides and then supremum over all ~b �9 W 1,2 such 

that II~lll,q < 1, (P3,q) implies 

1 
(8) ~---Iluklll,q,-< Ilgkllq'. /Xq 

Hence (Uk) is Cauchy in W 1,q'. I f  u �9 W 1 ,q' is its limit, letting k - -+  +oo in (7) and 

(8) yields 
Hu = go + 17. (o-2~) 

and Ilulll,q, <_ gqllgllq,. The solution u is unique in W l'qt since, by (P3,q), the only 

solution in W 1,q' of  the equation Hv = 0 is the trivial solution. 

(Pl,q) => (Pa,q,), (Pl,q') => (P3,q). L e t p  be either q or q'. Then 

1 
Ilnpull-~,e >_ -~H--~l llUlll,p, all u �9 W I'p 

and hence 1 

sup I a(u, r Ilull~,p, all u �9 W I'p 
1]4~lll,p '=1 

from which (P3,p') follows. [] 

Let G �9 Tr ~r 2 �9 W(M) and let H be the corresponding weighted Laplace-  
Beltrami operator 

H = - c r -2V - (0"2~ 7) -]- 1. 

There exist G, ~2 smooth such that 

(9) )~IG ~ G </ZlG,  

(10) ~2 ~2 ~ a 2 ~ ~2 ~2, 

for some positive constants/~i,/~i, i = 1,2. 
The weighted wl,q-norms ]l. n 1,q and II. Irl,q induced by G, cr 2 and G, ~.2 are 

equivalent. In fact, defining 



and 

L A P L A C E - - B E L T R A M I  O P E R A T O R S  

~l,q = mfin{1,#-ll/2})~ I/q and ~[2,q = max{1,AlZl2}# l/q 

we easily check that 

(11) "71,qH flfl,q < li flll,q < "y2,qll fl[1,q, all f E W l'q. 

It is clear that the Ai,/~i can be chosen arbitrarily as long as the ratios 

remain fixed. We set 

and make the particular choice 

#i  
Pi =:  "7"-, i =  1,2 

,~i 

p = pNI2p2  

PPl + 1 
(12) A1 - -  PI(P+ 1)' 

259 

(13) A2= 2 ( P p l + I  )-N/2 
p + Y ) /  , 

which will be justified later. 
We define the measurable operator field S = S(x), x E M, on the tangent bundle 

TM by 

(14) S = G - I G .  

One checks easily that this is coordinate-independent. 

L e m m a  2 S(x) is self-adjoint on the Hilbert space (TxM, G) and satisfies 

(15) ~-1 < S < >,11 

in the sense of (TxM, G). Moreover, for f ,  g E W 1'2 we have 

(16) (Vf, Vg)a = (S~f, ~'g)8 

pointwise a.e. on M. 
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P r o o f  For ~, 7? E T:M we have in local coordinates 

(s~, n)~ = Os~. n 

= O ~ . s n  

= (~, s,7)~. 

Inequality (15) is equivalent to the inequality 

uT'O < Os < ~7 ~o 

in the sense of (R N, .), and so follows directly from (9). Finally, forf,  g E W 1'2 we 
have 

(Ss ~Tg}o = &SO-1 fTf . O-JfTg 

= G G - I ~ f .  O-lVTg 

= G - l ~ g f .  Vg  

= (V f ,  Vg)6 .  [] 

Let k be the self-adjoint operator on L2(G, 8 "2) induced by G and 0 "2 and let 
be the associated form. 

We shall need the following estimate on the difference of the quadratic forms Q 
and Q: 

] L e n a  3 For (a ~_ W l'q, ~ ~_ W l,q' we have 

(17) I Q(~b,~b) - 0(~,q~) 15 ppl - 1 IIr II-I ,q' II ~l[-I ,q. 
ppl 

P r o o f  Define the function a on M by 

a = o2gl/2/62~,1/2. 

This is coordinate-independent and we have 

(18) a2davol = ab2d~vol. 

It follows from (16) and (18) that 

Q0P, 8) = [(~&b + (s#~, ~'4~) &)aaZd&vol 
d 

so that 

~)(~b, ~b)- QOP, 40 : / (~bq~(1 - a ) +  ((1 -aS)fT~b, ~'~b)#)~2d~vol 
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and hence 

(19) I 0 ( ~ b , ~ ) -  Q ( r  max{ll 1 - allo~,ll 1 -aSll~}ll~blll,q'llfbl~l,q, 

where II 1 - a S l l ~  is the L~- no r m of  the operator field { 1 - aS(x)}x acting pointwise 
on (TxM, G) or, equivalently, the operator norm of  the operator I - aS acting on 
L2(& 

Setting 

(9) and (1 O) imply that 

(20) k < a < # 

and so 

II1 - al[~ _< max{I 1 - A I, I 1 - / z  I}. 

