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Preface to the Second
Edition

This edition does not involve any major reorganization of the basic plan
of the book; however, there are still a substantial number of changes. The
inaccuracies and typos that were pointed out, or detected by us, and that
were previously posted on our web site, have been corrected. Here and
there, clarifying remarks have been added. Some new exercises have been
added, often to reflect a result we consider interesting that did not find its
way into the main body of the text. Some exercises have been dropped,
either because the new presentation covers them, or because they were too
difficult or unclear. The general principles of Chapter 4 have been updated
by the addition of Theorem 4.4.13 and Lemmas 4.1.23, 4.1.24, and 4.6.5.

More substantial changes have also been incorporated in the text.

1. A new section on concentration inequalities (Section 2.4) has been
added. It overviews techniques, ranging from martingale methods
to Talagrand’s inequalities, to obtain upper bound on exponentially
negligible events.

2. A new section dealing with a metric framework for large deviations
(Section 4.7) has been added.

3. A new section explaining the basic ingredients of a weak convergence
approach to large deviations (Section 6.6) has been added. This sec-
tion largely follows the recent text of Dupuis and Ellis, and provides
yet another approach to the proof of Sanov’s theorem.

4. A new subsection with refinements of the Gibbs conditioning principle
(Section 7.3.3) has been added.

5. Section 7.2 dealing with sampling without replacement has been com-
pletely rewritten. This is a much stronger version of the results, which

vii



viii Preface to the Second Edition

also provides an alternative proof of Mogulskii’s theorem. This ad-
vance was possible by introducing an appropriate coupling.

The added material preserves the numbering of the first edition. In par-
ticular, theorems, lemmas and definitions in the first edition have retained
the same numbers, although some exercises may now be labeled differently.

Another change concerns the bibliography: The historical notes have
been rewritten with more than 100 entries added to the bibliography, both
to rectify some omissions in the first edition and to reflect some advances
that have been made since then. As in the first edition, no claim is being
made for completeness.

The web site http://www-ee.technion.ac.il/˜ zeitouni/cor.ps will contain
corrections, additions, etc. related to this edition. Readers are strongly
encouraged to send us their corrections or suggestions.

We thank Tiefeng Jiang for a preprint of [Jia95], on which Section 4.7
is based. The help of Alex de Acosta, Peter Eichelsbacher, Ioannis Kon-
toyiannis, Stephen Turner, and Tim Zajic in suggesting improvements to
this edition is gratefully acknowledged. We conclude this preface by thank-
ing our editor, John Kimmel, and his staff at Springer for their help in
producing this edition.

Amir Dembo

Ofer Zeitouni

December 1997

Stanford, California

Haifa, Israel



Preface to the First
Edition

In recent years, there has been renewed interest in the (old) topic of large
deviations, namely, the asymptotic computation of small probabilities on an
exponential scale. (Although the term large deviations historically was also
used for asymptotic expositions off the CLT regime, we always take large
deviations to mean the evaluation of small probabilities on an exponential
scale). The reasons for this interest are twofold. On the one hand, starting
with Donsker and Varadhan, a general foundation was laid that allowed one
to point out several “general” tricks that seem to work in diverse situations.
On the other hand, large deviations estimates have proved to be the crucial
tool required to handle many questions in statistics, engineering, statistical
mechanics, and applied probability.

The field of large deviations is now developed enough to enable one
to expose the basic ideas and representative applications in a systematic
way. Indeed, such treatises exist; see, e.g., the books of Ellis and Deuschel–
Stroock [Ell85, DeuS89b]. However, in view of the diversity of the applica-
tions, there is a wide range in the backgrounds of those who need to apply
the theory. This book is an attempt to provide a rigorous exposition of the
theory, which is geared towards such different audiences. We believe that a
field as technical as ours calls for a rigorous presentation. Running the risk
of satisfying nobody, we tried to expose large deviations in such a way that
the principles are first discussed in a relatively simple, finite dimensional
setting, and the abstraction that follows is motivated and based on it and
on real applications that make use of the “simple” estimates. This is also
the reason for our putting our emphasis on the projective limit approach,
which is the natural tool to pass from simple finite dimensional statements
to abstract ones.

With the recent explosion in the variety of problems in which large
deviations estimates have been used, it is only natural that the collection

ix



x Preface to the First Edition

of applications discussed in this book reflects our taste and interest, as well
as applications in which we have been involved. Obviously, it does not
represent the most important or the deepest possible ones.

The material in this book can serve as a basis for two types of courses:
The first, geared mainly towards the finite dimensional application, could be
centered around the material of Chapters 2 and 3 (excluding Section 2.1.3
and the proof of Lemma 2.3.12). A more extensive, semester-long course
would cover the first four chapters (possibly excluding Section 4.5.3) and
either Chapter 5 or Chapter 6, which are independent of each other. The
mathematical sophistication required from the reader runs from a senior
undergraduate level in mathematics/statistics/engineering (for Chapters 2
and 3) to advanced graduate level for the latter parts of the book.

Each section ends with exercises. While some of those are routine appli-
cations of the material described in the section, most of them provide new
insight (in the form of related computations, counterexamples, or refine-
ments of the core material) or new applications, and thus form an integral
part of our exposition. Many “hinted” exercises are actually theorems with
a sketch of the proof.

Each chapter ends with historical notes and references. While a com-
plete bibliography of the large deviations literature would require a separate
volume, we have tried to give due credit to authors whose results are related
to our exposition. Although we were in no doubt that our efforts could not
be completely successful, we believe that an incomplete historical overview
of the field is better than no overview at all. We have not hesitated to ig-
nore references that deal with large deviations problems other than those we
deal with, and even for the latter, we provide an indication to the literature
rather than an exhaustive list. We apologize in advance to those authors
who are not given due credit.

Any reader of this book will recognize immediately the immense impact
of the Deuschel–Stroock book [DeuS89b] on our exposition. We are grateful
to Dan Stroock for teaching one of us (O.Z.) large deviations, for provid-
ing us with an early copy of [DeuS89b], and for his advice. O.Z. is also
indebted to Sanjoy Mitter for his hospitality at the Laboratory for Infor-
mation and Decision Systems at MIT, where this project was initiated. A
course based on preliminary drafts of this book was taught at Stanford and
at the Technion. The comments of people who attended these courses—in
particular, the comments and suggestions of Andrew Nobel, Yuval Peres,
and Tim Zajic—contributed much to correct mistakes and omissions. We
wish to thank Sam Karlin for motivating us to derive the results of Sections
3.2 and 5.5 by suggesting their application in molecular biology. We thank
Tom Cover and Joy Thomas for a preprint of [CT91], which influenced
our treatment of Sections 2.1.1 and 3.4. The help of Wlodek Bryc, Marty
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Day, Gerald Edgar, Alex Ioffe, Dima Ioffe, Sam Karlin, Eddy Mayer-Wolf,
and Adam Shwartz in suggesting improvements, clarifying omissions, and
correcting outright mistakes is gratefully acknowledged. We thank Alex de
Acosta, Richard Ellis, Richard Olshen, Zeev Schuss and Sandy Zabell for
helping us to put things in their correct historical perspective. Finally, we
were fortunate to benefit from the superb typing and editing job of Lesley
Price, who helped us with the intricacies of LATEX and the English language.

Amir Dembo

Ofer Zeitouni

August 1992

Stanford, California

Haifa, Israel
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Chapter 1

Introduction

1.1 Rare Events and Large Deviations

This book is concerned with the study of the probabilities of very rare
events. To understand why rare events are important at all, one only has
to think of a lottery to be convinced that rare events (such as hitting the
jackpot) can have an enormous impact.

If any mathematics is to be involved, it must be quantified what is meant
by rare. Having done so, a theory of rare events should provide an analysis
of the rarity of these events. It is the scope of the theory of large deviations
to answer both these questions. Unfortunately, as Deuschel and Stroock
pointed out in the introduction of [DeuS89b], there is no real “theory” of
large deviations. Rather, besides the basic definitions that by now are stan-
dard, a variety of tools are available that allow analysis of small probability
events. Often, the same answer may be reached by using different paths
that seem completely unrelated. It is the goal of this book to explore some
of these tools and show their strength in a variety of applications. The
approach taken here emphasizes making probabilistic estimates in a finite
dimensional setting and using analytical considerations whenever necessary
to lift up these estimates to the particular situation of interest. In so do-
ing, a particular device, namely, the projective limit approach of Dawson
and Gärtner, will play an important role in our presentation. Although the
reader is exposed to the beautiful convex analysis ideas that have been the
driving power behind the development of the large deviations theory, it is
the projective limit approach that often allows sharp results to be obtained
in general situations. To emphasize this point, derivations for many of the
large deviations theorems using this approach have been provided.

A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications,
Stochastic Modelling and Applied Probability 38,
DOI 10.1007/978-3-642-03311-7 1,
© Springer-Verlag Berlin Heidelberg 1998, corrected printing 2010
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2 1. Introduction

The uninitiated reader must wonder, at this point, what exactly is meant
by large deviations. Although precise definitions and statements are post-
poned to the next section, a particular example is discussed here to pro-
vide both motivation and some insights as to what this book is about.
Let us begin with the most classical topic of probability theory, namely,
the behavior of the empirical mean of independent, identically distributed
random variables. Let X1, X2, . . . , Xn be a sequence of independent, stan-
dard Normal, real-valued random variables, and consider the empirical mean
Ŝn = 1

n

∑n
i=1 Xi. Since Ŝn is again a Normal random variable with zero

mean and variance 1/n, it follows that for any δ > 0,

P (|Ŝn| ≥ δ) −→n→∞ 0, (1.1.1)

and, for any interval A,

P (
√

nŜn ∈ A) −→n→∞
1√
2π

∫

A

e−x2/2dx . (1.1.2)

Note now that

P (|Ŝn| ≥ δ) = 1− 1√
2π

∫ δ
√

n

−δ
√

n

e−x2/2dx ;

therefore,
1
n

log P (|Ŝn| ≥ δ) −→n→∞ − δ2

2
. (1.1.3)

Equation (1.1.3) is an example of a large deviations statement: The “typi-
cal” value of Ŝn is, by (1.1.2), of the order 1/

√
n, but with small probability

(of the order of e−nδ2/2), |Ŝn| takes relatively large values.

Since both (1.1.1) and (1.1.2) remain valid as long as {Xi} are indepen-
dent, identically distributed (i.i.d.) random variables of zero mean and unit
variance, it could be asked whether (1.1.3) also holds for non-Normal {Xi}.
The answer is that while the limit of n−1 log P (|Ŝn| ≥ δ) always exists,
its value depends on the distribution of Xi. This is precisely the content of
Cramér’s theorem derived in Chapter 2.

The preceding analysis is not limited to the case of real-valued random
variables. With a somewhat more elaborate proof, a similar result holds
for d-dimensional, i.i.d. random vectors. Moreover, the independence as-
sumption can be replaced by appropriate notions of weak dependence. For
example, {Xi} may be a realization of a Markov chain. This is discussed in
Chapter 2 and more generally in Chapter 6. However, some restriction on
the dependence must be made, for examples abound in which the rate of
convergence in the law of large numbers is not exponential.
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Once the asymptotic rate of convergence of the probabilities
P
(
| 1n

∑n
i=1 Xi| ≥ δ

)
is available for every distribution of Xi satisfying

certain moment conditions, it may be computed in particular for
P
(
| 1n

∑n
i=1 f(Xi)| ≥ δ

)
, where f is an arbitrary bounded measurable func-

tion. Similarly, from the corresponding results in IRd, tight bounds may be
obtained on the asymptotic decay rate of

P

(∣
∣
∣
∣
∣

1
n

n∑

i=1

f1(Xi)

∣
∣
∣
∣
∣
≥ δ, . . . ,

∣
∣
∣
∣
∣

1
n

n∑

i=1

fd(Xi)

∣
∣
∣
∣
∣
≥ δ

)

,

where f1, . . . , fd are arbitrary bounded and measurable functions. From
here, it is only a relatively small logical step to ask about the rate of con-
vergence of the empirical measure 1

n

∑n
i=1 δXi , where δXi denotes the (ran-

dom) measure concentrated at Xi, to the distribution of X1. This is the
content of Sanov’s impressive theorem and its several extensions discussed
in Chapter 6. It should be noted here that Sanov’s theorem provides a
quite unexpected link between Large Deviations, Statistical Mechanics, and
Information Theory.

Another class of large deviations questions involves the sample path of
stochastic processes. Specifically, if Xε(t) denotes a family of processes that
converge, as ε → 0, to some deterministic limit, it may be asked what the
rate of this convergence is. This question, treated first by Mogulskii and
Schilder in the context, respectively, of a random walk and of the Brownian
motion, is explored in Chapter 5, which culminates in the Freidlin–Wentzell
theory for the analysis of dynamical systems. This theory has implications
to the study of partial differential equations with small parameters.

It is appropriate at this point to return to the applications part of the
title of this book, in the context of the simple example described before. As
a first application, suppose that the mean of the Normal random variables
Xi is unknown and, based on the observation (X1, X2, . . . , Xn), one tries
to decide whether the mean is −1 or 1. A reasonable, and commonly used
decision rule is as follows: Decide that the mean is 1 whenever Ŝn ≥ 0. The
probability of error when using this rule is the probability that, when the
mean is −1, the empirical mean is nonnegative. This is exactly the compu-
tation encountered in the context of Cramér’s theorem. This application is
addressed in Chapters 3 and 7 along with its generalization to more than
two alternatives and to weakly dependent random variables.

Another important application concerns conditioning on rare events.
The best known example of such a conditioning is related to Gibbs condi-
tioning in statistical mechanics, which has found many applications in the
seemingly unrelated areas of image processing, computer vision, VLSI de-
sign, and nonlinear programming. To illustrate this application, we return



4 1. Introduction

to the example where {Xi} are i.i.d. standard Normal random variables,
and assume that Ŝn ≥ 1. To find the conditional distribution of X1 given
this rare event, observe that it may be expressed as P (X1|X1 ≥ Y ), where
Y = n−

∑n
i=2 Xi is independent of X1 and has a Normal distribution with

mean n and variance (n− 1). By an asymptotic evaluation of the relevant
integrals, it can be deduced that as n → ∞, the conditional distribution
converges to a Normal distribution of mean 1 and unit variance. When the
marginal distribution of the Xi is not Normal, such a direct computation
becomes difficult, and it is reassuring to learn that the limiting behavior of
the conditional distribution may be found using large deviations bounds.
These results are first obtained in Chapter 3 for Xi taking values in a finite
set, whereas the general case is presented in Chapter 7.

A good deal of the preliminary material required to be able to follow
the proofs in the book is provided in the Appendix section. These appen-
dices are not intended to replace textbooks on analysis, topology, measure
theory, or differential equations. Their inclusion is to allow readers needing
a reminder of basic results to find them in this book instead of having to
look elsewhere.

1.2 The Large Deviation Principle

The large deviation principle (LDP) characterizes the limiting behavior,
as ε → 0, of a family of probability measures {με} on (X ,B) in terms of
a rate function. This characterization is via asymptotic upper and lower
exponential bounds on the values that με assigns to measurable subsets of
X . Throughout, X is a topological space so that open and closed subsets
of X are well-defined, and the simplest situation is when elements of BX ,
the Borel σ-field on X , are of interest. To reduce possible measurability
questions, all probability spaces in this book are assumed to have been
completed, and, with some abuse of notations, BX always denotes the thus
completed Borel σ-field.

Definitions A rate function I is a lower semicontinuous mapping I : X →
[0,∞] (such that for all α ∈ [0,∞), the level set ΨI(α)�={x : I(x) ≤ α} is
a closed subset of X ). A good rate function is a rate function for which all
the level sets ΨI(α) are compact subsets of X . The effective domain of I,
denoted DI , is the set of points in X of finite rate, namely, DI

�
={x : I(x) <

∞}. When no confusion occurs, we refer to DI as the domain of I.

Note that if X is a metric space, the lower semicontinuity property may
be checked on sequences, i.e., I is lower semicontinuous if and only if
lim infxn→x I(xn) ≥ I(x) for all x ∈ X . A consequence of a rate function
being good is that its infimum is achieved over closed sets.
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The following standard notation is used throughout this book. For any
set Γ, Γ denotes the closure of Γ, Γo the interior of Γ, and Γc the complement
of Γ. The infimum of a function over an empty set is interpreted as ∞.

Definition {με} satisfies the large deviation principle with a rate function
I if, for all Γ ∈ B,

− inf
x∈Γo

I(x) ≤ lim inf
ε→0

ε log με(Γ) ≤ lim sup
ε→0

ε log με(Γ) ≤ − inf
x∈Γ

I(x) . (1.2.4)

The right- and left-hand sides of (1.2.4) are referred to as the upper and
lower bounds, respectively.

Remark: Note that in (1.2.4), B need not necessarily be the Borel σ-field.
Thus, there can be a separation between the sets on which probability may
be assigned and the values of the bounds. In particular, (1.2.4) makes sense
even if some open sets are not measurable. Except for this section, we
always assume that BX ⊆ B unless explicitly stated otherwise.

The sentence “με satisfies the LDP” is used as shorthand for “{με} satisfies
the large deviation principle with rate function I.” It is obvious that if με

satisfies the LDP and Γ ∈ B is such that

inf
x∈Γo

I(x) = inf
x∈Γ

I(x)
�
=IΓ, (1.2.5)

then
lim
ε→0

ε log με(Γ) = −IΓ . (1.2.6)

A set Γ that satisfies (1.2.5) is called an I continuity set. In general, the
LDP implies a precise limit in (1.2.6) only for I continuity sets. Finer
results may well be derived on a case-by-case basis for specific families of
measures {με} and particular sets. While such results do not fall within our
definition of the LDP, a few illustrative examples are included in this book.
(See Sections 2.1 and 3.7.)

Some remarks on the definition now seem in order. Note first that in
any situation involving non-atomic measures, με({x}) = 0 for every x in X .
Thus, if the lower bound of (1.2.4) was to hold with the infimum over Γ
instead of Γo, it would have to be concluded that I(x) ≡ ∞, contradicting
the upper bound of (1.2.4) because με(X ) = 1 for all ε. Thus, some topo-
logical restrictions are necessary, and the definition of the LDP codifies a
particularly convenient way of stating asymptotic results that, on the one
hand, are accurate enough to be useful and, on the other hand, are loose
enough to be correct.

Since με(X ) = 1 for all ε, it is necessary that infx∈X I(x) = 0 for the
upper bound to hold. When I is a good rate function, this means that
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there exists at least one point x for which I(x) = 0. Next, the upper bound
trivially holds whenever infx∈Γ I(x) = 0, while the lower bound trivially
holds whenever infx∈Γo I(x) = ∞. This leads to an alternative formulation
of the LDP which is actually more useful when proving it. Suppose I is
a rate function and ΨI(α) its level set. Then (1.2.4) is equivalent to the
following bounds.
(a) (Upper bound) For every α < ∞ and every measurable set Γ with
Γ ⊂ ΨI(α)c,

lim sup
ε→0

ε log με(Γ) ≤ −α . (1.2.7)

(b) (Lower bound) For any x ∈ DI and any measurable Γ with x ∈ Γo,

lim inf
ε→0

ε log με(Γ) ≥ −I(x) . (1.2.8)

Inequality (1.2.8) emphasizes the local nature of the lower bound.

In proving the upper bound, it is often convenient to avoid rate functions
whose range is unbounded.

Definition For any rate function I and any δ > 0, the δ-rate function is
defined as

Iδ(x)
�
= min{I(x)− δ,

1
δ
}. (1.2.9)

While in general Iδ is not a rate function, its usefulness stems from the fact
that for any set Γ,

lim
δ→0

inf
x∈Γ

Iδ(x) = inf
x∈Γ

I(x) . (1.2.10)

Consequently, the upper bound in (1.2.4) is equivalent to the statement that
for any δ > 0 and for any measurable set Γ,

lim sup
ε→0

ε log με(Γ) ≤ − inf
x∈Γ

Iδ(x). (1.2.11)

When BX ⊆ B, the LDP is equivalent to the following bounds:
(a) (Upper bound) For any closed set F ⊆ X ,

lim sup
ε→0

ε log με(F ) ≤ − inf
x∈F

I(x). (1.2.12)

(b) (Lower bound) For any open set G ⊆ X ,

lim inf
ε→0

ε log με(G) ≥ − inf
x∈G

I(x). (1.2.13)

In many cases, a countable family of measures μn is considered (for
example, when μn is the law governing the empirical mean of n random
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variables). Then the LDP corresponds to the statement

− inf
x∈Γo

I(x) ≤ lim inf
n→∞

an log μn(Γ) ≤ lim sup
n→∞

an log μn(Γ)

≤ − inf
x∈Γ

I(x) (1.2.14)

for some sequence an → 0. Note that here an replaces ε of (1.2.4) and
similarly, the statements (1.2.7)–(1.2.13) are appropriately modified. For
consistency, the convention an = 1/n is used throughout and μn is renamed
accordingly to mean μa−1(1/n), where a−1 denotes the inverse of n �→ an.

Having defined what is meant by an LDP, the rest of this section is
devoted to proving two elementary properties related to the upper bound
that will be put to good use throughout this book.

Lemma 1.2.15 Let N be a fixed integer. Then, for every ai
ε ≥ 0,

lim sup
ε→0

ε log

(
N∑

i=1

ai
ε

)

=
N

max
i=1

lim sup
ε→0

ε log ai
ε . (1.2.16)

Proof: First note that for all ε,

0 ≤ ε log

(
N∑

i=1

ai
ε

)

− N
max
i=1

ε log ai
ε ≤ ε log N .

Since N is fixed, ε log N → 0 as ε → 0 and

lim sup
ε→0

N
max
i=1

ε log ai
ε =

N
max
i=1

lim sup
ε→0

ε log ai
ε .

Often, a natural approach to proving the large deviations upper bound
is to prove it first for compact sets. This motivates the following:

Definition Suppose that all the compact subsets of X belong to B. A family
of probability measures {με} is said to satisfy the weak LDP with the rate
function I if the upper bound (1.2.7) holds for every α < ∞ and all compact
subsets of ΨI(α)c, and the lower bound (1.2.8) holds for all measurable sets.

It is important to realize that there are families of probability measures
that satisfy the weak LDP with a good rate function but do not satisfy the
full LDP. For example, let με be the probability measures degenerate at
1/ε. This family satisfies the weak LDP in IR with the good rate function
I(x) = ∞. On the other hand, it is not hard to prove that με can not satisfy
the LDP with this or any other rate function.

In view of the preceding example, strengthening the weak LDP to a
full LDP requires a way of showing that most of the probability mass (at
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least on an exponential scale) is concentrated on compact sets. The tool
for doing that is described next. Here, and in the rest of this book, all
topological spaces are assumed to be Hausdorff.

Definition Suppose that all the compact subsets of X belong to B. A family
of probability measures {με} on X is exponentially tight if for every α < ∞,
there exists a compact set Kα ⊂ X such that

lim sup
ε→0

ε log με(Kc
α) < −α. (1.2.17)

Remarks:
(a) Beware of the logical mistake that consists of identifying exponential
tightness and the goodness of the rate function: The measures {με} need
not be exponentially tight in order to satisfy a LDP with a good rate func-
tion (you will see such an example in Exercise 6.2.24). In some situations,
however, and in particular whenever X is locally compact or, alternatively,
Polish, exponential tightness is implied by the goodness of the rate function.
For details, c.f. Exercises 1.2.19 and 4.1.10.
(b) Whenever it is stated that με satisfies the weak LDP or με is exponen-
tially tight, it will be implicitly assumed that all the compact subsets of X
belong to B.
(c) Obviously, for {με} to be exponentially tight, it suffices to have pre-
compact Kα for which (1.2.17) holds.

In the following lemma, exponential tightness is applied to strengthen a
weak LDP.

Lemma 1.2.18 Let {με} be an exponentially tight family.
(a) If the upper bound (1.2.7) holds for some α < ∞ and all compact subsets
of ΨI(α)c, then it also holds for all measurable sets Γ with Γ ⊂ ΨI(α)c. In
particular, if BX ⊆ B and the upper bound (1.2.12) holds for all compact
sets, then it also holds for all closed sets.
(b) If the lower bound (1.2.8) (the lower bound (1.2.13) in case BX ⊆ B)
holds for all measurable sets (all open sets), then I(·) is a good rate function.

Thus, when an exponentially tight family of probability measures satisfies
the weak LDP with a rate function I(·), then I is a good rate function and
the LDP holds.

Proof: We consider the general situation, the case where BX ⊆ B being
included in it.
(a) To establish (1.2.7), fix a set Γ ∈ B and α < ∞ such that Γ ⊂ ΨI(α)c.
Let Kα be the compact set in (1.2.17), noting that both Γ ∩ Kα ∈ B and
Kc

α ∈ B. Clearly,
με(Γ) ≤ με(Γ ∩Kα) + με(Kc

α) .
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Note that Γ ∩ Kα ⊂ ΨI(α)c, so infx∈Γ∩Kα
I(x) ≥ α. Combining the in-

equality (1.2.17), the upper bound (1.2.7) for the compact set Γ ∩Kα, and
Lemma 1.2.15, results in lim supε→0 ε log με(Γ) ≤ −α as claimed.
(b) Applying the lower bound (1.2.8) to the open set Kc

α ∈ B, it is con-
cluded from (1.2.17) that infx∈Kc

α
I(x) > α. Therefore, ΨI(α) ⊆ Kα yields

the compactness of the closed level set ΨI(α). As this argument holds for
any α < ∞, it follows that I(·) is a good rate function.

Exercise 1.2.19 Assume that X is a locally compact topological space, i.e.,
every point possesses a neighborhood whose closure is compact (a particularly
useful example is X = IRd). Prove that if {με} satisfies the LDP with a good
rate function I, then {με} is exponentially tight.
Hint: Cover a level set of I by the neighborhoods from the definition of local
compactness.

Exercise 1.2.20 Assume X is a metric space. Further assume that there ex-
ists a sequence of constants δn → 0 and a point x0 ∈ X such that μn(Bx0,δn) =
1, where Bx0,δn denotes the ball of radius δn and center x0. Prove that the
sequence {μn} satisfies the LDP with the good rate function I(x0) = 0 and
I(x) = ∞ for x 
= x0.

Exercise 1.2.21 In the example following the definition of the weak LDP,
the probability measures με do not even converge weakly. Modify this example
to yield a sequence of probability measures that converges weakly to the prob-
ability measure degenerate at 0, satisfies the weak LDP, but does not satisfy
the full LDP.

1.3 Historical Notes and References

While much of the credit for the modern theory of large deviations and
its various applications goes to Donsker and Varadhan (in the West) and
Freidlin and Wentzell (in the East), the topic is much older and may be
traced back to the early 1900s. General treatments, in book form, of various
aspects of the theory of large deviations have already appeared. Varadhan
provides a clear and concise description of the main results up to 1984
in his lecture notes [Var84]. Freidlin and Wentzell describe their theory
of small random perturbations of dynamical systems in [FW84] (originally
published, in Russian, in 1979). A systematic application of large deviations
to statistical mechanics and an introduction to the theory may be found in
Ellis’s [Ell85]. An introduction to the theory of large deviations together
with a thorough treatment of the relation between empirical measure LDP
and analytical properties of Markov semigroups may be found in [St84].
The latter was expanded in [DeuS89b] and forms the basis for the theory as
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presented in this book. Finally, engineering applications and a description
of the basic results of large deviations theory may be found in [Buc90].

It seems that the general abstract framework for the LDP was pro-
posed by Varadhan [Var66]. Earlier work was mainly concerned with the
exponential decay of specific events (for example, the probability of an ap-
propriately normalized random walk to lie in a tube, as in [Mog76]) and
did not emphasize the topological structure of the LDP and the different
bounds for open and closed sets. (See however [Lan73] and [Var66] where
limits of the form of the general theory appear.) It should be noted that
many authors use the term LDP only when the rate function is good. (See
[FW84, Var84, Ell85].) Our definition follows [DeuS89b]. The term expo-
nential tightness was coined in [DeuS89b], although it was implicitly used,
in conjunction with the goodness of the rate function, in almost all early
work on the LDP. See also [LyS87] for a version of Lemma 1.2.18. Many,
but not all, of the results stated in this book for Borel measures carry over
to situations where BX 
⊆ B. For a treatment of such a situation, see for
example [deA94b, EicS96].

One may find in the literature results more precise than the LDP. Al-
though the case may be made that the LDP provides only some rough
information on the asymptotic probabilities, its scope and ease of applica-
tion have made it a popular tool. For more refined results, see Wentzell
[Wen90] and the historical notes of Chapter 3.



