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1. Introduction

Random matrix theory is usually taught as a sequence of several graduate courses; we
have 16 lectures, so we will give a very brief introduction.

Some relevant books for the course:

• G. Anderson, A. Guionnet, O. Zeitouni. An introduction to random matrices. [1]
• A. Guionnet. Large random matrices: lectures on macroscopic asymptotics.
• M. L. Mehta. Random matrices.

Date: Michaelmas 2011.
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The study of random matrices originated in statistics, with the investigation of sample
covariance matrices, and in nuclear physics, with Wigner’s model of atomic nuclei by large
random matrices.

A random matrix is a matrix with random entries. Let us see what sorts of questions we
can ask about this object and what tools we can use to answer them.

Questions:

Distribution of eigenvalues on the global scale. Typically, the
histogram of eigenvalues looks something like this:

What is the limiting shape of the histogram when the size of the matrix becomes large?

Distribution of eigenvalues at the local scale. The histogram of
spacings between the eigenvalues may look like this:

What is the limiting shape of this histogram?

Is there universality of these shapes with respect to small changes in the distribution of
the matrix entries?

Are the eigenvectors local-
ized?

magnitude

component

magnitude

component

Localized: one large componentDelocalized: no dominant component

Approaches:

• Method of traces (combinatorial): for a function f , we have
∑N

i=1 f(λi) = Tr f(X),
and the right-hand side can be studied using combinatorial methods.
• Stieltjes transform method: we study the meromorphic function Tr

(
1

X−z

)
, whose

poles are the eigenvalues of X.
• Orthogonal polynomials: in some cases, the distribution of eigenvalues can be written

out explicitly and related to orthogonal polynomials, for which there is an extensive
theory.
• Stochastic differential equations: if the entries of the random matrix evolve according

to some stochastic process described by an SDE, then the eigenvalues also evolve
according to an SDE which can be analyzed.
• Esoterica: Riemann-Hilbert, free probability, etc.



RANDOM MATRIX THEORY 3

2. Method of Traces: Wigner random matrices

Let X be an N × N symmetric real-valued matrix. The matrix entries Xij are iid real-

valued random variables (for i ≤ j). Let Zij =
√
NXij. We assume EZij = 0, EZ2

ij = 1,

E |Zij|k = rk <∞ for all k (and all N). (Most of these assumptions can be relaxed.)

Definition. The empirical measure of the eigenvalues is LN = 1
N

∑N
i=1 δλi , where λi are

eigenvalues of X.

We will use the following notational convention: for a measure µ on R and a function f ,
we write

〈µ, f〉 :=

∫
R
f(x)µ(dx).

In particular, 〈LN , f〉 = 1
N

∑
f(λi).

Definition. The density of states LN is the expected value of the random measure LN .

Note that the expectation is with respect to the randomness in {Xij}.
Let σ be the measure on R with density 1

2π

√
(4− x2)+ (so the support of σ is confined to

[−2, 2]). The measure σ is often called (Wigner’s) semicircle law.

Theorem 2.1 (Wigner). For any bounded continuous function f ∈ Cb(R),

P(|〈LN , f〉 − 〈σ, f〉| > ε)→ 0 as N →∞

In other words, LN → σ weakly, in probability.

Proof. The proof relies on two lemmas. The first asserts that the moments of LN converges
to the moments of σ; the second asserts that the moments of LN converges to the moments
of LN in probability.

Lemma 2.2. LN → σ in moments, i.e. as N →∞, for any k ≥ 0 we have

〈LN , xk〉 → 〈σ, xk〉 =

{
0, k odd
1

k
2
+1

(
k
k/2

)
, k even.

(Note that this is a statement about convergence in R.)
The even moments of σ coincide with the so-called Catalan numbers, which frequently

arise in various enumeration problems in combinatorics.

Lemma 2.3. As N →∞, for any k we have

P(
∣∣〈LN , xk〉 − 〈LN , xk〉∣∣ > ε)→ 0

(It will be sufficient to show that the variance of 〈LN , xk〉 tends to 0.)
Altogether, Lemmas 2.2 and 2.3 show that moments of LN converge to moments of sigma

in probability. In a general situation, the convergence of moments does not imply the weak
convergence of measures. However, this is true for a wide class of limiting measures, in
particular for the measures that are uniquely determined by its moments. See, for example,
Theorem 2.22 in Van der Vaart’s “Asymptotic Statistics” [23].

For σ, we can give a direct proof. (See the outline of the general argument below.)
Supposing Lemmas 2.2 and 2.3 to hold, the proof proceeds as follows:
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Let f ∈ Cb(R) and M := sup |f(x)|. Observe that for every polynomial Q,

P(|〈LN − σ, f〉| > ε) ≤ P(|〈LN − σ,Q〉| > ε/2) + P(|〈LN − σ, f −Q〉| > ε/2)

≤ P(
∣∣〈LN − LN , Q〉∣∣ > ε/4) + P(

∣∣〈LN − σ,Q〉∣∣ > ε/4)

+P(|〈LN − σ, f −Q〉| > ε/2).

We claim that for every δ > 0 there exists a polynomial Q and an integer N0 so that the third
term is less than δ for all N ≥ N0. Given this polynomial Q, the first two terms converge to
0 as N →∞ as a result of Lemmas 2.3 and 2.2 respectively, and this proves the theorem.

To prove that the claim holds, choose (by using the Weierstrass approximation theorem)

Q =
∑K

k=0 akx
k such that

(1) sup
|x|≤5
|f(x)−Q(x)| ≤ ε/8.

Let A = max{|ak|}.
Note that since σ supported on [-2,2], hence |〈σ, f − Q〉| ≤ ε/8 < ε/4. Therefore, the

claim will follow if for every δ > 0, we show that there exists N0, such that

(2) P{|〈LN , f −Q〉| > ε/4} ≤ δ

for all N > N0.
Note that

P{|〈LN , f −Q〉| > ε/4} ≤ P{|〈LN , (f −Q)1|x|>5〉| > ε/8}

≤ P
{
|〈LN , 1|x|>5〉| >

ε

8M(K + 1)

}
+

K∑
k=0

P
{
|〈LN , |x|k1|x|>5〉| >

ε

8A(K + 1)

}
.

Let C := 8(K + 1) max{M,A} and observe by the Markov inequality that

Tk := P(〈LN , |x|k 1{|x|>5}〉 > ε/C) ≤ C

ε
E〈LN , |x|k 1{|x|>5}〉 ≤

C〈LN , x2k〉
ε5k

≤ C

ε

(
4

5

)k
.

for all integer k ≥ 0 and N ≥ N0(k). The last inequality follows by examining the form of
the moments of σ (to which the moments of LN converge).

Note that Tk is an increasing sequence. For every δ > 0 it is possible to find L ≥ K such
that

TL ≤
δ

K + 1
for all N ≥ N0 = N0(L). Then Tk ≤ δ

K+1
for all k = 0, . . . , K, which implies that

P{|〈LN , f −Q〉| > ε/4}
This completes the proof. � �

Here is the outline of the high-level argument that shows that the convergence of moments
implies the weak convergence of probability measures provided that the limiting measure is
determined by its moments. Suppose for example that we want to show that LN converges
to σ weakly.
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Since the second moments of LN are uniformly bounded, hence this sequence of measures
is uniformly tight, by Markov’s inequality. By Prohorov’s theorem, each subsequence has
a further subsequence that converges weakly to a limit L. It is possible to show that the
moments of L must equal to the limit of the moments of LN (see Example 2.21 in van der
Vaart). Since σ is uniquely determined by its moments, hence L must equal σ for every
choice of the subsequence. This is equivalent to the statement that LN converges weakly to
σ.

We now move on to the proofs of the lemmas:

Proof of Lemma 2.2. Write

〈LN , xk〉 = E

(
1

N

N∑
i=1

λki

)
=

1

N
ETr (Xk) =

1

N

∑
i=(i1,i2,...,ik)

E(Xi1,i2Xi2,i3 . . . Xiki1).

Let Ti = E(Xi1,i2Xi2,i3 . . . Xiki1).
To each word i = (i1, i2, . . . , ik) we associate a graph and a path on it. The vertices of

the graph are the distinct indices in i; two vertices are connected by an edge if they are
adjacent in i (including ik and i1); and the path simply follows the edges that occur in i
consecutively, finishing with the edge (ik, i1). The important feature is that the expected
value of Ti depends only on the (shape of) the associated graph and path, and not on the
individual indices.

Observation. If the path corresponding to i traverses some edge only once, then E(Ti) = 0
(since we can take out the expectation of the corresponding term).

Therefore, we are only interested in those graph-path pairs in which every edge is traversed
at least twice. In particular, all such graphs will have at most k/2 edges, and (because the
graph is connected) at most k/2 + 1 vertices.

Exercise 1. If the graph associated to i has ≤ k/2 vertices, then E(Ti) ≤ ckE |Xij|k ≤ Bk
Nk/2

for some constants ck, Bk. (Use Hölder’s inequality.)

Now, for a fixed graph-path pair with d vertices, the number of words giving rise to it (i.e.
the number of ways to assign indices to the vertices) is N(N − 1) . . . (N − d + 1) ≈ Nd. In
addition, the number of graph-path pairs with ≤ k/2 + 1 vertices and ≤ k/2 edges is some
finite constant depending on k (but not, obviously, on N).

Consequently, by Exercise 1 the total contribution of the words i whose graphs have ≤ k/2
vertices to 1

N

∑
i E(Ti) is O(N−1Nk/2N−k/2) = O(N−1).