Similarly, the inequality 
# l l  A ~ aS < A71# 

implies 

I l l - a S I l ~  <_ max{I 1 -  ~7~ I, l 1 -  ATl>}. 

Combining the last two inequalities with (19) yields 

I 0(r162 - a(~b, ~b)I< gll~blll,q, llfbll-~,q 

where 

g - - m a x {  I 1 - A I ,  I 1 - # l ,  I 1 - # 7 1 A  I, I 1 - Al-l# I}- 

The choice of )q and A2 in (12) and (13) yields 

K = ppl - 1 [] 
ppl q- 1" 

Now we can prove the main theorem of  this section. It is a regularity theorem 
for H = - c r - z v  �9 (c2V) + 1 and generalises Theorem 1 of  [7]. 

T h e o r e m  4 There exists qo, 2 < qo < oo such that properties (Pi,q) a r e  valid 

for  all q'o < q < qo. 
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P r o o f  By standard regularity theorems for elliptic differential operators with 
smooth coefficients (see, for example, Theorem 4.6 of [8])/1 satisfies properties 
(Pi,q) for all 1 < q < c~ and so 

(21) sup I Q(~b,~,)l> 1 - wl,q, 
IIOlFI,~ ~qllr allah E 

for some Kq < +c~. From Proposition 1 it follows that log/fq is a convex function 
of 1/q E (1, +c~) and satisfies/('q = / ( 4 -  Hence, Kq has a minimum at q = 2 and 
one easily sees that K2 --- 1. Moreover, assuming that we do not have Kq = 1 for 
all 1 < p < +c~ (in which case everything works much better), convexity implies 
that Kq converges to + ~  as q tends to 1 or +c~. 

For ~b E W l'q' we have 

sup 
Ilqblh.q=l 

I Q(~b,~b) I > ' / -1  sup I Q(~,~b) I 
- -  2,q 

fOflq=l 

> . y - l (  sup , Q ( ~ b , ~ b ) , - s u p  ,Q(~b,~b)-Q(~b,~),) 
-- 2,q II~lh,q =1" ]l~blrl,q =1 

II~lll,q, pm II~ll-l,q, 
- -  2,q PPl ~ 1 

and so 

(22) 
g q -  ~qq =:  ")'2,q'/2,q, /9/91 ~ 1 

From the comments we made on /(q it follows that there exists a unique q0, 
2 < q0 < +oo, such that 

[(~qo = ppl + 1 
ppl - -  1 

and thus 

1 ppl  - 1 
> 0  

Kq ppl + 1 

for all q such that q~ < q < q0. Hence H satisfies property (P3,q) of Proposition 1 
for all such q, as required. [] 

Note : It is clear from this proof that q0 depends only on (7, #2 and the 'ellipticity 
ratios' pi, i = 1,2. Moreover, for fixed G, #2, the dependence on pi, i = 1,2 is such 
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qo , + c ~  a s p  -1 ,  

qo , 2  as p ~ + ~ .  
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C o r o l l a r y  5 Let H be as in Theorem 4 and let On be a normalized eigenfuction 

of  H corresponding to the nth eigenvalue A,. There exists 2 < qo < +oo such that 

for  any q < qo we have 

(23) IIV0.IIq ~ cA~ 

provided 

(24) 7 > 7 0 = : 1 +  
N N q0 - q 
4 2q q(qo - 2)" 

P r o o f  From the theorem, there exists 2 < q0 < +oo such that 

IIVr ~ c~.llr a l lq  < q0. 

Now, it is a well known result (see [3, p. 22]) that the eigenfunctions of  H lie in Lq 

for  all 2 < q < +c~ and in fact 

[l~llq S c)kN(q-2) /4q 

for  some constant c independent  of  n e N. Hence  

(25) _ , ~ I + N / 4 - N / 2 q  all q < qo. IlVO.llq < ,.-.. 