Chapter 2

LDP for Finite
Dimensional Spaces

This chapter is devoted to the study of the LDP in a framework that is
not yet encumbered with technical details. The main example studied is
the empirical mean of a sequence of random variables taking values in IRd.
The concreteness of this situation enables the LDP to be obtained under
conditions that are much weaker than those that will be imposed in the
“general” theory. Many of the results presented here have counterparts in
the infinite dimensional context dealt with later, starting in Chapter 4.

2.1 Combinatorial Techniques for Finite
Alphabets

Throughout this section, all random variables assume values in a finite set
Σ = {a1, a2, . . . , aN}; Σ, which is also called the underlying alphabet, sat-
isfies |Σ| = N , where for any set A, |A| denotes its cardinality, or size.
Combinatorial methods are then applicable for deriving LDPs for the em-
pirical measures of Σ-valued processes (Sections 2.1.1 and 2.1.3), and for the
corresponding empirical means (Section 2.1.2). While the scope of these
methods is limited to finite alphabets, they illustrate the results one can
hope to obtain for more abstract alphabets. It will be seen that some of
the latter are actually direct consequences of the LDP derived next via the
combinatorial method. Unlike other approaches, this method for deriving
the LDP is based on point estimates and thus yields more information than
the LDP statement.

A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications,
Stochastic Modelling and Applied Probability 38,
DOI 10.1007/978-3-642-03311-7 2,
© Springer-Verlag Berlin Heidelberg 1998, corrected printing 2010
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2.1.1 The Method of Types and Sanov’s Theorem

Throughout, M1(Σ) denotes the space of all probability measures (laws)
on the alphabet Σ. Here M1(Σ) is identified with the standard probability
simplex in IR|Σ|, i.e., the set of all |Σ|-dimensional real vectors with nonneg-
ative components that sum to 1. Open sets in M1(Σ) are obviously induced
by the open sets in IR|Σ|.

Let Y1, Y2, . . . , Yn be a sequence of random variables that are indepen-
dent and identically distributed according to the law μ ∈ M1(Σ). Let Σμ

denote the support of the law μ, i.e., Σμ = {ai : μ(ai) > 0}. In general,
Σμ could be a strict subset of Σ; When considering a single measure μ, it
may be assumed, without loss of generality, that Σμ = Σ by ignoring those
symbols that appear with zero probability. For example, this is assumed
throughout Section 2.1.2, while in Section 2.1.3 as well as Section 3.5, one
has to keep track of various support sets of the form of Σμ.

Definition 2.1.1 The type Ly
n of a finite sequence y = (y1, . . . , yn) ∈ Σn

is the empirical measure (law) induced by this sequence. Explicitly, Ly
n =

(Ly
n(a1), . . . , Ly

n(a|Σ|)) is the element of M1(Σ) where

Ly
n(ai) =

1
n

n∑

j=1

1ai(yj) , i = 1, . . . , |Σ| ,

i.e., Ly
n(ai) is the fraction of occurrences of ai in the sequence y1, . . . , yn.

Let Ln denote the set of all possible types of sequences of length n. Thus,
Ln

�
={ν : ν = Ly

n for some y} ⊂ IR|Σ|, and the empirical measure LY
n as-

sociated with the sequence Y�
=(Y1, . . . , Yn) is a random element of the set

Ln. These concepts are useful for finite alphabets because of the following
volume and approximation distance estimates.

Lemma 2.1.2 (a) |Ln| ≤ (n + 1)|Σ|.
(b) For any probability vector ν ∈ M1(Σ),

dV (ν,Ln)
�
= inf

ν′∈Ln

dV (ν, ν′) ≤ |Σ|
2n

, (2.1.3)

where dV (ν, ν′)�= supA⊂Σ[ν(A) − ν′(A)] is the variational distance between
the measures ν and ν′.

Proof: Note that every component of the vector Ly
n belongs to the set

{ 0
n , 1

n , . . . , n
n}, whose cardinality is (n + 1). Part (a) of the lemma follows,

since the vector Ly
n is specified by at most |Σ| such quantities.
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To prove part (b), observe that Ln contains all probability vectors com-
posed of |Σ| coordinates from the set { 0

n , 1
n , . . . , n

n}. Thus, for any ν ∈
M1(Σ), there exists a ν′ ∈ Ln with |ν(ai)− ν′(ai)| ≤ 1/n for i = 1, . . . , |Σ|.
The bound of (2.1.3) now follows, since for finite Σ,

dV (ν, ν′) =
1
2

|Σ|∑

i=1

|ν(ai)− ν′(ai)| .

Remarks:
(a) Since Ly

n is a probability vector, at most |Σ| − 1 of its components need
to be specified and so |Ln| ≤ (n + 1)|Σ|−1.
(b) Lemma 2.1.2 states that the cardinality of Ln, the support of the random
empirical measures LY

n , grows polynomially in n and further that for large
enough n, the sets Ln approximate uniformly and arbitrarily well (in the
sense of variational distance) any measure in M1(Σ). Both properties fail
to hold when |Σ| = ∞.

Definition 2.1.4 The type class Tn(ν) of a probability law ν ∈ Ln is the
set Tn(ν) = {y ∈ Σn : Ly

n = ν}.

Note that a type class consists of all permutations of a given vector in this
set. In the definitions to follow, 0 log 0�

=0 and 0 log(0/0)�=0.

Definition 2.1.5 (a) The entropy of a probability vector ν is

H(ν)
�
=−

|Σ|∑

i=1

ν(ai) log ν(ai) .

(b) The relative entropy of a probability vector ν with respect to another
probability vector μ is

H(ν|μ)
�
=

|Σ|∑

i=1

ν(ai) log
ν(ai)
μ(ai)

.

Remark: By applying Jensen’s inequality to the convex function x log x,
it follows that the function H(·|μ) is nonnegative. Note that H(·|μ) is finite
and continuous on the compact set {ν ∈ M1(Σ) : Σν ⊆ Σμ}, because x log x
is continuous for 0 ≤ x ≤ 1. Moreover, H(·|μ) = ∞ outside this set, and
hence H(·|μ) is a good rate function.

The probabilities of the events {LY
n = ν}, ν ∈ Ln, are estimated in the

following three lemmas. First, it is shown that outcomes belonging to the
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Figure 2.1.1: H(ν) and H(ν|μ) for |Σ| = 2.

same type class are equally likely, and then the exponential growth rate of
each type class is estimated.

Let Pμ denote the probability law μZZ+ associated with an infinite se-
quence of i.i.d. random variables {Yj} distributed following μ ∈ M1(Σ).

Lemma 2.1.6 If y ∈ Tn(ν) for ν ∈ Ln, then

Pμ((Y1, . . . , Yn) = y) = e−n[H(ν)+H(ν|μ)] .

Proof: The random empirical measure LY
n concentrates on types ν ∈ Ln

for which Σν ⊆ Σμ i.e., H(ν|μ) < ∞. Therefore, assume without loss of
generality that Ly

n = ν and Σν ⊆ Σμ. Then

Pμ((Y1, . . . , Yn) = y) =
|Σ|∏

i=1

μ(ai)nν(ai) = e−n[H(ν)+H(ν|μ)] ,

where the last equality follows by the identity

H(ν) + H(ν|μ) = −
|Σ|∑

i=1

ν(ai) log μ(ai) .

In particular, since H(μ|μ) = 0, it follows that for all μ ∈ Ln and y ∈ Tn(μ),

Pμ((Y1, . . . , Yn) = y) = e−nH(μ) . (2.1.7)

Lemma 2.1.8 For every ν ∈ Ln,

(n + 1)−|Σ|enH(ν) ≤ |Tn(ν)| ≤ enH(ν) .

Remark: Since |Tn(ν)| = n!/(nν(a1))! · · · (nν(a|Σ|))!, a good estimate of
|Tn(ν)| can be obtained from Stirling’s approximation. (See [Fel71, page
48].) Here, a different route, with an information theory flavor, is taken.
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Proof: Under Pν , any type class has probability one at most and all its
realizations are of equal probability. Therefore, for every ν ∈ Ln, by (2.1.7),

1 ≥ Pν(LY
n = ν) = Pν((Y1, . . . , Yn) ∈ Tn(ν)) = e−nH(ν)|Tn(ν)|

and the upper bound on |Tn(ν)| follows.

Turning now to prove the lower bound, let ν′ ∈ Ln be such that Σν′ ⊆
Σν , and for convenience of notations, reduce Σ so that Σν = Σ. Then

Pν(LY
n = ν)

Pν(LY
n = ν′)

=

|Tn(ν)|
|Σ|∏

i=1

ν(ai)nν(ai)

|Tn(ν′)|
|Σ|∏

i=1

ν(ai)nν′(ai)

=
|Σ|∏

i=1

(nν′(ai))!
(nν(ai))!

ν(ai)nν(ai)−nν′(ai) .

This last expression is a product of terms of the form m!
�!

(
�
n

)�−m
. Con-

sidering separately the cases m ≥ � and m < �, it is easy to verify that
m!/�! ≥ �(m−�) for every m, � ∈ ZZ+. Hence, the preceding equality yields

Pν(LY
n = ν)

Pν(LY
n = ν′)

≥
|Σ|∏

i=1

nnν′(ai)−nν(ai) = n
n
[∑|Σ|

i=1
ν′(ai)−

∑|Σ|
i=1

ν(ai)
]

= 1 .

Note that Pν(LY
n = ν′) > 0 only when Σν′ ⊆ Σν and ν′ ∈ Ln. Therefore,

the preceding implies that, for all ν, ν′ ∈ Ln,

Pν(LY
n = ν) ≥ Pν(LY

n = ν′) .

Thus,

1 =
∑

ν′∈Ln

Pν(LY
n = ν′) ≤ |Ln| Pν(LY

n = ν)

= |Ln|e−nH(ν) |Tn(ν)| ,

and the lower bound on |Tn(ν)| follows by part (a) of Lemma 2.1.2.

Lemma 2.1.9 (Large deviations probabilities) For any ν ∈ Ln,

(n + 1)−|Σ| e−nH(ν|μ) ≤ Pμ(LY
n = ν) ≤ e−nH(ν|μ) .
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Proof: By Lemma 2.1.6,

Pμ(LY
n = ν) = |Tn(ν)| Pμ((Y1, . . . , Yn) = y , Ly

n = ν)

= |Tn(ν)| e−n[H(ν)+H(ν|μ)] .

The proof is completed by applying Lemma 2.1.8.

Combining Lemmas 2.1.2 and 2.1.9, Sanov’s theorem is proved for the
finite alphabet context.

Theorem 2.1.10 (Sanov) For every set Γ of probability vectors in M1(Σ),

− inf
ν∈Γo

H(ν|μ) ≤ lim inf
n→∞

1
n

log Pμ(LY
n ∈ Γ) (2.1.11)

≤ lim sup
n→∞

1
n

log Pμ(LY
n ∈ Γ) ≤ − inf

ν∈Γ
H(ν|μ) ,

where Γo is the interior of Γ considered as a subset of M1(Σ).

Remark: Comparing (2.1.11) and (1.2.14), it follows that Sanov’s theorem
states that the family of laws Pμ(LY

n ∈ ·) satisfies the LDP with the rate
function H(·|μ). Moreover, in the case of a finite alphabet Σ, there is no
need for a closure operation in the upper bound. For a few other improve-
ments that are specific to this case, see Exercises 2.1.16, 2.1.18, and 2.1.19.
Note that there are closed sets for which the upper and lower bounds of
(2.1.11) are distinct. Moreover, there are closed sets Γ for which the limit
of 1

n log Pμ(LY
n ∈ Γ) does not exist. (See Exercises 2.1.20 and 2.1.21.)

Proof: First, from Lemma 2.1.9, upper and lower bounds for all finite n
are deduced. By the upper bound of Lemma 2.1.9,

Pμ(LY
n ∈ Γ) =

∑

ν∈Γ∩Ln

Pμ(LY
n = ν) ≤

∑

ν∈Γ∩Ln

e−nH(ν|μ)

≤ |Γ ∩ Ln|e−n infν∈Γ∩Ln H(ν|μ)

≤ (n + 1)|Σ| e−n infν∈Γ∩Ln H(ν|μ) . (2.1.12)

The accompanying lower bound is

Pμ(LY
n ∈ Γ) =

∑

ν∈Γ∩Ln

Pμ(LY
n = ν) ≥

∑

ν∈Γ∩Ln

(n + 1)−|Σ| e−nH(ν|μ)

≥ (n + 1)−|Σ| e−n infν∈Γ∩Ln H(ν|μ) . (2.1.13)

Since limn→∞
1
n log(n + 1)|Σ| = 0, the normalized logarithmic limits of

(2.1.12) and (2.1.13) yield

lim sup
n→∞

1
n

log Pμ(LY
n ∈ Γ) = − lim inf

n→∞
{ inf

ν∈Γ∩Ln

H(ν|μ)} (2.1.14)
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and

lim inf
n→∞

1
n

log Pμ(LY
n ∈ Γ) = − lim sup

n→∞
{ inf

ν∈Γ∩Ln

H(ν|μ)} . (2.1.15)

The upper bound of (2.1.11) follows, since Γ ∩ Ln ⊂ Γ for all n.

Turning now to complete the proof of the lower bound of (2.1.11), fix an
arbitrary point ν in the interior of Γ such that Σν ⊆ Σμ. Then, for some
δ > 0 small enough, {ν′ : dV (ν, ν′) < δ} is contained in Γ. Thus, by part
(b) of Lemma 2.1.2, there exists a sequence νn ∈ Γ ∩ Ln such that νn → ν
as n → ∞. Moreover, without loss of generality, it may be assumed that
Σνn ⊆ Σμ, and hence

− lim sup
n→∞

{ inf
ν′∈Γ∩Ln

H(ν′|μ)} ≥ − lim
n→∞

H(νn|μ) = −H(ν|μ) .

Recall that H(ν|μ) = ∞ whenever, for some i ∈ {1, 2, . . . , |Σ|}, ν(ai) > 0
while μ(ai) = 0. Therefore, by the preceding inequality,

− lim sup
n→∞

{ inf
ν∈Γ∩Ln

H(ν|μ)} ≥ − inf
ν∈Γo

H(ν|μ) ,

and the lower bound of (2.1.11) follows by (2.1.15).

Exercise 2.1.16 Prove that for every open set Γ,

− lim
n→∞

{ inf
ν∈Γ∩Ln

H(ν|μ)} = lim
n→∞

1
n

log Pμ (LY
n ∈ Γ)

= − inf
ν∈Γ

H(ν|μ)
�
=− IΓ . (2.1.17)

Exercise 2.1.18 (a) Extend the conclusions of Exercise 2.1.16 to any subset
Γ of {ν ∈ M1(Σ) : Σν ⊆ Σμ} that is contained in the closure of its interior.
(b) Prove that for any such set, IΓ < ∞ and IΓ = H(ν∗|μ) for some ν∗ ∈ Γo.
Hint: Use the continuity of H(·|μ) on the compact set Γo.

Exercise 2.1.19 Assume Σμ = Σ and that Γ is a convex subset of M1(Σ)
of non-empty interior. Prove that all the conclusions of Exercise 2.1.18 apply.
Moreover, prove that IΓ = H(ν∗|μ) for a unique ν∗ ∈ Γo.
Hint: If ν ∈ Γ and ν′ ∈ Γo, then the entire line segment between ν and ν′ is
in Γo, except perhaps the end point ν. Deduce that Γ ⊂ Γo, and prove that
H(·|μ) is a strictly convex function on M1(Σ).

Exercise 2.1.20 Find a closed set Γ for which the two limits in (2.1.17) do
not exist.
Hint: Any set Γ = {ν}, where ν ∈ Ln for some n and Σν ⊆ Σμ, will do.
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Exercise 2.1.21 Find a closed set Γ such that infν∈Γ H(ν|μ) < ∞ and
Γ = Γo while infν∈Γo H(ν|μ) = ∞.
Hint: For this construction, you need Σμ 
= Σ. Try Γ = M1(Σ), where |Σ| = 2
and μ(a1) = 0.

Exercise 2.1.22 Let G be an open subset of M1(Σ) and suppose that μ is
chosen at random, uniformly on G. Let Y1, . . . , Yn be i.i.d. random variables
taking values in the finite set Σ, distributed according to the law μ. Prove that
the LDP holds for the sequence of empirical measures LY

n with the good rate
function I(ν) = infμ∈G H(ν|μ).
Hint: Show that νn → ν, μn → μ, and H(νn|μn) ≤ α imply that H(ν|μ) ≤
α. Prove that H(ν|·) is a continuous function for every fixed ν ∈ M1(Σ), and
use it for proving the large deviations lower bound and the lower semicontinuity
of the rate function I(·).

2.1.2 Cramér’s Theorem for Finite Alphabets in IR

As an application of Sanov’s theorem, a version of Cramér’s theorem about
the large deviations of the empirical mean of i.i.d. random variables is
proved. Specifically, throughout this section the sequence of empirical
means Ŝn

�
=

1
n

∑n
j=1 Xj is considered, where Xj = f(Yj), f : Σ → IR, and

Yj ∈ Σ are i.i.d. with law μ as in Section 2.1.1. Without loss of generality,
it is further assumed that Σ = Σμ and that f(a1) < f(a2) < · · · < f(a|Σ|).
Cramér’s theorem deals with the LDP associated with the real-valued ran-
dom variables Ŝn. Sections 2.2 and 2.3 are devoted to successive generaliza-
tions of this result, first to IRd (Section 2.2), and then to weakly dependent
random vectors in IRd (Section 2.3).

Note that in the case considered here, the random variables Ŝn as-
sume values in the compact interval K�

=[f(a1), f(a|Σ|)]. Moreover, Ŝn =
∑|Σ|

i=1 f(ai)LY
n (ai)

�
=〈f , LY

n 〉, where f�
=(f(a1), . . . , f(a|Σ|)). Therefore, for ev-

ery set A and every integer n,

Ŝn ∈ A ⇔ LY
n ∈ {ν : 〈f , ν〉 ∈ A}�=Γ . (2.1.23)

Thus, the following version of Cramér’s theorem is a direct consequence of
Sanov’s theorem (Theorem 2.1.10).

Theorem 2.1.24 (Cramér’s theorem for finite subsets of IR) For
any set A ⊂ IR,

− inf
x∈Ao

I(x) ≤ lim inf
n→∞

1
n

log Pμ(Ŝn ∈ A) (2.1.25)

≤ lim sup
n→∞

1
n

log Pμ(Ŝn ∈ A) ≤ − inf
x∈A

I(x) ,
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where Ao is the interior of A and I(x)�= inf{ν:〈f ,ν〉=x} H(ν|μ). The rate
function I(x) is continuous at x ∈ K and satisfies there

I(x) = sup
λ∈IR

{λx− Λ(λ)} , (2.1.26)

where

Λ(λ) = log
|Σ|∑

i=1

μ(ai)eλf(ai) .

Remark: Since the rate function I(·) is continuous on K, it follows from
(2.1.25) that whenever A ⊂ Ao ⊆ K,

lim
n→∞

1
n

log Pμ(Ŝn ∈ A) = − inf
x∈A

I(x) .

Figure 2.1.2: M1(Σ) and 〈f , ν〉 for |Σ| = 3.

Proof: When the set A is open, so is the set Γ of (2.1.23), and the bounds
of (2.1.25) are simply the bounds of (2.1.11) for Γ. By Jensen’s inequality,
for every ν ∈ M1(Σ) and every λ ∈ IR,

Λ(λ) = log
|Σ|∑

i=1

μ(ai)eλf(ai) ≥
|Σ|∑

i=1

ν(ai) log
μ(ai)eλf(ai)

ν(ai)

= λ〈f , ν〉 −H(ν|μ) ,

with equality for νλ(ai)
�
=μ(ai)eλf(ai)−Λ(λ). Thus, for all λ and all x,

λx− Λ(λ) ≤ inf
{ν:〈f ,ν〉=x}

H(ν|μ) = I(x) , (2.1.27)

with equality when x = 〈f , νλ〉. The function Λ(λ) is differentiable with
Λ′(λ) = 〈f , νλ〉. Therefore, (2.1.26) holds for all x ∈ {Λ′(λ) : λ ∈ IR}.
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Observe that Λ′(·) is strictly increasing, since Λ(·) is strictly convex, and
moreover, f(a1) = infλ Λ′(λ) and f(a|Σ|) = supλ Λ′(λ). Hence, (2.1.26)
holds for all x ∈ Ko. Consider now the end point x = f(a1) of K, and let
ν∗(a1) = 1 so that 〈f , ν∗〉 = x. Then

− log μ(a1) = H(ν∗|μ) ≥ I(x) ≥ sup
λ
{λx− Λ(λ)}

≥ lim
λ→−∞

[λx− Λ(λ)] = − log μ(a1) .

The proof for the other end point of K, i.e., x = f(a|Σ|), is similar. The
continuity of I(x) for x ∈ K is a direct consequence of the continuity of the
relative entropy H(·|μ).

It is interesting to note that Cramér’s theorem was derived from Sanov’s
theorem following a pattern that will be useful in the sequel and that is
referred to as the contraction principle. In this perspective, the random
variables Ŝn are represented via a continuous map of LY

n , and the LDP for
Ŝn follows from the LDP for LY

n .

Exercise 2.1.28 Construct an example for which n−1 log Pμ(Ŝn = x) has no
limit as n →∞.
Hint: Note that for |Σ| = 2, the empirical mean (Ŝn) uniquely determines the
empirical measure (LY

n ). Use this observation and Exercise 2.1.20 to construct
the example.

Exercise 2.1.29 (a) Prove that I(x) = 0 if and only if x = E(X1). Explain
why this should have been anticipated in view of the weak law of large numbers.
(b) Check that H(ν|μ) = 0 if and only if ν = μ, and interpret this result.
(c) Prove the strong law of large numbers by showing that, for all ε > 0,

∞∑

n=1

P (|Ŝn − E(X1)| > ε) < ∞ .

Exercise 2.1.30 Guess the value of limn→∞ Pμ(X1 = f(ai)|Ŝn ≥ q) for
q ∈ (E(X1), f(a|Σ|)). Try to justify your guess, at least heuristically.

Exercise 2.1.31 Extend Theorem 2.1.24 to the empirical means of Xj =
f(Yj), where f : Σ → IRd, d > 1. In particular, determine the shape of the set
K and find the appropriate extension of the formula (2.1.26).

2.1.3 Large Deviations for Sampling Without
Replacement

The scope of the method of types is not limited to the large deviations
of the empirical measure of i.i.d. random variables. For example, con-
sider the setup of sampling without replacement, a common procedure in
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many statistical problems. From an initial deterministic pool of m distinct
items, y�

=(y1, . . . , ym), an n-tuple Y�
=(yi1 , yi2 , . . . , yin) is sampled without

replacement, namely, the indices {i1, i2, i3, . . . , in} are chosen at random,
such that each subset of n distinct elements of {1, 2, . . . , m} is equally likely.

Suppose that for all m, (y(m)
1 , . . . , y

(m)
m ) are elements of the finite set

Σ = {a1, . . . , a|Σ|}. Moreover, suppose that m = m(n) and as n → ∞,
the deterministic relative frequency vectors Ly

m = (Ly
m(a1), . . . , Ly

m(a|Σ|))
converge to a probability measure μ ∈ M1(Σ). Recall that

Ly
m(ai) =

1
m

m∑

j=1

1ai(y
(m)
j ) , i = 1, . . . , |Σ| .

Suppose further that Y is a random vector obtained by the sampling with-
out replacement of n out of m elements as described before. An investigation
is made next of the LDP for the random empirical measures LY

n associated
with the vectors Y. In particular, the analog of Theorem 2.1.10, is estab-
lished for m = m(n) and limn→∞ (n/m(n)) = β, 0 < β < 1. To this end,
consider the following candidate rate function

I(ν|β, μ)
�
=

⎧
⎪⎨

⎪⎩

H(ν|μ) + 1−β
β H

(
μ−βν
1−β

∣
∣
∣μ
)

if μ(ai) ≥ βν(ai) for all i

∞ otherwise.
(2.1.32)

Observe that as β → 0, the function I(·|β, μ) approaches H(·|μ), while as
β → 1, the domain of ν for which I(ν|β, μ) < ∞ coalesces to a single measure
ν = μ. This reflects the reduction in the amount of “randomness” as β
increases. Note that LY

n belongs to the set Ln whose size grows polynomially
in n by Lemma 2.1.2. Further, the following estimates of large deviations
probabilities for LY

n are obtained by elementary combinatorics.

Lemma 2.1.33 For every probability vector ν ∈ Ln:
(a) If I(ν| n

m , Ly
m) < ∞, then

∣
∣
∣
∣
1
n

log P(LY
n = ν) + I(ν| n

m
, Ly

m)
∣
∣
∣
∣ ≤ 2(|Σ|+ 1)

(
log(m + 1)

n

)

. (2.1.34)

(b) If I(ν| n
m , Ly

m) = ∞, then P(LY
n = ν) = 0 .

Proof: (a) Under sampling without replacement, the probability of the
event {LY

n = ν} for ν ∈ Ln is exactly the number of n-tuples i1 
= i2 
=
· · · 
= in resulting in type ν, compared to the overall number of n-tuples,
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Figure 2.1.3: Domain of I(·|β, μ) for β = 2
3 and μ = (1

3 , 1
3 , 1

3 ).

that is,

P(LY
n = ν) =

|Σ|∏

i=1

(
mLy

m(ai)
n ν(ai)

)

(
m
n

) . (2.1.35)

An application of Lemma 2.1.8 for |Σ| = 2, where |Tn(ν)| = ( n
k ) when

ν(a1) = k/n , ν(a2) = 1− k/n, results in the estimate

max
0≤k≤n

∣
∣
∣
∣ log

(
n
k

)

− nH

(
k

n

)∣
∣
∣
∣ ≤ 2 log(n + 1) , (2.1.36)

where
H(p)

�
=− p log p− (1− p) log(1− p) .

Alternatively, (2.1.36) follows by Stirling’s formula. (See [Fel71, page 48].)
Combining the exact expression (2.1.35) and the bound (2.1.36) results in

∣
∣
∣
∣
∣
∣

1
n

log P(LY
n = ν)−

|Σ|∑

i=1

mLy
m(ai)
n

H

(
nν(ai)

mLy
m(ai)

)

+
m

n
H
( n

m

)
∣
∣
∣
∣
∣
∣

≤ 2(|Σ|+ 1)
(

log (m + 1)
n

)

. (2.1.37)

The inequality (2.1.34) follows by rearranging the left side of (2.1.37).

(b) Note that I(ν| n
m , Ly

m) = ∞ if and only if nν(ai) > mLy
m(ai) for some

ai ∈ Σ. It is then impossible, in sampling without replacement, to have
LY

n = ν, since nLY
n (ai) ≤ mLy

m(ai) for every ai ∈ Σ.
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As in the proof of Theorem 2.1.10, the preceding point estimates give
the analogs of (2.1.14) and (2.1.15).

Corollary 2.1.38 With m = m(n),

lim sup
n→∞

1
n

log P(LY
n ∈ Γ) = − lim inf

n→∞
{ inf

ν∈Γ∩Ln

I(ν| n
m

, Ly
m) } , (2.1.39)

and

lim inf
n→∞

1
n

log P(LY
n ∈ Γ) = − lim sup

n→∞
{ inf

ν∈Γ∩Ln

I(ν| n
m

, Ly
m) } . (2.1.40)

The proof of Corollary 2.1.38 is left as Exercise 2.1.46.

The following is the desired analog of Sanov’s theorem (Theorem 2.1.10).

Theorem 2.1.41 Suppose Ly
m converges to μ and n/m → β ∈ (0, 1) as

n →∞. Then the random empirical measures LY
n satisfy the LDP with the

good rate function I(ν|β, μ). Explicitly, for every set Γ of probability vectors
in M1(Σ) ⊂ IR|Σ|,

− inf
ν∈Γo

I(ν|β, μ) ≤ lim inf
n→∞

1
n

log P(LY
n ∈ Γ) (2.1.42)

≤ lim sup
n→∞

1
n

log P(LY
n ∈ Γ) ≤ − inf

ν∈Γ
I(ν|β, μ) .

Remark: Note that the upper bound of (2.1.42) is weaker than the upper
bound of (2.1.11) in the sense that the infimum of the rate function is taken
over the closure of Γ. See Exercise 2.1.47 for examples of sets Γ where the
above lower and upper bounds coincide.

The following lemma is needed for the proof of Theorem 2.1.41.