Therefore, we only care about graphs with exactly k/2+1 vertices, hence exactly k/2 edges,
each of which is traversed twice. For each such graph, 1

N
E(Ti) = 1

N
E(X2

ij)
k/2 = 1

Nk/2+1 , while

the number of ways to label the vertices of such a graph-path pair is N(N−1) . . . (N− k
2
−1) ≈

Nk/2+1. We conclude that the kth moment 〈LN , xk〉, for k even, converges to the number of
equivalence classes of pairs G,P where G is a tree with k/2 edges and P is an oriented path
along G with k edges traversing each edge of G twice. (For k odd it converges to 0.)

Here the equivalence is with respect to a re-labelling of vertices. We now count the number
of these objects.

An oriented tree is a tree (i.e., a graph without closed paths of distinct edges) embedded
in a plane. A rooted tree is a tree that has a special edge (“root”), which is oriented, that
is, this edge has a start and end vertices. Two oriented rooted tree are isomorphic if there
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is a homeomorphism of the corresponding planes which sends one tree to another one in
such a way that the root goes to the root and the orientations of the root and the plane
are preserved. Figure 1 shows an example of two trees that are equivalent in the graph-
theoretical sense as rooted trees, but not equivalent as oriented rooted trees. (There is no
isomorphism of planes that sends the first tree to the second one.)

Figure 1. Two non-isomorphic oriented rooted trees

Figure 2 shows all non-isomorphic oriented rooted trees with 3 edges.

Figure 2. Oriented rooted trees with 3 edges

Claim 2.4. There exists a bijection between equivalence classes of (G,P ) where G is a tree
with k/2 edges and P is an oriented path along G with k edges traversing each edge of G
twice, and non-isomorphic oriented rooted trees.

Proof. Given a path P on G, we embed G into the plane as follows: put the starting vertex
at the origin, and draw unit-length edges out of it, clockwise from left to right, in the order
in which they are traversed by P . Continue for each of the other vertices.

Conversely, given an embedding of G with a marked directed edge, we use that edge as
the starting point of the walk P and continue the walk as follows: When leaving a vertex,
pick the next available distance-increasing edge in the clockwise direction and traverse it. If
there are no available distance-increasing edges, go back along the unique edge that decreases
distance to the origin. It is easy to see that every edge will be traversed exactly twice. �

We can think of the embedded tree in terms of its thickening – “fat tree” or “ribbon
graph”. Then this is actually a rule for the traversal of the boundary of the fat graph in the
clockwise direction. Figure 3 shows an example of a fat tree.

Claim 2.5. The oriented rooted trees are in bijection with Dick paths, i.e. paths of a random
walk Sn on Z such that S0 = Sk = 0 and Sj ≥ 0 for all j = 0, 1, . . . , k.

Proof. Let the embedding have unit-length edges. The random walk Sn is simply measuring
the distance (along the graph) of the nth vertex in the path from the root (the vertex at the
source of the marked edge). If Sn is increasing, we need to create a new edge to the right
of all previously existing ones; if Sn is decreasing, we need to follow the unique edge leading
from the current vertex towards the root (“towards” in the sense of graph distance). �
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Figure 3. A fat tree

Figure 4. A Dick path and the corresponding oriented rooted tree

An example of this bijection is shown in Figure 4.
We now count the number of Dick paths as follows:

#{all paths with S0 = Sk = 0}−
#{paths with S0 = Sk = 0 and Sj = −1 for some j ∈ {1, . . . , k − 1}}

The first term is easily seen to be
(
k
k/2

)
(we have k jumps up and k jumps down). For the

second term, we argue that such paths are in bijection with paths starting at 0 and ending
at −2. Indeed, let j be the last visit of the path to −1, and consider reflecting the portion
of the path after j about the line y = −1: it is easy to see that this gives a unique path
terminating at −2 with the same set of visits to −1. The number of paths with S0 = 0 and
Sk = −2 is easily seen to be

(
k

k/2−1

)
(we have k− 1 jumps up and k + 1 jumps down), so we

conclude

lim
N→∞

〈LN , xk〉 =

{
0, k odd(
k
k/2

)
−
(

k
k/2−1

)
= 1

k/2+1

(
k
k/2

)
, k even

�

Proof of Lemma 2.3. By Chebyshev’s inequality, it suffices to show

Var(〈LN , xk〉)→ 0 as N →∞.
We compute

Var(〈LN , xk〉) =
1

N2

∑
i,j

E(TiTj)− E(Ti)E(Tj) =
1

N2

∑
i,j

Cov(Ti, Tj).



8 KARGIN - YUDOVINA

We associate a graph G and a pair of paths P1 = P1(i), P2 = P2(j) with the pair i, j: the
vertices are the union of the indices in i and j, the edges are the pairs (is, is+1) and (jt, jt+1)
(with the convention k + 1 = 1), the first path traverses the edges of i in order, the second
path traverses the edges of j in order.

Observations:

(1) The graph G may end up disconnected, but the corresponding covariance is 0.
(2) In fact, for the covariance to be non-zero, every edge of G mush be traversed at least

twice by the union of P1 and P2. In particular, G has at most k edges, and at most
k + 1 vertices.

(3) The number of labellings of the vertices of an equivalence class (G,P1, P2) with at
most k + 1 vertices is at most Nk+1.

(4) The number of equivalence classes of triples (G,P1, P2) with at most k + 1 vertices
and k edges is a finite constant (depending on k, but not on N).

(5) Each Cov(Ti, Tj) is bounded by O(N−k).

We conclude that Var(〈LN , xk〉) = O(N−1)→ 0 as required. �

Exercise 2. Show that in fact Var(〈Ln, xk〉) = O(N−2) by showing that the terms with k+1
vertices end up having covariance 0. (This is useful for showing almost sure convergence
rather than convergence in probability, because the sequence of variances is summable.)

2.1. Scope of the method of traces. There are various ways in which the above analysis
could be extended:

(1) Technical extensions:

• We assumed that Zij =
√
NXij has all moments. This is in fact unnecessary: we

could truncate the entries Xij and use the fact that the eigenvalues of a matrix
are Lipschitz with respect to the entries. All that is necessary is EZij = 0,
EZ2

ij = 1.

• If EZ2
ij = σij depends on i and j, then in general there is weak convergence

LN → µ for some limiting measure µ (i.e., the variance of LN tends to 0), but µ
need not be the semicircle law.

(2) We can also find the laws for some other ensembles:
• The Wishart ensemble is XTX where X is an N ×M matrix with iid entries,
N → ∞ and M/N → λ. (Moment assumptions as for the Wigner ensemble.)
The limit law for the empirical distributions of its eigenvalues is the Marchenko-
Pastur law (see example sheet 1), given by

f(x) =
1

2πx

√
(b− x)(x− a), a = (1−

√
λ)2, b = (1 +

√
λ)2

plus an atom at 0 if λ < 1 (i.e. if XTX does not have full rank). This law looks
like this:

ba

This is more “useful” than Wigner analysis, because XTX can be thought of
as sample covariances. For example, we can check whether we got something
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that looks like noise (in this case eigenvalues of the covariance matrix ought to
approximately follow the Marchenko-Pastur law) or has eigenvalues which are
outliers. For more on this, see N. El Karoui, [17], “Spectrum estimation for
large dimensional covariance matrices using random matrix theory”, Annals of
Statistics 36:6 (2008), pp. 2757-2790.

(3) Behaviour of the largest eigenvalue: consider 1
N
ETr (XkN

N ), where the moment kN
depends on N . If kN → ∞ as N → ∞, this is dominated by 1

N
λkNmax. The difficulty

with the analysis comes from the fact that if kN → ∞ quickly, then more graphs
have nonnegligible contributions, and the combinatorics becomes rather nasty. E.g.,
Füredi-Komlós [10] showed that (in particular) P(λmax > 2 + δ)→ 0 as N →∞. (In
fact, they showed this with some negative power of N in the place of δ.) Soshnikov
(in [19] and [20]) has extended this analysis to determine the asymptotic distribution
of the largest eigenvalue of the Wigner ensemble.

However, the trace method has various limitations, in particular:

(1) Difficult to say anything about the local behaviour of the eigenvalues (e.g., their
spacings) away from the edge of the distribution (“in the bulk”), because eigenvalues
in the bulk aren’t separated by moments;

(2) Difficult to get the speed of convergence, and
(3) Says nothing about the distribution of eigenvectors.
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3. Stieltjes transform method

3.1. Stieltjes transform.

Definition. Suppose µ is a nonnegative finite measure on R. The Stieltjes transform of µ is

gµ(z) =

∫
R

1

x− z
µ(dx), z ∈ C \ R.

If all the moments of µ are finite (and the resulting series converges), we can rewrite this
as

gµ(z) =

∫
R
−1

z

1

1− x/z
µ(dx) = −1

z

∞∑
k=0

mk

zk
,

where mk =
∫
xkµ(dx) is the kth moment of µ.

If µ = LN , then

gLN (z) =
1

N

N∑
i=1

1

λi − z
=

1

N
Tr

1

XN − zI
,

where (XN − z)−1 is the resolvent of XN , for which many relations are known.
The important thing about the Stieltjes transform is that it can be inverted.

Definition. A measure µ on R is called a sub-probability measure if µ(R) ≤ 1.

Theorem 3.1. Let µ be a sub-probability measure. Consider an interval [a, b] such that
µ{a} = µ{b} = 0. Then

µ[a, b] = lim
η→0

∫ b

a

1

π
Im gµ(x+ iη)dx

Proof. First, we massage the expression:∫ b

a

1

π
Im gµ(x+ iη)dx =

∫ b

a

1

π

∫ ∞
−∞

η

(λ− x)2 + η2
µ(dλ)dx =∫ ∞

−∞

1

π

(
tan−1

(
b− λ
η

)
− tan−1

(
a− λ
η

))
µ(dλ).