This is not a good estimate for q close to 2. Interpolation between (25) and 

IIv0.11= = ~L/2 

yields the result. [] 
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2. Perturbat ion  o f  the metr ic  and weight  

Perturbat ion  o f  the metr ic  
Let G E R ( M )  and a 2 E W ( M ) .  Let S = S(x) be a positive measurable operator 

field bounded away from zero and infinity and set 

F = V V * ,  F s = S l / 2 v V * S  1/2. 

The following lemma is the Riemannian manifold version of a well known result 

that has been useful in. problems such as spectral asymptotics [2, Lemma 8.1] and 

scattering theory [4]. 

2 L e m m a  6 There exist partial  isometries U, V : La,~2 ---* L2,~2 such that 

(26) 
(V*SV + 1) -1 -- (V*V + 1) -1 

--__ V*F1s/2(Fs + 1)-1S-1/2(1  _ S)FI /2(F + I ) - I u .  

P r o o f  I t is  not difficult to see that i f T  : 7 / 1  > ~2 is closed anddensely defined, 
then (T* T + 1 ) - 1 + T* (TT* + 1 ) -  1 T = 1 as an operator equality on Dom(T). Hence 

(V*V + 1) -1 -J- V*(VV* -~- 1 ) - l v  = 1, 

(V*SV) -1 -Jr- V*S1/2(S1/2VV*S1/2 + 1) ' l s1 /2V -~- 1, 

and therefore 

(V*SV ..q- 1) -1 -- (V*V "+ 1) -1 = --V* [(VV* + s - l )  -1 -- (VV* + 1) -1] V 

= V*(VV* + S - 1 ) - l ( s  -1 -- 1)(VV* + 1 ) - i v  

= V*S1/2(Fs + 1)- Is1/2(S  - 1)(F + 1)-IV.  

Using polar decomposition we can write 

=l V [ U -~ F 1/2 U and S1/2V =1 S1/2V I v = F1s/2V 

and (26) then follows. [] 

We think of  Sp(F) as a measure space with each eigenvalue An # 0 carrying 

a weight A~, x m(An), where m is the multiplicity of  the eigenvalue and s is a 

parameter satisfying s > - 1  + 270, 70 being as in Corollary 5. To the zero eigen- 

value we assign measure equal to +oo reflecting the fact that Ker(F) is infinite 

dimensional. Associated to this discrete measure space are the corresponding lq 
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spaces, 1 < q < c~, defined by 

{ g :  Sp(F) ---, R I g ( O  ) = O, l q 

and 

l ~ = {g : Sp(F) 

Z Iq )~sn ( 00}, 

, R I supn I g()~) I< c ~ ) .  
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l < q < ~  

For any function g on Sp(F) we define the operator g(F) using the spectral 
theorem. 

Denoting by IIA]]r, 1 < r < +c~, the Or-norm (Schatten norm) of  an operator A, 

]lAllr = (tr I A [r)l/r 

so that, in particular, IIAII~ is the operator norm, we have the following 

L e m m a  7 Let T be a measurable operator f ield on M and g : Sp(F) , R. 
There exists po < +c~ such that fo r  p > Po and 1 < r < +c~, then 

(27) IITg(F)ll=r < cllTllprllgllEr. 

P r o o f  For r = + ~ ,  (27) is trivial. We shall prove it for r = 1, the general 
case then being obtained by standard interpolation arguments. We may assume 
that g(0) = 0 since otherwise the RHS of  (27) is infinite. 

Let {~bn} denote a complete orthonormal system of  eigenfunctions of  L. Defining 

~bn = )~l/2Vd~n, n E N 

one easily checks that {~pn} is an orthonormal system of  vector fields satisfying 
F~)  n ~- ~n~)n and spanning Ker(F) • In fact, it is a known theorem (see [4]) that if 

A :7-tl ' 7(2 

is closed and densely defined, then 

Sp(A*A) to {0} = Sp(AA*) U {0}. 