Lemma 2.1.43 Let βn ∈ (0, 1), μn, νn ∈ M1(Σ) be such that βn → β ∈
(0, 1) and μn → μ as n →∞.
(a) If νn → ν and I(νn|βn, μn) < ∞ for all n large enough, then

lim
n→∞

I(νn|βn, μn) = I(ν|β, μ) .

(b) If I(ν|β, μ) < ∞, then there exists a sequence {νn} such that νn ∈ Ln,
νn → ν, and

lim
n→∞

I(νn|βn, μn) = I(ν|β, μ) .
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Proof: (a) Since I(νn|βn, μn) < ∞ for all n large enough, it follows that
μn(ai) ≥ βnνn(ai) for every ai ∈ Σ. Hence, by rearranging (2.1.32),

I(νn|βn, μn) =
1
βn

H(μn)−H(νn)− 1− βn

βn
H(

μn − βnνn

1− βn
) ,

and I(νn|βn, μn) → I(ν|β, μ), since H(·) is continuous on M1(Σ) and {βn}
is bounded away from 0 and 1.
(b) Consider first ν ∈ M1(Σ) for which

min
ai∈Σ

{μ(ai)− βν(ai)} > 0 . (2.1.44)

By part (b) of Lemma 2.1.2, there exist νn ∈ Ln such that νn → ν as
n →∞. Thus, the strict inequality (2.1.44) implies that for all n large,

min
ai∈Σ

{μn(ai)− βnνn(ai)} ≥ 0 .

Consequently, I(νn|βn, μn) < ∞ for all n large enough and the desired
conclusion follows by part (a).

Suppose now that Σμ = Σ, but possibly (2.1.44) does not hold. Then,
since β < 1 and I(ν|β, μ) < ∞, there exist νk → ν such that (2.1.44) holds
for all k. By the preceding argument, there exist {νn,k}∞n=1 such that for
all k, νn,k ∈ Ln, νn,k → νk and

lim
n→∞

I(νn,k|βn, μn) = I(νk|β, μ) .

By the standard Cantor diagonalization argument, there exist νn ∈ Ln such
that νn → ν and

lim
n→∞

I(νn|βn, μn) = lim
k→∞

I(νk|β, μ) = I(ν|β, μ) ,

where the last equality is due to part (a) of the lemma.

Finally, even if Σμ 
= Σ, it still holds that Σν ⊆ Σμ, since I(ν|β, μ) < ∞.
Hence, by repeating the preceding argument with Σμ instead of Σ, there
exist νn ∈ Ln such that Σνn ⊆ Σμ, νn → ν, and I(νn|βn, μn) < ∞ for all n
large enough. The proof is completed by applying part (a) of the lemma.

Proof of Theorem 2.1.41: It follows from part (a) of Lemma 2.1.43
that I(ν|β, μ) is lower semicontinuous jointly in β ∈ (0, 1), μ, and ν. Since
it is a nonnegative function, and the probability simplex is a compact set,
I(·|β, μ) is a good rate function.
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Turning now to prove the upper bound of (2.1.42), first deduce from
(2.1.39) that for some infinite subsequence nk, there exists a sequence
{νk} ⊂ Γ such that

lim sup
n→∞

1
n

log P(LY
n ∈ Γ) = − lim

k→∞
I(νk|

nk

mk
, Ly

mk
)
�
=− I∗ , (2.1.45)

where possibly I∗ = ∞. The sequence {νk} has a limit point ν∗ in the com-
pact set Γ. Passing to a convergent subsequence, the lower semicontinuity
of I jointly in β, μ, and ν implies that

I∗ ≥ I(ν∗|β, μ) ≥ inf
ν∈Γ

I(ν|β, μ) .

The upper bound follows by combining this inequality and (2.1.45).

Finally, in order to prove the lower bound, consider an arbitrary ν ∈ Γo

such that I(ν|β, μ) < ∞. Then, by part (b) of Lemma 2.1.43, there exist
νn ∈ Ln such that νn → ν and

lim
n→∞

I(νn| n
m

, Ly
m) = I(ν|β, μ) .

Since for all n large enough, νn ∈ Γ ∩ Ln, it follows that

− lim sup
n→∞

{ inf
ν′∈Γ∩Ln

I(ν′| n
m

, Ly
m) } ≥ −I(ν|β, μ) .

Combining the preceding inequality with (2.1.40), one concludes that for
each such ν,

lim inf
n→∞

1
n

log P(LY
n ∈ Γ) ≥ −I(ν|β, μ) .

The proof of the theorem is now complete in view of the formulation (1.2.8)
of the large deviations lower bound.

Exercise 2.1.46 Prove Corollary 2.1.38.

Exercise 2.1.47 Let IΓ
�
= infν∈Γo I(ν|β, μ). Prove that when Γ ⊂ DI and Γ

is contained in the closure of its interior, then

IΓ = lim
n→∞

1
n

log P(LY
n ∈ Γ) .

Hint: Use Exercise 2.1.18 and the continuity of I(·|β, μ) on its level sets.

Exercise 2.1.48 Prove that the rate function I(·|β, μ) is convex.

Exercise 2.1.49 Prove that the LDP of Theorem 2.1.41 holds for β = 0 with
the good rate function I(·|0, μ)�=H(·|μ).
Hint: First prove that the left side of (2.1.37) goes to zero as n → ∞ (i.e.,
even when n−1 log(m + 1) → ∞). Then, show that Lemma 2.1.43 holds for
βn > 0 and β = 0.
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2.2 Cramér’s Theorem

Cramér’s theorem about the large deviations associated with the empirical
mean of i.i.d. random variables taking values in a finite set is presented in
Section 2.1.2 as an application of the method of types. However, a direct
application of the method of types is limited to finite alphabets. In this
section, Theorem 2.1.24 is extended to the case of i.i.d. random variables
taking values in IRd.

Specifically, consider the empirical means Ŝn
�
=

1
n

∑n
j=1 Xj , for i.i.d., d-

dimensional random vectors X1, . . . , Xn, . . ., with X1 distributed according
to the probability law μ ∈ M1(IRd). The logarithmic moment generating
function associated with the law μ is defined as

Λ(λ)
�
= log M(λ)

�
= log E[e〈λ,X1〉] , (2.2.1)

where 〈λ, x〉�=
∑d

j=1 λjxj is the usual scalar product in IRd, and xj the jth
coordinate of x. Another common name for Λ(·) is the cumulant generating
function. In what follows, |x|�=

√
〈x, x〉, is the usual Euclidean norm. Note

that Λ(0) = 0, and while Λ(λ) > −∞ for all λ, it is possible to have
Λ(λ) = ∞. Let μn denote the law of Ŝn and x�

=E[X1]. When x exists and
is finite, and E[|X1 − x|2] < ∞, then Ŝn

Prob−→
n→∞

x, since

E
[
|Ŝn − x|2

]
=

1
n2

n∑

j=1

E
[
|Xj − x|2

]
=

1
n

E
[
|X1 − x|2

]
−→

n→∞
0 .

Hence, in this situation, μn(F ) −→n→∞ 0 for any closed set F such that x /∈ F .
Cramér’s theorem characterizes the logarithmic rate of this convergence by
the following (rate) function.

Definition 2.2.2 The Fenchel–Legendre transform of Λ(λ) is

Λ∗(x)
�
= sup

λ∈IRd

{〈λ, x〉 − Λ(λ)} .

It is instructive to consider first the case d = 1, followed by the additional
work necessary for handling the general case.

2.2.1 Cramér’s Theorem in IR

Let DΛ
�
={λ : Λ(λ) < ∞} and DΛ∗

�
={x : Λ∗(x) < ∞}. Cramér’s theorem in

IR, which is stated next, is applicable even when x does not exist.
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Figure 2.2.1: Geometrical interpretation of Λ∗.

Theorem 2.2.3 (Cramér) When Xi ∈ IR, the sequence of measures {μn}
satisfies the LDP with the convex rate function Λ∗(·), namely:
(a) For any closed set F ⊂ IR,

lim sup
n→∞

1
n

log μn(F ) ≤ − inf
x∈F

Λ∗(x) . (2.2.4)

(b) For any open set G ⊂ IR,

lim inf
n→∞

1
n

log μn(G) ≥ − inf
x∈G

Λ∗(x) .

Remarks:
(a) The definition of the Fenchel–Legendre transform for (topological) vector
spaces and some of its properties are presented in Section 4.5. It is also
shown there that the Fenchel–Legendre transform is a natural candidate for
the rate function, since the upper bound (2.2.4) holds for compact sets in a
general setup.
(b) As follows from part (b) of Lemma 2.2.5 below, Λ∗ need not in general
be a good rate function.
(c) A close inspection of the proof reveals that, actually, (2.2.4) may be
strengthened to the statement that, for all n,

μn(F ) ≤ 2e−n infx∈F Λ∗(x) .

The following lemma states the properties of Λ∗(·) and Λ(·) that are
needed for proving Theorem 2.2.3.

Lemma 2.2.5 (a) Λ is a convex function and Λ∗ is a convex rate function.
(b) If DΛ = {0}, then Λ∗ is identically zero. If Λ(λ) < ∞ for some λ > 0,
then x < ∞ (possibly x = −∞), and for all x ≥ x,

Λ∗(x) = sup
λ≥0

[λx− Λ(λ)] (2.2.6)
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is, for x > x, a nondecreasing function. Similarly, if Λ(λ) < ∞ for some
λ < 0, then x > −∞ (possibly x = ∞), and for all x ≤ x,

Λ∗(x) = sup
λ≤0

[λx− Λ(λ)] (2.2.7)

is, for x < x, a nonincreasing function.
When x is finite, Λ∗(x) = 0, and always,

inf
x∈IR

Λ∗(x) = 0 . (2.2.8)

(c) Λ(·) is differentiable in Do
Λ with

Λ′(η) =
1

M(η)
E[X1e

ηX1 ] (2.2.9)

and
Λ′(η) = y =⇒ Λ∗(y) = ηy − Λ(η) . (2.2.10)

Proof: (a) The convexity of Λ follows by Hölder’s inequality, since

Λ(θλ1 + (1− θ)λ2) = log E[(eλ1X1)θ(eλ2X1)(1−θ)]
≤ log{E[eλ1X1 ]θE[eλ2X1 ](1−θ)} = θΛ(λ1) + (1− θ)Λ(λ2)

for any θ ∈ [0, 1]. The convexity of Λ∗ follows from its definition, since

θΛ∗(x1) + (1− θ)Λ∗(x2)
= sup

λ∈IR
{θλx1 − θΛ(λ)}+ sup

λ∈IR
{(1− θ)λx2 − (1− θ)Λ(λ)}

≥ sup
λ∈IR

{(θx1 + (1− θ)x2)λ− Λ(λ)} = Λ∗(θx1 + (1− θ)x2) .

Recall that Λ(0) = log E[1] = 0, so Λ∗(x) ≥ 0x − Λ(0) = 0 is nonnegative.
In order to establish that Λ∗ is lower semicontinuous and hence a rate
function, fix a sequence xn → x. Then, for every λ ∈ IR,

lim inf
xn→x

Λ∗(xn) ≥ lim inf
xn→x

[λxn − Λ(λ)] = λx− Λ(λ) .

Thus,
lim inf
xn→x

Λ∗(xn) ≥ sup
λ∈IR

[λx− Λ(λ)] = Λ∗(x) .

(b) If DΛ = {0}, then Λ∗(x) = Λ(0) = 0 for all x ∈ IR. If Λ(λ) =
log M(λ) < ∞ for some λ > 0, then

∫∞
0

xdμ < M(λ)/λ < ∞, implying
that x < ∞ (possibly x = −∞). Now, for all λ ∈ IR, by Jensen’s inequality,

Λ(λ) = log E[eλX1 ] ≥ E[log eλX1 ] = λx .



2.2 Cramér’s Theorem 29

Figure 2.2.2: Pairs of Λ and Λ∗.

If x = −∞, then Λ(λ) = ∞ for λ negative, and (2.2.6) trivially holds. When
x is finite, it follows from the preceding inequality that Λ∗(x) = 0. In this
case, for every x ≥ x and every λ < 0,

λx− Λ(λ) ≤ λx− Λ(λ) ≤ Λ∗(x) = 0 ,

and (2.2.6) follows. Observe that (2.2.6) implies the monotonicity of Λ∗(x)
on (x,∞), since for every λ ≥ 0, the function λx−Λ(λ) is nondecreasing as
a function of x.

When Λ(λ) < ∞ for some λ < 0, then both (2.2.7) and the monotonicity
of Λ∗ on (−∞, x) follow by considering the logarithmic moment generating
function of −X, for which the preceding proof applies.

It remains to prove that infx∈IR Λ∗(x) = 0. This is already established
for DΛ = {0}, in which case Λ∗ ≡ 0, and when x is finite, in which case,
as shown before, Λ∗(x) = 0. Now, consider the case when x = −∞ while
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Λ(λ) < ∞ for some λ > 0. Then, by Chebycheff’s inequality and (2.2.6),

log μ([x,∞)) ≤ inf
λ≥0

log E
[
eλ(X1−x)

]
= − sup

λ≥0
{λx− Λ(λ)} = −Λ∗(x) .

Hence,
lim

x→−∞
Λ∗(x) ≤ lim

x→−∞
{− log μ([x,∞))} = 0 ,

and (2.2.8) follows. The last remaining case, that of x = ∞ while Λ(λ) < ∞
for some λ < 0, is settled by considering the logarithmic moment generating
function of −X.
(c) The identity (2.2.9) follows by interchanging the order of differentiation
and integration. This is justified by the dominated convergence theorem,
since fε(x) = (e(η+ε)x − eηx)/ε converge pointwise to xeηx as ε → 0, and
|fε(x)| ≤ eηx(eδ|x| − 1)/δ�

=h(x) for every ε ∈ (−δ, δ), while E[|h(X1)|] < ∞
for δ > 0 small enough.

Let Λ′(η) = y and consider the function g(λ)�=λy − Λ(λ). Since g(·) is
a concave function and g′(η) = 0, it follows that g(η) = supλ∈IR g(λ), and
(2.2.10) is established.

Proof of Theorem 2.2.3: (a) Let F be a non-empty closed set. Note that
(2.2.4) trivially holds when IF = infx∈F Λ∗(x) = 0. Assume that IF > 0. It
follows from part (b) of Lemma 2.2.5 that x exists, possibly as an extended
real number. For all x and every λ ≥ 0, an application of Chebycheff’s
inequality yields

μn([x,∞)) = E
[
1Ŝn−x≥0

]
≤ E

[
enλ(Ŝn−x)

]
(2.2.11)

= e−nλx
n∏

i=1

E
[
eλXi

]
= e−n[λx−Λ(λ)] .

Therefore, if x < ∞, then by (2.2.6), for every x > x,

μn([x,∞)) ≤ e−nΛ∗(x) . (2.2.12)

By a similar argument, if x > −∞ and x < x, then

μn((−∞, x]) ≤ e−nΛ∗(x) . (2.2.13)

First, consider the case of x finite. Then Λ∗(x) = 0, and because by as-
sumption IF > 0, x must be contained in the open set F c. Let (x−, x+)
be the union of all the open intervals (a, b) ∈ F c that contain x. Note that
x− < x+ and that either x− or x+ must be finite since F is non-empty.
If x− is finite, then x− ∈ F , and consequently Λ∗(x−) ≥ IF . Likewise,
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Figure 2.2.3: Chebycheff’s bound.

Λ∗(x+) ≥ IF whenever x+ is finite. Applying (2.2.12) for x = x+ and
(2.2.13) for x = x−, the union of events bound ensures that

μn(F ) ≤ μn((−∞, x−]) + μn([x+,∞)) ≤ 2e−nIF ,

and the upper bound follows when the normalized logarithmic limit as
n →∞ is considered.

Suppose now that x = −∞. Then, since Λ∗ is nondecreasing, it follows
from (2.2.8) that limx→−∞ Λ∗(x) = 0, and hence x+ = inf{x : x ∈ F} is
finite for otherwise IF = 0. Since F is a closed set, x+ ∈ F and consequently
Λ∗(x+) ≥ IF . Moreover, F ⊂ [x+,∞) and, therefore, the large deviations
upper bound follows by applying (2.2.12) for x = x+.

The case of x = ∞ is handled analogously.
(b) We prove next that for every δ > 0 and every marginal law μ ∈ M1(IR),

lim inf
n→∞

1
n

log μn((−δ, δ)) ≥ inf
λ∈IR

Λ(λ) = −Λ∗(0) . (2.2.14)

Since the transformation Y = X − x results with ΛY (λ) = Λ(λ)− λx, and
hence with Λ∗

Y (·) = Λ∗(·+ x), it follows from the preceding inequality that
for every x and every δ > 0,

lim inf
n→∞

1
n

log μn((x− δ, x + δ)) ≥ −Λ∗(x) . (2.2.15)

For any open set G, any x ∈ G, and any δ > 0 small enough, (x−δ, x+δ) ⊂
G. Thus, the large deviations lower bound follows from (2.2.15).

Turning to the proof of the key inequality (2.2.14), first suppose that
μ((−∞, 0)) > 0, μ((0,∞)) > 0, and that μ is supported on a bounded
subset of IR. By the former assumption, Λ(λ) → ∞ as |λ| → ∞, and
by the latter assumption, Λ(·) is finite everywhere. Accordingly, Λ(·) is a
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continuous, differentiable function (see part (c) of Lemma 2.2.5), and hence
there exists a finite η such that

Λ(η) = inf
λ∈IR

Λ(λ) and Λ′(η) = 0 .

Define a new probability measure μ̃ in terms of μ via

dμ̃

dμ
(x) = eηx−Λ(η) ,

and observe that μ̃ is a probability measure because
∫

IR

dμ̃ =
1

M(η)

∫

IR

eηxdμ = 1.

Let μ̃n be the law governing Ŝn when Xi are i.i.d. random variables of law
μ̃. Note that for every ε > 0,

μn((−ε, ε)) =
∫

|
∑n

i=1
xi|<nε

μ(dx1) · · ·μ(dxn)

≥ e−nε|η|
∫

|
∑n

i=1
xi|<nε

exp(η
n∑

i=1

xi) μ(dx1) · · ·μ(dxn)

= e−nε|η|enΛ(η)μ̃n((−ε, ε)) . (2.2.16)

By (2.2.9) and the choice of η,

Eμ̃[X1] =
1

M(η)

∫

IR

xeηxdμ = Λ′(η) = 0 .

Hence, by the law of large numbers,

lim
n→∞

μ̃n((−ε, ε)) = 1 . (2.2.17)

It now follows from (2.2.16) that for every 0 < ε < δ,

lim inf
n→∞

1
n

log μn((−δ, δ)) ≥ lim inf
n→∞

1
n

log μn((−ε, ε)) ≥ Λ(η)− ε|η| ,

and (2.2.14) follows by considering the limit ε → 0.

Suppose now that μ is of unbounded support, while both μ((−∞, 0)) > 0
and μ((0,∞)) > 0. Fix M large enough such that μ([−M, 0)) > 0 as well
as μ((0, M ]) > 0, and let

ΛM (λ) = log
∫ M

−M

eλxdμ .
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Let ν denote the law of X1 conditioned on {|X1| ≤ M}, and let νn be the
law of Ŝn conditioned on {|Xi| ≤ M, i = 1, . . . , n}. Then, for all n and
every δ > 0,

μn((−δ, δ)) ≥ νn((−δ, δ))μ([−M,M ])n .

Observe that by the preceding proof, (2.2.14) holds for νn. Therefore, with
the logarithmic moment generating function associated with ν being merely
ΛM (λ)− log μ([−M,M ]),

lim inf
n→∞

1
n

log μn((−δ, δ)) ≥

log μ([−M,M ]) + lim inf
n→∞

1
n

log νn((−δ, δ)) ≥ inf
λ∈IR

ΛM (λ) .

With IM = − infλ∈IR ΛM (λ) and I∗ = lim supM→∞ IM , it follows that

lim inf
n→∞

1
n

log μn((−δ, δ)) ≥ −I∗ . (2.2.18)

Note that ΛM (·) is nondecreasing in M , and thus so is −IM . Moreover,
−IM ≤ ΛM (0) ≤ Λ(0) = 0, and hence −I∗ ≤ 0. Now, since −IM is finite
for all M large enough, −I∗ > −∞. Therefore, the level sets {λ : ΛM (λ) ≤
−I∗} are non-empty, compact sets that are nested with respect to M , and
hence there exists at least one point, denoted λ0, in their intersection. By
Lesbegue’s monotone convergence theorem, Λ(λ0) = limM→∞ ΛM (λ0) ≤
−I∗, and consequently the bound (2.2.18) yields (2.2.14), now for μ of
unbounded support.

The proof of (2.2.14) for an arbitrary probability law μ is completed
by observing that if either μ((−∞, 0)) = 0 or μ((0,∞)) = 0, then Λ(·) is
a monotone function with infλ∈IR Λ(λ) = log μ({0}). Hence, in this case,
(2.2.14) follows from

μn((−δ, δ)) ≥ μn({0}) = μ({0})n .

Remarks:
(a) The crucial step in the proof of the upper bound is based on Cheby-
cheff’s inequality, combined with the independence assumption. For weakly
dependent random variables, a similar approach is to use the logarithmic
limit of the right side of (2.2.11), instead of the logarithmic moment gen-
erating function for a single random variable. This is further explored in
Sections 2.3 and 4.5.
(b) The essential step in the proof of the lower bound is the exponential
change of measure that is used to define μ̃. This is particularly well-suited
to problems where, even if the random variables involved are not directly
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independent, some form of underlying independence exists, e.g., when as in
Exercise 5.2.11, a Girsanov-type formula is used.

In the preceding proof, the change of measure is coupled with the law of
large numbers to obtain the lower bound. One may obtain tighter bounds
for semi-infinite intervals by using the Central Limit Theorem (CLT), as
the next corollary demonstrates. (See also Exercise 2.2.25 for extensions.)

Corollary 2.2.19 For any y ∈ IR,

lim
n→∞

1
n

log μn([y,∞)) = − inf
x≥y

Λ∗(x) .

Proof: Since [x, x + δ) ⊂ [y,∞) for all x ≥ y and all δ > 0, it follows that

lim inf
n→∞

1
n

log μn([y,∞)) ≥ sup
x≥y

lim inf
n→∞

1
n

log μn([x, x + δ)) .

The corollary is thus a consequence of the following strengthened version
of (2.2.15):

lim inf
n→∞

1
n

log μn([x, x + δ)) ≥ −Λ∗(x) .

The proof paraphrases the proof of (2.2.15), where it is sufficient to consider
x = 0, and everywhere [0, δ) and [0, ε) replace (−δ, δ) and (−ε, ε), respec-
tively. This is possible, since (2.2.17) is replaced by the CLT statement

lim
n→∞

μ̃n([0, ε)) =
1
2

.

Another strengthening of Cramér’s theorem (Theorem 2.2.3) is related to
the goodness of the rate function.

Lemma 2.2.20 If 0 ∈ Do
Λ then Λ∗ is a good rate function. Moreover, if

DΛ = IR, then
lim

|x|→∞
Λ∗(x)/|x| = ∞. (2.2.21)

Proof: As 0 ∈ Do
Λ, there exist λ− < 0 and λ+ > 0 that are both in DΛ.

Since for any λ ∈ IR,

Λ∗(x)
|x| ≥ λ sign(x)− Λ(λ)

|x| ,

it follows that

lim inf
|x|→∞

Λ∗(x)
|x| ≥ min{λ+,−λ−} > 0 .
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In particular, Λ∗(x) −→ ∞ as |x| → ∞, and its level sets are closed and
bounded, hence compact. Thus, Λ∗ is a good rate function. Note that
(2.2.21) follows for DΛ = IR by considering −λ− = λ+ →∞.

Exercise 2.2.22 Prove by an application of Fatou’s lemma that Λ(·) is lower
semicontinuous.

Exercise 2.2.23 Show that:
(a) For X1 ∼ Poisson(θ), Λ∗(x) = θ − x + x log(x/θ) for nonnegative x, and
Λ∗(x) = ∞ otherwise.
(b) For X1 ∼ Bernoulli(p), Λ∗(x) = x log(x

p ) + (1− x) log(1−x
1−p ) for x ∈ [0, 1]

and Λ∗(x) = ∞ otherwise. Note that DΛ = IR, but Λ∗(·) is discontinuous.
(c) For X1 ∼ Exponential(θ), Λ∗(x) = θx − 1 − log(θx) for x > 0 and
Λ∗(x) = ∞ otherwise.
(d) For X1 ∼ Normal(0, σ2), Λ∗(x) = x2/2σ2.

Exercise 2.2.24 Prove that Λ(λ) is C∞ in Do
Λ and that Λ∗(x) is strictly

convex, and C∞ in the interior of the set F�
={Λ′(λ) : λ ∈ Do

Λ}.
Hint: Use (2.2.9) to show that x = Λ′(η) ∈ Fo implies that Λ′′(η) > 0 and
then apply (2.2.10).

Exercise 2.2.25 (a) Suppose A is a Borel measurable set such that [y, z) ⊂
A ⊂ [y,∞) for some y < z and either DΛ = {0} or x < z. Prove that

lim
n→∞

1
n

log μn(A) = − inf
x∈A

Λ∗(x) .

(b) Use Exercise 2.2.24 to prove that the conclusion of Corollary 2.2.19 holds
for A = (y,∞) when y ∈ Fo and y > x.
Hint: [y + δ,∞) ⊂ A ⊂ [y,∞) while Λ∗ is continuous at y.

Exercise 2.2.26 Suppose for some a < b, x ∈ [a, b] and any λ ∈ IR,

M(λ) ≤ b− x

b− a
eλa +

x− a

b− a
eλb . (2.2.27)

(a) Show that then for any a ≤ x ≤ b,

Λ∗(x) ≥ H

(
x− a

b− a

∣
∣
∣
∣
x− a

b− a

)

, (2.2.28)

where H(p|p0)
�
=p log(p/p0) + (1− p) log((1− p)/(1− p0)).

(b) Find a distribution of X1, with support on [a, b], for which equality is
achieved in (2.2.27) and (2.2.28).

Remark: See also Corollary 2.4.5 to appreciate the significance of this result.
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Exercise 2.2.29 Suppose that for some b ≥ x, σ > 0 and any λ ≥ 0,

M(λ) ≤ eλx

{
(b− x)2

(b− x)2 + σ2
e−λσ2/(b−x) +

σ2

(b− x)2 + σ2
eλ(b−x)

}

.

Show that Λ∗(x) ≥ H(px|px), for px
�
=
(
(b− x)(x− x) + σ2

)
/
(
(b− x)2 + σ2

)

and x ≤ x ≤ b.

Remark: See also Lemma 2.4.1 to appreciate the significance of this result.

2.2.2 Cramér’s Theorem in IRd

Cramér’s theorem (Theorem 2.2.3) possesses a multivariate counterpart
dealing with the large deviations of the empirical means of i.i.d. random
vectors in IRd. Our analysis emphasizes the new points in which the proof
for IRd differs from the proof for IR, with an eye towards infinite dimensional
extensions. An interesting consequence is Sanov’s theorem for finite alpha-
bets. (See Corollary 2.2.35 and Exercise 2.2.36.) To ease the proofs, it is
assumed throughout that DΛ = IRd, i.e., Λ(λ) < ∞ for all λ. In particular,
E(|X1|2) < ∞ and Ŝn

Prob−→
n→∞

x.

The following theorem is the counterpart of Theorem 2.2.3 for IRd, d > 1.

Theorem 2.2.30 (Cramér ) Assume DΛ = IRd. Then {μn} satisfies the
LDP on IRd with the good convex rate function Λ∗(·).

Remarks:
(a) A stronger version of this theorem is proved in Section 6.1 via a more so-
phisticated sub-additivity argument. In particular, it is shown in Corollary
6.1.6 that the assumption 0 ∈ Do

Λ suffices for the conclusion of Theorem
2.2.30. Even without this assumption, for every open convex A ⊂ IRd,

lim
n→∞

1
n

log μn(A) = − inf
x∈A

Λ∗(x) .

(b) For the extension of Theorem 2.2.30 to dependent random vectors that
do not necessarily satisfy the condition DΛ = IRd, see Section 2.3.

The following lemma summarizes the properties of Λ(·) and Λ∗(·) that
are needed to prove Theorem 2.2.30.