(Note: tan−1 is the inverse tangent function.)
Let

R(λ) =
1

π

[
tan−1

(
b− λ
η

)
− tan−1

(
a− λ
η

)]
;

a plot of this function looks as follows:

1

λ

R(λ)

a b

Some facts:

(1) 0 ≤ R(λ) ≤ 1
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(2) tan−1(x)− tan−1(y) = tan−1
(
x−y
1+xy

)
and therefore

R(λ) =
1

π
tan−1

(
η(b− a)

η2 + (b− λ)(a− λ)

)
.

(3) tan−1(x) ≤ x for x ≥ 0.

Let δ be such that µ[a− δ, a+ δ] ≤ ε/5 and µ[b− δ, b+ δ] ≤ ε/5. Now,∣∣∣∣∫
R

1[a,b](λ)µ(dλ)−
∫
R
R(λ)µ(dλ)

∣∣∣∣ ≤
2ε

5
+

∫ a−δ

−∞
R(λ)µ(dλ) +

∫ ∞
b+δ

R(λ)µ(dλ) +

∫ b−δ

a+δ

(1−R(λ))µ(dλ).

For the first term, if λ < a, b then the argument of the arctangent in R(λ) is positive, so we
apply the third fact to get∫ a−δ

−∞
R(λ)µ(dλ) ≤ 1

π
η

∫ a−δ

−∞

b− a
η2 + (b− λ)(a− λ)

µ(dλ).

(Similarly for the second term, where λ > a, b.) It’s not hard to check that the integral is
finite, and bounded uniformly in all small η. Hence the first two terms are ≤ ε

5
for sufficiently

small η.
Finally, for the third term, we have∫ b−δ

a+δ

(
1− 1

π
tan−1

(
b− λ
η

)
+

1

π
tan−1

(
a− λ
η

))
µ(dλ) ≤∫ b−δ

a+δ

(
1− 2

π
tan−1

(
δ

η

))
µ(dλ)

Now, as η → 0+ we have tan−1(δ/η) → π
2

(from below), and in particular the integral will
be ≤ ε

5
for all sufficiently small η.

Adding together the bounds gives ≤ ε for all sufficiently small η, as required. �

A somewhat shorter version of the proof can be obtained by observing that as η → 0,
R(λ) → 1 for λ ∈ (a, b), R(λ) → 0 for λ ∈ [a, b]c, and R(λ) → 1/2 for λ ∈ {a, b}. In
addition, R(λ) can be majorized uniformly in η by a positive integrable function. This
is because R(λ) is uniformly bounded and its tails are ∼ η/λ2. Hence, we can apply the
dominated convergence theorem (e.g., property (viii) on p. 44 in [4]) and obtain

(3)
1

π

∫
R
R(λ)µ(dλ)→ µ[a, b].

Corollary 3.2. If two subprobability measures µ, ν have gµ = gν, then µ = ν.

Theorem 3.3. Let {µn} be a sequence of probability measures, with Stieltjes transforms
gµn(z). Suppose there is a probability measure µ with Stieltjes transform gµ(z), such that
gµn(z) → gµ(z) holds at every z ∈ A, where A ⊆ C is a set with at least one accumulation
point. Then µn → µ weakly.

It’s reasonably clear that if µn converges weakly, then the limit must be µ; the main issue
is showing that it converges.
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Proof.

Definition. We say that a sequence of sub-probability measures µn converges to a sub-
probability measure µ vaguely if for all f ∈ C0(R) we have∫

R
fµn(dx)→

∫
R
fµ(dx)

Here, the space C0 consists of continuous functions f with f(x)→ 0 as |x| → ∞.
Recall that weak convergence is the same statement for all continuous bounded functions

f .
Fact: a sequence of sub-probability measures {µn} always has a limit point with respect

to vague convergence (Theorem 4.3.3 on p. 88 in [4]).

Example 3.1. The sequence of measures in Figure5 has no limit points with respect to
weak convergence, but converges to 0 with respect to vague convergence.

µ2µ1 µ3

Figure 5. {µn} has no limit points with respect to weak convergence, but
µn → 0 vaguely.

Fact 2: if a sequence of probability measures µn converges to a probability measure µ
vaguely, then µn → µ weakly (Theorem 4.4.2 on p. 93 in [4]).

We can now finish the proof. We will show that all vague limit points of {µn} have the
same Stieltjes transform, gµ. Since the Stieltjes transform is invertible, all vague limit points
of {µn} are µ, and hence µn → µ weakly.

Thus, it remains to show that if ν is a vague limit point of {µn}, then gν(z) = gµ(z).
First, observe that since the Stieltjes transform is holomorphic on the upper half-plane

H = {z ∈ C : Im z > 0}, the convergence gµn(z)→ gµ(z) on A implies gµn(z)→ gµ(z) on the
entire upper half-plane H. (In particular, we might as well have started with convergence on
H as the theorem assumption.)

Now, since Im
(

1
x−z

)
and Re

(
1

x−z

)
belong to C0(R) (for each z in the upper half-plane),

we must have ∫
Im

(
1

x− z

)
µn(dx)→

∫
Im

(
1

x− z

)
ν(dx)

by definition of vague convergence, and similarly for the real part. We conclude gµn(z) →
gν(z) for every z ∈ H, which finishes the proof. �

3.2. Application to the analysis of the Gaussian Wigner ensemble. Let XN be a
Gaussian Wigner matrix, that is, a symmetric matrix with i.i.d entries Gaussian Xij, such
that EXij = 0 and EX2

ij = 1. Our goal is to show that the eigenvalue distribution of XN

weakly converges in probability to the Wigner semicircle law. First, let us collect some useful
facts about operator resolvents.

Definition. The resolvent of X is GX(z) = (X − z)−1.
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The Stieltjes transform of LN is

gLN (z) =
1

N

N∑
i=1

1

λi − z
=

1

N
TrGXN (z)

and in particular,

EgLN (z) = gLN (z) =
1

N
ETr (GXN (z))

Lemma 3.4 (Resolvent identity).

GX+A(z)−GX(z) = −GX+A(z)AGx(z)

Proof. Multiply by X − z on the right, and by X + A− z on the left. �

Corollary 3.5. Taking A = −X, we get

−1

z
−GX(z) =

1

z
XGX(z)

so

GX(z) = −1

z
+

1

z
XGX(z)

Note: Here 1/z is a shortcut for (1/z)IN , where IN is the N ×N identity matrix.

Corollary 3.6.
∂Guv

∂Xij

= −GuiGjv −GujGiv

(The question of what A you need to get this is left as an exercise to the reader, but at
a guess A should have 0 everywhere except the ijth – and possibly jith – entry, in which it
should have an ε.)

Lemma 3.7. If ξ ∼ N (0, σ2) and f is a differentiable function which grows no faster than
a polynomial, then Eξf(ξ) = σ2E(f ′(ξ)).

We now continue the analysis of the Wigner ensemble:

1

N
ETr (GXN (z)) = −1

z
+

1

Nz
ETr (XGX)

= −1

z
+

1

Nz

∑
i,j

E(XijGji)

= −1

z
+

1

N2z

∑
i,j

E
(
∂Gji

∂Xij

)
= −1

z
+

1

N2z

∑
i,j

E(−GjiGij −GjjGii)

= −1

z
− 1

N2z
E(Tr (G2))− 1

z
E((

1

N
TrG)2).

Here, the third line follows from Lemma 3.7, and the fourth line follows from Corollary 3.6.
Note that 1

N2z
Tr (G2) = 1

Nz
1
N

∑N
i=1

1
(λi−z)2 , and every term in the sum is bounded by 1

η2
,

where η = Im z. In particular, as N →∞, this term → 0.
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We conclude

Eg(z) = −1

z
− 1

z
E(g(z)2) + EN ,

where the error term EN satisfies EN → 0 as N →∞.
Now, if we had Varg(z)→ 0 as N →∞, we could write

Eg(z) = −1

z
− 1

z
E(g(z))2 + ẼN ,

for some other error term ẼN → 0 as N →∞. After some technical work, it can be shown
that the solution of this equation converges to the solution of

s(z) = −1

z
− 1

z
s(z)2

for every z ∈ H, as N → ∞. Since this is the Stieltjes transform of the semi-circle law, by
using Theorem 3.3 we conclude that ELN converges weakly to the semicircle law.

In addition, if Varg(z)→ 0 as N →∞, then g(z)−Eg(z)→ 0 in probability, which allows
us to conclude that LN − LN → 0 weakly in probability.

Hence, all that remains to show is that

Var(g(z)) = Var

(
1

N

N∑
i=1

1

λi − z

)
→ 0.

We have here a sum of many random terms. The problem is that the λi are not at all
independent. One way to handle this problem is to use concentration inequalities.

3.3. Concentration inequalities; LSI.

Definition. Let µ be a measure on Rm. Define W 1,2(µ) as the space of differentiable func-
tions f such that f ∈ L2(µ) and ‖∇f‖2 ∈ L2(µ).

Definition. A probability measure µ on Rm is called LSI with constant c if for every f ∈
W 1,2(µ) we have ∫

Rm
f 2 log

(
f 2∫
f 2dµ

)
dµ ≤ 2c

∫
Rm
‖∇f‖22dµ.

The name “LSI” here stands for “logarithmic Sobolev inequality”.
We compare this with the Poincaré inequality:

Varf ≤ c̃

∫
‖∇f‖22dµ.

We have the following facts:

(1) Gaussian measure on R is LSI.
(2) If the law of random variable X is LSI with constant c, then the law of αX is LSI

with constant α2c.
(3) If µ is LSI with constant c, then the product measure µ⊗µ⊗ . . .⊗µ is LSI with the

same constant c.
(4) There is a Bobkov-Götze criterion for distributions with a density to satisfy LSI with

some finite constant c (see [3]). One useful case is when the density has the form
const × exp(−g(x)), with twice differentiable g(x) and c1 ≤ g′′(x) ≤ c2 for some
positive constants c1, c2.
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(5) A discrete measure is not LSI under this definition. However, there is also a discrete
version of LSI, which is satisfied e.g. by the Bernoulli distribution. See example sheet
2.