Hence, since g(0) = 0, we can get an estimate for the Hilbert-Schmidt  norm of  

Tg(F): 
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IITg(F)II 2 = ~ llTg(F)~nll 2 
t l  

_< IITII2 ~--~ I g(~.)12 A~-lllv~,l/q 2 
n 

where q = 2p/(p - 2). From (23) we have 

(28) IITg(F)II2 < cIITII~ ~-~. I g(A.) I2 Ay 1+2~, all 7 > 7 0 ,  P > Po 
n 

where p0 = 2qo/(qo - 2), q0 being as in Corollary 5. Since s > - 1 + 270, this 

concludes the proof. [] 

Note that the result is also valid if we replace F by Fs, since Fs is of  the same 

form as F for some metric G C R(M)  and weight &2 E W(M).  
We can now prove the main theorem of this section. Suppose that we have one 

single weight o-2 and two different metrics G1, G2 and let 

•i : Z2(Gi ,  0 "2) , L2(Gi ,  0.2) 

denote the weak gradient induced by Gi, i = 1,2, so that 

H i = V!*)/Vi, i =  1,2 

in an obvious notation. Define the unitary operator 

U : L 2 ( G I ,  o "2) , L2(G2,  0 "2) 

to be multiplication by the function 

gl/4 1 
U ~ _ - -  gl/4" 

2 

We also define the measurable operator field S = S(x) by 

(29) S = u-2G21GI �9 

As in Lemma 2, we see that this definition is coordinate independent, that S(x) is 

self-adjoint on (TxM, Gl ) for all x E M and hence that S is a self-adjoint operator 
on L2(GI, a2). Moreover we have 

(30) V(2*hV2 = u2VI*)'SV1. 
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T h e o r e m  8 There exists Po, 2 < Po < +oo, such that i f  

N N +po 
(i) p > p 0  and (ii) r > ~ + - -  

P 

then 

(31) Ilu-lR2u - e l  I1~ ~ cllS - 1 Ilpr/2. 

P r o o f  Denoting by  Ri, i = 1,2, the two resolvents, Ri = Hi -1 , we have 

R 2 = (u2V~*)'SVl -Jr 1)-1 

and so 
u- IR2u  = u-l(v~*)lS~Tl ~- u -2 ) - lu  -1. 

Hence 

u-IR2u- R1 = u - I ( v ~ * ) I S V l  + u - 2 ) - l u  -1 - (V~*)'V1 + 1) -1 

=U--I(v~*) 'SVl -[- U - 2 ) - l u  -1 __ (V~*)'SVl .q- u - 2 ) - l u  -1 

+ (v * 'svl + - '  + - '  

+ (V~*)'SV1 + u - E )  -1 - (V~*) 'SV,  + 1) -1 

+ (V~*hSV1 + 1) -1 - (V~*hV1 + 1) -1 

=:A1 +A2 +A3 + B .  

Let  go(t) = tU2/( t  + 1). From Lemmas 6 and 7 it follows that there exists p0, 

2 < p0 < +oo, such that 

IIBIIr ~ II(S- 1)l/2go(F)ll2rlIS-1/2(S- 1)l/2go(Fs)l]2r 
_< IIg01122~11(5- 1)1/21DI15-1/2(5_ 1)1/21D 
<_ cllgoll2~llS - l llpr/2 

for all p > P0 and 1 < r < +oo. 
We need to know the range of  r for which go 6/2r. Recalling (1) we have 

IIg0112r < +OO 
n 

r ~_, n ~(-r+s)  < +oo  

n 

N 
r s < r -  - -  

2" 
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So, recalling from (28) that s = - 1 + 27, we need "r to satisfy 

l ( r + l - N )  

and, since 3' must also satisfy (24), we conclude that p and r must be such that 

I + N  N q o - q  1 (  N )  
4 2q q ( q o - 2 )  < 2 r + l - ~ -  

where q = 2 p / ( p  - 2). This is equivalent to (ii). 

The terms A1, A2 and A3 are much easier to estimate. For example, we have 

Al  = (u -1 - 1 )H~lu  

and hence for any 1 < r < +c~ 

(32) IJAl[l~ ~ c H ( u -  1)gl(n2)l lr  

where gl (t) = t - l .  
This can be estimated in terms of  some LP-norm of  u -  1 using a similar argument 

to that in Lemma 7. In fact, everything works much better. The operator involved 

is now of  the form V*V (in L2(G2, or2)) rather than VV*, so what we need is L q- 

estimates for some q > 2 on the eigenfunctions of  the Laplace-Beltrami operator 

rather than on the gradient of  the eigenfunctions. Moreover, the function gl (t) that 

appears in (32) decays at infinity faster than the function go(t). Hence, f o r p  and r 

as in the statement of  the Theorem we certainly have 

[IA1 lit ~ c l l u  - l llpr/2. 

Note that the fact that gl (t) diverges near t = 0 is not a problem since 0 r Sp(H). 