Lemma 2.2.31 (a) Λ(·) is convex and differentiable everywhere, and Λ∗(·)
is a good convex rate function.
(b) y = ∇Λ(η) =⇒ Λ∗(y) = 〈η, y〉 − Λ(η).
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Proof: (a) The convexity of Λ follows by Hölder’s inequality. Its differen-
tiability follows by dominated convergence. (See the proof of Lemma 2.2.5.)
Convexity and lower semicontinuity of Λ∗ follow from Definition 2.2.2 by an
argument similar to the proof of part (a) of Lemma 2.2.5. Since Λ(0) = 0,
Λ∗ is nonnegative, and hence it is a rate function. Observe that for all
x ∈ IRd and all ρ > 0,

Λ∗(x) ≥ ρ|x| − sup
|λ|=ρ

{Λ(λ)} .

In particular, all level sets of Λ∗ are bounded and Λ∗ is a good rate function.
(b) Let y = ∇Λ(η). Fix an arbitrary point λ ∈ IRd and let

g(α)
�
=α〈λ− η, y〉 − Λ(η + α(λ− η)) + 〈η, y〉 , α ∈ [0, 1] .

Since Λ is convex and Λ(η) is finite, g(·) is concave, and |g(0)| < ∞. Thus,

g(1)− g(0) ≤ lim inf
α↘0

g(α)− g(0)
α

= 〈λ− η, y −∇Λ(η)〉 = 0 ,

where the last equality follows by the assumed identity y = ∇Λ(η). There-
fore, for all λ,

g(1) = [ 〈λ, y〉 − Λ(λ) ] ≤ g(0) = [ 〈η, y〉 − Λ(η) ] ≤ Λ∗(y) .

The conclusion follows by taking the supremum over λ in the preceding
inequality.

Proof of Theorem 2.2.30: The first step of the proof is to establish
the large deviations upper bound. In IRd, the monotonicity of Λ∗ stated in
part (b) of Lemma 2.2.5 is somewhat lost. Thus, the method of containing
each closed set F by two half-spaces is not as useful as it is in IR. Instead,
upper bounds on the probabilities that {μn} assign to balls are deduced by
Chebycheff’s inequality. Compact sets are then covered by an appropriate
finite collection of small enough balls and the upper bound for compact sets
follows by the union of events bound.

As mentioned in Section 1.2, establishing the upper bound is equivalent
to proving that for every δ > 0 and every closed set F ⊂ IRd,

lim sup
n→∞

1
n

log μn(F ) ≤ δ − inf
x∈F

Iδ(x) , (2.2.32)

where Iδ is the δ-rate function (as defined in (1.2.9)) associated with Λ∗.
Fix a compact set Γ ⊂ IRd. For every q ∈ Γ, choose λq ∈ IRd for which

〈λq, q〉 − Λ(λq) ≥ Iδ(q) .
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This is feasible on account of the definitions of Λ∗ and Iδ. For each q,
choose ρq > 0 such that ρq|λq| ≤ δ, and let Bq,ρq = {x : |x − q| < ρq} be
the ball with center at q and radius ρq. Observe for every n, λ ∈ IRd, and
measurable G ⊂ IRd, that

μn(G) = E
[
1Ŝn∈G

]
≤ E

[

exp
(

〈λ, Ŝn〉 − inf
x∈G

{〈λ, x〉}
)]

.

In particular, for each n and q ∈ Γ,

μn(Bq,ρq ) ≤ E
[
exp(n〈λq, Ŝn〉)

]
exp

(

− inf
x∈Bq,ρq

{n〈λq, x〉}
)

.

Also, for any q ∈ Γ,

− inf
x∈Bq,ρq

〈λq, x〉 ≤ ρq|λq| − 〈λq, q〉 ≤ δ − 〈λq, q〉 ,

and therefore,

1
n

log μn(Bq,ρq ) ≤ − inf
x∈Bq,ρq

〈λq, x〉+ Λ(λq) ≤ δ − 〈λq, q〉+ Λ(λq) .

Since Γ is compact, one may extract from the open covering ∪q∈ΓBq,ρq of Γ
a finite covering that consists of N = N(Γ, δ) < ∞ such balls with centers
q1, . . . , qN in Γ. By the union of events bound and the preceding inequality,

1
n

log μn(Γ) ≤ 1
n

log N + δ − min
i=1,...,N

{〈λqi , qi〉 − Λ(λqi)} .

Hence, by our choice of λq,

lim sup
n→∞

1
n

log μn(Γ) ≤ δ − min
i=1,...,N

Iδ(qi) .

Since qi ∈ Γ, the upper bound (2.2.32) is established for all compact sets.

The large deviations upper bound is extended to all closed subsets of IRd

by showing that μn is an exponentially tight family of probability measures
and applying Lemma 1.2.18. Let Hρ

�
=[−ρ, ρ]d. Since Hc

ρ = ∪d
j=1{x : |xj | >

ρ}, the union of events bound yields

μn(Hc
ρ) ≤

d∑

j=1

μj
n([ρ,∞)) +

d∑

j=1

μj
n((−∞,−ρ]) , (2.2.33)

where μj
n, j = 1, . . . , d are the laws of the coordinates of the random vec-

tor Ŝn, namely, the laws governing 1
n

∑n
i=1 Xj

i . By applying (2.2.12) and
(2.2.13), one has for any ρ ≥ |x|,

μj
n((−∞,−ρ]) ≤ e−nΛ∗

j (−ρ) , μj
n([ρ,∞)) ≤ e−nΛ∗

j (ρ) ,
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where Λ∗
j denote the Fenchel–Legendre transform of log E[eλXj

1 ], j = 1, . . . ,
d. As shown in Lemma 2.2.20, Λ∗

j (x) → ∞ when |x| → ∞. Therefore, by
combining the preceding bounds with (2.2.33) and considering the limits,
first as n →∞ and then as ρ →∞, one obtains the identity

lim
ρ→∞

lim sup
n→∞

1
n

log μn(Hc
ρ) = −∞ .

Consequently, {μn} is an exponentially tight sequence of probability mea-
sures, since the hypercubes Hρ are compact.

The large deviations lower bound is next established. To this end, it
suffices to prove that for every y ∈ DΛ∗ and every δ > 0,

lim inf
n→∞

1
n

log μn(By,δ) ≥ −Λ∗(y) . (2.2.34)

Suppose first that y = ∇Λ(η) for some η ∈ IRd. Define the probability
measure μ̃ via

dμ̃

dμ
(z) = e〈η,z〉−Λ(η) ,

and let μ̃n denote the law of Ŝn when Xi are i.i.d. with law μ̃. Then

1
n

log μn(By,δ) = Λ(η)− 〈η, y〉+
1
n

log
∫

z∈By,δ

en〈η,y−z〉 μ̃n(dz)

≥ Λ(η)− 〈η, y〉 − |η|δ +
1
n

log μ̃n(By,δ) .

Note that by the dominated convergence theorem,

Eμ̃(X1) =
1

M(η)

∫

IRd

xe〈η,x〉dμ = ∇Λ(η) = y ,

and by the weak law of large numbers, limn→∞ μ̃n(By,δ) = 1 for all δ > 0.
Moreover, since Λ(η) − 〈η, y〉 ≥ −Λ∗(y), the preceding inequality implies
the lower bound

lim inf
n→∞

1
n

log μn(By,δ) ≥ −Λ∗(y)− |η|δ .

Hence,

lim inf
n→∞

1
n

log μn(By,δ) ≥ lim inf
δ→0

lim inf
n→∞

1
n

log μn(By,δ) ≥ −Λ∗(y) .

To extend the lower bound (2.2.34) to also cover y ∈ DΛ∗ such that
y /∈ {∇Λ(λ) : λ ∈ IRd}, we now regularize μ by adding to each Xj a small
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Normal random variable. Specifically, fix M < ∞ and let ν denote the
marginal law of the i.i.d. random vectors Yj

�
=Xj +Vj/

√
M , where V1, . . . , Vn

are i.i.d. standard multivariate Normal random variables independent of
X1, . . . , Xn. Let ΛM (·) denote the logarithmic moment generating function
of Y1, while νn denotes the law governing Ŝ

(M)
n

�
=

1
n

∑n
j=1 Yj .

Since the logarithmic moment generating function of a standard multi-
variate Normal is |λ|2/2, it follows that

ΛM (λ) = Λ(λ) +
1

2M
|λ|2 ≥ Λ(λ) ,

and hence

Λ∗(y) = sup
λ∈IRd

{〈λ, y〉 − Λ(λ)} ≥ sup
λ∈IRd

{〈λ, y〉 − ΛM (λ)} .

By assumption, x = E(X1) is finite; thus, Jensen’s inequality implies that
Λ(λ) ≥ 〈λ, x〉 for all λ ∈ IRd. Hence, the finite and differentiable function

g(λ)
�
=〈λ, y〉 − ΛM (λ)

satisfies
lim
ρ→∞

sup
|λ|>ρ

g(λ) = −∞ .

Consequently, the supremum of g(·) over IRd is obtained at some finite η,
for which

0 = ∇g(η) = y −∇ΛM (η) ,

namely, y = ∇ΛM (η). Thus, by the preceding proof, the large deviations
lower bound (2.2.34) applies for {νn} yielding for all δ > 0,

lim inf
n→∞

1
n

log νn(By,δ) ≥ −Λ∗(y) > −∞ .

Observe that Ŝ
(M)
n possesses the same distribution as Ŝn + V/

√
Mn, where

V ∼ Normal(0, I) and is independent of Ŝn. Therefore,

μn(By,2δ) ≥ νn(By,δ)− P(|V | ≥
√

Mnδ) .

Finally, since V is a standard multivariate Normal random vector,

lim sup
n→∞

1
n

log P(|V | ≥
√

Mnδ) ≤ −Mδ2

2
.

The proof of (2.2.34) is now completed by combining the preceding three
inequalities and considering first n →∞ and then M →∞.
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Remark: An inspection of the last proof reveals that the upper bound
for compact sets holds with no assumptions on DΛ. The condition 0 ∈
Do

Λ suffices to ensure that Λ∗ is a good rate function and that {μn} is
exponentially tight. However, the proof of the lower bound is based on the
strong assumption that DΛ = IRd.

Sanov’s theorem for finite alphabets, Theorem 2.1.10, may be deduced as
a consequence of Cramér’s theorem in IRd. Indeed, note that the empirical
mean of the random vectors Xi

�
=[1a1(Yi), 1a2(Yi), . . . , 1a|Σ|(Yi)] equals LY

n ,
the empirical measure of the i.i.d. random variables Y1, . . . , Yn that take
values in the finite alphabet Σ. Moreover, as Xi are bounded, DΛ = IR|Σ|,
and the following corollary of Cramér’s theorem is obtained.

Corollary 2.2.35 For any set Γ of probability vectors in IR|Σ|,

− inf
ν∈Γo

Λ∗(ν) ≤ lim inf
n→∞

1
n

log Pμ (LY
n ∈ Γ)

≤ lim sup
n→∞

1
n

log Pμ (LY
n ∈ Γ) ≤ − inf

ν∈Γ
Λ∗(ν) ,

where Λ∗ is the Fenchel–Legendre transform of the logarithmic moment gen-
erating function

Λ(λ) = log E (e〈λ,X1〉) = log
|Σ|∑

i=1

eλiμ(ai) ,

with λ = (λ1, λ2, . . . , λ|Σ|) ∈ IR|Σ|.

Remark: Comparing this corollary to Theorem 2.1.10, it is tempting to
conjecture that, on the probability simplex M1(Σ), Λ∗(·) = H(·|μ). Indeed,
this is proved in Exercise 2.2.36. Actually, as shown in Section 4.1, the rate
function controlling an LDP in IRd is always unique.

Exercise 2.2.36 For the function Λ∗(·) defined in Corollary 2.2.35, show that
Λ∗(x) = H(x|μ).
Hint: Prove that DΛ∗ = M1(Σ). Show that for ν ∈ M1(Σ), the value of Λ∗(ν)
is obtained by taking λi = log[ν(ai)/μ(ai)] when ν(ai) > 0, and λi → −∞
when ν(ai) = 0.

Exercise 2.2.37 [From [GOR79], Example 5.1]. Corollary 2.2.19 implies that
for {Xi} i.i.d. d-dimensional random vectors with finite logarithmic moment
generating function Λ, the laws μn of Ŝn satisfy

lim
n→∞

1
n

log μn(F ) = − inf
x∈F

Λ∗(x)
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for every closed half-space F . Find a quadrant F = [a,∞)× [b,∞) for which
the preceding identity is false.
Hint: Consider a = b = 0.5 and μ which is supported on the points (0, 1)
and (1, 0).

Exercise 2.2.38 Let μn denote the law of Ŝn, the empirical mean of the i.i.d.
random vectors Xi ∈ IRd, and Λ(·) denote the logarithmic moment generating
function associated with the law of X1. Do not assume that DΛ∗ = IRd.
(a) Use Chebycheff’s inequality to prove that for any measurable C ⊂ IRd, any
n, and any λ ∈ IRd,

1
n

log μn(C) ≤ − inf
y∈C

〈λ, y〉+ Λ(λ) .

(b) Recall the following version of the min–max theorem: Let g(θ, y) be convex
and lower semicontinuous in y, concave and upper semicontinuous in θ. Let
C ⊂ IRd be convex and compact. Then

inf
y∈C

sup
θ

g(θ, y) = sup
θ

inf
y∈C

g(θ, y)

(c.f. [ET76, page 174].) Apply this theorem to justify the upper bound

1
n

log μn(C) ≤ − sup
λ∈IRd

inf
y∈C

[〈λ, y〉 − Λ(λ)] = − inf
y∈C

Λ∗(y)

for every n and every convex, compact set C.
(c) Show that the preceding upper bound holds for every n and every convex,
closed set C by considering the convex, compact sets C∩ [−ρ, ρ]d with ρ →∞.
(d) Use this bound to show that the large deviations upper bound holds for all
compact sets (with the rate function Λ∗).

Exercise 2.2.39 In this exercise, you examine the conditions needed for
Λ∗(x) < ∞ when x belongs to the support of the law μ.
(a) Suppose that μ ∈ M1(IRd) possesses a density f(·) with respect to Lebesgue
measure, that f(x) > 0, and that f(·) is continuous at x. Prove that under
these conditions, Λ∗(x) < ∞.
Hint: Without loss of generality, you may consider only x = 0. Then the
preceding conditions imply that f(·) ≥ ε > 0 in some small ball around the
origin. As a result, the moment generating function at λ is bounded below by
c sinh(|λ|a)/(|λ|a) for some a, c > 0.
(b) Suppose that μ ∈ M1(IR) possesses the density f(x) = x for x ∈ [0, 1],
f(x) = 2 − x for x ∈ [1, 2], and zero otherwise. Prove that for this measure,
Λ∗(0) = ∞ while μ((−δ, δ)) > 0 for all δ > 0.

Exercise 2.2.40 Let (wt1 , . . . , wtd
) be samples of a Brownian motion at the

fixed times t1, . . . , td; so {wtj+1 − wtj} are zero-mean, independent Normal
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random variables of variances {tj+1 − tj}, respectively. Find the rate function

for the empirical mean Ŝn of Xi
�
=(wi

t1 , . . . , w
i
td

), where wi
tj

, i = 1, . . . , n are
samples of independent Brownian motions at time instances tj .

Remark: Note that the law of Ŝn is the same as that of (1/
√

n) (wt1 , . . . , wtd
),

and compare your result with Theorem 5.2.3.

2.3 The Gärtner–Ellis Theorem

Cramér’s theorem (Theorem 2.2.30) is limited to the i.i.d. case. However,
a glance at the proof should be enough to convince the reader that some
extension to the non-i.i.d. case is possible. It is the goal of this section to
present such an extension. As a by-product, a somewhat stronger version
of Theorem 2.2.30 follows. (See Exercise 2.3.16.) Simple applications are
left as Exercises 2.3.19 and 2.3.23, whereas Section 3.1 is devoted to a class
of important applications, the large deviations of the empirical measure for
finite state Markov chains.

Consider a sequence of random vectors Zn ∈ IRd, where Zn possesses
the law μn and logarithmic moment generating function

Λn(λ)
�
= log E

[
e〈λ,Zn〉] . (2.3.1)

The existence of a limit of properly scaled logarithmic moment gen-
erating functions indicates that μn may satisfy the LDP. Specifically, the
following assumption is imposed throughout this section.

Assumption 2.3.2 For each λ ∈ IRd, the logarithmic moment generating
function, defined as the limit

Λ(λ)
�
= lim

n→∞

1
n

Λn(nλ)

exists as an extended real number. Further, the origin belongs to the interior
of DΛ

�
={λ ∈ IRd : Λ(λ) < ∞}.

In particular, if μn is the law governing the empirical mean Ŝn of i.i.d.
random vectors Xi ∈ IRd, then for every n ∈ ZZ+,

1
n

Λn(nλ) = Λ(λ)
�
= log E[e〈λ,X1〉] ,

and Assumption 2.3.2 holds whenever 0 ∈ Do
Λ.

Let Λ∗(·) be the Fenchel–Legendre transform of Λ(·), with DΛ∗ = {x ∈
IRd : Λ∗(x) < ∞}. Motivated by Theorem 2.2.30, it is our goal to state



44 2. LDP for Finite Dimensional Spaces

conditions under which the sequence μn satisfies the LDP with the rate
function Λ∗.

Definition 2.3.3 y ∈ IRd is an exposed point of Λ∗ if for some λ ∈ IRd

and all x 
= y,
〈λ, y〉 − Λ∗(y) > 〈λ, x〉 − Λ∗(x) . (2.3.4)

λ in (2.3.4) is called an exposing hyperplane.

Definition 2.3.5 A convex function Λ : IRd → (−∞,∞] is essentially
smooth if:
(a) Do

Λ is non-empty.
(b) Λ(·) is differentiable throughout Do

Λ.
(c) Λ(·) is steep, namely, limn→∞ |∇Λ(λn)| = ∞ whenever {λn} is a se-
quence in Do

Λ converging to a boundary point of Do
Λ.

The following theorem is the main result of this section.

Theorem 2.3.6 (Gärtner–Ellis) Let Assumption 2.3.2 hold.
(a) For any closed set F ,

lim sup
n→∞

1
n

log μn(F ) ≤ − inf
x∈F

Λ∗(x) . (2.3.7)

(b) For any open set G,

lim inf
n→∞

1
n

log μn(G) ≥ − inf
x∈G∩F

Λ∗(x) , (2.3.8)

where F is the set of exposed points of Λ∗ whose exposing hyperplane belongs
to Do

Λ.
(c) If Λ is an essentially smooth, lower semicontinuous function, then the
LDP holds with the good rate function Λ∗(·).

Remarks:
(a) All results developed in this section are valid, as in the statement (1.2.14)
of the LDP, when 1/n is replaced by a sequence of constants an → 0, or
even when a continuous parameter family {με} is considered, with Assump-
tion 2.3.2 properly modified.
(b) The essential ingredients for the proof of parts (a) and (b) of the
Gärtner–Ellis theorem are those presented in the course of proving Cramér’s
theorem in IRd; namely, Chebycheff’s inequality is applied for deriving the
upper bound and an exponential change of measure is used for deriving the
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Figure 2.3.1: Λ1 − Λ3 are steep; Λ4 is not.

lower bound. However, since the law of large numbers is no longer available
a priori, the large deviations upper bound is used in order to prove the lower
bound.
(c) The proof of part (c) of the Gärtner–Ellis theorem depends on rather in-
tricate convex analysis considerations that are summarized in Lemma 2.3.12.
A proof of this part for the case of DΛ = IRd, which avoids these convex
analysis considerations, is outlined in Exercise 2.3.20. This proof, which is
similar to the proof of Cramér’s theorem in IRd, is based on a regulariza-
tion of the random variables Zn by adding asymptotically negligible Normal
random variables.
(d) Although the Gärtner–Ellis theorem is quite general in its scope, it does
not cover all IRd cases in which an LDP exists. As an illustrative example,
consider Zn ∼ Exponential(n). Assumption 2.3.2 then holds with Λ(λ) = 0
for λ < 1 and Λ(λ) = ∞ otherwise. Moreover, the law of Zn possesses the
density ne−nz1[0,∞)(z), and consequently the LDP holds with the good rate
function I(x) = x for x ≥ 0 and I(x) = ∞ otherwise. A direct computation
reveals that I(·) = Λ∗(·). Hence, F = {0} while DΛ∗ = [0,∞), and there-
fore the Gärtner–Ellis theorem yields a trivial lower bound for sets that do
not contain the origin. A non-trivial example of the same phenomenon is
presented in Exercise 2.3.24, motivated by the problem of non-coherent de-
tection in digital communication. In that exercise, the Gärtner–Ellis method
is refined, and by using a change of measure that depends on n, the LDP
is proved. See also [DeZ95] for a more general exposition of this approach
and [BryD97] for its application to quadratic forms of stationary Gaussian
processes.
(e) Assumption 2.3.2 implies that Λ∗(x) ≤ lim infn→∞ Λ∗

n(x) for Λ∗
n(x) =

supλ{〈λ, x〉 − n−1Λn(nλ)}. However, pointwise convergence of Λ∗
n(x) to

Λ∗(x) is not guaranteed. For example, when P (Zn = n−1) = 1, we have
Λn(λ) = λ/n → 0 = Λ(λ), while Λ∗

n(0) = ∞ and Λ∗(0) = 0. This phe-
nomenon is relevant when trying to go beyond the Gärtner–Ellis theorem,



46 2. LDP for Finite Dimensional Spaces

as for example in [Zab92, DeZ95]. See also Exercise 4.5.5 for another moti-
vation.

Before bringing the proof of Theorem 2.3.6, two auxiliary lemmas are
stated and proved. Lemma 2.3.9 presents the elementary properties of Λ
and Λ∗, which are needed for proving parts (a) and (b) of the theorem, and
moreover highlights the relation between exposed points and differentiability
properties.

Lemma 2.3.9 Let Assumption 2.3.2 hold.
(a) Λ(λ) is a convex function, Λ(λ) > −∞ everywhere, and Λ∗(x) is a good
convex rate function.
(b) Suppose that y = ∇Λ(η) for some η ∈ Do

Λ. Then

Λ∗(y) = 〈η, y〉 − Λ(η) . (2.3.10)

Moreover y ∈ F , with η being the exposing hyperplane for y.

Proof: (a) Since Λn are convex functions (see the proof of part (a) of
Lemma 2.2.5), so are Λn(n·)/n, and their limit Λ(·) is convex as well. More-
over, Λn(0) = 0 and, therefore, Λ(0) = 0, implying that Λ∗ is nonnegative.

If Λ(λ) = −∞ for some λ ∈ IRd, then by convexity Λ(αλ) = −∞ for all
α ∈ (0, 1]. Since Λ(0) = 0, it follows by convexity that Λ(−αλ) = ∞ for
all α ∈ (0, 1], contradicting the assumption that 0 ∈ Do

Λ. Thus, Λ > −∞
everywhere.

Since 0 ∈ Do
Λ, it follows that B0,δ ⊂ Do

Λ for some δ > 0, and c =
supλ∈B0,δ

Λ(λ) < ∞ because the convex function Λ is continuous in Do
Λ.

(See Appendix A.) Therefore,

Λ∗(x) ≥ sup
λ∈B0,δ

{〈λ, x〉 − Λ(λ)}

≥ sup
λ∈B0,δ

〈λ, x〉 − sup
λ∈B0,δ

Λ(λ) = δ|x| − c . (2.3.11)

Thus, for every α < ∞, the level set {x : Λ∗(x) ≤ α} is bounded. The func-
tion Λ∗ is both convex and lower semicontinuous, by an argument similar
to the proof of part (a) of Lemma 2.2.5. Hence, Λ∗ is indeed a good convex
rate function.
(b) The proof of (2.3.10) is a repeat of the proof of part (b) of Lemma
2.2.31. Suppose now that for some x ∈ IRd,

Λ(η) = 〈η, y〉 − Λ∗(y) ≤ 〈η, x〉 − Λ∗(x) .

Then, for every θ ∈ IRd,

〈θ, x〉 ≤ Λ(η + θ)− Λ(η) .
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In particular,

〈θ, x〉 ≤ lim
ε→0

1
ε

[Λ(η + εθ)− Λ(η)] = 〈θ,∇Λ(η)〉 .

Since this inequality holds for all θ ∈ IRd, necessarily x = ∇Λ(η) = y.
Hence, y is an exposed point of Λ∗, with exposing hyperplane η ∈ Do

Λ.

For every non-empty convex set C, the relative interior of C, denoted
ri C, is defined as the set

ri C
�
={y ∈ C : x ∈ C ⇒ y − ε(x− y) ∈ C for some ε > 0} .

Various properties of the relative interiors of convex sets are collected in
Appendix A.

The following lemma, which is Corollary 26.4.1 of [Roc70], is needed for
proving part (c) of the Gärtner–Ellis theorem.

Lemma 2.3.12 (Rockafellar) If Λ : IRd → (−∞,∞] is an essentially
smooth, lower semicontinuous, convex function, then ri DΛ∗ ⊆ F .

Proof: The proof is based on the results of Appendix A. Note first that
there is nothing to prove if DΛ∗ is empty. Hence, it is assumed hereafter
that DΛ∗ is non-empty. Fix a point x ∈ ri DΛ∗ and define the function

f(λ)
�
=Λ(λ)− 〈λ, x〉+ Λ∗(x) .

If f(λ) = 0, then clearly λ belongs to the subdifferential of Λ∗(·) at x.
(Recall that for any convex function g(x), the subdifferential at x is just the
set {λ : g(y) ≥ g(x) + 〈λ, y− x〉 ∀y ∈ IRd}.) The proof that x ∈ F is based
on showing that such a λ exists and that it belongs to Do

Λ.

Observe that f : IRd → [0,∞] is a convex, lower semicontinuous func-
tion, and infλ∈IRd f(λ) = 0. It is easy to check that the Fenchel–Legendre
transform of f(·) is f∗(·) = Λ∗(·+ x)− Λ∗(x). Therefore, with x ∈ ri DΛ∗ ,
it follows that 0 ∈ riDf∗ . By Lemma A.2, there exists an η ∈ DΛ such
that f(η) = 0. Let Λ̃(·) = Λ(·+ η)− Λ(η). By our assumptions, Λ̃(·) is an
essentially smooth, convex function and Λ̃(0) = 0. Moreover, it is easy to
check that Λ̃∗(x) = f(η) = 0. Consequently, by Lemma A.5, Λ̃(·) is finite
in a neighborhood of the origin. Hence, η ∈ Do

Λ and by our assumptions
f(·) is differentiable at η. Moreover, f(η) = infλ∈IRd f(λ), implying that
∇f(η) = 0, i.e., x = ∇Λ(η). It now follows by part (b) of Lemma 2.3.9 that
x ∈ F . Since this holds true for every x ∈ ri DΛ∗ , the proof of the lemma is
complete.
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Figure 2.3.2: DΛ∗ , ri DΛ∗ , and F .

Proof of the Gärtner–Ellis theorem: (a) The upper bound (2.3.7)
for compact sets is established by the same argument as in the proof of
Cramér’s theorem in IRd. The details are omitted, as they are presented
for a more general setup in the course of the proof of Theorem 4.5.3. The
extension to all closed sets follows by proving that the sequence of measures
{μn} is exponentially tight. To this end, let uj denote the jth unit vector
in IRd for j = 1, . . . , d. Since 0 ∈ Do

Λ, there exist θj > 0, ηj > 0 such
that Λ(θjuj) < ∞ and Λ(−ηjuj) < ∞ for j = 1, . . . , d. Therefore, by
Chebycheff’s inequality,

μj
n((−∞,−ρ]) ≤ exp(−nηjρ + Λn(−nηjuj)) ,

μj
n([ρ,∞)) ≤ exp(−nθjρ + Λn(nθjuj)) , j = 1, . . . , d ,

where μj
n, j = 1, . . . , d are the laws of the coordinates of the random vector

Zn. Hence, for j = 1, . . . , d,

lim
ρ→∞

lim sup
n→∞

1
n

log μj
n((−∞,−ρ]) = −∞ ,

lim
ρ→∞

lim sup
n→∞

1
n

log μj
n([ρ,∞)) = −∞ .
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Consequently, by the union of events bound, and Lemma 1.2.15, limρ→∞
lim supn→∞

1
n log μn(([−ρ, ρ]d)c) = −∞, i.e., {μn} is an exponentially tight

sequence of probability measures.
(b) In order to establish the lower bound (2.3.8) for every open set, it suffices
to prove that for all y ∈ F ,

lim
δ→0

lim inf
n→∞

1
n

log μn(By,δ) ≥ −Λ∗(y) . (2.3.13)

Fix y ∈ F and let η ∈ Do
Λ denote an exposing hyperplane for y. Then, for

all n large enough, Λn(nη) < ∞ and the associated probability measures
μ̃n are well-defined via

dμ̃n

dμn
(z) = exp [n〈η, z〉 − Λn(nη)] .