(6) There is a large literature about logarithmic Sobolev inequalities which are useful
in the study of Markov processes. See review by Gross ([12]) or lecture notes by
Guionnet and Zegarlinski (http://mathaa.epfl.ch/prst/mourrat/ihpin.pdf) The topic
is important and recently found applications in random matrix theory through the
study of eigenvalues of matrices whose entries follow the Ornstein-Uhlebeck process.
However, we are not concerned with these issues in our lectures.

For us, XN has a law which is a product of Gaussian measures with variance 1/N , and
hence by Facts 2 and 3, this law is LSI with constant c/N , where c is the LSI constant of the
standard Gaussian measure. The main idea is that the probability of a large deviation of a
Lipschitz function F (x1, . . . , xn) from its mean can be efficiently estimated if the probability
distribution of x1, . . . , xn is LSI.

Definition. A function f : Rm → R is Lipschitz with constant L if

(4) sup
x 6=y

|f(x)− f(y)|
‖x− y‖

≤ L.

Lemma 3.8 (Herbst). Suppose µ is a measure on Rm which is LSI with constant c, and
F : Rm → R is Lipschitz with constant L. Then

(1) E[eλ(F−EF )] ≤ ecλ
2L2/2, for all λ

(2) P(|F − EF | > δ) ≤ 2 exp(− δ2

2cL2 )
(3) VarF ≤ 4cL2.

We will prove this lemma a bit later. In order to apply this lemma we need to find out
what is the Lipschitz constant of the Stieltjes transform.

Lemma 3.9 (Hoffman-Wielandt inequality). If A and B are symmetric N × N matrices
with eigenvalues

λA1 ≤ λA2 ≤ . . . ≤ λAN , λB1 ≤ λB2 ≤ . . . ≤ λBN
then

N∑
i=1

(λAi − λBi )2 ≤ Tr(A−B)2 ≤ 2
∑

1≤i≤j≤N

(Aij −Bij)
2.

The proof can be found in [1].

Corollary 3.10. The eigenvalues of a matrix X are Lipschitz functions of the matrix entries
Xij, with constant

√
2.

Corollary 3.11. g(X) = 1
N

∑N
i=1

1
λi−z is Lipschitz (as a function of X!) with constant

c/
√
N , where c > 0 depends only on Im z.

(See problem 7 in example sheet 2.)
We now use these results to finish the proof of the Wigner law for Gaussian Wigner

matrices: recall we still needed to show that VargN(z)→ 0. We know that the joint measure
of the entries of XN is LSI with constant c/N , and gN(z) is Lipschitz (in X) with constant

L = L(η)/sqrt(N), where η = Im z. By applying the Herbst lemma, VargN(z) ≤ 2cL2(η)
N2 → 0

for all z ∈ H as N →∞.
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Remark. Note that this means that Var
∑N

i=1
1

λi−z → C as N → ∞. (This is surprising,

since usually we would normalize a sum of N random terms by 1/
√
N . No normalization is

needed at all in this case!)

Proof of Herbst Lemma 3.8. Let A(λ) = logE exp(2λ(F − EF )); we want to show A(λ) ≤
2cλ2L.

Applying LSI to f = exp(λ(F − EF )), we have∫
e2λ(F−EF ) log

e2λ(F−EF )

eA(λ)
dµ ≤ 2c

∫
λ2e2λ(F−EF )‖∇F‖22dµ

On the left-hand side, we have∫
2λ(F − EF )e2λ(F−EF )dµ− A(λ)

∫
e2λ(F−EF )dµ

Note that the first term is λ ∂
∂λ

(e2λ(F−EF )); interchanging integration and differentiation, we
conclude that the left-hand side is

λ(eA(λ))′ − A(λ)eA(λ) = eA(λ) (λA′(λ)− A(λ)) = eA(λ)λ2
(
A(λ)

λ

)′
(where ′ designates differentiation with respect to λ).

The right-hand side is bounded by 2cλ2eA(λ)L2, since ‖∇f‖22 ≤ L2.
Consequently, (

A(λ)

λ

)′
≤ 2cL2.

It’s not hard to check by Taylor-expanding that A(λ) = O(λ2), so A(λ)/λ → 0 as λ → 0.
Consequently,

A(λ) ≤ 2cL2λ2

as required. Two other statements easily follow from the first one (see exercise sheet 2). �

3.4. Wigner’s theorem for non-Gaussian Wigner matrices by the Stieltjes trans-
form method. Recall the definition of the Wigner matrix. Matrix XN be an N × N
symmetric real-valued matrix with matrix entries Xij. We assume that Zij =

√
NXij are

iid real-valued random variables (for i ≤ j) which are taken from a probability distribution,
the same one for every N .

We are going to prove the following result by the Stieltjes transform method.

Theorem 3.12 (Wigner). Let XN be a sequence of Wigner matrices, such that EZij = 0,
EZ2

ij = 1 and the measure of Zij is LSI, and let LN be its empirical measure of eigenvalues.
Then, for any bounded continuous function f ∈ Cb(R),

P(|〈LN , f〉 − 〈σ, f〉| > ε)→ 0 as N →∞

Remark. The assumption that the measure of Zij is LSI can be omitted and the Theorem
still remains valid. The proof of this is somewhat more involved. See Remark at the end of
the proof and example sheet 2.

Proof: The general idea of the proof is the same as for Gaussian Wigner matrices. Two
things that need to be proved is that

EgN(z) = −1

z
− 1

z
E(gN(z))2 + ẼN ,
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for some error term ẼN → 0 as N →∞, and that VargN(z)→ 0. The second claim follows
immediately from the assumption that the measure of Zij is LSI. (Our proof of this result
in the previous section does not depend on the assumption that the entries are Gaussian.)

The proof of the first claim uses some matrix identities.

Lemma 3.13. Let X be a square block matrix

(
A B
C D

)
, where A is square and invertible.

Then
detX = detA det(D − CA−1B).

Proof. Carry out the (block) UL decomposition:(
A B
C D

)
=

(
A 0
C D − CA−1B

)(
I A−1B
0 I

)
.

�

Let xi denote the ith column of X without the ith entry. Let X(i) denote the matrix X
without the ith row and column.

Lemma 3.14. (
(X − z)−1

)
ii

=
(
Xii − z − xTi (X(i) − z)xi

)−1
.

Proof. Apply Cramer’s rule:

((X − z)−1)ii =
det(X(i) − z)

det(X − z)

Now use Lemma 1 with A = X(i) − z, D = Xii − z (note that the lemma is only directly
applicable if i = n, but that’s a trivial reordering of the basis). �

Hence,

gN(z) =
1

N

∑
i

((X − z)−1)ii =
1

N

∑
i

1

Xii − z − xTi (X(i) − z)−1xi
.

We want to get rid of the Xii in the above expression; this is done by the following

Lemma 3.15. Let XN by a sequence of symmetric matrices with independent entries s.t.
EXij = 0 and E(

√
NXij) = 1. Let X̃N be defined by setting X̃ij = 0 if i = j and Xij

otherwise. Then
∣∣gX̃N (z)− gXN (z)

∣∣→ 0 in probability, for all z, as N →∞.

It is also useful to be able to assume that the entries of the random matrix are bounded.
For this we have the following tool.

Lemma 3.16. Let XN be a symmetric random matrix, such that Yij =
√
NXij are i.i.d. for

i ≤ j and all N . Suppose EYij = 0 and EY 2
ij = 1. Let

X̂ij = Xij1√N |Xij |<C − E(Xij1√N |Xij |<C).

Then for every ε > 0, there exists C that depends on ε, z, and the law of Yij only, such that

P{
∣∣∣gX̂N (z)− gXN (z)

∣∣∣ > ε} < ε.

These results are essentially corollaries of the Hoffman-Wielandt inequality, Lemma 3.9.
Here is the proof of the result about truncation.
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Proof. Clearly, it is enough to show that E
∣∣∣gX̂N (z)− gXN (z)

∣∣∣2 can be made arbitrarily small

uniformly in N. By using the Hoffman-Wielandt inequality, we need to show that

1

N
ETr

(
XN − X̂N

)2
=

1

N2

N∑
i,j=1

E
(√

NXij −
√
NX̂ij

)2
= E

(√
NX12 −

√
NX̂12

)2
can be made arbitrarily small uniformly in N . However,

E
(√

NX12 −
√
NX̂12

)2
≤ 2

{
[E(Y121Y12<C)]2 + E(Y121Y12>C)2

}
.

Since EY12 = 0 and EY 2
12 = 1, for every ε > 0, we can choose C so large that [E(Y121Y12<C)]2 <

ε and E(Y121Y12>C)2 < ε, which completes the proof. �

In light of these results, we will assume that Xii = 0, i.e.

(5) gN(z) =
1

N

∑
i

1

−z − xTi (X(i) − z)−1xi
.

In addition, we can and will assume that |Xij| < C.
We would like to show (and this is the crux of the proof) that the right-hand side of (5)

approaches 1
−z−gN (z)

in probability, where gN(z) = EgN(z).

Write it as
1

N

∑
((−z − gN(z)) + (gN(z)− xTi (X(i) − z)−1xi))

−1

and note that, by the definition of the Stieltjes transform, the quantity −z − gN(z) has
nonzero imaginary part for all z ∈ C \ R.

It suffices to prove that

P(
∣∣gN(z)− xTi (X(i) − z)xi)

∣∣ > ε) < c1 exp(−c2Nα)

for some c1, c2, α > 0. Recall that gN(z) = 1
N

Tr ((X − z)−1). This is a consequence of the
following two claims.