The same argument can be used in order to estimate IIA2 lit, while for ]]A3 ][r we 
write 

A3 = (V~*)'SV1 + u-2) - l (1  - u-2)(V~ *)ISVI + 1) -1 

and then proceed in the same way. The result follows if  we note that for any two 

N x N matrices E and F we have 

I d e t e  - d e t F  I< cllE - FI[, 

where the constant c depends on IIEII and IIFII �9 [] 
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Perturbation of the weight 

Suppose now that we have one single metric G E R(M) and two different 

weights o.l,o.2 E W(M). Let Hi, i = 1,2, denote the corresponding Laplace- 
Beltrami operators so that 

Hi = V(*)iV 

one sees easily that 
V(*)2 = 112~7(*)1V -2.  

Hence, setting Ri =/4/-  1, i = 1,2, we have 

v - l R z v - R 1  =(v•(*) lv-Z•v + 1) -1 - ((V(*hV + 1) -1 

=v-l(vC*hv-2V + v - 2 ) - l v - 1  _ (vC*hv + 1) -1 

d- (V(*) 'P-2~ 7 -~ v - 2 ) - l v  -1 - (V(*) 'v -2V q- v-2)  -1 

+ (VC*)'v-2V + v-2) -I _ (V(*),v-2V + I) -I 

-t- (V(*)'v-2V + 1) -1 -- (V(*)'V + 1) -1 

=.'A] +A~ +A;  +B' .  

This expression can be handled in exactly the same way as the corresponding 
one in Theorem 8 and we conclude that 

C o r o l l a r y  9 I f  p and  r are as in Theorem 8, then 

(33) IIv- nz - II,- _< -o.~llprl2. 

R e m a r k  10 It follows from (31) and a simple interpolation argument that for 
any q > N / 2  there exists large enough t such that 

[lu-l REU - glllq _< c[IS - 1[[~' 

in an obvious notation. 

Defining the unitary operator 

v:  L2(G, o "2) -----+ L2(G, o.2) 

to be multiplication by the function 

V = o.lO'21 



270 G. BARBATIS 

for any s _> 1. 

R e m a r k  11 Note that if the metrics Gi and the weights cri, i = 1,2, are smooth, 
then the corresponding Laplace-Beltrami operators satisfy property (P2,q) for any 

1 < q < +oo by standard elliptic regularity theorems, and hence the constantp0 in 
Theorem 8 and Corollary 9 can be taken to be equal to 2, 

3. M a n i f o l d s  wi th  b o u n d a r y  

In this section we extend our main result to cover the case of manifolds with 
boundary and of operators satisfying mixed Dirichlet-Neumarln boundary condi- 
tions. The technique that we use, involving the double of a manifold, is quite well 
known and has been used for quite different purposes. See for example [6] and 

[3]. However, we do include proofs for the sake of  completeness. 
Le tX be an N-dimensional compact smooth manifold with smooth boundary OX. 

Let A be an open, possibly disconnected submanifold of  OX with smooth boundary 
OA (we do not exclude the case A = 0X). We define M' to be the manifold 

M' = X  x { -1 ,1 }  

and M the smooth manifold resulting from M' by glueing ti x { -  1 } with ,zi x {+ 1 }. 

So, M is a smooth manifold with a smooth boundary OM that degenerates to the 
empty set when A = OX, in which case M is the double J( of  X. 

Let 

X + -- X x {+1} 

so that 

M = X  + UX- .  

Any funct ionf  E L]oc(M ) shall also be written as 

f = [f+,f_] 

where 

f •  = f �9 

We define the class 7~(X) (resp. W(X)) to consist of  all metrics G ( resp. weights 
cr 2) such that the induced metric (resp. weight) on the double X of X lie in 7~(X) 

(resp. W(X)). It is easy to see that this is equivalent to saying that G (resp. o -2) is 
comparable to another metric G (resp. weight ~7 2) that lies in C~(i$). 

Finally, let 

F =  {f  E C~176 [ f = 0 o n A }  

and let Vq be the closure of  F in wI,q(x) for some (and hence any) G e 7~(X). 
When q = 2 we shall simply write V. 
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Elliptic regularity 

We shall need the following standard result: 

L e m m a  12 Let f , g E wl 'q ( x).  Then [f,g] E w l'q ( M) i f  and only i f  f - g E Vq. 

P r o o f  We omit the proof which is quite straight-forward. 