After some calculations,

1
n

log μn(By,δ) =
1
n

Λn(nη)− 〈η, y〉+
1
n

log
∫

z∈By,δ

en〈η,y−z〉 dμ̃n(z)

≥ 1
n

Λn(nη)− 〈η, y〉 − |η|δ +
1
n

log μ̃n(By,δ) .

Therefore,

lim
δ→0

lim inf
n→∞

1
n

log μn(By,δ)

≥ Λ(η)− 〈η, y〉+ lim
δ→0

lim inf
n→∞

1
n

log μ̃n(By,δ)

≥ −Λ∗(y) + lim
δ→0

lim inf
n→∞

1
n

log μ̃n(By,δ) , (2.3.14)

where the second inequality follows by the definition of Λ∗ (and actually
holds with equality due to (2.3.10)).

Here, a new obstacle stems from the removal of the independence assump-
tion, since the weak law of large numbers no longer applies. Our strategy
is to use the upper bound proved in part (a). For that purpose, it is first
verified that μ̃n satisfies Assumption 2.3.2 with the limiting logarithmic mo-
ment generating function Λ̃(·)�=Λ(·+ η)−Λ(η). Indeed, Λ̃(0) = 0, and since
η ∈ Do

Λ, it follows that Λ̃(λ) < ∞ for all |λ| small enough. Let Λ̃n(·) denote
the logarithmic moment generating function corresponding to the law μ̃n.
Then for every λ ∈ IRd,

1
n

Λ̃n(nλ)
�
=

1
n

log
[∫

IRd

en〈λ,z〉 dμ̃n(z)
]

=
1
n

Λn(n(λ + η))− 1
n

Λn(nη) → Λ̃(λ)
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because Λn(nη) < ∞ for all n large enough. Define

Λ̃∗(x)
�
= sup

λ∈IRd

{〈λ, x〉 − Λ̃(λ)} = Λ∗(x)− 〈η, x〉+ Λ(η) . (2.3.15)

Since Assumption 2.3.2 also holds for μ̃n, it follows by applying Lemma
2.3.9 to Λ̃ that Λ̃∗ is a good rate function. Moreover, by part (a) earlier, a
large deviations upper bound of the form of (2.3.7) holds for the sequence
of measures μ̃n, and with the good rate function Λ̃∗. In particular, for the
closed set Bc

y,δ, it yields

lim sup
n→∞

1
n

log μ̃n (Bc
y,δ) ≤ − inf

x∈Bc
y,δ

Λ̃∗(x) = −Λ̃∗(x0)

for some x0 
= y, where the equality follows from the goodness of Λ̃∗(·). Re-
call that y is an exposed point of Λ∗, with η being the exposing hyperplane.
Hence, since Λ∗(y) ≥ [〈η, y〉 − Λ(η)], and x0 
= y,

Λ̃∗(x0) ≥ [Λ∗(x0)− 〈η, x0〉]− [Λ∗(y)− 〈η, y〉] > 0 .

Thus, for every δ > 0,

lim sup
n→∞

1
n

log μ̃n(Bc
y,δ) < 0 .

This inequality implies that μ̃n(Bc
y,δ) → 0 and hence μ̃n(By,δ) → 1 for all

δ > 0. In particular,

lim
δ→0

lim inf
n→∞

1
n

log μ̃n(By,δ) = 0 ,

and the lower bound (2.3.13) follows by (2.3.14).
(c) In view of parts (a) and (b) and Lemma 2.3.12, it suffices to show that
for any open set G,

inf
x∈G∩ri DΛ∗

Λ∗(x) ≤ inf
x∈G

Λ∗(x) .

There is nothing to prove if G ∩ DΛ∗ = ∅. Thus, we may, and will, assume
that DΛ∗ is non-empty, which implies that there exists some z ∈ ri DΛ∗ .
Fix y ∈ G ∩ DΛ∗ . Then, for all sufficiently small α > 0,

αz + (1− α)y ∈ G ∩ ri DΛ∗ .

Hence,
inf

x∈G∩ri DΛ∗
Λ∗(x) ≤ lim

α↘0
Λ∗(αz + (1− α)y) ≤ Λ∗(y) .
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(Consult Appendix A for the preceding convex analysis results.) The arbi-
trariness of y completes the proof.

Remark: As shown in Chapter 4, the preceding proof actually extends
under certain restrictions to general topological vector spaces. However,
two points of caution are that the exponential tightness has to be proved
on a case-by-case basis, and that in infinite dimensional spaces, the convex
analysis issues are more subtle.

Exercise 2.3.16 (a) Prove by an application of Fatou’s lemma that any log-
arithmic moment generating function is lower semicontinuous.
(b) Prove that the conclusions of Theorem 2.2.30 hold whenever the logarith-
mic moment generating function Λ(·) of (2.2.1) is a steep function that is finite
in some ball centered at the origin.
Hint: Assumption 2.3.2 holds with Λ(·) being the logarithmic moment gen-
erating function of (2.2.1). This function is lower semicontinuous by part (a).
Check that it is differentiable in Do

Λ and apply the Gärtner–Ellis theorem.

Exercise 2.3.17 (a) Find a non-steep logarithmic moment generating func-
tion for which 0 ∈ Do

Λ.
Hint: Try a distribution with density g(x) = Ce−|x|/(1 + |x|d+2).
(b) Find a logarithmic moment generating function for which F = B0,a for

some a < ∞ while DΛ∗ = IRd.
Hint: Show that for the density g(x), Λ(λ) depends only on |λ| and DΛ =
B0,1. Hence, the limit of |∇Λ(λ)| as |λ| ↗ 1, denoted by a, is finite, while
Λ∗(x) = |x| − Λ(1) for all x /∈ B0,a.

Exercise 2.3.18 (a) Prove that if Λ(·) is a steep logarithmic moment gener-
ating function, then exp(Λ(·))− 1 is also a steep function.
Hint: Recall that Λ is lower semicontinuous.
(b) Let Xj be IRd-valued i.i.d. random variables with a steep logarithmic mo-
ment generating function Λ such that 0 ∈ Do

Λ. Let N(t) be a Poisson process
of unit rate that is independent of the Xj variables, and consider the random
variables

Ŝn
�
=

1
n

N(n)∑

j=1

Xj .

Let μn denote the law of Ŝn and prove that μn satisfies the LDP, with the rate
function being the Fenchel–Legendre transform of eΛ(λ) − 1.
Hint: You can apply part (b) of Exercise 2.3.16 as N(n) =

∑n
j=1 Nj , where

Nj are i.i.d. Poisson(1) random variables.

Exercise 2.3.19 Let N(n) be a sequence of nonnegative integer-valued ran-
dom variables such that the limit Λ(λ) = limn→∞

1
n log E[eλN(n)] exists, and

0 ∈ Do
Λ. Let Xj be IRd-valued i.i.d. random variables, independent of {N(n)},



52 2. LDP for Finite Dimensional Spaces

with finite logarithmic moment generating function ΛX . Let μn denote the law
of

Zn
�
=

1
n

N(n)∑

j=1

Xj .

(a) Prove that if the convex function Λ(·) is essentially smooth and lower
semicontinuous, then so is Λ(ΛX(·)), and moreover, Λ(ΛX(·)) is finite in some
ball around the origin.
Hint: Show that either DΛ = (−∞, a] or DΛ = (−∞, a) for some a > 0.
Moreover, if a < ∞ and ΛX(·) ≤ a in some ball around λ, then ΛX(λ) < a.
(b) Deduce that {μn} then satisfies the LDP with the rate function being the
Fenchel–Legendre transform of Λ(ΛX(·)).
Exercise 2.3.20 Suppose that Assumption 2.3.2 holds for Zn and that Λ(·)
is finite and differentiable everywhere. For all δ > 0, let Zn,δ = Zn +

√
δ/nV ,

where V is a standard multivariate Normal random variable independent of Zn.
(a) Check that Assumption 2.3.2 holds for Zn,δ with the finite and differentiable
limiting logarithmic moment generating function Λδ(λ) = Λ(λ) + δ|λ|2/2.
(b) Show that for any x ∈ IRd, the value of the Fenchel–Legendre transform of
Λδ does not exceed Λ∗(x).
(c) Observe that the upper bound (2.3.7) for F = IRd implies that DΛ∗ is
non-empty, and deduce that every x ∈ IRd is an exposed point of the Fenchel–
Legendre transform of Λδ(·).
(d) By applying part (b) of the Gärtner–Ellis theorem for Zn,δ and (a)–(c) of

this exercise, deduce that for any x ∈ IRd and any ε > 0,

lim inf
n→∞

1
n

log P(Zn,δ ∈ Bx,ε/2) ≥ −Λ∗(x) . (2.3.21)

(e) Prove that

lim sup
n→∞

1
n

log P
(√

δ/n|V | ≥ ε/2
)
≤ − ε2

8δ
. (2.3.22)

(f) By combining (2.3.21) and (2.3.22), prove that the large deviations lower
bound holds for the laws μn corresponding to Zn.
(g) Deduce now by part (a) of the Gärtner–Ellis theorem that {μn} satisfies
the LDP with rate function Λ∗.

Remark: This derivation of the LDP when DΛ = IRd avoids Rockafellar’s
lemma (Lemma 2.3.12).

Exercise 2.3.23 Let X1, . . . , Xn, . . . be a real-valued, zero mean, stationary
Gaussian process with covariance sequence Ri

�
=E(XnXn+i). Suppose the pro-

cess has a finite power P defined via P�
= limn→∞

∑n
i=−n Ri (1 − |i|

n ). Let

μn be the law of the empirical mean Ŝn of the first n samples of this process.
Prove that {μn} satisfy the LDP with the good rate function Λ∗(x) = x2/2P .
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Exercise 2.3.24 [Suggested by Y. Kofman]. This exercise presents yet an-
other example of an LDP in IR that is not covered by the Gärtner–Ellis theorem,
but that may be proved by perturbing the change of measure arguments, al-
lowing the change of measure parameter to depend on n.

The motivation for the exercise comes from the problem of non-coherent
detection in digital communication. The optimal receiver for the detection of
orthogonal signals in Gaussian white noise forms from the signal received the
random variable

Zn =
N2

2 /2− (N1/
√

2 +
√

cn )2

n

where N1, N2 are independent standard Normal random variables (quadrature
noise), c (signal) is some deterministic positive constant, and n is related to the
signal-to-noise ratio. (See [Pro83, section 4.3.1, pages 205–209].) The optimal
receiver then makes the decision “signal is present” if Zn ≤ 0.

The error probability, in this situation, is the probability P (Zn > 0). More
generally, the probabilities P (Zn > z) are of interest.
(a) Show that

E(enλZn) =
{ 1√

1−λ2 e−λcn/(1+λ) if λ ∈ (−1, 1)
∞ otherwise,

Λ(λ) =
{
− λc

1+λ if λ ∈ (−1, 1)
∞ otherwise,

and

Λ∗(x) =
{

(
√

c−
√
−x)2 , x ≤ −c/4

(x + c/2) , x > −c/4 .

Thus, DΛ∗ = IR while F = (−∞,−c/4).
(b) Check that the Gärtner–Ellis theorem yields both the large deviations upper
bound for arbitrary sets and the correct lower bound for open sets G ⊂ F .
(c) Generalize the lower bound to arbitrary open sets. To this end, fix z > −c/4
and define the measures μ̃n as in the proof of the Gärtner–Ellis theorem, ex-
cept that instead of a fixed η consider ηn = 1 − 1/[2n(z + c/4 + rn)], where
rn → 0 is a sequence of positive constants for which nrn → ∞. Show that
n−1 log E (exp(nηnZn)) → −c/2 and that under μ̃n, N1/

√
n ( and N2/

√
n )

are independent Normal random variables with mean −
√

c/2 + o(rn) (respec-
tively, 0) and variance o(rn) (respectively, 2(z + c/4 + rn)). Use this fact to
show that for any δ,

μ̃n(z − δ, z + δ)

≥ μ̃n

(
N1/

√
n ∈

(√
c/2− δ/2−

√
2c ,

√
c/2 + δ/2−

√
2c
))

·μ̃n

(
N2/

√
n ∈

(√
2z + c/2− δ ,

√
2z + c/2 + δ

))
≥ c1 ,
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where c1 is a constant that depends on c and δ but does not depend on n.
Deduce that for every δ > 0, lim infn→∞ μ̃n((z− δ, z + δ)) > 0 , and complete
the construction of the lower bound.

Remarks:
(a) By a direct computation (c.f. [Pro83]),

P (Zn > 0) = 2Φ(
√

cn)(1− Φ(
√

cn)),

where Φ(x) = (1/
√

2π)
∫ x

−∞ e−θ2/2dθ.
(b) The lower bound derived here completes the upper bounds of [SOSL85,
page 208] and may be extended to M-ary channels.

Exercise 2.3.25 Suppose that 0 ∈ Do
Λ for Λ(λ) = lim supn→∞ n−1Λn(nλ).

(a) Show that Lemma 2.3.9 and part (a) of the Gärtner–Ellis theorem hold
under this weaker form of Assumption 2.3.2.
(b) Show that if z = ∇Λ(0) then P (|Zn − z| ≥ δ) → 0 exponentially in n for
any fixed δ > 0 (sometimes called the exponential convergence of Zn to z).
Hint: Check that Λ∗(x) > Λ∗(z) = 0 for all x 
= z.

Exercise 2.3.26 Let Zn =
∑n

i=1 η
(n)
i Y 2

i , where Yi are real-valued i.i.d.

N(0, 1) random variables and {η(n)
1 ≥ η

(n)
2 ≥ · · · ≥ η

(n)
n ≥ 0} are non-

random such that the real-valued sequence {η(n)
1 } converges to M < ∞ and

the empirical measure n−1
∑n

i=1 δ
η
(n)
i

converges in law to a probability measure

μ. Define Λ(θ) = −0.5
∫

log(1 − 2θη)μ(dη) for θ ≤ 1/(2M) and Λ(θ) = ∞
otherwise.
(a) Check that the logarithmic moment generating functions Λn of Zn satisfy
n−1Λn(nθ) → Λ(θ) for any θ 
= 1/(2M).
(b) Let x0 = limθ↗1/(2M) Λ′(θ). Check that the Gärtner–Ellis theorem yields
for Zn and the good rate function Λ∗(·) both the large deviations upper
bound for arbitrary sets and the lower bound for any open set intersect-
ing F = (−∞, x0). Show that, moreover, the same lower bounds apply to

Z̃n = Zn − n−1η
(n)
1 Y 2

1 .
(c) Verify that Λ∗(x) = Λ∗(x0) + (x− x0)/(2M) for any x > x0.
(d) Complete the large deviations lower bound for G = (x,∞), any x > x0,
and conclude that Zn satisfies the LDP with the good rate function Λ∗(·).
Hint: P (n−1Zn > x) ≥ P (n−1Z̃n > x0 − δ)P (n−1η

(n)
1 Y 2

1 > x− x0 + δ) for
all δ > 0.

Remark: Let X1, . . . , Xn, . . . be a real-valued, zero mean, stationary Gaus-

sian process with covariance E(XnXn+k) = (2π)−1
∫ 2π

0
eiksf(s)ds for some

f : [0, 2π] → [0, M ]. Then, Zn = n−1
∑n

i=1 X2
i is of the form considered here

with η
(n)
i being the eigenvalues of the n-dimensional covariance Toeplitz ma-

trix associated with the process {Xi}. By the limiting distribution of Toeplitz
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matrices (see [GS58]) we have μ(Γ) = (2π)−1
∫
{s:f(s)∈Γ} ds with the corre-

sponding LDP for Zn (c.f. [BGR97]).

Exercise 2.3.27 Let Xj be IRd-valued i.i.d. random variables with an ev-
erywhere finite logarithmic moment generating function Λ and aj an abso-
lutely summable sequence of real numbers such that

∑∞
i=−∞ ai = 1. Consider

the normalized partial sums Zn = n−1
∑n

j=1 Yj of the moving average pro-

cess Yj =
∑∞

i=−∞ aj+iXi. Show that Assumption 2.3.2 holds, hence by the
Gärtner–Ellis theorem Zn satisfy the LDP with good rate function Λ∗.
Hint: Show that n−1

∑∞
i=−∞ φ(

∑i+n
j=i+1 aj) → φ(1) for any φ : IR → IR

continuously differentiable with φ(0) = 0.

2.4 Concentration Inequalities

The precise large deviations estimates presented in this chapter are all re-
lated to rather simple functionals of an independent sequence of random
variables, namely to empirical means of such a sequence. We digress in this
section from this theme by, while still keeping the independence structure,
allowing for more complicated functionals. In such a situation, it is often
hopeless to have a full LDP, and one is content with the rough concen-
tration properties of the random variables under investigation. While such
concentration properties have diverse applications in computer science, com-
binatorics, operations research and geometry, only a few simple examples
are presented here. See the historical notes for partial references to the
extensive literature dealing with such results and their applications.

In Section 2.4.1, we present concentration inequalities for discrete time
martingales of bounded differences and show how these may apply for cer-
tain functionals of independent variables. Section 2.4.2 is devoted to Tala-
grand’s far reaching extensions of this idea, extensions whose root can be
traced back to isoperimetric inequalities for product measures.

In order not to be distracted by measureability concerns, we assume
throughout this section that Σ is a Polish space, that is, a complete separable
metric space. To understand the main ideas, suffices to take Σ = {0, 1}. In
applications, Σ is often either a finite set or a subset of IR.

2.4.1 Inequalities for Bounded Martingale Differences

Our starting point is a bound on the moment generating function of a ran-
dom variable in terms of its maximal possible value and first two moments.
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Lemma 2.4.1 (Bennett) Suppose X ≤ b is a real-valued random variable
with x = E(X) and E[(X−x)2] ≤ σ2 for some σ > 0. Then, for any λ ≥ 0,

E(eλX) ≤ eλx

{
(b− x)2

(b− x)2 + σ2
e−

λσ2

b−x +
σ2

(b− x)2 + σ2
eλ(b−x)

}

. (2.4.2)

Proof: In case b = x, it follows that X = x almost surely and (2.4.2)
trivially holds with equality for any σ > 0. Similarly, (2.4.2) trivially holds
with equality when λ = 0. Turning to deal with the general case of b > x
and λ > 0, let Y �

=λ(X − x), noting that Y ≤ λ(b − x)�=m is of zero mean
and EY 2 ≤ λ2σ2�

=v. Thus, (2.4.2) amounts to showing that

E(eY ) ≤ m2

m2 + v
e−v/m +

v

m2 + v
em = E(eYo) , (2.4.3)

for any random variable Y ≤ m of zero mean and E(Y 2) ≤ v, where
the random variable Yo takes values in {−v/m, m}, with P (Yo = m) =
v/(m2 + v). To this end, fix m, v > 0 and let φ(·) be the (unique) quadratic
function such that f(y)�=φ(y) − ey is zero at y = m, and f(y) = f ′(y) = 0
at y = −v/m. Note that f ′′(y) = 0 at exactly one value of y, say y0. Since
f(−v/m) = f(m) and f(·) is not constant on [−v/m, m], it follows that
f ′(y) = 0 at some y1 ∈ (−v/m, m). By the same argument, now applied to
f ′(·) on [−v/m, y1], also y0 ∈ (−v/m, y1). With f(·) convex on (−∞, y0],
minimal at −v/m, and f(·) concave on [y0,∞), maximal at y1, it follows
that f(y) ≥ 0 for any y ∈ (−∞, m]. Thus, E(f(Y )) ≥ 0 for any random
variable Y ≤ m, that is,

E(eY ) ≤ E(φ(Y )) , (2.4.4)

with equality whenever P (Y ∈ {−v/m, m}) = 1. Since f(y) ≥ 0 for y →
−∞, it follows that φ′′(0) = φ′′(y) ≥ 0 (recall that φ(·) is a quadratic
function). Hence, for Y of zero mean, E(φ(Y )), which depends only upon
E(Y 2), is a non-decreasing function of E(Y 2). It is not hard to check that
Yo, taking values in {−v/m, m}, is of zero mean and such that E(Y 2

o ) =
v > 0. So, (2.4.4) implies that

E(eY ) ≤ E(φ(Y )) ≤ E(φ(Yo)) = E(eYo) ,

establishing (2.4.3), as needed.

Specializing Lemma 2.4.1 we next bound the moment generating func-
tion of a random variable in terms of its mean and support.

Corollary 2.4.5 Fix a < b. Suppose that a ≤ X ≤ b is a real-valued
random variable with x = E(X). Then, for any λ ∈ IR,

E(eλX) ≤ x− a

b− a
eλb +

b− x

b− a
eλa . (2.4.6)



2.4 Concentration Inequalities 57

Proof: Set σ2 = (b−x)(x−a). If σ = 0 then either X = x = a almost surely
or X = x = b almost surely, with (2.4.6) trivially holding with equality in
both cases. Assuming hereafter that σ > 0, since x2 − (a + b)x + ab ≤ 0
for any x ∈ [a, b], integrating with respect to the law of X we conclude
that E[(X − x)2] ≤ (b− x)(x− a) = σ2. Setting this value of σ2 in (2.4.2)
we recover (2.4.6) for any λ ≥ 0. In case λ ≤ 0 we apply (2.4.6) for
−λ ≥ 0 and the random variable −X ∈ [−b,−a] of mean −x for which also
E[(X − x)2] ≤ σ2.

As we see next, Lemma 2.4.1 readily provides concentration inequalities
for discrete time martingales of bounded differences, null at 0.

Corollary 2.4.7 Suppose v > 0 and the real valued random variables {Yn :
n = 1, 2, . . .} are such that both Yn ≤ 1 almost surely, and E[Yn|Sn−1] = 0,
E[Y 2

n |Sn−1] ≤ v for Sn
�
=
∑n

j=1 Yj, S0 = 0. Then, for any λ ≥ 0,

E
[
eλSn

]
≤
(e−vλ + veλ

1 + v

)n

. (2.4.8)

Moreover, for all x ≥ 0,

P(n−1Sn ≥ x) ≤ exp
(
−nH

(x + v

1 + v

∣
∣
∣

v

1 + v

))
, (2.4.9)

where H(p|p0)
�
=p log(p/p0) + (1− p) log((1− p)/(1− p0)) for p ∈ [0, 1] and

H(p|p0) = ∞ otherwise. Finally, for all y ≥ 0,

P(n−1/2Sn ≥ y) ≤ e−2y2/(1+v)2 . (2.4.10)

Proof: Applying Lemma 2.4.1 for the conditional law of Yk given Sk−1,
k = 1, 2, . . ., for which x = 0, b = 1 and σ2 = v, it follows that almost surely

E(eλYk |Sk−1) ≤
e−vλ + veλ

1 + v
. (2.4.11)

In particular, S0 = 0 is non-random and hence (2.4.11) yields (2.4.8) in case
of k = n = 1. Multiplying (2.4.11) by eλSk−1 and taking its expectation,
results with

E[eλSk ] = E[eλSk−1E[eλYk |Sk−1]] ≤ E[eλSk−1 ]
e−vλ + veλ

1 + v
. (2.4.12)

Iterating (2.4.12) from k = n to k = 1, establishes (2.4.8).

Applying Chebycheff’s inequality we get by (2.4.8) that for any x, λ ≥ 0,

P(n−1Sn ≥ x) ≤ e−λnxE
[
eλSn

]
≤ e−λnx

(e−vλ + veλ

1 + v

)n

. (2.4.13)
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For x ∈ [0, 1) the inequality (2.4.9) follows when considering λ = (1 +
v)−1 log((x+v)/v(1−x)) in (2.4.13). The case of x = 1 in (2.4.9) is similar,
now considering λ →∞ in (2.4.13). Since n−1Sn ≤ 1 almost surely, (2.4.9)
trivially holds for any x > 1.

Note that H(p0|p0) = 0 and dH(p|p0)/dp = log(p(1−p0))−log(p0(1−p))
is zero for p = p0, whereas d2H(p|p0)/dp2 = 1/(p(1 − p)) ≥ 4 for any
p, p0 ∈ (0, 1). Consequently, H(p|p0) ≥ 2(p− p0)2 for any p, p0 ∈ [0, 1], and
setting x = n−1/2y, (2.4.10) directly follows from (2.4.9).

A typical application of Corollary 2.4.7 is as follows.

Corollary 2.4.14 Let Zn = gn(X1, . . . , Xn) for independent Σ-valued ran-
dom variables {Xi} and real-valued, measurable gn(·). Let {X̂i} be an in-
dependent copy of {Xi}. Suppose that for k = 1, . . . , n,

|gn(X1, . . . , Xn)− gn(X1, . . . , Xk−1, X̂k, Xk+1, . . . , Xn)| ≤ 1 , (2.4.15)

almost surely. Then, for all x ≥ 0,

P(n−1(Zn −EZn) ≥ x) ≤ exp
(
−nH

(x + 1
2

∣
∣1
2
))

, (2.4.16)

and for all y ≥ 0,

P(n−1/2(Zn −EZn) ≥ y) ≤ e−y2/2 . (2.4.17)

Proof: For k = 1, . . . , n let Sk
�
=E[Zn|X1, . . . , Xk] − EZn with S0

�
=0. In

particular, Sn = Zn − EZn and Yk
�
=Sk − Sk−1 is such that

E[Yk|Sk−1] = E[E[Yk|X1, . . . , Xk−1]|Sk−1] = 0 .

Moreover, integrating (2.4.15) with respect to X̂k, Xk+1, . . . , Xn results
with

|E[gn(X1, . . . , Xn)− gn(X1, . . . , X̂k, . . . , Xn)|X1, . . . , Xk]| ≤ 1 , (2.4.18)

almost surely. The mutual independence of {Xi} and X̂k implies in partic-
ular that

E[gn(X1, . . . , Xn)|X1, . . . , Xk−1]=E[gn(X1, . . . , X̂k, . . . , Xn)|X1, . . . , Xk−1]
=E[gn(X1, . . . , X̂k, . . . , Xn)|X1, . . . , Xk] ,

and hence |Yk| ≤ 1 almost surely by (2.4.18). Clearly, then E[Y 2
k |Sk−1] ≤

1, with (2.4.16) and (2.4.17) established by applying Corollary 2.4.7 (for
v = 1).



2.4 Concentration Inequalities 59

Remark: It is instructive to note that a slightly stronger version of (2.4.17)
can be obtained while bypassing Bennett’s lemma (Lemma 2.4.1). See Ex-
ercise 2.4.22 for more details about this derivation, starting with a direct
proof of (2.4.6).

We conclude this section with a representative example for the applica-
tion of Corollary 2.4.14. It arises in the context of bin-packing problems in
computer science and operations research (See also Exercise 2.4.44 for an
improvement using Talagrand’s inequalities). To this end, let

Bn(x) = min{N : ∃{i�}N
�=1, {jm

� }i�
m=1 such that

N∑

�=1

i� = n,

N⋃

�=1

i�⋃

m=1

{jm
� } = {1, . . . , n},

i�∑

m=1

xjm
�
≤ 1} ,

denote the minimal number of unit size bins (intervals) needed to store
x = {xk : 1 ≤ k ≤ n}, and En

�
=E(Bn(X)) for {Xk} independent [0, 1]-

valued random variables.

Corollary 2.4.19 For any n, t > 0,

P (|Bn(X)− En| ≥ t) ≤ 2 exp(−t2/2n) .

Proof: Clearly, |Bn(x) − Bn(x′)| ≤ 1 when x and x′ differ only in one
coordinate. It follows that Bn(X) satisfies (2.4.15). The claim follows by
an application of (2.4.17), first for Zn = Bn(X), y = n−1/2t, then for
Zn = −Bn(X).

Exercise 2.4.20 Check that the conclusions of Corollary 2.4.14 apply for
Zn = |

∑n
j=1 εjxj | where {εi} are i.i.d. such that P (εi = 1) = P (εi = −1) =

1/2 and {xi} are non-random vectors in the unit ball of a normed space (X , |·|).
Hint: Verify that |E[Zn|ε1, . . . , εk]− E[Zn|ε1, . . . , εk−1]| ≤ 1.

Exercise 2.4.21 Let B(u)�=2u−2[(1 + u) log(1 + u)− u] for u > 0.
(a) Show that for any x, v > 0,

H
(x + v

1 + v

∣
∣
∣

v

1 + v

)
≥ x2

2v
B
(x

v

)
,

hence (2.4.9) implies that for any z > 0,

P(Sn ≥ z) ≤ exp(− z2

2nv
B
(z

v

)
) .