Claim 3.17. With high probability (at least 1− exp(−cNα) for some c, α > 0) we have

(6) P{
∣∣∣∣xTi (X(i) − z)−1xi −

1

N
Tr (X(i) − z)−1

∣∣∣∣ > ε} < c1 exp(−c2(ε)Nα).

Here the expectation is conditional on the realization of X(i).

Claim 3.18. With probability 1,

(7)
1

N

∣∣Tr (X(i) − z)−1 − Tr (X − z)−1
∣∣ < c(z)

N
.

Proof of claim 3.17. Let B = (X(i) − z)−1, a = xi, and note that a and B are independent.
Then

E[aTBa|B] = E[
∑

aiBijaj|B] =
∑
i

BiiEa2i =
1

N

∑
Bii =

1

N
TrB.

Next, we use concentration inequalities. The distribution of
√
NXij is LSI. (It remains LSI

even after truncation.) In addition the norm of the gradient of the quadratic form is bounded
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since the random variables Xij are bounded. Hence, the Herbst lemma is applicable and the
conclusion follows. �

Remark. The proof of this lemma can be done without invoking LSI, because this is a
quadratic form and there are various techniques available for it (vaguely similar to the
central limit theorems for sums of independent random variables). See example sheet 2.

Proof of claim 3.18. The proof can be done using interlacing inequalities : if λ1 ≤ . . . ≤ λN
are eigenvalues of XN , and µ1 ≤ . . . ≤ µN−1 are eigenvalues of X

(i)
N , then

λ1 ≤ µ1 ≤ λ2 ≤ . . . ≤ µN−1 ≤ λN .

�
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4. Gaussian ensembles

Let ξij, ηij be iid ∼ N (0, 1) (i.e. iid standard normals). Let X be an N ×N matrix.

Definition. X is called the Gaussian Unitary Ensemble (β = 2) if it is complex-valued,
hermitian (Xij = Xji), and the entries satisfy

Xij =

{
ξii, i = j
1√
2
(ξij +

√
−1ηij), i < j

Definition. X is called the Gaussian Orthogonal Ensemble (β = 1) if it is symmetric and
real-valued (Xij = Xji), and has

X − ij =

{√
2ξii, i = j

ξij, i < j

There is also a Gaussian Symplectic Ensemble (β = 4) defined using quaternions, or using
2N × 2N block matrices over C.

Let us compute the joint distribution of the GUE:

P(X ∈ dx) =

cN exp

(
−1

2

∑
i

x2ii −
1

2

∑
i<j

(Rexij)
2 + (Imxij)

2

)∏
i

dxii
∏
i<j

dRexijdImxij

= c
(2)
N exp(−1

2
Tr (X2))

∏
i

dxii
∏
i<j

dRexijdImxij.

We will refer to the volume element d(N,2)x.
The main observation is that this is invariant under unitary transformations, because trace

is. That is,

P(UXU∗ ∈ dx) = c
(2)
N exp(−1

2
Tr (UXU∗)2)d′(N,2)x

= c
(2)
N exp(−1

2
TrX2)d(N,2)x = P(X ∈ dx),

where d′(N,2)x is induced by the transformation X → UXU∗ from d(N,2)x and we used the
fact that d′(N,2)x = d(N,2)x. (See proof of this claim in Section 5.2 of Deift’s book [7].)

For the orthogonal ensemble (β = 1), we get

P(X ∈ dx) = c
(1)
N exp(−1

4
TrX2)d(N,1)x,

where d(N,1)x =
∏

i≤j dxij. For the symplectic ensemble (β = 4), we get

P(X ∈ dx) = c
(4)
N exp(−TrX2)d(N,4)x,

Of course, the orthogonal, resp. symplectic, ensemble has distribution invariant to orthogo-
nal, resp. symplectic transformations.

The reason we care about these ensembles is that for them we can compute the exact
(non-asymptotic) distributions of eigenvalues.



RANDOM MATRIX THEORY 21

Theorem 4.1. Suppose XN ∈ Hβ for β = 1, 2, 4. Then the distribution of the eigenvalues
of XN is given by

pN(x1, . . . , xN) = c
(β)
N

∏
i<j

|xi − xj|β exp(−β
4

∑
x2i )
∏

dxi

where the constants c
(β)
N are normalization constants and can in theory be computed explicitly.

The proof will proceed by changing our basis from the matrix entries to the set of eigen-
values and eigenvectors, and then integrating out the component corresponding to the eigen-
vectors.

Proof. Write the (Hermitian) matrix X as X = UΛU∗, where Λ is diagonal and U is unitary;
the columns of U are the eigenvectors of X. When the eigenvalues of X are are all distinct,
this decomposition is unique up to (a) permuting the eigenvalues, and (b) multiplying U by
a diagonal matrix with entries eiθ1 , eiθ2 , . . . , eiθN .

Formally, let F : U(N) × RN → H(N) be given by F (U,Λ) = UΛ∗U ; then over points
X with distinct eigenvalues, the fibre of F is TN × SN . In particular, we can define a
local isomorphism F̃ : (U(N)/TN) × (RN/SN) → H(N). (For an explicit example, take the
eigenvalues to be increasing, and the first nonzero coordinate of each eigenvector to be real
and positive.)

Lemma 4.2. The set of Hermitian N ×N matrices with distinct eigencalues is open, dense,
and has full measure.

The proof (esp. of the last result) is somewhat technical, and we won’t give it. A good
book to look is P. Deift, Orthogonal polynomials and random matrices: a Riemann-Hilbert
approach (AMS Courant Lecture Notes, 2000).

Let λ1, . . . , λN , p1, . . . , pN2−N be local parameters on (RN/SN) × (U(N)/TN). We would

like to compute the Jacobian det(
∂Xij
∂λα

,
∂Xij
∂pβ

).

Let us formalize how we write X as an element of RN2
. Set

φ(X) =
(
X11√

2
X22√

2
. . . X11√

2
ReX12 ImX12 ReX13 ImX13 . . . ImXN−1,N

)
Note that |φ(X)|2 = Tr (1

2
X2). Consequently, the transformation LU : RN2 → RN2

, LU(y) =
φ(U∗φ−1(y)U) is isometric (because conjugation by a unitary matrix preserves trace), i.e.

detLU = 1. We will compute det(LU(
∂Xij
∂λα

,
∂Xij
∂pβ

)), which equals det(
∂Xij
∂λα

,
∂Xij
∂pβ

).

Observe

LU

(
∂X

∂λi

)
= LU

(
U
∂Λ

∂λi
U∗
)

=
∂Λ

∂λi
is the vector with all N2 coordinates except the ith one equal to zero.

Next,

LU

(
∂X

∂pβ

)
= LU

(
∂U

∂pβ
ΛU∗ + UΛ

∂U∗

∂pβ

)
= U∗

∂U

∂pβ
Λ + Λ

∂U∗

∂pβ
U

Recall that U is unitary, i.e. U∗U = I. Differentiating this with respect to pβ gives ∂U∗

∂pβ
U +

U∗ ∂U
∂pβ

= 0. Therefore, we can write

LU

(
∂X

∂pβ

)
= SβΛ− ΛSβ, Sβ ≡ U∗

∂U

∂pβ



22 KARGIN - YUDOVINA

and (
LU

(
∂X

∂pβ

))
ij

= (Sβ)ij(λj − λi).

Therefore, LU(
∂Xij
∂λα

,
∂Xij
∂pβ

) looks like
IN 0 0 0 . . .
0 Re (S1)12(λ2 − λ1) Im (S1)12(λ2 − λ1) Re (S1)13(λ3 − λ1) . . .
0 Re (S2)12(λ2 − λ1) Im (S2)12(λ2 − λ1) Re (S2)13(λ3 − λ1) . . .
. . .


(the bottom left block of 0’s comes from the derivatives of Λ with respect to pβ, the top
right block of 0’s comes from the derivatives of Xii with respect to pβ, which get multiplied
by λi − λi).

Computing the determinant, we will get∏
i<j

(λj − λi)2 det

Re (S1)12 Im (S1)12 . . .
Re (S2)12 Im (S2)12 . . .

. . .


i.e.

∏
i<j(λj − λi)2f(pβ) for some function f that we don’t care about.

Integrating out the pβ gives density of eigenvalues of the GUE as

p(λ) = cN
∏
i<j

(λi − λj)2 exp(−1

2

∑
λ2i )dλ1 . . . dλN

�

There are various directions in which the Gaussian ensembles can be generalized:

(1) Unitary invariant ensembles:

pV (λ) = cN
∏
i<j

(λi − λj)2 exp(−
N∑
i=1

V (λi))d
(N)λ

where V is (typically) a positive, convex, smooth function. This comes from an
ensemble of Hermitian matrices with density exp(TrV (X))d(N)X as opposed to
exp(−1

2
Tr (X2))d(N)X. The entries of these matrices aren’t independent, but the

distribution is invariant under unitary transformations.
Note that something like Tr 2(X) (in place of Tr (X2)) would also be unitarily

invariant, but it’s not clear that we can generalize the things that we will be saying
about GUE to such objects.

(2) β ensembles:

p(β)(λ) = CN
∏
i<j

|λi − λj|β exp(−β
4

∑
λ2i )d

(N)λ

The cases β = 1 (GOE) and β = 4 (GSE) are reasonably similar to β = 2 (GUE),
but other values of β are not. For a general β > 1, it is possible to realize this
distribution as the distribution of eigenvalues of certain random tridiagonal matri-
ces with independent entries. (See the seminal paper by Dumitriu and Edelman
[8], and also papers by Edelman and Sutton [arxiv:0607038], Ramirez, Valkó, and
Virág [arxiv:0607331v4], and Valkó and Virág [arxiv:0712.2000v4] for more recent

http://arxiv.org/abs/math-ph/0607038
http://arxiv.org/abs/math/0607331v4
http://arxiv.org/abs/0712.2000v4
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developments.) The tridiagonal matrices come from a standard algorithm for tridi-
agonalising Hermitian matrices; the fact that their entries end up being independent
is really quite surprising!