L e t f  = (f0,jT) E L 1 (X). Extending our earlier definition, we say that the function 
u 6 W 1'1 (X) solves the equation 

(34) HAU =f0 + V.  (cr2f) 

if 

Q(u, ~b) = fx(f0~b - ( f ,  Vq~))~r2dvol, 

for all 4~ E C ~ (X) that vanish in a neighbourhood of A. 
Now we can generilize Theorem 4 in this context. 

T h e o r e m  13 There exists 2 < qo < +c~ such that for  any q with q~o < q < qo 

and any f = Oeo,f) E Lq(x) the equation 

(35) HAU =f0 + V-(o2f3 

has a unique solution u E Vq and 

(36) I[ulll,q ~ cllfllq. 

Proof Let H" be the induced operator on the doub le / f /o f  M. Let q0 > 2 be 
the constant for H" whose existance is guaranteed by Theorem 4. Let q~ < q < q0 

a n d f  = (f0,f) E zq(x) .  
Using again signs to distinguish between different copies of the same manifold, 

we have the natural identifications 

(37) tq(]f/[) • Zq(M+ ) ~) Zq(M_) 

(38) --Lq(x++) @ Lq(x+_) ~ Lq(x_+ ) @ Lq(x__).  

Under (38) define 

.f -- 0 G f  @ 0 @f  E Lq(x). 

So, there exists f~ E wl'q(lf/l) such that 

+ v 



272 

that is 

(39) 
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:M( k~ + (V/~, V~))0.2dvol = f ( f o ~  - (?, V~})0.2dvol 

for all ~ E C ~ (/f/), and hence for all ~ E W 1 'q' (/~). 
We readily see that t~ is of the form 

f i = 0 @ u ~ 0 @ u  

for some u E wI 'q ' ( x )  and, additionally, Lemma 12 implies that u E Vq. Now, for 
any ~b E W 1 'q' (X) we have 

o ~ 0 e ~  ~ w~'q'(M) 

again by Lemma 12 and for such a ~ (39) yields 

x(u~ + (Vu, V~))0.Zdvol 

Hence u E Vq solves (35) as required. 

= fx(fO~P -- ( : ,  V~b))o'2dvo1. 

[] 

Remark 14 It is possible to replace the smoothness condition on the boundary 
by a weaker one. Let X be a smooth manifold. Let G be a measurable metric on 

X and let X be the completion of  X with respect to G. Assume that there exists 
a quasi-isometry zr from $7 to a Riemannian manifold with boundary X' of  the 
type we discussed in this section. Then everything we have proved for X' is also 

valid for ($7, G), the various constants depending on the induced ones on X' and 
on the quasi-isometry constants of  7r. This applies mainly to manifolds that have a 
Lipschitz boundary, in a sense similar to that of  [6] and [ 1 ]. 

Resoivent stability 

Lemma 12 is also the main ingredient in order to extend Theorem 8 in the present 
context. Let the operator U : L2(M) ~ L2(M) be defined by 

(40) U[f+,f_] = [f_,f+], aIlf E L2(M). 

U is unitary on L2(M, 0 "2) and satisfies U 2 = I. Moreover, the spaces Cc~(M), 
wI'E(M) and wI'E(M) are invariant under the action of U and the operator V, with 
domain either w I ' E ( M )  o r  wI'E(M), commutes with U. 

Let H be the operator 

H = - a - 2 V  �9 (0.2V) + 1 
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on M satisfying Neumann boundary conditions. One easily then checks that 
Dom(H) is invariant under U and in fact 

(41 ) H U  = U H .  

Every function on M can be uniquely expressed as a sum of an even and an odd 
function. In particular, defining the spaces 

Lq(M) = {[f,f]  I f  ~ Lq(x)}, 

Lqaa(M) = { [ f , - f ]  I f  ~ Lq(x)} 

we have the decomposition 

(42) Lq(M) = Lq(M) ~ Loqaa(M), all 1 < q < +oo. 

It follows from (41) that L~(M) and L2oaa(M) are invariant under the action of H, 
and so under the decomposition (42) (for q = 2) we can write 

(43) H = He ~ Hoaa 

where He (resp. Hoaa) is a self-adjoint operator on L~(M) (resp. L2oaa(M)). 
Let HN be the operator on L2(X, cr 2) given formally by 

HN = - a - 2 V  �9 (a2V) + 1 

and satisfying Neumann boundary conditions. 
We have the following 

P ropos i t i on  15 Identifying L2e(M) and L2oaa(M) with L2(X) in the natural way, 
we have 

(44) He = HN, 

(45) Hoaa = Hi. 