(b) Suppose that (Sn,Fn) is a discrete time martingale such that S0 = 0 and
Yk

�
=Sk − Sk−1 ≤ 1 almost surely. Let Qn

�
=
∑n

j=1 E[Y 2
j |Fj−1] and show that

for any z, r > 0,

P(Sn ≥ z, Qn ≤ r) ≤ exp(−z2

2r
B
(z

r

)
) .
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Hint: exp(λSn − θQn) is an Fn super-martingale for θ = eλ − λ− 1 ≥ λ2/2
and any λ ≥ 0.

Exercise 2.4.22 Suppose in the setting of Corollary 2.4.14 that assumption
(2.4.15) is replaced by

|gn(X1, . . . , Xn)− gn(X1, . . . , Xk−1, X̂k, Xk+1, . . . , Xn)| ≤ ck ,

for some ck ≥ 0, k = 1, . . . , n.
(a) Applying Corollary 2.4.5, show that for any λ ∈ IR,

E[eλYk |Sk−1] ≤ eλ2c2
k/8 .

Hint: Check that for any a < b and x ∈ [a, b],

x− a

b− a
eλb +

b− x

b− a
eλa ≤ eλxeλ2(b−a)2/8 .

Note that given {X1, . . . , Xk−1}, the martingale difference Yk as a function of
Xk, is of zero mean and supported on [ak, ak +ck] for some ak(X1, . . . , Xk−1).
(b) Deduce from part (a), along the line of proof of Corollary 2.4.7, that for
any z ≥ 0,

P(Zn −EZn ≥ z) ≤ e−2z2/
∑n

k=1
c2

k .

Remark: Even when ck = 1 for all k, this is an improvement upon (2.4.17)
by a factor of 4 in the exponent. Moreover, both are sharper than what follows
by setting r =

∑n
k=1 c2

k in Exercise 2.4.21 (as B(·) ≥ 1).

2.4.2 Talagrand’s Concentration Inequalities

The Azuma-Hoeffding-Bennett inequalities of Corollary 2.4.14 apply for co-
ordinate wise Lipschitz functions of independent random variables. Tala-
grand’s concentration inequalities to which this section is devoted, also rely
on the product structure of the underlying probability space, but allow for
a much wider class of functions to be considered. As such, they are ex-
tremely useful in combinatorial applications such as Corollary 2.4.36, in
statistical physics applications such as the study of spin glass models, and
in areas touching upon functional analysis such as probability in Banach
spaces (for details and references see the historical notes at the end of this
chapter).

For any n ∈ ZZ+, let (y,x) = (y1, . . . , yn, x1, . . . , xn) denote a generic
point in (Σn)2. Let Mn(Q,P) denote the set of all probability measures



2.4 Concentration Inequalities 61

on (Σn)2 whose marginals are the prescribed probability measures Q and
P on Σn. That is, if Y,X ∈ Σn are such that (Y,X) has the joint law
π ∈Mn(Q,P), then Q is the law of Y and P is the law of X.

For any α > 0 let φα : [0,∞) → [0,∞) be such that

φα(x) = αx log x− (1 + αx) log
(1 + αx

1 + α

)
.

Consider the “coupling distance”

dα(Q,P) = inf
π∈Mn(Q,P)

∫

Σn

n∑

k=1

φα(πx({yk = xk}))dP(x) ,

between probability measures Q and P on Σn. Here and throughout, for
z = (yi1 , . . . , yim , xj1 , . . . , xj�

), πz(·) denotes the regular conditional prob-
ability distribution of π given the σ-field generated by the restriction of
(Σn)2 to the coordinates specified by z. (Such a conditional probability
exists because (Σn)2 is Polish; c.f. Appendix D.) We also use the notations
yk�

=(y1, . . . , yk) and xk�
=(x1, . . . , xk), k = 1, . . . , n.

Define the relative entropy of the probability measure ν with respect to
μ ∈ M1(Σn) as

H(ν|μ)
�
=
{ ∫

Σn f log fdμ if f�
=

dν
dμ exists

∞ otherwise ,

where dν/dμ stands for the Radon-Nikodym derivative of ν with respect
to μ when it exists. As already hinted in Section 2.1.2, the relative en-
tropy plays a crucial role in large deviations theory. See Section 6.5.3 and
Appendix D.3 for some of its properties.

The next theorem, the proof of which is deferred to the end of this
section, provides an upper bound on dα(·, ·) in terms of H(·|·).

Theorem 2.4.23 Suppose R =
∏

k Rk is a product probability measure on
Σn. Then, for any α > 0 and any probability measures P,Q on Σn,

dα(Q,P) ≤ H(P|R) + αH(Q|R) . (2.4.24)

For α > 0 and A ∈ BΣn consider the function

fα(A,x)
�
= inf

{ν∈M1(Σn):ν(A)=1}

n∑

k=1

φα(ν({y : yk = xk})) . (2.4.25)

For any J ⊂ {1, . . . , n} let pJ (A) = {z ∈ Σn : ∃y ∈ A, such that yk = zk

for all k ∈ J}, noting that pJ (A) ∈ BΣn for any such J (since Σ is Polish,
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see Theorem D.4). As the value of fα(A, ·) is uniquely determined by the
finite length binary sequence {1pJ (A)(·) : J ⊂ {1, . . . , n}}, it follows that
fα(A, ·) is Borel measureable. See also Exercise 2.4.43 for an alternative
representation of fα(A,x).

We next show that concentration inequalities for fα(·, ·) are a direct
consequence of Theorem 2.4.23.

Corollary 2.4.26 For any product probability measure R on Σn, any α >
0, t > 0 and A ∈ BΣn ,

R({x : fα(A,x) ≥ t})et ≤
∫

Σn

efα(A,x)dR(x) ≤ R(A)−α . (2.4.27)

Proof: Fix a product probability measure R, α > 0 and A ∈ BΣn . The
right inequality in (2.4.27) trivially holds when R(A) = 0. When R(A) > 0,
set Q(·) = R(· ∩ A)/R(A) for which H(Q|R) = − log R(A), and P such
that

dP
dR

=
efα(A,x)

∫
Σn efα(A,x)dR(x)

,

for which

H(P|R) =
∫

Σn

fα(A,x)dP(x)− log
∫

Σn

efα(A,x)dR(x) . (2.4.28)

Since πx(A× {x}) = 1 for any π ∈Mn(Q,P) and P almost every x ∈ Σn,
it follows that ∫

Σn

fα(A,x)dP(x) ≤ dα(Q,P) . (2.4.29)

Combining (2.4.24) with (2.4.28) and (2.4.29) gives the right inequality in
(2.4.27). For any t > 0, the left inequality in (2.4.27) is a direct application
of Chebycheff’s inequality.

We next deduce concentration inequalities for

g(A,x)
�
= sup

{β:|β|≤1}
inf
y∈A

n∑

k=1

βk1yk �=xk
, (2.4.30)

where β = (β1, . . . , βn) ∈ IRn, out of those for fα(·, ·). The function g(A, ·)
is Borel measurable by an argument similar to the one leading to the mea-
surability of fα(A, ·).

Corollary 2.4.31 For any product probability measure R on Σn, A ∈ BΣn ,
and any u > 0,

R({x : g(A,x) ≥ u})R(A) ≤ e−u2/4 . (2.4.32)



2.4 Concentration Inequalities 63

If R(A) > 0 and u >
√

2 log(1/R(A)), then also

R({x : g(A,x) ≥ u}) ≤ exp
(
−1

2
(u−

√
2 log(1/R(A)))2

)
. (2.4.33)

Remarks:
(a) For any A ∈ BΣn and x ∈ Σn, the choice of βk = n−1/2, k = 1, . . . , n, in
(2.4.30), leads to g(A,x) ≥ n−1/2h(A,x), where

h(A,x)
�
= inf

y∈A

n∑

k=1

1yk �=xk
.

Inequalities similar to (2.4.33) can be derived for n−1/2h(·, ·) directly out of
Corollary 2.4.14. However, Corollary 2.4.36 and Exercise 2.4.44 demonstrate
the advantage of using g(·, ·) over n−1/2h(·, ·) in certain applications.
(b) By the Cauchy-Schwartz inequality, g(A,x) ≤

√
h(A,x) for any A ∈

BΣn and any x ∈ Σn. It is however shown in Exercise 2.4.45 that inequalities
such as (2.4.33) do not hold in general for

√
h(·, ·).

Proof: Note first that

inf
{ν∈M1(Σn):ν(A)=1}

∫

Σn

(
n∑

k=1

βk1yk �=xk
) ν(dy) = inf

y∈A

n∑

k=1

βk1yk �=xk
,

hence,

g(A,x) = sup
{β:|β|≤1}

inf
{ν∈M1(Σn):ν(A)=1}

n∑

k=1

βkν({y : yk 
= xk}) .

By the Cauchy-Schwartz inequality,

g(A,x)2 ≤ inf
{ν∈M1(Σn):ν(A)=1}

n∑

k=1

ν({y : yk 
= xk})2 . (2.4.34)

Since φα(1) = 0, φ′
α(1) = 0 and φ′′

α(x) = α
x(1+αx) ≥

α
1+α for x ∈ [0, 1], it

follows that φα(x) ≥ α
2(1+α) (1−x)2 for any α > 0 and any x ∈ [0, 1]. Hence,

by (2.4.25) and (2.4.34), for any α > 0, A ∈ BΣn and x ∈ Σn,

α

2(1 + α)
g(A,x)2 ≤ fα(A,x) . (2.4.35)

Set t = α
2(1+α)u

2 in (2.4.27) and apply (2.4.35) to get (2.4.32) by choosing
α = 1. For R(A) < 1, the inequality (2.4.33) is similarly obtained by
choosing α = u/

√
2 log(1/R(A))− 1 ∈ (0,∞), whereas it trivially holds for

R(A) = 1.
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The next example demonstrates how concentration inequalities for g(·, ·)
are typically applied. To this end, let

Zn(x)
�
= max{m : xk1 < · · · < xkm for some 1 ≤ k1 < · · · < km ≤ n } ,

denote the length of the longest increasing subsequence of x = {xk : 1 ≤
k ≤ n}, and Mn

�
= Median (Zn(X)) for {Xk} independent random variables,

each distributed uniformly on [0, 1].

Corollary 2.4.36 For any v ∈ ZZ+,

P (Zn(X) ≥ Mn + v) ≤ 2 exp
(
− v2

4(Mn + v)

)
, (2.4.37)

P (Zn(X) ≤ Mn − v) ≤ 2 exp
(
− v2

4Mn

)
. (2.4.38)

Proof: Fix v ∈ ZZ+, and let Σ = [0, 1], with A(j)�={y : Zn(y) ≤ j} ⊂
Σn for j ∈ {1, 2, . . . , n}. Suppose x ∈ Σn is such that Zn(x) ≥ j + v,
so there exist 1 ≤ k1 < k2 · · · < kj+v ≤ n with xk1 < xk2 · · · < xkj+v .
Hence,

∑j+v
i=1 1yki

�=xki
≥ v for any y ∈ A(j). Thus, setting βki = 1/

√
j + v

for i = 1, . . . , j + v and βk = 0 for k /∈ {k1, . . . , kj+v}, it follows that
g(A(j),x) ≥ v/

√
j + v. To establish (2.4.37) apply (2.4.32) for A = A(Mn)

and R being Lebesgue’s measure, so that R(A) = P (Zn(X) ≤ Mn) ≥ 1/2,
while

P (Zn(X) ≥ Mn + v) ≤ R({x : g(A,x) ≥ v/
√

Mn + v}) .

Noting that R(A) = P (Zn(X) ≤ Mn−v) for A = A(Mn−v), and moreover,

1
2
≤ P (Zn(X) ≥ Mn) ≤ R({x : g(A,x) ≥ v/

√
Mn}) ,

we establish (2.4.38) by applying (2.4.32), this time for A = A(Mn− v).

The following lemma, which is of independent interest, is key to the
proof of Theorem 2.4.23.

Lemma 2.4.39 For any α > 0 and probability measures P,Q on Σ, let

Δα(Q, P )
�
=
∫

Σ̃

φα

(
min{dQ

dP
, 1}

)
dP ,

where Σ̃ is such that P (Σ̃c) = 0 and dQ
dP exists on Σ̃.

(a) There exists π ∈M1(Q, P ) such that
∫

Σ

φα(πx({y = x}))dP (x) = Δα(Q, P ) . (2.4.40)
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(b) For any probability measure R on Σ,

Δα(Q, P ) ≤ H(P |R) + αH(Q|R) . (2.4.41)

Proof: (a) Let (P − Q)+ denote the positive part of the finite (signed)
measure P−Q while Q∧P denotes the positive measure P−(P−Q)+ = Q−
(Q − P )+. Let q = (P −Q)+ (Σ) = (Q− P )+ (Σ). Suppose q ∈ (0, 1) and
enlarging the probability space if needed, define the independent random
variables W1, W2 and Z with W1 ∼ (1− q)−1 (Q ∧ P ), W2 ∼ q−1 (P −Q)+,
and Z ∼ q−1 (Q− P )+. Let I ∈ {1, 2} be chosen independently of these
variables such that I = 2 with probability q. Set X = Y = W1 when
I = 1, whereas X = W2 
= Y = Z otherwise. If q = 1 then we do not
need the variable W1 for the construction of Y,X, whereas for q = 0 we
never use Z and W2. This coupling (Y,X) ∼ π ∈ M1(Q, P ) is such that
π({(y, x) : y = x, x ∈ ·}) = (Q ∧ P )(·). Hence, by the definition of regular
conditional probability distribution (see Appendix D.3), for every Γ ∈ BΣ,
Γ ⊂ Σ̃,

∫

Γ

πx({y = x})P (dx) =
∫

Γ

πx({(y, x) : y = x})P (dx)

= π(
⋃

x∈Γ

{(y, x) : y = x})

= Q ∧ P (Γ) =
∫

Γ

dQ ∧ P

dP
(x)P (dx) ,

implying that πx({y = x}) = d(Q ∧ P )/dP = min{dQ
dP , 1} for P -almost

every x ∈ Σ̃. With P (Σ̃c) = 0, (2.4.40) follows.
(b) Suffices to consider R such that f = dP/dR and g = dQ/dR exist. Let
Rα = (P + αQ)/(1 + α) so that dRα/dR�

=h = (f + αg)/(1 + α). Thus,

H(P |R) + αH(Q|R) =
∫

Σ

[f log f + αg log g]dR

≥
∫

Σ

[
f log

f

h
+ αg log

g

h

]
dR , (2.4.42)

since
∫
Σ

h log h dR = H(Rα|R) ≥ 0. Let ρ�
=dQ/dP on Σ̃. Then, on Σ̃,

f/h = (1 + α)/(1 + αρ) and g/f = ρ, whereas P (Σ̃c) = 0 implying that
g/h = (1 + α)/α on Σ̃c. Hence, the inequality (2.4.42) implies that

H(P |R) + αH(Q|R) ≥
∫

Σ̃

φα(ρ)dP + Q(Σ̃c)vα

for vα
�
=α log((1 + α)/α) > 0. With φα(x) ≥ φα(1) = 0 for all x ≥ 0, we

thus obtain (2.4.41).
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Proof of Theorem 2.4.23: Fix α > 0, P, Q and R =
∏n

k=1 Rk. For k =
1, . . . , n, let Pxk−1

k (·) denote the regular conditional probability distribution
induced by P on the k-th coordinate given the σ-field generated by the
restriction of Σn to the first (k − 1) coordinates. Similarly, let Qyk−1

k (·)
be the corresponding regular conditional probability distribution induced
by Q. By part (a) of Lemma 2.4.39, for any k = 1, . . . , n there exists a
πk = πyk−1,xk−1

k ∈M1(Q
yk−1

k , Pxk−1

k ) such that
∫

Σ

φα(πx
k({y = x}))dPxk−1

k (x) = Δα(Qyk−1

k , Pxk−1

k )

(recall that πx
k denotes the regular conditional probability distribution of πk

given the σ-field generated by the x coordinate). Let π ∈ M1(Σ2n) denote
the surgery of the πk, k = 1, . . . , n, that is, for any Γ ∈ BΣ2n ,

π(Γ) =
∫

Σ2
· · ·

∫

Σ2
1(y,x)∈Γ π1(dy1, dx1)πy1,x1

2 (dy2, dx2) · · ·πyn−1,xn−1

n (dyn, dxn).

Note that π ∈Mn(Q,P). Moreover, for k = 1, . . . , n, since πk = πyk−1,xk−1

k

∈ M1(Q
yk−1

k , Pxk−1

k ), the restriction of the regular conditional probability
distribution πyk−1,xn

(·) to the coordinates (yk, xk) coincides with that of
πyk−1,xk

(·), i.e., with πxk

k . Consequently, with E denoting expectations
with respect to π, the convexity of φα(·) implies that

Eφα(πX({yk = xk})) ≤ Eφα(πYk−1,X({yk = xk}))
= Eφα(πYk−1,Xk

({yk = xk}))
= Eφα(πXk

k ({yk = xk}))
= EΔα(QYk−1

k , PXk−1

k ) .

Hence, for any n, by (2.4.41),

dα(Q,P) ≤
n∑

k=1

EΔα(QYk−1

k , PXk−1

k )

≤ E
[ n∑

k=1

H(PXk−1

k |Rk)
]

+ αE
[ n∑

k=1

H(QYk−1

k |Rk)
]
.

Apply Theorem D.13 successively (n − 1) times, to obtain the so-called
chain-rule for relative entropies,

H(P|R) =
n∑

k=1

EH(PXk−1

k |Rk) .
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The corresponding identity holds for H(Q|R), hence the inequality (2.4.24)
follows.

Exercise 2.4.43 Fix α > 0 and A ∈ BΣn . For any x ∈ Σn let VA(x) denote
the closed convex hull of {(1y1=x1 , . . . , 1yn=xn) : y ∈ A} ⊂ [0, 1]n. Show that
the measurable function fα(A, ·) of (2.4.25) can be represented also as

fα(A,x) = inf
s∈VA(x)

n∑

k=1

φα(sk) .

Exercise 2.4.44 [From [Tal95], Section 6]
In this exercise you improve upon Corollary 2.4.19 in case v�

=EX2
1 is small by

applying Talagrand’s concentration inequalities.
(a) Let A(j)�={y : Bn(y) ≤ j}. Check that Bn(x) ≤ 2

∑n
k=1 xk + 1 , and

hence that
Bn(x) ≤ j + 2||x||2g(A(j),x) + 1 ,

where ||x||2�
=(
∑n

k=1 x2
k)1/2.

(b) Check that E(exp ||X||22) ≤ exp(2nv) and hence

P (||X||2 ≥ 2
√

nv) ≤ exp(−2nv) .

(c) Conclude from Corollary 2.4.31 that for any u > 0

P (Bn(X) ≤ j)P (Bn(X) ≥ j + 4u
√

nv + 1) ≤ exp(−u2/4) + exp(−2nv).

(d) Deduce from part (c) that, for Mn
�
=Median(Bn(X)) and t ∈ (0, 8nv),

P (|Bn(X)−Mn| ≥ t + 1) ≤ 8 exp(−t2/(64nv)) .

Exercise 2.4.45 [From [Tal95], Section 4]
In this exercise you check the sharpness of Corollary 2.4.31.
(a) Let Σ = {0, 1}, and for j ∈ ZZ+, let A(j)�={y : ||y|| ≤ j}, where
||x||�=

∑n
k=1 xk. Check that then h(A(j),x) = max{||x||−j, 0} and g(A(j),x)

= h(A(j),x)/
√
||x||.

(b) Suppose {Xk} are i.i.d. Bernoulli(j/n) random variables and j, n →
∞ such that j/n → p ∈ (0, 1). Check that P(X ∈ A(j)) → 1/2 and
P(h(A(j),X) ≥ u) → 1/2 for any fixed u > 0. Conclude that inequalities
such as (2.4.33) do not hold in this case for

√
h(·, ·).

(c) Check that

P(g(A(j),X) ≥ u) → 1
2π

∫ ∞

u/
√

1−p

e−x2/2dx .

Conclude that for p > 0 arbitrarily small, the coefficient 1/2 in the exponent in
the right side of (2.4.33) is optimal.
Hint: n−1||X|| → p in probability and (np)−1/2(||X|| − j) converges in dis-
tribution to a Normal(0, 1− p) variable.
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2.5 Historical Notes and References

The early development of large deviation bounds did not follow the order
of our presentation. Statisticians, starting with Khinchin [Khi29], have an-
alyzed various forms of Cramér’s theorem for special random variables. See
[Smi33], [Lin61], and [Pet75] for additional references on this early work.
It should be mentioned in this context that in the early literature, partic-
ularly in the Russian literature, the term large deviations often refers to
refinements of the CLT when an expansion is made not at the mean but
at some other point. For representative examples, see [BoR65], the survey
article by Nagaev [Nag79] and the references there, and the historical notes
of Chapter 3.

Although Stirling’s formula, which is at the heart of the combinatorial
estimates of Section 2.1, dates back at least to the 19th century, the no-
tion of types and bounds of the form of Lemmas 2.1.2–2.1.9 had to wait
until information theorists discovered that they are useful tools for ana-
lyzing the efficiency of codes. For early references, see the excellent book
by Gallager [Ga68], while an extensive use of combinatorial estimates in
the context of information theory may be found in [CsK81]. An excellent
source of applications of exponential inequalities to discrete mathematics
is [AS91]. Non-asymptotic computations of moments and some exponen-
tial upper bounds for the problem of sampling without replacement can be
found in [Kem73].

The first statement of Cramér’s theorem for distributions on IR pos-
sessing densities is due, of course, to Cramér [Cra38], who introduced the
change of measure argument to this context. An extension to general dis-
tributions was done by Chernoff [Che52], who introduced the upper bound
that was to carry his name. Bahadur [Bah71] was apparently the first
to use the truncation argument to prove Cramér’s theorem in IR with no
exponential moments conditions. That some finite exponential moments
condition is necessary for Cramér’s theorem in IRd, d ≥ 3, is amply demon-
strated in the counterexamples of [Din91], building upon the I continuity
sets examples of [Sla88]. Even in the absence of any finite moment, the
large deviations bounds of Cramér’s theorem may apply to certain subsets
of IRd, as demonstrated in [DeS98]. Finally, the IRd case admits a sharp
result, due to Bahadur and Zabell [BaZ79], which is described in Corol-
lary 6.1.6.

The credit for the extension of Cramér’s theorem to the dependent case
goes to Plachky and Steinebach [PS75], who considered the one-dimensional
case, and to Gärtner [Gär77], who considered DΛ = IRd. Ellis [Ell84] ex-
tended this result to the steep setup. Section 2.3 is an embellishment of
his results. Sharper results in the i.i.d. case are presented in [Ney83]. In
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the one-dimensional, zero mean case, [Bry93] shows that the existence of
limiting logarithmic moment generating function in a centered disk of the
complex plane implies the CLT.

Exercise 2.3.24 uses the same methods as [MWZ93, DeZ95], and is based
on a detection scheme described in [Pro83]. Related computations and ex-
tensions may be found in [Ko92]. The same approach is applied by [BryD97]
to study quadratic forms of stationary Gaussian processes. Exercise 2.3.26
provides an alternative method to deal with the latter objects, borrowed
from [BGR97].

Exercise 2.3.27 is taken from [BD90]. See also [JiWR92, JiRW95] for the
LDP in different scales and the extension to Banach space valued moving
average processes.

For more references to the literature dealing with the dependent case,
see the historical notes of Chapter 6.

Hoeffding, in [Hoe63], derives Corollary 2.4.5 and the tail estimates of
Corollary 2.4.7 in the case of sums of independent variables. For the same
purpose, Bennett derives Lemma 2.4.1 in [Benn62]. Both Lemma 2.4.1 and
Corollary 2.4.5 are special cases of the theory of Chebycheff systems; see, for
example, Section 2 of Chapter XII of [KaS66]. Azuma, in [Azu67], extends
Hoeffding’s tail estimates to the more general context of bounded martingale
differences as in Corollary 2.4.7. For other variants of Corollary 2.4.7 and
more applications along the lines of Corollary 2.4.14, see [McD89]. See also
[AS91], Chapter 7, for applications in the study of random graphs, and
[MiS86] for applications in the local theory of Banach spaces. The bound
of Exercise 2.4.21 goes back at least to [Frd75]. For more on the relation
between moderate deviations of a martingale of bounded jumps (possibly
in continuous time), and its quadratic variation, see [Puk94b, Dem96] and
the references therein.

The concentration inequalities of Corollaries 2.4.26 and 2.4.31 are taken
from Talagrand’s monograph [Tal95]. The latter contains references to ear-
lier works as well as other concentration inequalities and a variety of ap-
plications, including that of Corollary 2.4.36. Talagrand proves these con-
centration inequalities and those of [Tal96a] by a clever induction on the
dimension n of the product space. Our proof, via the entropy bounds of
Theorem 2.4.23, is taken from [Dem97], where other concentration inequal-
ities are proved by the same approach. See also [DeZ96c, Mar96a, Mar96b,
Tal96b] for similar results and extensions to a certain class of Markov chains.
For a proof of such concentration inequalities starting from log-Sobolev or
Poincaré’s inequalities, see [Led96, BoL97].

The problem of the longest increasing subsequence presented in Corol-
lary 2.4.36 is the same as Ulam’s problem of finding the longest increasing
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subsequence of a random permutation, with deep connections to combina-
torics and group theory. See [LoS77, VK77, AD95] for more information
and references. It is interesting to note that a naive application of bounded
martingale differences in this problem yields only poor results, and to get
meaningful results by this approach requires some ingenuity. See [BB92] for
details. Finally, for some full LDPs for this problem, see [Sep97, DeuZ98].



Chapter 3

Applications—The Finite
Dimensional Case

This chapter consists of applications of the theory presented in Chapter 2.
The LDPs associated with finite state irreducible Markov chains are de-
rived in Section 3.1 as a corollary of the Gärtner–Ellis theorem. Varadhan’s
characterization of the spectral radius of nonnegative irreducible matrices
is derived along the way. (See Exercise 3.1.19.) The asymptotic size of long
rare segments in random walks is found by combining, in Section 3.2, the ba-
sic large deviations estimates of Cramér’s theorem with the Borel–Cantelli
lemma. The Gibbs conditioning principle is of fundamental importance in
statistical mechanics. It is derived in Section 3.3, for finite alphabet, as
a direct result of Sanov’s theorem. The asymptotics of the probability of
error in hypothesis testing problems are analyzed in Sections 3.4 and 3.5
for testing between two a priori known product measures and for universal
testing, respectively. Shannon’s source coding theorem is proved in Sec-
tion 3.6 by combining the classical random coding argument with the large
deviations lower bound of the Gärtner–Ellis theorem. Finally, Section 3.7 is
devoted to refinements of Cramér’s theorem in IR. Specifically, it is shown
that for β ∈ (0, 1/2), {nβŜn} satisfies the LDP with a Normal-like rate
function, and the pre-exponent associated with P(Ŝn ≥ q) is computed for
appropriate values of q.

A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications,
Stochastic Modelling and Applied Probability 38,
DOI 10.1007/978-3-642-03311-7 3,
© Springer-Verlag Berlin Heidelberg 1998, corrected printing 2010
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3.1 Large Deviations for Finite State
Markov Chains

The results of Section 2.1 are extended in this section to Markov chains
Y1, . . . , Yn, . . . taking values in a finite alphabet Σ, where without loss of
generality Σ is identified with the set {1, . . . , N} and |Σ| = N . Although
these results may be derived by the method of types presented in Section
2.1, the combinatorial arguments involved are quite elaborate. (See Exer-
cise 3.1.21.) An alternative derivation of these results via an application of
the Gärtner–Ellis theorem is given here.

Let Π = {π(i, j)}|Σ|
i,j=1 be a stochastic matrix (i.e., a matrix whose ele-

ments are nonnegative and such that each row–sum is one). Let Pπ
σ denote

the Markov probability measure associated with the transition probability
Π and with the initial state σ ∈ Σ, i.e.,

Pπ
σ (Y1 = y1, . . . , Yn = yn) = π(σ, y1)

n−1∏

i=1

π(yi, yi+1) .

Expectations with respect to Pπ
σ are denoted by Eπ

σ (·).
Let Bm denote the mth power of the matrix B. A matrix B with

nonnegative entries is called irreducible, if for any pair of indices i, j there
exists an m = m(i, j) such that Bm(i, j) > 0. Irreducibility is equivalent to
the condition that one may find for each i, j a sequence of indices i1, . . . , im
such that i1 = i, im = j and B(ik, ik+1) > 0 for all k = 1, . . . , m − 1. The
following theorem describes some properties of irreducible matrices.