There is an interesting relation to statistical mechanics: we can write

p(β)(λ) =
1

ZN
exp(−βU(λ)), U(x) = −

∑
i<j

log |xi − xj|+
1

4

∑
x2i

This looks like the Boltzmann distribution for a system of N interacting electrically charged
particles in the plane, which are confined to lie on the real axis and are placed in external
potential x2. In particular, this gives intuition for eigenvalues “repelling” each other.

Let us now derive the results for GUE, which is the simplest case of the above ensembles.
Recall the Vandermonde determinant:

∏
i<j

(xi − xj)2 =

∣∣∣∣∣∣∣∣
1 . . . 1
x1 . . . xN
...

. . .
...

xN−11 . . . xN−1N

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣
p0(x1) . . . p0(xN)
p1(x1) . . . p1(xN)

...
. . .

...
pN−1(x1) . . . pN−1(xN)

∣∣∣∣∣∣∣∣
2

where |·| denotes the determinant of a matrix. Here, pj are monic polynomials of degree j;
we will use (up to a factor) the Hermite polynomials, which are orthogonal with respect to
a convenient measure.

In particular, we can write the density of eigenvalues as

p(x1, . . . , xN) = cN

∣∣∣∣∣∣∣∣∣
p0(x1)e

− 1
4
x21 . . . p0(xN)e−

1
4
x2N

p1(x1)e
− 1

4
x21 . . . p1(xN)e−

1
4
x2N

...
. . .

...

pN−1(x1)e
− 1

4
x21 . . . pN−1(xN)e−

1
4
x2N

∣∣∣∣∣∣∣∣∣
2

= c̃N

(
det(Aij)|Ni,j=1

)2
= c̃N detATA

where the entries of A are given by Aij = ai−1Pi−1(xj)e
− 1

4
x2j ≡ φi−1(xj), for φi the Hermite

functions. aiPi(x) are the normalized Hermite polynomials, i.e.∫
R
aiPi(x)ajPj(x)e−x

2/2dx = δij

(i.e. they are orthonormal, but with respect to the measure e−x
2/2dx).

Let us now compute the entries of AtA:

(ATA)ij =
N∑
k=1

AkiAkj =
N−1∑
k=0

φk(xi)φk(xj).

Let

KN(x, y) =
N−1∑
k=0

φk(x)φk(y), the Christoffel-Darboux kernel,

then we have
pN(x1, . . . , xN) = c̃N det(KN(xi, xj)).

So far we haven’t used any property of the Hermite polynomials. Suppose, however, that
we want to compute marginals of this probability distribution, for example, the distribution
of x1 alone. In that case, we would need to integrate out the dependence on all the other xi.
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The orthonormality of the (normalized) Hermite polynomials implies that if the kernel
KN(x, y) is defined using these polynomials, then it satisfies the following condition:

(8)

∫
R
KN(x, y)KN(y, z)dy = KN(x, z).

Remark. If KN is considered as an operator on functions given by

(KNf)(x) =

∫
KN(x, y)f(y)dy,

then KN is the orthogonal projection onto the space spanned by the first N Hermite func-
tions. The identity then simply says that the orthogonal projection operator is an idempo-
tent, that is, it squares to itself.

Let

JN = (Jij)1≤i,j≤N = (K(xi, xj))1≤i,j≤N

for some kernel K (not necessarily the Christoffel-Darboux one). Then we have the following
result.

Theorem 4.3 (Mehta). Assume that K satisfies

(9)

∫
R
K(x, y)K(y, z)dy = K(x, z).

Then

(10)

∫
R

det(JN)dµ(xN) = (r −N + 1) det(JN−1),

where r =
∫
K(x, x)dµ(x).

Proof. Expand the left-hand side:∫
R

det(JN)dµ(xN) =

∫
R

∑
σ∈SN

sgn(σ)K(x1, xσ(1)) . . . K(xN , xσ(n))dµ(xN)

=

∫
R

N∑
k=1

∑
σ:σ(N)=k

sgn(σ)K(x1, xσ(1)) . . . K(xN , xk)dµ(xN)

We now split the sum into two cases: k = N and k 6= N .
When k = N , we straightforwardly get r det JN−1, since σ is essentially running over all

permutations in SN−1, and the sign of σ as a permutation in SN and in SN−1 is the same.
When k < N , let j = σ−1(N), and let σ̂ ∈ SN−1 be given by

σ̂(i) =

{
σ(i), i 6= j

k, i = j

It’s easy to check that the map {σ ∈ SN : σ(N) = k} → SN−1, σ 7→ σ̂, is a bijection; and
moreover, sgn(σ̂) = −sgn(σ) because essentially they differ by a transposition (kN). We
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now write∫
R

∑
σ:σ(N)=k

sgn(σ)K(x1, xσ(1)) . . . K(xN , xk)dµ(xN)

=

∫
R

∑
σ:σ(N)=k

sgn(σ)K(x1, xσ(1)) . . . K(xN−1, xσ(N−1))K(xj, xN)K(xN , xk)dµ(xN)

=
∑

σ̂∈SN−1

−sgn(σ̂)K(x1, xσ̂(1)) . . . K(xN−1, xσ̂(N−1))

= − det JN−1

where the second-to-last line uses condition (9). Since we get the same answer for all k =
1, . . . , N − 1, the statement of the theorem follows. �

Corollary 4.4. For the density of eigenvalues of the GUE ensemble we have∫
pN(x1, . . . , xN)dxk+1 . . . dxN =

(N − k)!

N !
det(KN(xi, xj)1≤i,j≤k)

Proof. We have

pN(x1, . . . , xN) = c̃N det(KN(xi, xj)).

Hence, ∫
R
pN(x1, . . . , xN)dxN = c̃N det(KN(xi, xj)1≤i,j≤N−1)

(since r = N for our kernel kN by the orthonormality of Hermite functions);∫
R

∫
R
pN(x1, . . . , xN)dxN−1dxN = 2c̃N det(KN(xi, xj)1≤i,j≤N−2)

(we still have r = N , since the kernel is the same, but we’ve reduced the size of the matrices
from N to N − 1, so the factor in the previous theorem is now equal to 2). Continuing on
in this manner, ∫

pN(x1, . . . , xN)dx1 . . . dxN = N !c̃N ,

implying that c̃N = 1/N !; and in general,∫
pN(x1, . . . , xN)dxk+1 . . . dxN =

(N − k)!

N !
det(KN(xi, xj)1≤i,j≤k).

�

Definition. A correlation function is

Rk(x1, . . . , xk) =
N !

(N − k)!

∫
pN(x1, . . . , xN)dxk+1, . . . , dxN .

Thus, the density of eigenvalues of the GUE has correlation function(s)Rk = det(KN(xi, xj)1≤i,j≤k).
Let’s expand a few of these to check that they are actually computable:

R1(x) = KN(x, x) =
N−1∑
k=0

φk(x, x)
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and

R2(x) =

∣∣∣∣KN(x, x) KN(x, y)
KN(x, y) KN(x, x)

∣∣∣∣
(where we’ve used the symmetry of the kernel).

What is the meaning of correlation functions? Let B be a Borel set. Then,∫
B

R1(x)dx = E[#{eigenvalues in B}]∫∫
B×B

R2(x, y)dxdy = E[#{ordered pairs of eigenvalues in B}]

If eigenvalues are considered as random points then their collection is a random point
process. The previous equations say that the intensities of this process are given by the cor-
relation functions Rk. Point processes for which intensities (defined in terms of expectations
of the number of points, pairs of points, etc.) are given by detK for some kernel K are called
determinantal point processes. There exist explicit conditions on a kernel K that establish
when determinants constructed from K can generate the intensities of a valid point process.
We have effectively shown that any K that can be written as K(x, y) =

∑
fk(x)fk(y), where

fk are orthonormal functions with respect to some measure, gives rise to a determinantal
point process. For more, see Soshnikov [21] or Peres [13].

4.1. Other statistics of GUE. In addition to the correlation functions (intensities), we
will now look at

Am(I) = P(exactly m eigenvalues in I)

for some interval I. For example,

A0(I) = E
N∏
i=1

(1− 1I(λi)).

Define

FI(t) = E
N∏
i=1

(1− t1I(λi))

Then it is easy to see FI(1) = A0(I), −F ′I(1) = A1(I), and more generally

Am(I) =
(−1)m

m!
F

(m)
I (1).

Therefore, we now focus on computing FI .
Expanding the product,

FI(t) = 1− tE
∑
i

1I(λi) + t2E
∑
i≤j

1I(λi)1I(λj)− . . .

= 1− t
∫
I

R(x1)dx1 +
t2

2

∫
I×I

R2(x1, x2)dx1dx2 −
t3

3!

∫
I3
R3(x1, x2, x3)dx1dx2dx3 + . . .

= 1 +
∞∑
k=1

(−t)k

k!

∫
Ik

det(KN(xi, xj)1≤i,j≤k)

≡ det(I − tKN(x, y))
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where we take the last equality to be the definition of the Fredholm determinant of the
operator with kernel KN(x, y) acting on L2(I).

Remark. An aside on operators and Fredholm determinants:
An operator with kernel K(x, y) acts on f as (Kf)(x) =

∫
K(x, y)f(y)dy. The formula

above restricts to the usual notion of determinant when K is a matrix: (Kv)x =
∑N

y=1Kxyvy.

(This is an exercise).
When K is a trace class operator (i.e. Tr(K) =

∫
K(x, x)dx exists and is finite), we have

other formulas for the Fredholm determinant.