P r o o f  We shall only prove (45), (44) being proved in a similar way. 
Supposef E Dom(Houa). So [f, - f ] E  Dom(H) which means [f, - f ]  E W 1'2(M) 

and there exists h E L2(X) such that 

(46) fM (V[f ' - - f ] '  V~b)a2dv~ = / M  [h'-h]oa2dv~ all O E W"2(M). 
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The fact that [ - f , f ]  E WI'2(M) impliesf  E V by the lemma. Moreover, for any 
E V we have [~, - r  E WI'Z(M) and hence 

fx  Vf'  Vr176 = fx hCa2dv~ 

by (46). Hence f  E Dom(Ha) and HM ~ = h. 
Conversely, l e t f  E Dom(Ha). S o f  E V and there exists an h E L2(X) such that 

f x ( V f ,  Vr  fxhCa2,  a l l r  V. 

It follows that I f , - f ]  E wI'Z(M). I f r  is arbitrary in Wl,Z(M), then r - r E V, 
so 

I v .  - - -  - 

and hence 

fM ( V [ f , - f ] ,  Vr = fM[h,-h]r 
which implies tha t f  E DOmHodd and Hoddf = h. [] 

Suppose now that we have two metrics and two weights ai  E 7~(S), o -2 E ~)(X), 
i = 1,2 and let HA,i, i = 1,2, be the corresponding weighted Laplace-Beltrami 
operators 

HA,i = --o-2iVi" (o-2Vi) + 1, Dom(HAI(2) = V. 

Let RA,i -1 = HA, i, i = 1,2 be the two resolvents and S be as in Theorem 8. 
Multiplication by the function 

1/4, 1/4 
w = crlg 1 /o-zg2 

is the natural isometry from L 2 2 onto L~ 2. From Theorem 8, Corollary 9 and 
t J  1,0" 1 t-r2,  O" 2 

Proposition 15 we deduce the following 

T h e o r e m  16 There exists Po, 2 < Po < +cx~ such that if  

N N +Po 
(i) p > p 0  and (ii) r > - ~ + - -  

P 

then 

(47) 

P r o o f  For i = 1,2 let 

Ilw-lRa,zw - ga,lllr <~ c (]IS - lllpr/2 + 1I~2 - o-lllpr/2) �9 

ntN,i (HD,i') 
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denote the operators induced on M by Ha,i and subject to Neumann (resp. Dirichlet) 

boundary conditions. Moreover, let Hi' be the corresponding operators induced on 

the double hT/of M. 
Under the natural identifications 

(48) 
L 2 (~/) "" L 2 (M+) @ L 2 (M_) 

L2(X++) @ L2(X+_) E) L2(M-) 

we have for i = 1,2 

and hence 

H~' ' ' = H'N,i �9 H'o,i 

---- HN,i G HA,i (~ tr-ltD,i 

(49) IIw<RA,2W -- w- leA , lWl l r  ~ I Iw- lg~w  - R~'II r 

where R~' = (H~') - l ,  i = 1,2. Since/ff  is a smooth compact manifold with no 

boundary, we can apply Theorem 8 and Corollary 9 and the result follows. [] 

R e m a r k  17 If we make no assumptions about the regularity of the boundary 
0X, then there exists a variation of Theorem 13 that involves local rather than global 

Sobolev estimates; this is Theorem 2 of [7]. It can be used to prove the estimates of 
Theorem 16, but only under the additional assumption that the weights and metrics 
coincide near the boundary 0X. In fact, we believe that this assumption is strong 
enough to allow one to generalise those estimates in the case where the metrics 

and/or the weights are singular or degenerate near the boundary. 

R e m a r k  18 Let 

A, B : 7/1 ~ H2 

be two compact operators and let {#n(A)}, {#n(B)} be their singular values. It is 

known (see [8], p. 20) that for any r, 1 < r < cx~, 

(50) I # n ( B ) -  #n(A) I  r < l IB-  AIIr. 

The fact that we estimate the norm of U - ~ R 2 U  - R~ for some unitary operator U 
rather than that of R2 - R1 means that when we apply (50) the operators A and B 
are self-adjoint and positive and hence that their singular values coincide with their 

eigenvalues. Hence, our main results also yield eigenvalue stability. Moreover, 
resolvent stability implies stability of the corresponding spectral projections and, 

hence, eigenspace stability. 
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