Theorem 3.1.1 (Perron–Frobenius) Let B = {B(i, j)}|Σ|
i,j=1 be an ir-

reducible matrix. Then B possesses an eigenvalue ρ (called the Perron–
Frobenius eigenvalue) such that:
(a) ρ > 0 is real.
(b) For any eigenvalue λ of B, |λ| ≤ ρ.
(c) There exist left and right eigenvectors corresponding to the eigenvalue ρ
that have strictly positive coordinates.
(d) The left and right eigenvectors μ, ϑ corresponding to the eigenvalue ρ
are unique up to a constant multiple.
(e) For every i ∈ Σ and every φ = (φ1, . . . , φ|Σ|) such that φj > 0 for all j,

lim
n→∞

1
n

log

⎡

⎣
|Σ|∑

j=1

Bn(i, j)φj

⎤

⎦

= lim
n→∞

1
n

log

⎡

⎣
|Σ|∑

j=1

φj Bn(j, i)

⎤

⎦ = log ρ .
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Proof: The proofs of parts (a)–(d) can be found in [Sen81], Theorem
1.5. To prove part (e), let α�

= supi ϑi, β�
= infi ϑi > 0, γ�

= supj φj , and
δ�
= infj φj > 0, where ϑ is the right eigenvector corresponding to ρ as before.

Then, for all i, j ∈ Σ,

γ

β
Bn(i, j)ϑj ≥ Bn(i, j)φj ≥

δ

α
Bn(i, j)ϑj .

Therefore,

lim
n→∞

1
n

log

⎡

⎣
|Σ|∑

j=1

Bn(i, j)φj

⎤

⎦ = lim
n→∞

1
n

log

⎡

⎣
|Σ|∑

j=1

Bn(i, j)ϑj

⎤

⎦

= lim
n→∞

1
n

log (ρn ϑi) = log ρ .

A similar argument leads to

lim
n→∞

1
n

log

⎡

⎣
|Σ|∑

j=1

φjB
n(j, i)

⎤

⎦ = log ρ .

Throughout this section, φ � 0 denotes strictly positive vectors, i.e., φj > 0
for all j ∈ Σ.

3.1.1 LDP for Additive Functionals of Markov Chains

The subject of this section is the large deviations of the empirical means

Zn =
1
n

n∑

k=1

Xk ,

where Xk = f(Yk) and f : Σ → IRd is a given deterministic function; for
an extension to random functions, see Exercise 3.1.4. If the random vari-
ables Yk, and hence Xk, are independent, it follows from Cramér’s theorem
that the Fenchel–Legendre transform of the logarithmic moment generating
function of X1 is the rate function for the LDP associated with {Zn}. The
Gärtner–Ellis theorem hints that the rate function may still be expressed
in terms of a Fenchel–Legendre transform, even when the random variables
Yk obey a Markov dependence.
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To find an alternative representation for the logarithmic moment gener-
ating function Λ(λ), associate with every λ ∈ IRd a nonnegative matrix Πλ,
whose elements are

πλ(i, j) = π(i, j) e〈λ,f(j)〉 i, j ∈ Σ .

Because the quantities e〈λ,f(j)〉 are always positive, πλ is irreducible as soon
as π is. For each λ ∈ IRd, let ρ(Πλ) denote the Perron–Frobenius eigenvalue
of the matrix Πλ. It will be shown next that log ρ(Πλ) plays the role of
the logarithmic moment generating function Λ(λ).

Theorem 3.1.2 Let {Yk} be a finite state Markov chain possessing an ir-
reducible transition matrix Π. For every z ∈ IRd, define

I(z)
�
= sup

λ∈IRd

{〈λ, z〉 − log ρ(Πλ)} .

Then the empirical mean Zn satisfies the LDP with the convex, good rate
function I(·). Explicitly, for any set Γ ⊆ IRd, and any initial state σ ∈ Σ,

− inf
z∈Γo

I(z) ≤ lim inf
n→∞

1
n

log Pπ
σ (Zn ∈ Γ) (3.1.3)

≤ lim sup
n→∞

1
n

log Pπ
σ (Zn ∈ Γ) ≤ − inf

z∈Γ
I(z) .

Proof: Define
Λn(λ)

�
= log Eπ

σ

[
e〈λ,Zn〉

]
.

In view of the Gärtner–Ellis theorem (Theorem 2.3.6), it is enough to check
that the limit

Λ(λ)
�
= lim

n→∞

1
n

Λn(nλ) = lim
n→∞

1
n

log Eπ
σ

[
en〈λ,Zn〉

]

exists for every λ ∈ IRd, that Λ(·) is finite and differentiable everywhere in
IRd, and that Λ(λ) = log ρ(Πλ). To begin, note that

Λn(nλ) = log Eπ
σ

[
e〈λ,

∑n

k=1
Xk〉

]

= log
∑

y1,...,yn

Pπ
σ (Y1 = y1, . . . , Yn = yn)

n∏

k=1

e〈λ,f(yk)〉

= log
∑

y1,...,yn

π(σ, y1)e〈λ,f(y1)〉 · · ·π(yn−1, yn)e〈λ,f(yn)〉

= log
|Σ|∑

yn=1

(Πλ)n(σ, yn) .
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Since Πλ is irreducible, part (e) of the Perron–Frobenius theorem yields
(with φ = (1, . . . , 1))

Λ(λ) = lim
n→∞

1
n

Λn(nλ) = log ρ (Πλ) .

Moreover, since |Σ| is finite, ρ(Πλ), being an isolated root of the character-
istic equation for the matrix Πλ, is positive, finite and differentiable with
respect to λ. (See [Lanc69], Theorem 7.7.1.)

Remarks:
(a) The preceding proof relies on two properties of the Markov chain—
namely, part (e) of the Perron–Frobenius theorem and the differentiability
of ρ(Πλ) with respect to λ. Thus, the theorem holds as long as the Markov
chain possesses these two properties. In particular, the finiteness of Σ is
not crucial; the LDP for the general Markov chain setup is presented in
Sections 6.3 and 6.5.
(b) The good rate function I(·) in the LDP of Theorem 3.1.2 is convex
and does not depend on the initial state σ ∈ Σ. Both properties might
be lost when the transition matrix Π is reducible, even when Zn satisfy
the law of large numbers (and the central limit theorem). For an example
with dependence on the initial state, consider Σ = {1, 2}, with Π such that
π(2, 1) = π(2, 2) = 1/2, π(1, 1) = 1 and f(j) = 12(j). Then, ρ(Πλ) =
exp(max{λ − log 2, 0}) and Zn = LY

n (2) → 0 almost surely. For σ = 1,
obviously Yk = 1 for all k, hence Zn = 0 for all n satisfies the LDP with the
convex good rate function I(0) = 0 and I(z) = ∞ for z 
= 0. In contrast,
the good rate function in Theorem 3.1.2 is I(z) = z log 2 for z ∈ [0, 1] and
I(z) = ∞ otherwise. Indeed, this is the rate function for the LDP in case
of σ = 2, for which Pπ

σ (Zn = k/n) = 2−(k+1)(1 + 1n(k)). For an example
with a non-convex rate function, add to this chain the states {3, 4} with
π(4, 3) = π(4, 2) = π(3, 3) = π(3, 1) = 1/2. Consider the initial state σ = 4
and f(j) = (11(j), 12(j), 13(j)) ∈ IR3 so that Zn → (1, 0, 0) almost surely.
Computing directly Pπ

σ (Zn ∈ ·), it is not hard to verify that Zn satisfies the
LDP with the non-convex, good rate function I(1−z, z, 0) = I(1−z, 0, z) =
z log 2 for z ∈ [0, 1], and I(·) = ∞ otherwise.

Exercise 3.1.4 Assume that Y1, . . . , Yn are distributed according to the joint
law Pπ

σ determined by the irreducible stochastic matrix Π. Let the condi-
tional law of {Xk} for each realization {Yk = jk}n

k=1 be the product of the

measures μjk
∈ M1(IRd); i.e., the variables Xk are conditionally indepen-

dent. Suppose that the logarithmic moment generating functions Λj associ-
ated with μj are finite everywhere (for all j ∈ Σ). Consider the empirical mean
Zn = 1

n

∑n
k=1 Xk, and prove that Theorem 3.1.2 holds for Borel measurable

sets Γ with

πλ(i, j)
�
=π(i, j) eΛj(λ), i, j ∈ Σ .



76 3. Applications—The Finite Dimensional Case

3.1.2 Sanov’s Theorem for the Empirical Measure of
Markov Chains

A particularly important application of Theorem 3.1.2 yields the LDP sat-
isfied by the empirical measures LY

n = (LY
n (1), . . . , LY

n (|Σ|)) of Markov
chains. Here, LY

n denotes the vector of frequencies in which the Markov
chain visits the different states, namely,

LY
n (i) =

1
n

n∑

k=1

1i(Yk) , i = 1, . . . , |Σ| .

Suppose that Π is an irreducible matrix, and let μ be the stationary dis-
tribution of the Markov chain, i.e., the unique non negative left eigenvector
of Π whose components sum to 1. The ergodic theorem then implies that
LY

n → μ in probability as n → ∞, at least when Π is aperiodic and the
initial state Y0 is distributed according to μ. It is not hard to check that the
same holds for any irreducible Π and any distribution of the initial state.
Hence, the sequence {LY

n } is a good candidate for an LDP in M1(Σ).

It is clear that LY
n fits into the framework of the previous section if we

take f(y) = (11(y), . . . , 1|Σ|(y)). Therefore, by Theorem 3.1.2, the LDP
holds for {LY

n } with the rate function

I(q) = sup
λ∈IRd

{〈λ, q〉 − log ρ(Πλ) } , (3.1.5)

where πλ(i, j)�=π(i, j) eλj . The following alternative characterization of I(q)
is sometimes more useful.

Theorem 3.1.6

I(q) = J(q)
�
=

⎧
⎪⎨

⎪⎩

sup
u�0

|Σ|∑

j=1

qj log
[

uj

(uΠ)j

]

, q ∈ M1(Σ)

∞ q 
∈ M1(Σ) .

(3.1.7)

Remarks:
(a) If the random variables {Yk} are i.i.d., then the rows of Π are identical,
in which case J(q) is the relative entropy H(q|π(1, ·)). (See Exercise 3.1.8.)
(b) The preceding identity actually also holds for non-stochastic matrices
Π. (See Exercise 3.1.9.)

Proof: Note that for every n and every realization of the Markov chain,
LY

n ∈ M1(Σ), which is a closed subset of IR|Σ|. Hence, the lower bound of
(3.1.3) yields for the open set M1(Σ)c

−∞ = lim inf
n→∞

1
n

log Pπ
σ

(
{LY

n ∈ M1(Σ)c}
)
≥ − inf

q �∈M1(Σ)
I(q) .
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Consequently, I(q) = ∞ for every q 
∈ M1(Σ).

Fix a probability vector q ∈ M1(Σ), a strictly positive vector u � 0,
and for j = 1, . . . , |Σ| set λj = log [uj/(uΠ)j ] . Note that since u � 0 and
Π is irreducible, it follows that uΠ � 0. Observe that uΠλ = u, hence
uΠn

λ = u and thus ρ (Πλ) = 1 by part (e) of the Perron–Frobenius theorem
(with φi = ui > 0). Therefore, by definition,

I(q) ≥
|Σ|∑

j=1

qj log
[

uj

(uΠ)j

]

.

Since u � 0 is arbitrary, this inequality implies that I(q) ≥ J(q).

To establish the reverse inequality, fix an arbitrary vector λ ∈ IR|Σ| and
let u∗ � 0 be a left eigenvector corresponding to the eigenvalue ρ(Πλ) of
the irreducible matrix Πλ. Then, u∗Πλ = ρ(Πλ)u∗, and by the definition
of Πλ,

〈λ, q〉 +
|Σ|∑

j=1

qj log
[ (u∗Π)j

u∗
j

]
=

|Σ|∑

j=1

qj log
[ (u∗Πλ)j

u∗
j

]

=
|Σ|∑

j=1

qj log ρ(Πλ) = log ρ(Πλ) .

Therefore,

〈λ, q〉 − log ρ (Πλ) ≤ sup
u�0

|Σ|∑

j=1

qj log
[ uj

(uΠ)j

]
= J(q).

Since λ is arbitrary, I(q) ≤ J(q) and the proof is complete.

Exercise 3.1.8 Suppose that for every i, j ∈ Σ, π(i, j) = μ(j), where μ ∈
M1(Σ). Show that J(·) = H(·|μ) (the relative entropy with respect to μ),
and that I(·) is the Fenchel–Legendre transform of log[

∑
j eλj μ(j)]. Thus,

Theorem 3.1.6 is a natural extension of Exercise 2.2.36 to the Markov setup.

Exercise 3.1.9 (a) Show that the relation in Theorem 3.1.6 holds for any
nonnegative irreducible matrix B = {b(i, j)} (not necessarily stochastic).
Hint: Let φ(i) =

∑
j b(i, j). Clearly, φ � 0, and the matrix Π with

π(i, j) = b(i, j)/φ(i) is stochastic. Let IB and JB denote the rate functions
I and J associated with the matrix B via (3.1.5) and (3.1.7), respectively.

Now prove that JΠ(q) = JB(q) +
∑

j qj log φ(j) for all q ∈ IR|Σ|, and likewise,



78 3. Applications—The Finite Dimensional Case

IΠ(q) = IB(q) +
∑

j qj log φ(j) .
(b) Show that for any irreducible, nonnegative matrix B,

log ρ(B) = sup
ν∈M1(Σ)

{−JB(ν)} . (3.1.10)

This characterization is useful when looking for bounds on the spectral radius
of nonnegative matrices. (For an alternative characterization of the spectral
radius, see Exercise 3.1.19.)

Exercise 3.1.11 Show that for any nonnegative irreducible matrix B,

J(q) =

⎧
⎪⎨

⎪⎩

sup
u�0

|Σ|∑

j=1

qj log
[

uj
(Bu)j

]
, q ∈ M1(Σ)

∞ q /∈ M1(Σ) .

Hint: Prove that the matrices {b(j, i)eλj} and Bλ have the same eigenvalues,
and use part (a) of Exercise 3.1.9.

3.1.3 Sanov’s Theorem for the Pair Empirical Measure
of Markov Chains

The rate function governing the LDP for the empirical measure of a Markov
chain is still in the form of an optimization problem. Moreover, the elegant
interpretation in terms of relative entropy (recall Section 2.1.1 where the
i.i.d. case is presented) has disappeared. It is interesting to note that by
considering a somewhat different random variable, from which the large
deviations for LY

n may be recovered (see Exercise 3.1.17), an LDP may be
obtained with a rate function that is an appropriate relative entropy.

Consider the space Σ2�=Σ×Σ, which corresponds to consecutive pairs of
elements from the sequence Y. Note that by considering the pairs formed
by Y1, . . . , Yn, i.e., the sequence Y0Y1, Y1Y2, Y2Y3, . . . , YiYi+1, . . . , Yn−1Yn,
where Y0 = σ, a Markov chain is recovered with state space Σ2 and transi-
tion matrix Π(2) specified via

π(2)(k × �, i× j) = 1�(i) π(i, j) . (3.1.12)

For simplicity, it is assumed throughout this section that Π is strictly
positive (i.e., π(i, j) > 0 for all i, j). Then Π(2) is an irreducible transition
matrix, and therefore, the results of Section 3.1.2 may be applied to yield
the rate function I2(q) associated with the large deviations of the pair
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π =
[

2/3 1/3
1/3 2/3

]

, π(2) =

⎡

⎢
⎢
⎣

2/3 1/3 0 0
0 0 1/3 2/3

2/3 1/3 0 0
0 0 1/3 2/3

⎤

⎥
⎥
⎦

Figure 3.1.1: Example of π and π2, |Σ| = 2.

empirical measures

LY
n,2(y)

�
=

1
n

n∑

i=1

1y(Yi−1Yi), y ∈ Σ2 .

Note that LY
n,2 ∈ M1(Σ2) and, therefore, I2(·) is a good, convex rate function

on this space. To characterize I2(·) as an appropriate relative entropy, the
following definitions are needed. For any q ∈ M1(Σ2), let

q1(i)
�
=

|Σ|∑

j=1

q(i, j) and q2(i)
�
=

|Σ|∑

j=1

q(j, i)

be its marginals. Whenever q1(i) > 0, let qf (j|i)�=q(i, j)/q1(i). A probabil-
ity measure q ∈ M1(Σ2) is shift invariant if q1 = q2, i.e., both marginals of
q are identical.

Theorem 3.1.13 Assume that Π is strictly positive. Then for every prob-
ability measure q ∈ M1(Σ2),

I2(q) =
{ ∑

i q1(i)H(qf (·|i) | π(i, ·)) , if q is shift invariant
∞ , otherwise,

(3.1.14)
where H(·|·) is the relative entropy function defined in Section 2.1.1, i.e.,

H(qf (·|i) | π(i, ·)) =
|Σ|∑

j=1

qf (j|i) log
qf (j|i)
π(i, j)

.

Remarks:
(a) When Π is not strictly positive (but is irreducible), the theorem still
applies, with Σ2 replaced by {(i, j) : π(i, j) > 0}, and a similar proof.
(b) The preceding representation of I2(q) is useful in characterizing the
spectral radius of nonnegative matrices. (See Exercise 3.1.19.) It is also
useful because bounds on the relative entropy are readily available and may
be used to obtain bounds on the rate function.
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Proof: By Theorem 3.1.6,

I2(q) = sup
u�0

|Σ|∑

j=1

|Σ|∑

i=1

q(i, j) log
u(i, j)

(uΠ(2))(i, j)

= sup
u�0

|Σ|∑

j=1

|Σ|∑

i=1

q(i, j) log
u(i, j)

[∑
k u(k, i)

]
π(i, j)

, (3.1.15)

where the last equality follows by the definition of Π(2).

Assume first that q is not shift invariant. Then q1(j0) < q2(j0) for some
j0. For u such that u(·, j) = 1 when j 
= j0 and u(·, j0) = eα,

|Σ|∑

j=1

|Σ|∑

i=1

q(i, j) log
u(i, j)

[
∑

k u(k, i)] π(i, j)

=
|Σ|∑

j=1

|Σ|∑

i=1

q(i, j) log
u(1, j)

|Σ|u(1, i)π(i, j)

= −
|Σ|∑

j=1

|Σ|∑

i=1

q(i, j) log {|Σ|π(i, j)}+ α[q2(j0)− q1(j0)] .

Letting α →∞, we find that I2(q) = ∞.

Finally, if q is shift invariant, then for every u � 0,

|Σ|∑

i=1

|Σ|∑

j=1

q(i, j) log
∑

k u(k, i)q2(j)∑
k u(k, j) q1(i)

= 0 . (3.1.16)

Let u(i|j) = u(i, j)/
∑

k u(k, j) and qb(i|j)
�
=q(i, j)/q2(j) =q(i, j)/q1(j) (as

q is shift invariant). By (3.1.15) and (3.1.16),

I2(q)−
|Σ|∑

i=1

q1(i)H(qf (·|i) | π(i, ·))

= sup
u�0

|Σ|∑

i=1

|Σ|∑

j=1

q(i, j) log
u(i, j)q1(i)

[
∑

k u(k, i)]q(i, j)

= sup
u�0

|Σ|∑

i=1

|Σ|∑

j=1

q(i, j) log
u(i|j)
qb(i|j)

= sup
u�0

{
−

|Σ|∑

j=1

q2(j)H(qb(·|j) | u(·|j))
}

.
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Note that always I2(q) ≤
∑

i q1(i)H(qf (·|i) |π(i, ·)) because H(·|·) is a
nonnegative function, whereas if q � 0, then the choice u = q yields equal-
ity in the preceding. The proof is completed for q, which is not strictly
positive, by considering a sequence un � 0 such that un → q (so that
q2(j)H(qb(·|j) | un(·|j)) → 0 for each j).

Exercise 3.1.17 Prove that for any strictly positive stochastic matrix Π

J(ν) = inf
{q:q2=ν}

I2(q) , (3.1.18)

where J(·) is the rate function defined in (3.1.7), while I2(·) is as specified in
Theorem 3.1.13.
Hint: There is no need to prove the preceding identity directly. Instead, for
Y0 = σ, observe that LY

n ∈ A iff LY
n,2 ∈ {q : q2 ∈ A}. Since the projection of

any measure q ∈ M1(Σ2) to its marginal q2 is continuous and I2(·) controls the
LDP of LY

n,2, deduce that the right side of (3.1.18) is a rate function governing

the LDP of LY
n . Conclude by proving the uniqueness of such a function.

Exercise 3.1.19 (a) Extend the validity of the identity (3.1.18) to any irre-
ducible nonnegative matrix B.

Hint: Consider the remark following Theorem 3.1.13 and the transformation
B �→ Π used in Exercise 3.1.9.
(b) Deduce by applying the identities (3.1.10) and (3.1.18) that for any non-
negative irreducible matrix B,

− log ρ(B) = inf
q∈M1(ΣB)

I2(q)

= inf
q∈M1(ΣB), q1=q2

∑

(i,j)∈ΣB

q(i, j) log
qf (j|i)
b(i, j)

,

where ΣB = {(i, j) : b(i, j) > 0}.
Remark: This is Varadhan’s characterization of the spectral radius of non-
negative irreducible matrices.

Exercise 3.1.20 Suppose that Y1, . . . , Yn, . . . are Σ-valued i.i.d. random vari-
ables, with p(j) denoting the probability that Y = j for j = 1, 2, . . . , |Σ|. A
typical k-scan process is defined via Xi = f1(Yi) + · · · + fk(Yi+k−1), where
i ∈ ZZ+ and f�, � = 1, . . . , k, are deterministic real valued functions. The LDP
of the empirical measures LY

n,k of the k-tuples (Y1Y2 · · ·Yk), (Y2Y3 · · ·Yk+1),
. . . , (YnYn+1 · · ·Yn+k) is instrumental for the large deviations of these pro-
cesses as n →∞ (while k is fixed).
(a) Show that the rate function governing the LDP of LY

n,2 is

I2(q) =

{ ∑|Σ|
i=1

∑|Σ|
j=1 q(i, j) log qf (j|i)

p(j) , q shift invariant

∞ , otherwise.
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(b) Show that the rate function governing the LDP of LY
n,k is

Ik(q) =

⎧
⎨

⎩

∑|Σ|
j1=1 · · ·

∑|Σ|
jk=1 q(j1, . . . , jk) log qf (jk|j1,...,jk−1)

p(jk) ,

q shift invariant
∞ , otherwise,

where q ∈ M1(Σk) is shift invariant if
∑

i

q(i, j1, . . . , jk−1) =
∑

i

q(j1, . . . , jk−1, i).

Exercise 3.1.21 (a) Prove that for any sequence y = (y1, . . . , yn) ∈ Σn of
nonzero Pπ

σ probability,

1
n

log Pπ
σ (Y1 = y1, . . . , Yn = yn) =

|Σ|∑

i=1

|Σ|∑

j=1

Ly
n,2(i, j) log π(i, j) .

(b) Let

Ln
�
={q : q =Ly

n,2, P
π
σ (Y1 = y1, . . . , Yn = yn) > 0 for some y ∈ Σn}

be the set of possible types of pairs of states of the Markov chain. Prove that Ln

can be identified with a subset of M1(ΣΠ), where ΣΠ = {(i, j) : π(i, j) > 0},
and that |Ln| ≤ (n + 1)|Σ|2 .
(c) Let Tn(q) be the type class of q ∈ Ln, namely, the set of sequences y of pos-
itive Pπ

σ probability for which Ly
n,2 = q, and let H(q)�=−

∑
i,j q(i, j) log qf (j|i).

Suppose that for any q ∈ Ln,

(n + 1)−(|Σ|2+|Σ|)enH(q) ≤ |Tn(q)| ≤ enH(q) , (3.1.22)

and moreover that for all q ∈ M1(ΣΠ),

lim
n→∞

dV (q,Ln) = 0 iff q is shift invariant . (3.1.23)

Prove by adapting the method of types of Section 2.1.1 that LY
n,2 satisfies the

LDP with the rate function I2(·) specified in (3.1.14).

Remark: Using Stirling’s formula, the estimates (3.1.22) and (3.1.23) are
consequences of a somewhat involved combinatorial estimate of |Tn(q)|. (See,
for example, [CsCC87], Eqs. (35)–(37), Lemma 3, and the references therein.)

3.2 Long Rare Segments in Random Walks

Consider the random walk S0 = 0, Sk =
∑k

i=1 Xi, k = 1, 2, . . ., where Xi

are i.i.d. random variables taking values in IRd. Let Rm be segments of
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maximal length of the random walk up to time m whose empirical mean
belongs to a measurable set A ⊂ IRd, i.e.,

Rm
�
= max

{

�− k : 0 ≤ k < � ≤ m,
S� − Sk

�− k
∈ A

}

.

Associated with {Rm} are the stopping times

Tr
�
= inf

{

� :
S� − Sk

�− k
∈ A for some 0 ≤ k ≤ �− r

}

,

so that {Rm ≥ r} if and only if {Tr ≤ m}.

Figure 3.2.1: Maximal length segments.

The random variables Rm and Tr appear in comparative analysis of
DNA sequences and in the analysis of computer search algorithms. The
following theorem gives estimates on the asymptotics of Rm (and Tr) as
m → ∞ (r → ∞, respectively). For some applications and refinements of
these estimates, see [ArGW90] and the exercises at the end of this section.

Theorem 3.2.1 Suppose A is such that the limit

IA
�
=− lim

n→∞

1
n

log μn(A) (3.2.2)

exists, where μn is the law of Ŝn = 1
n Sn. Then, almost surely,

lim
m→∞

(Rm/ log m) = lim
r→∞

(r/ log Tr) = 1/IA.

Remark: The condition (3.2.2) is typically established as a result of a
LDP. For example, if Λ(·), the logarithmic moment generating function of
X1, is finite everywhere, then by Cramér’s theorem, condition (3.2.2) holds
whenever

IA = inf
x∈A

Λ∗(x) = inf
x∈Ao

Λ∗(x) . (3.2.3)
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Examples for which (3.2.2) holds are presented in Exercises 3.2.5 and 3.2.6.

Proof of Theorem 3.2.1: First, the left tail of the distribution of Tr is
bounded by the inclusion of events

{Tr ≤ m} ⊂
m−r⋃

k=0

m⋃

�=k+r

Ck,� ⊂
m−1⋃

k=0

∞⋃

�=k+r

Ck,� ,

where

Ck,�
�
=
{

S� − Sk

�− k
∈ A

}

.

There are m possible choices of k in the preceding inclusion, while P (Ck,�) =
μ�−k(A) and �− k ≥ r. Hence, by the union of events bound,

P(Tr ≤ m) ≤ m

∞∑

n=r

μn(A) .

Suppose first that 0 < IA < ∞. Taking m = �er(IA−ε)�, and using (3.2.2),

∞∑

r=1

P (Tr ≤ er(IA−ε)) ≤
∞∑

r=1

er(IA−ε)
∞∑

n=r

ce−n(IA−ε/2)

≤ c′
∞∑

r=1

e−rε/2 < ∞

for every ε > 0 and some positive constants c, c′ (possibly ε dependent).
When IA = ∞, the same argument with m = �er/ε� implies that

∞∑

r=1

P (Tr ≤ er/ε) < ∞ for all ε > 0 .

By the Borel–Cantelli lemma, these estimates result in

lim inf
r→∞

1
r

log Tr ≥ IA almost surely .

Using the duality of events {Rm ≥ r} ≡ {Tr ≤ m}, it then follows that

lim sup
m→∞

Rm

log m
≤ 1

IA
almost surely .

Note that for IA = ∞, the proof of the theorem is complete. To establish the
opposite inequality (when IA < ∞), the right tail of the distribution of Tr

needs to be bounded. Let B�
�
=
{

1
r (S�r − S(�−1)r) ∈ A

}
. Note that {B�}∞�=1
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are independent events (related to disjoint segments of the random walk) of
equal probabilities P(B�) = μr(A). Therefore, the inclusion

�m/r�⋃

�=1

B� ⊂ {Tr ≤ m}

yields

P(Tr > m) ≤ 1− P

(
�m/r�⋃

�=1

B�

)

= (1− P(B1))�m/r�

≤ e−�m/r�P(B1) = e−�m/r�μr(A) .