(1)

det(I −K) = exp(−
∞∑
m=1

1

m
Tr (Km))

where Km denotes the result of applying K m times (i.e. convolution, not product),
and the trace of a kernel is given by Tr(K) =

∫
K(x, x)dx. Note that if K = λ, i.e.

the operator acts as multiplication by λ on R, we have exp(− 1
m
λm) = exp(log(1 −

λ)) = 1− λ as expected.
(2)

det(I −K) =
∏

(1− λj)

the product being taken over all the eigenvalues of K counted with algebraic multi-
plicity.

We will not prove the equivalence between these definitions; it’s a hard theorem in analysis.
For more information on the Fredholm determinants, a good source is Section XIII.17 in the
4th volume of Reed and Simon [18]. In particular, see formula (188) on p. 323 and the
classical formula on p.362.)

4.2. Asymptotics. What is the scaling limit of KN(x, y) as N →∞? That is, if we rescale
and center appropriately, what sort of functional dependence will we get? Recall

KN(x, y) =
N∑
j=1

φj(x)φj(y)

where φj are (up to a factor) the Hermite functions. For convenience, let us use the functions

orthonormal with respect to weight e−t
2

instead of e−t
2/2. This corresponds to dividing the

GUE matrix by
√

2 and has the advantage that φj(x) can be written in terms of the standard
Hermite polynomials:

φj(x) = Hn(x)e−t
2/2 1

π1/42N/2
√
N !
.

The Christoffel-Darboux formula for orthogonal polynomials gives

N∑
j=1

φj(x)φj(y) =
√
N/2

φN−1(x)φN(y)− φN(x)φN−1(y)

x− y
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The asymptotics for individual Hermite functions are well-known (see Chapter VIII in Szegö
[22]):

lim(−1)mm1/4φ2m

(
πξ√
2m

)
=

1√
π

cos(πξ)

lim(−1)mm1/4φ2m+1

(
πη√
2m

)
=

1√
π

sin(πη).

Therefore, we conclude

lim
N→∞

π√
2N

KN

(
πξ√
2N

,
πη√
2N

)
=

sin(π(ξ − η))

π(ξ − η)
≡ Kbulk(ξ, η)

(The extra (
√

2N)−1/2 is there to compensate for the ξ − η in the denominator.) Note that

the N eigenvalues of the GUE lie on [−
√

2N,
√

2N ] because we haven’t rescaled the matrix

entries. Here we are looking at points that are O(1/
√
N) apart, i.e. under this scaling the

distance between adjacent eigenvalues remains roughly constant when N increases.
If we are interested in the distribution of the number of eigenvalues on an interval, we will

be interested in Kbulk(ξ, ξ) (i.e., limη→ξKbulk(ξ, η)), which is 1: i.e. under this rescaling the
expected number of eigenvalues in an interval is simply its length.

If we want to compute the correlation functions, we will need to evaluate the determinants:
e.g.,

lim
N→∞

(
π√
2N

)2

R2

(
πξ√
2N

,
πη√
2N

)
= 1−

(
sin(π(ξ − η))

π(ξ − η)

)2

≡ R2,bulk(ξ, η).

For example, ∑
i,j

f(
√
Nλi,

√
Nλj)→

∫
R2

f(ξ, η)R2,bulk(ξ, η)dξdη

provided f → 0 sufficiently quickly at infinity (e.g., if f has compact support).

Remark. Kbulk acts particularly simply on Fourier transforms: ˆKbulkf = 1[−π,π]f̂ . It’s not
entirely surprising that we should get a projection operator in the limit (each KN was a
projection operator), although it’s not clear why it’s such a simple projection operator.

4.3. Scaling at the edge of the spectrum. The calculations we did above applied to the
eigenvalues near 0. We might also be interested in the distribution of the eigenvalues near
the edge of the spectrum, e.g. in the distribution of the largest eigenvalue.

The coordinate change we will be using is x =
√

2N + t√
2N1/6 (where other books might

use N1/6 or 2N1/6 instead, depending on how the matrix entries were scaled to begin with).
In this case, the asymptotics for the Hermite functions are

φN(x) = π1/42N/2+1/4(N !)1/2N−1/12
(
Ai(t) +O(N−2/3)

)
,

where Ai(t) is the Airy function: it satisfies y′′ = ty and y(+∞) = 0 (plus some normalization
constraint, since this is a second-order ODE). It can also be defined as a contour integral

Ai(t) =
1

2πi

∫
exp(−tu+ u3/3)du

where the integral is over two rays r(e−π/3) from ∞ to 0, then reπ/3 from 0 to ∞. (This
integral naturally arises when the asymptotics of Hermite polynomials are derived through
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the steepest descent formula. The Airy function can be also defined as a particular case of
Bessel functions, or as a real integral of cos(tu + u3/3). Note, however, that this integral is
difficult to compute since it has a singularity as u→∞.)

Figure 6. The scaled Hermite function (solid line, N=100) and the Airy
function (dashed line)

Theorem 4.5 (Forrester 1993). Let x =
√

2N+ξ2−1/2N−1/6, y =
√

2N+η2−1/2N−1/6, then

lim
N→∞

1

21/2N1/6
KN(x, y) =

Ai(ξ)Ai′(η)− Ai(η)Ai′(ξ)

ξ − η
≡ Kedge(ξ, η).

This result originally appeared in [11] Here it is no longer obvious what Kedge(ξ, ξ) is, but
after massaging the differential equation for Ai we conclude

Kedge(ξ, ξ) = −ξ(Ai(ξ))2 + (Ai′(ξ))2.

Figure 7. The scaled Christoffel-Darboux kernel at the edge (solid line,
N=100) and the Airy kernel (dashed line)

We could now derive an expression for the correlation functions, but it won’t be anything
nice.
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People often care more about the Wishart ensemble, i.e., the matrices of the form X tX
where X are complex or real Gaussian matrices. In that case, the story is similar but we
use Laguerre polynomials instead of Hermite ones.

Suppose that we want to know the distribution of the largest eigenvalue λmax. Then

P(λmax < 2
√
N + ξN−1/6) = P(no eigenvalues in [2

√
N + ξN−1/6,∞))

= A0[2
√
N + ξN−1/6,∞) = det(I −KN)

(the Fredholm determinant), where KN is a kernel operator on L2[2
√
N + ξN−1/6,∞). It is

plausible (although we won’t go into the technical details) that this should converge, after
the appropriate change of variables, to

det(I −Kedge)

where Kedge is the operator with kernel Kedge(x, y) acting on L2[ξ,∞). This sort of thing
can be tabulated, and is called the Tracy-Widom distribution for β = 2. It turns out
(Bornemann, arxiv:0904.1581) that for numerical computations the integral operator can be
approximated by a sum, which makes the computation manageable. An alternative method
uses differential equations developed by Tracy and Widom (arxiv:hep-th/9211141), which
are related to Painlevé differential equations.

4.4. Steepest descent method for asymptotics of Hermite polynomials. The asymp-
totics for Hermite, Laguerre and other classical orthogonal polynomials are derived using the
steepest descent method. Morally, steepest descent is a way to compute the asymptotics for
contour integrals of the form ∫

C

etf(z)dz

as t → ∞. The idea is to change the contour so that it passes through the critical points
where f ′(z) = 0; with luck, the portions of the contour near these points give the largest
contribution to the integral.

More precisely: Let z0 be s.t. f ′(z0) = 0, and write

f(z) = f(z0)−
1

2
A(eiθ/2(z − z0))2 + . . .

Then necessarily z0 is a saddle point for |f(z)|. Change the contour to go along the line of
steepest descent through z0. It is then plausible that the contour integral away from z0 is
negligibly small.

Formally, we parametrize u = eiθ/2(z − z0), then∫
C

etf(z)dz ≈ etf(z0)e−iθ/2
∫
C

e−tA/2u
2

du ≈ etf(z0)e−iθ/2
√

2π

tA

for large t, because this is essentially the Gaussian integral. Recalling that −Aeiθ is the
second derivative, we have ∫

C

etf(z)dz ≈ etf(z0)

√
2π

−tf ′′(z0)
.

This approximation will hold if the original contour integral can be approximated by integrals
in the neighborhood of critical points.

http://arxiv.org/pdf/0904.1581v5.pdf
http://arxiv.org/pdf/hep-th/9211141.pdf
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The steepest descent calculations can be carried through identically for asymptotics of∫
etf(z)h(z)dz, where h is sufficiently smooth near the critical points; we will simply pick up

an extra factor: ∫
C

h(z)etf(z)dz ≈ h(z0)e
tf(z0)

√
2π

−tf ′′(z0)
.

For a more detailed and rigorous discussion see Chapter 5 in de Bruijn’s book [6], or Copson
[5], or any other text on asymptotic methods.

For Hermite polynomials, we have the recurrence relation

xHn(x) =
1

2
Hn+1(x) + nHn−1(x)

Remark. All families of orthogonal polynomials have some three-term recurrence of this
form (with some function C(n) instead of n above); however, usually it is hard to compute
explicitly. It is the fact that we can do it for the classical polynomials (like Hermite, Laguerre,
Jacobi) that makes the steepest descent method possible.

Let

g(t) =
∞∑
k=0

Hk(x)

k!
tk

be the generating function of the Hermite polynomials, then the above recurrence gives

g′(t) = (2x− 2t)g(t) =⇒ g(t) = e2xt−t
2

.

Since the Hermite polynomials are coefficients of the Taylor expansion of this, we have (by
the residue formula)

Hn(x) =
n!

2πi

∫
|z|=1

e2xz−z
2

zn+1
dz =

n!

2πi

∫
|z|=1

exp(2xz − z2 − (n+ 1) log z)dz

Let z̃ = z/
√

2n, y = x/
√

2n, then the above integral becomes

cn

∫
|z̃|=1

enf(z̃)
dz̃

z̃
, f(z̃) = 4yz̃ − 2z̃2 − log z̃

We can change the contour to be |z̃| = 1, because the only singularity is at the origin. We
have

f ′(z̃) = 4y − 4z̃ − 1

z̃
,

so the critical points satisfy the equation

f ′(z̃0) = 0, that is, z̃20 − yz̃0 +
1

4
= 0

This gives rise to three different asymptotics: |y| > 1 (the two real roots case), |y| < 1 (the
two complex roots case), and y = ±1 (the double root case).

The case of two real roots gives something exponentially small, and we are not much
interested in it here. The case of y = 1 gives f ′′(z) = 0, so steepest descent as we described
it is not applicable. Instead, there is a single cubic singularity, and changing a contour
through it appropriately will give the Airy function asymptotics.

If |y| < 1 and we have two complex critical points z0 = 1
2
(y ± i

√
1− y2) = 1

2
e±iθc , we

deform the contour as below:
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z+

z−

θc

Figure 8. Deformed contour going through the two critical points

The steepest descent formula will have two terms, one for each critical point. At criticality
we have

f(z0) = y2 ± iy
√

1− y2 +
1

2
+ log 2∓ iθc

and therefore,

Hn(
√

2ny) ≈ cn

(
eny

2
exp(in(y

√
1− y2 − θc))√

−nf ′′(z+)
+
eny

2
exp(−in(y

√
1− y2 − θc))√

−nf ′′(z−)

)
where θc = cos−1(y); rewriting, we get

Hn(
√

2ny) ≈ cne
ny2 cos

(
n(y
√

1− y2 − θc) + θ0

)
(where the θ0 comes from

√
−nf ′′(z±)).

The asymptotic regime we were considering was
√

2ny = ξ√
2n

. This gives y = ξ/(2n)

very small. In particular, eny
2

= eξ
2/4n = 1 + ξ2

4n
+ O(n−2), y

√
1− y2 = ξ

2n
+ O(n−2), and

θc = cos−1(y) ≈ π
2
− xi

2n
+O( 1

n2 ). We can also check that θ0 = O(n−1). Consequently,

Hn

(
ξ√
2n

)
= cne

ξ2/4n cos(ξ − nπ/2 +O(n−1))

which is the asymptotic we had before. (The exponential factor upfront is due to the fact
that here we were approximating Hermite polynomials rather than Hermite functions.)
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5. Further developments and connections

5.1. Asymptotics of invariant ensembles (Deift et al.) Suppose the eigenvalue dis-

tribution satisfies p(λ1, . . . , λN) = ∆(λ)2 exp(−
∑N

i=1 V (λi)) for some potential function V .
Here, ∆ is the Vandermonde determinant we had before. The asymptotics for this distri-
bution would follow from asymptotics for a family of orthogonal polynomials with weight
exp(−V (x))dx.

The difficulty is that there is no explicit formula for the coefficients in the three-term
recurrence relation for these polynomials.

Deift et al. found a way to find these asymptotics (see Chapter 7 in [7] or Section 6.4
in Kuijlaars’ review arxiv:1103.5922); the solution method is related to a multidimensional
version of the Riemann-Hilbert problem.

The Riemann-Hilbert problem is as follows. Consider a contour Σ on C. We would like
to find two functions Y±(z) : C → Cn (for the classical Riemann-Hilbert problem, n = 1),
which are analytic on the two regions into which Σ partitions C, and with the property that
Y+(z) = V (z)Y−(z) on Σ, for some matrix V . (There will also be some conditions on the
behaviour of Y at infinity.) It turns out that for n > 1 this can be constructed so that one
of the components of Y gives the orthogonal polynomials we want. Deift et al. found a way
to analyze the asymptotics of these solutions.

5.2. Dyson Brownian motion. Suppose that the matrix entries Xij follow independent
Ornstein-Uhlenbeck processes.

Remark. An Ornstein-Uhlenbeck process satisfies the stochastic differential equation (SDE)

dxt = −θ(xt − µ)dt+ σdWt,

where W is a Brownian motion. It has a stationary distribution, which is Gaussian centered
on µ with variance σ2

2θ
. Such a process can be used to model, e.g., the relaxation of a spring

in physics (normally exponential) in the presence of thermal noise. We will undoubtedly
assume µ = 0 (i.e., Xij centered on 0), and possibly σ = 1.

The eigenvalues, being differentiable functions of the matrix entries Xij, will then also
follow a diffusion process. Applying Itô’s formula (nontrivially), this can be found to be

dλi =
1√
N
dBi +

(
−β

4
λi +

β

2N

∑
i 6=j

1

λi − λj

)
, i = 1, . . . , N

Here, Bi are Brownian motions, and β = 1, 2, 4 according to whether the ensemble is
orthogonal, unitary, or symplectic. The best introduction is Dyson’s original paper [9].
A system of coupled SDE’s is not trivial to solve, but it turns out that the distribu-
tion of the solution converges to an equilibrium distribution. One could ask, e.g., about
the speed of convergence. This material is covered in László Erdös’s lecture notes, http:
//www.mathematik.uni-muenchen.de/~lerdos/Notes/tucson0901.pdf.

5.3. Connections to other disciplines. The methods that were initially developed for
random matrices have since been used in various other places.

http://arxiv.org/abs/1103.5922
http://www.mathematik.uni-muenchen.de/~lerdos/Notes/tucson0901.pdf
http://www.mathematik.uni-muenchen.de/~lerdos/Notes/tucson0901.pdf
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5.3.1. Longest increasing sequence in a permutation (Baik-Deift-Johansson). Consider a per-
mutation in Sn, e.g. π ∈ S4 which maps 1234 to 1324. We define l(π) to be the length of
the longest increasing subsequence in π; here, l(π) = 3 (corresponding to subsequences 134
or 124). We would like asymptotics for l(π), and particularly for its distribution, as n→∞.

We will use the RSK (Robinson-Schensted-Knuth) correspondence between permutations
and pairs of standard Young tableaux. A standard Young tableau is the following object.
First, partition n, i.e. write it as n = λ1 + λ2 + . . . + λr, where λi are integers, and
λ1 ≥ λ2 ≥ . . . ≥ λr > 0. E.g., for n = 10 we might write 10 = 5 + 3 + 2. We then draw the
corresponding shape, where the λi are row lengths:

To turn this into a standard Young tableau, we will fill it with numbers 1, . . . , n which
increase along rows and along columns. The RSK correspondence asserts that there is a
bijection between permutations π and pairs of standard Young tableaux of the same shape.
For example, there is a permutation π ∈ S10 corresponding to the pair

P =
1 2 5 6 8
3 4 7
9 10

Q =
1 3 5 7 9
2 4 6
8 10

The length l(π) is the length of the top row of the standard Young tableau. We define also
r(π) the number of columns in the standard Young tableau; this is the length of the longest
decreasing subsequence in π.

Standard Young tableaux have been well-studied because of their relationship to repre-
sentations of Sn. See for example W. Fulton. Young Tableaux. Cambridge University Press
1997.

To get the distribution of l(π), we need to count the number of standard Young tableaux
with a given length of the top row. Now, there is a formula, due to Frobenius and Young,
for the number f(λ) of standard Young tableaux of a given shape λ (this is, by the way, the
dimension of the corresponding irreducible representation of Sn). (Here, λ is a partition of
n, that is, n = λ1 + . . .+ λr with λ1 ≥ λ2 ≥ . . . ≥ λr > 0.)

Let hi = λi + (r − i), then the Frobenius-Young formula asserts

f(λ) = n!
∏
i>j

(hi − hj)
r∏
i=1

1

hi!

Remark. The formula which tends to get taught in combinatorics classes is the hook length
formula: for each position x in the standard Young tableau, let hook(x) count the number
of cells to the right of it, plus the number of cells below it, plus 1 for x itself. Then
f(λ) = n!/

∏
x hook(x), but this isn’t very useful for us. (It is useful in other contexts. For

example, Vershik and Kerov used this formula to obtain the asymptotic shape of a typical
standard tableau.)
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In particular, by the RSK correspondence the number of permutations π with r(π) = r
will be

(n!)2
∑

h1,...,hr:
∑
hi=n+

r(r−1)
2

∏
i<j

(hi − hj)2
r∏
i=1

1

(hi!)2

Since the product
∏

(hi − hj)2 is related to the Vandermonde determinant, we get the con-
nection to orthogonal polynomials and then to random matrices.

5.3.2. Last passage percolation. Consider a square M ×N lattice (with (M + 1)× (N + 1)
points), with weights wij in vertices. We will take wij to be iid geometric, i.e.

P(wij = k) = (1− q)qk.
We would like to find a path from (0, 0) to (M,N) which moves only up and to the right,
and which maximizes the sum

∑
wij of the weights it passes through. Let

G(N,M) = max
p:path up and right

∑
wij

be this maximum.
Note that W is a matrix of nonnegative integers. We can write a generalised permutation

corresponding to it: the permutation π will contain the pair
(
i
j

)
wij times. For example,

W =


1 2 0
0 3 0
1 1 0
1 0 1

 , π =

(
1 1 1 2 2 2 3 3 4 4
1 2 2 2 2 2 1 2 1 3

)

Then the optimal path corresponds to the longest nondecreasing subsequence in π, and π (via
the RSK correspondence – in fact, this was Knuth’s contribution) corresponds to a pair of
semistandard Young tableaux: the semistandard Young tableaux are filled by the top, resp.
the bottom, row of π, and the numbers must be increasing along rows and nondecreasing
along columns. Semistandart Young tableaus can be counted similarly to standard ones; the
polynomials that arise are called the Meixner orthogonal polynomials.

5.3.3. Other problems. We don’t have time to mention these in any detail, but there are
totally asymmetric exclusion processes, Aztec diamond domino tilings, and viscious walkers.
Most of the work on the topics in this section has been done by Johansson and his co-authors,
and the best place to find out more is to read his papers, for example, [2], [14], [15], [16].
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