Combining this inequality (for m = �er(IA+ε)�) with (3.2.2), it follows that
for every ε > 0,

∞∑

r=1

P (Tr > er(IA+ε)) ≤
∞∑

r=1

exp
(
−c1

r
er(IA+ε)e−r(IA+ε/2)

)

≤
∞∑

r=1

exp(−c2e
c3r) < ∞ ,

where c1, c2, c3 are some positive constants (which may depend on ε). By
the Borel–Cantelli lemma and the duality of events {Rm < r} ≡ {Tr > m},

lim inf
m→∞

Rm

log m
= lim inf

r→∞

r

log Tr
≥ 1

IA
almost surely ,

and the proof of the theorem is complete.

Exercise 3.2.4 Suppose that IA < ∞ and that the identity (3.2.2) may be
refined to

lim
r→∞

[μr(A)rd/2erIA ] = a

for some a ∈ (0,∞). (Such an example is presented in Section 3.7 for d = 1.)
Let

R̂m
�
=

IARm − log m

log log m
+

d

2
.

(a) Prove that lim sup
m→∞

|R̂m| ≤ 1 almost surely.

(b) Deduce that lim
m→∞

P(R̂m ≥ ε) = 0 for all ε > 0.
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Exercise 3.2.5 (a) Consider a sequence X1, . . . , Xm of i.i.d. random vari-
ables taking values in a finite alphabet Σ, distributed according to the strictly
positive marginal law μ. Let Rm be the maximal length segment of this se-
quence up to time m, whose empirical measure is in the non-empty, open set
Γ ⊂ M1(Σ). Apply Theorem 3.2.1 to this situation.
(b) Assume further that Γ is convex. Let ν∗ be the unique minimizer of H(·|μ)
in Γ. Prove that as m → ∞, the empirical measures associated with the seg-
ments contributing to Rm converge almost surely to ν∗.

Hint: Let R
(δ)
m denote the maximal length segment up to time m whose

empirical measure is in the set {μ : μ ∈ Γ, dV (μ, ν∗) > δ}. Prove that

lim sup
m→∞

R
(δ)
m

Rm
< 1 , almost surely.

Exercise 3.2.6 Prove that Theorem 3.2.1 holds when X1, . . . , Xn and Y1,
. . . , Yn are as in Exercise 3.1.4. Specifically, Yk are the states of a Markov chain
on the finite set {1, 2, . . . , |Σ|} with an irreducible transition matrix Π, and the
conditional law of Xk when Yk = j is μj ∈ M1(IRd); the random variables
{Xk} are independent given any realization of the Markov chain states, and
the logarithmic moment generating functions Λj associated with μj are finite
everywhere.

Remark: Here, Λ∗(·) of (3.2.3) is replaced by the Fenchel–Legendre transform
of log ρ(Πλ), where πλ(i, j)�=π(i, j) eΛj(λ).

Exercise 3.2.7 Consider the i.i.d. random variables {Ỹj}, {Yj} all distributed

following μ̃ ∈ M1(Σ̃) for Σ̃ a finite set. Let Σ = Σ̃2 and μ = μ̃2 ∈ M1(Σ).
For any integers s, r ≥ 0 let LT sỹ,T ry

k denote the empirical measure of the
sequence ((ỹs+1, yr+1), . . . , (ỹs+k, yr+k)).
(a) Using Lemma 2.1.9 show that for any ν ∈ Lk, k ∈ {1, . . . , n},

P (
⋃

s,r≤n−k

{LT sỸ,T rY
k = ν}) ≤ n2e−kH(ν|μ) .

(b) Fix f : Σ → IR such that E(f(Ỹ1, Y1)) < 0 and P (f(Ỹ1, Y1) > 0) > 0.
Consider

Mn = max
k,0≤s,r≤n−k

k∑

j=1

f(Ỹs+j , Yr+j) .

Prove that almost surely,

lim sup
n→∞

Mn

log n
≤ sup

ν∈M1(Σ)

2
∫

fdν

H(ν|μ)
.

Hint: Apply (2.2.12) for Xj = f(Ỹj , Yj) and x = 0 > x̄ to show that
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k ≥ (5/Λ∗(0)) log n is negligible when considering Mn. Use (a) to bound
the contribution of each k ≤ (5/Λ∗(0)) log n. Then, apply the Borel-Cantelli
lemma along the skeleton nk = �ek� and conclude the proof using the mono-
tonicity of n �→ Mn.

3.3 The Gibbs Conditioning Principle for
Finite Alphabets

Let Y1, Y2, . . . , Yn be a sequence of i.i.d. random variables with strictly pos-
itive law μ on the finite alphabet Σ. Let Xk = f(Yk) for some deterministic
f : Σ → IR. The following question is of fundamental importance in statis-
tical mechanics. Given a set A ∈ IR and a constraint of the type Ŝn ∈ A,
what is the conditional law of Y1 when n is large? In other words, what are
the limit points, as n →∞, of the conditional probability vector

μ∗
n(ai)

�
=Pμ(Y1 = ai | Ŝn ∈ A) , i = 1, . . . , |Σ| .

Recall that Ŝn
�
=

1
n

∑n
j=1 Xj = 〈f , LY

n 〉, where f = (f(a1), . . . , f(a|Σ|)),
and note that under the conditioning Ŝn ∈ A, Yj are identically distributed,
although not independent. Therefore, for every function φ : Σ → IR,

〈φ, μ∗
n〉 = E[φ(Y1) | Ŝn ∈ A] = E[φ(Y2) | Ŝn ∈ A]

= E[
1
n

n∑

j=1

φ(Yj) | Ŝn ∈ A] = E[〈φ,LY
n 〉 | 〈f , LY

n 〉 ∈ A] ,

where φ = (φ(a1), . . . , φ(a|Σ|)). Hence, with Γ�
={ν : 〈f , ν〉 ∈ A},

μ∗
n = E[LY

n | LY
n ∈ Γ] . (3.3.1)

Using this identity, the following characterization of the limit points of {μ∗
n}

applies to any non-empty set Γ for which

IΓ
�
= inf

ν∈Γo
H(ν|μ) = inf

ν∈Γ
H(ν|μ) . (3.3.2)

Theorem 3.3.3 (Gibbs’s principle) Let

M�
={ν ∈ Γ : H(ν|μ) = IΓ} . (3.3.4)

(a) All the limit points of {μ∗
n} belong to co(M)—the closure of the convex

hull of M.
(b) When Γ is a convex set of non-empty interior, the set M consists of a
single point to which μ∗

n converge as n →∞.
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Remarks:
(a) For conditions on Γ (alternatively, on A) under which (3.3.2) holds, see
Exercises 2.1.16–2.1.19.
(b) Since M is compact, it always holds true that co(M) = co(M).
(c) To see why the limit distribution may be in co(M) and not just in M,
let {Yi} be i.i.d. Bernoulli(1

2 ), let Xi = Yi, and take Γ = [0, α] ∪ [1 − α, 1]
for some small α > 0. It is easy to see that while M consists of the
probability distributions {Bernoulli(α), Bernoulli(1 − α)}, the symmetry
of the problem implies that the only possible limit point of {μ∗

n} is the
probability distribution Bernoulli(1

2 ).

Proof: Since |Σ| < ∞, Γ is a compact set and thus M is non-empty.
Moreover, part (b) of the theorem follows from part (a) by Exercise 2.1.19
and the compactness of M1(Σ). Next, for every U ⊂ M1(Σ),

E[LY
n | LY

n ∈ Γ]− E[LY
n | LY

n ∈ U ∩ Γ]
= Pμ(LY

n ∈ U c |LY
n ∈ Γ)

{
E[LY

n | LY
n ∈ U c ∩ Γ]− E[LY

n | LY
n ∈ U ∩ Γ]

}
.

Since E[LY
n | LY

n ∈ U ∩ Γ] belongs to co(U), while μ∗
n = E[LY

n | LY
n ∈ Γ], it

follows that

dV (μ∗
n, co(U))

≤ Pμ(LY
n ∈ U c |LY

n ∈ Γ)dV

(
E[LY

n | LY
n ∈ U c ∩ Γ], E[LY

n | LY
n ∈ U ∩ Γ]

)

≤ Pμ(LY
n ∈ U c |LY

n ∈ Γ), (3.3.5)

where the last inequality is due to the bound dV (·, ·) ≤ 1. With Mδ�
={ν :

dV (ν,M) < δ}, it is proved shortly that for every δ > 0,

lim
n→∞

Pμ(LY
n ∈Mδ |LY

n ∈ Γ) = 1 , (3.3.6)

with an exponential (in n) rate of convergence. Consequently, (3.3.5) ap-
plied to U = Mδ results in dV (μ∗

n, co(Mδ)) → 0. Since dV is a convex
function on M1(Σ)×M1(Σ), each point in co(Mδ) is within variational dis-
tance δ of some point in co(M). With δ > 0 being arbitrarily small, limit
points of μ∗

n are necessarily in the closure of co(M).

To prove (3.3.6), apply Sanov’s theorem (Theorem 2.1.10) and (3.3.2)
to obtain

IΓ = − lim
n→∞

1
n

log Pμ(LY
n ∈ Γ) (3.3.7)

and

lim sup
n→∞

1
n

log Pμ(LY
n ∈ (Mδ)c ∩ Γ) ≤ − inf

ν∈(Mδ)c∩Γ
H(ν|μ)

≤ − inf
ν∈(Mδ)c∩Γ

H(ν|μ) . (3.3.8)
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Observe that Mδ are open sets and, therefore, (Mδ)c ∩Γ are compact sets.
Thus, for some ν̃ ∈ (Mδ)c ∩ Γ,

inf
ν∈(Mδ)c∩Γ

H(ν|μ) = H(ν̃ |μ) > IΓ . (3.3.9)

Now, (3.3.6) follows from (3.3.7)–(3.3.9) because

lim sup
n→∞

1
n

log Pμ(LY
n ∈ (Mδ)c |LY

n ∈ Γ)

= lim sup
n→∞

{
1
n

log Pμ(LY
n ∈ (Mδ)c ∩ Γ)− 1

n
log Pμ(LY

n ∈ Γ)
}

< 0.

Remarks:
(a) Intuitively, one expects Y1, . . . , Yk to be asymptotically independent (as
n →∞) for any fixed k, when the conditioning event is {LY

n ∈ Γ}. This is
indeed shown in Exercise 3.3.12 by considering “super-symbols” from the
enlarged alphabet Σk.
(b) The preceding theorem holds whenever the set Γ satisfies (3.3.2). The
particular conditioning set {ν : 〈f , ν〉 ∈ A} has an important significance
in statistical mechanics because it represents an energy-like constraint.
(c) Recall that by the discussion preceding (2.1.27), if A is a non-empty,
convex, open subset of K, the interval supporting {f(ai)}, then the unique
limit of μ∗

n is of the form

νλ(ai) = μ(ai)eλf(ai)−Λ(λ)

for some appropriately chosen λ ∈ IR, which is called the Gibbs parameter
associated with A. In particular, for any x ∈ Ko, the Gibbs parameter
associated with the set (x − δ, x + δ) converges as δ → 0 to the unique
solution of the equation Λ′(λ) = x.
(d) A Gibbs conditioning principle holds beyond the i.i.d. case. All that
is needed is that Yi are exchangeable conditionally upon any given value of
LY

n (so that (3.3.1) holds). For such an example, consider Exercise 3.3.11.

Exercise 3.3.10 Using Lemma 2.1.9, prove Gibbs’s principle (Theorem 3.3.3)
by the method of types.

Exercise 3.3.11 Prove the Gibbs conditioning principle for sampling without
replacement, i.e., under the assumptions of Section 2.1.3.
(a) Observe that Yj again are identically distributed even under conditioning
on their empirical measures. Conclude that (3.3.1) holds.
(b) Assume that Γ is such that

IΓ = inf
ν∈Γo

I(ν|β, μ) = inf
ν∈Γ

I(ν|β, μ) < ∞ .
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Define M�
={ν ∈ Γ : I(ν|β, μ) = IΓ}, and prove that both parts of Theorem

3.3.3 hold. (For part (b), you may rely on Exercise 2.1.48.)

Exercise 3.3.12 (a) Suppose that Σ = (Σ′)k and μ = (μ′)k are, respectively,
a kth product alphabet and a kth product probability measure on it, and assume
that μ′ is strictly positive on Σ′. For any law ν ∈ M1(Σ) and j ∈ {1, . . . , k},
let ν(j) ∈ M1(Σ′), denote the jth marginal of ν on Σ′. Prove that

1
k

H(ν |μ) ≥ 1
k

k∑

j=1

H(ν(j) |μ′) ≥ H(
1
k

k∑

j=1

ν(j) |μ′) ,

with equality if and only if ν = (ν′)k for some ν′ ∈ M1(Σ′).
(b) Assume that

Γ
�
={ν :

1
k

k∑

j=1

ν(j) ∈ Γ′} (3.3.13)

for some Γ′ ⊂ M1(Σ′), which satisfies (3.3.2) with respect to μ′. Let M′ =
{ν′ ∈ Γ

′
: H(ν′|μ′) = IΓ′} and prove that M = {ν : ν = (ν′)k, ν′ ∈M′}.

(c) Consider the kth joint conditional law

μ∗
n(a′

i1 , . . . , a
′
ik

)
�
=Pμ′(Y1 = a′

i1 , . . . , Yk = a′
ik
|LY

n ∈ Γ′) ,

where Yi are i.i.d. with marginal law μ′ ∈ M1(Σ′) and Γ′ ⊂ M1(Σ′) satisfies
(3.3.2), with M′ being a single point. Let μ = (μ′)k be the law of Xi =
(Yk(i−1)+1, . . . , Yki) on a new alphabet Σ. Prove that for any n ∈ ZZ+,

μ∗
nk(ai) = Pμ(X1 = ai |LX

n ∈ Γ) , ∀ ai ∈ Σ ,

where Γ is defined in (3.3.13). Deduce that any limit point of μ∗
nk is a kth

product of an element of M1(Σ′). Hence, as n →∞ along integer multiples of
k, the random variables Yi, i = 1, . . . , k are asymptotically conditionally i.i.d.
(d) Prove that the preceding conclusion extends to n which need not be integer
multiples of k.

3.4 The Hypothesis Testing Problem

Let Y1, . . . , Yn be a sequence of random variables. The hypothesis testing
problem consists of deciding, based on the sequence Y1, . . . , Yn, whether the
law generating the sequence is Pμ0 or Pμ1 . We concentrate on the simplest
situation, where both Pμ0 and Pμ1 are product measures, postponing the
discussion of Markov chains to Exercise 3.4.18.

In mathematical terms, the problem is expressed as follows. Let Y1,
. . . , Yn be distributed either according to the law μn

0 (hypothesis H0) or
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according to μn
1 (hypothesis H1), where μn

i denotes the product measure of
μi ∈ M1(Σ). The alphabet Σ may in general be quite arbitrary, provided
that the probability measures μn

0 and μn
1 and the random variables used in

the sequel are well-defined.

Definition 3.4.1 A decision test S is a sequence of measurable (with re-
spect to the product σ-field) maps Sn : Σn → {0, 1}, with the interpre-
tation that when Y1 = y1, . . . , Yn = yn is observed, then H0 is accepted
(H1 rejected) if Sn(y1, . . . , yn) = 0, while H1 is accepted (H0 rejected) if
Sn(y1, . . . , yn) = 1.

The performance of a decision test S is determined by the error probabilities

αn
�
=Pμ0(Sn rejects H0), βn

�
=Pμ1(Sn rejects H1).

The aim is to minimize βn. If no constraint is put on αn, one may obtain
βn = 0 using the test Sn(y1, . . . , yn) ≡ 1 at the cost of αn = 1. Thus, a sen-
sible criterion for optimality, originally suggested by Neyman and Pearson,
is to seek a test that minimizes βn subject to a constraint on αn. Suppose
now that the probability measures μ0, μ1 are known a priori and that they
are equivalent measures, so the likelihood ratios L0||1(y) = dμ0/dμ1(y) and
L1||0(y) = dμ1/dμ0(y) exist. (Some extensions for μ0, μ1 which are not
mutually absolutely continuous, are given in Exercise 3.4.17.) This assump-
tion is valid, for example, when μ0, μ1 are discrete measures of the same
support, or when Σ = IRd and both μ0 and μ1 possess strictly positive den-
sities. In order to avoid trivialities, it is further assumed that μ0 and μ1 are
distinguishable, i.e., they differ on a set whose probability is positive.

Let Xj
�
= log L1||0(Yj) = − log L0||1(Yj) be the observed log-likelihood

ratios. These are i.i.d. real valued random variables that are nonzero with
positive probability. Moreover,

x0
�
=Eμ0 [X1] = Eμ1 [X1e

−X1 ]

exists (with possibly x0 = −∞) as xe−x ≤ 1. Similarly,

x1
�
=Eμ1 [X1] = Eμ0 [X1e

X1 ] > Eμ0 [X1] = x0

exists (with possibly x1 = ∞), and the preceding inequality is strict, since
X1 is nonzero with positive probability. In Exercise 3.4.14, x0 and x1 are
both characterized in terms of relative entropy.

Definition 3.4.2 A Neyman–Pearson test is a test in which for any n ∈
ZZ+, the normalized observed log-likelihood ratio

Ŝn
�
=

1
n

n∑

j=1

Xj
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is compared to a threshold γn and H1 is accepted (rejected) when Ŝn > γn

(respectively, Ŝn ≤ γn).

It is well-known that Neyman–Pearson tests are optimal in the sense
that there are neither tests with the same value of αn and a smaller value
of βn nor tests with the same value of βn and a smaller value of αn. (See,
for example, [CT91] and [Leh59] for simple proofs of this claim.)

The exponential rates of αn and βn for Neyman–Pearson tests with
constant thresholds γ ∈ (x0, x1) are thus of particular interest. These may
be cast in terms of the large deviations of Ŝn. In particular, since Xj are i.i.d.
real valued random variables, the following theorem is a direct application
of Corollary 2.2.19.

Theorem 3.4.3 The Neyman–Pearson test with the constant threshold γ ∈
(x0, x1) satisfies

lim
n→∞

1
n

log αn = −Λ∗
0(γ) < 0 (3.4.4)

and
lim

n→∞

1
n

log βn = γ − Λ∗
0(γ) < 0 , (3.4.5)

where Λ∗
0(·) is the Fenchel–Legendre transform of Λ0(λ)�= log Eμ0 [eλX1 ].

Proof: Note that
αn = Pμ0(Ŝn ∈ (γ,∞)) .

Moreover, by dominated and monotone convergence,

x0 = lim
λ↘0

Λ′
0(λ), x1 = lim

λ↗1
Λ′

0(λ) .

Hence, x0 < γ = Λ′
0(η) for some η ∈ (0, 1), and the limit (3.4.4) follows by

part (b) of Exercise 2.2.25.

By the definition of Xj , the logarithmic moment generating function
associated with μ1 is Λ0(λ + 1). Hence, when H1 holds, Ŝn satisfies the
LDP with the rate function Λ∗

1(x) = Λ∗
0(x) − x . Since γ ∈ (−∞, x1), it

follows by Corollary 2.2.19 and the monotonicity of Λ∗
1(·) on (−∞, x1) that

lim
n→∞

1
n

log βn = lim
n→∞

1
n

log Pμ1(Ŝn ∈ (−∞, γ]) = −Λ∗
1(γ) ,

and consequently (3.4.5) results.

Remark: For a refinement of the above see Exercise 3.7.12.

A corollary of the preceding theorem is Chernoff’s asymptotic bound on
the best achievable Bayes probability of error,

P (e)
n

�
= αnP(H0) + βnP(H1) .
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Corollary 3.4.6 (Chernoff’s bound) If 0 < P(H0) < 1, then

inf
S

lim inf
n→∞

{ 1
n

log P (e)
n } = −Λ∗

0(0) ,

where the infimum is over all decision tests.

Figure 3.4.1: Geometrical interpretation of Λ0 and Λ∗
0.

Remarks:
(a) Note that by Jensen’s inequality, x0 < log Eμ0 [e

X1 ] = 0 and x1 >
− log Eμ1 [e

−X1 ] = 0, and these inequalities are strict, since X1 is nonzero
with positive probability. Theorem 3.4.3 and Corollary 3.4.6 thus imply that
the best Bayes exponential error rate is achieved by a Neyman–Pearson test
with zero threshold.
(b) Λ∗

0(0) is called Chernoff’s information of the measures μ0 and μ1.

Proof: It suffices to consider only Neyman–Pearson tests. Let α∗
n and β∗

n

be the error probabilities for the zero threshold Neyman–Pearson test. For
any other Neyman–Pearson test, either αn ≥ α∗

n (when γn ≤ 0) or βn ≥ β∗
n

(when γn ≥ 0). Thus, for any test,

1
n

log P (e)
n ≥ 1

n
log [min{P(H0) , P(H1)}] + min{ 1

n
log α∗

n ,
1
n

log β∗
n} .

Hence, as 0 < P(H0) < 1,

inf
S

lim inf
n→∞

1
n

log P (e)
n ≥ lim inf

n→∞
min{ 1

n
log α∗

n ,
1
n

log β∗
n} .

By (3.4.4) and (3.4.5),

lim
n→∞

1
n

log α∗
n = lim

n→∞

1
n

log β∗
n = −Λ∗

0(0) .
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Consequently,

lim inf
n→∞

1
n

log P (e)
n ≥ −Λ∗

0(0) ,

with equality for the zero threshold Neyman–Pearson test.

Another related result is the following lemma, which determines the best
exponential rate for βn when αn are bounded away from 1.

Lemma 3.4.7 (Stein’s lemma) Let βε
n be the infimum of βn among all

tests with αn < ε. Then, for any ε < 1,

lim
n→∞

1
n

log βε
n = x0 .

Proof: It suffices to consider only Neyman–Pearson tests. Then

αn = Pμ0(Ŝn > γn)

and

βn = Pμ1(Ŝn ≤ γn) = Eμ1 [1Ŝn≤γn
] = Eμ0 [1Ŝn≤γn

enŜn ] , (3.4.8)

where the last equality follows, since by definition Xj are the observed
log-likelihood ratios. This identity yields the upper bound

1
n

log βn =
1
n

log Eμ0 [1Ŝn≤γn
enŜn ] ≤ γn . (3.4.9)

Suppose first that x0 = −∞. Then, by Theorem 3.4.3, for any Neyman–
Pearson test with a fixed threshold γ, eventually αn < ε. Thus, by the
preceding bound, n−1 log βε

n ≤ γ for all γ and all n large enough, and the
proof of the lemma is complete.
Next, assume that x0 > −∞. It may be assumed that

lim inf
n→∞

γn ≥ x0 ,

for otherwise, by the weak law of large numbers, lim supn→∞ αn = 1. Con-
sequently, if αn < ε, the weak law of large numbers implies

lim inf
n→∞

Pμ0(Ŝn ∈ [x0 − η , γn]) ≥ 1− ε for all η > 0 . (3.4.10)

Hence, by the identity (3.4.8),

1
n

log βn ≥ 1
n

log Eμ0

[
1Ŝn∈[x0−η , γn]e

nŜn
]

≥ x0 − η +
1
n

log Pμ0(Ŝn ∈ [x0 − η , γn]) . (3.4.11)
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Combining (3.4.10) and (3.4.11), the optimality of the Neyman–Pearson
tests yields

lim inf
n→∞

1
n

log βε
n ≥ x0 − η for all η > 0 . (3.4.12)

By Theorem 3.4.3, eventually αn < ε for any Neyman–Pearson test with a
fixed threshold γ > x0. Hence, by (3.4.9),

lim sup
n→∞

1
n

log βε
n ≤ x0 + η

for all η > 0 and all ε > 0. The conclusion is a consequence of this bound
coupled with the lower bound (3.4.12) and the arbitrariness of η.

Exercise 3.4.13 Prove that in Theorem 3.4.3,

Λ∗
0(γ) = sup

λ∈[0,1]

{λγ − Λ0(λ)} .

Exercise 3.4.14 Suppose that Y1, . . . , Yn are i.i.d. random variables taking
values in the finite set Σ�

={a1, . . . , a|Σ|}, and μ0, μ1 are strictly positive on Σ.
(a) Prove that x1 = H(μ1|μ0) < ∞ and x0 = −H(μ0|μ1) > −∞, where
H(·|·) is the relative entropy defined in Section 2.1.
(b) For η ∈ [0, 1], define the probability measures

μη(aj)
�
=

μ1(aj)ημ0(aj)1−η

∑|Σ|
k=1 μ1(ak)ημ0(ak)1−η

j = 1, . . . , |Σ| .

For γ = H(μη|μ0)−H(μη|μ1), prove that Λ∗
0(γ) = H(μη|μ0).

Exercise 3.4.15 Consider the situation of Exercise 3.4.14.
(a) Define the conditional probability vectors

μ∗
n(aj)

�
=Pμ0(Y1 = aj |H0 rejected by Sn), j = 1, . . . , |Σ| , (3.4.16)

where S is a Neyman–Pearson test with fixed threshold γ = H(μη|μ0) −
H(μη|μ1), and η ∈ (0, 1). Use Theorem 3.3.3 to deduce that μ∗

n → μη.
(b) Consider now the kth joint conditional law

μ∗
n(aj1 , . . . , ajk

)
�
=Pμ0(Y1 = aj1 , . . . , Yk = ajk

|H0 rejected by Sn),

aj�
∈ Σ , � = 1, . . . , k .

Apply Exercise 3.3.12 in order to deduce that for every fixed k,

lim
n→∞

μ∗
n(aj1 , . . . , ajk

) = μη(aj1)μη(aj2) · · ·μη(ajk
) .
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Exercise 3.4.17 Suppose that L1||0(y) = dμ1/dμ0(y) does not exist, while
L0||1(y) = dμ0/dμ1(y) does exist. Prove that Stein’s lemma holds true when-

ever x0
�
=−Eμ0 [log L0||1(Y1)] > −∞.

Hint: Split μ1 into its singular part with respect to μ0 and its restriction to
the support of the measure μ0.

Exercise 3.4.18 Suppose that Y1, . . . , Yn is a realization of a Markov chain
taking values in the finite set Σ = {1, 2, . . . , |Σ|}, where the initial state of the
chain Y0 is known a priori to be some σ ∈ Σ. The transition matrix under
hypothesis H0 is Π0, while under hypothesis H1 it is Π1, both of which are
irreducible matrices with the same set of nonzero values. Here, the Neyman–

Pearson tests are based upon Xj
�
= log π1(Yj−1,Yj)

π0(Yj−1,Yj)
. Derive the analogs of The-

orem 3.4.3 and of Stein’s lemma by using the results of Section 3.1.3.

3.5 Generalized Likelihood Ratio Test for
Finite Alphabets

This section is devoted to yet another version of the hypothesis testing
problem presented in Section 3.4. The concept of decision test and the
associated error probabilities are taken to be as defined there. While the
law μ0 is again assumed to be known a priori, here μ1, the law of Yj under
the hypothesis H1, is unknown. For that reason, neither the methods nor
the results of Section 3.4 apply. Moreover, the error criterion has to be
modified, since the requirement of uniformly small βn over a large class
of plausible laws μ1 may be too strong and it may be that no test can
satisfy such a condition. It is reasonable therefore to search for a criterion
that involves asymptotic limits. The following criterion for finite alphabets
Σ = {a1, . . . , a|Σ|} was suggested by Hoeffding.

Definition 3.5.1 A test S is optimal (for a given η > 0) if, among all tests
that satisfy

lim sup
n→∞

1
n

log αn ≤ −η , (3.5.2)

the test S has maximal exponential rate of error, i.e., uniformly over all
possible laws μ1, − lim supn→∞ n−1 log βn is maximal.

The following lemma states that it suffices to consider functions of the
empirical measure when trying to construct an optimal test (i.e., the em-
pirical measure is a sufficient statistic).
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Lemma 3.5.3 For every test S with error probabilities {αn, βn}∞n=1, there
exists a test S̃ of the form S̃n(y) = S̃(Ly

n, n) whose error probabilities
{α̃n, β̃n}∞n=1 satisfy

lim sup
n→∞

1
n

log α̃n ≤ lim sup
n→∞

1
n

log αn ,

lim sup
n→∞

1
n

log β̃n ≤ lim sup
n→∞

1
n

log βn .

Proof: Let Sn
0

�
=(Sn)−1(0) and Sn

1
�
=(Sn)−1(1) denote the subsets of Σn that

the maps Sn assign to H0 and H1, respectively. For i = 0, 1 and ν ∈ Ln, let
Sν,n

i
�
=Sn

i ∩ Tn(ν), where Tn(ν) is the type class of ν from Definition 2.1.4.
Define

S̃(ν, n)
�
=
{

0 if |Sν,n
0 | ≥ 1

2 |Tn(ν)|
1 otherwise .

It will be shown that the maps S̃n(y) = S̃(Ly
n, n) play the role of the test

S̃ specified in the statement of the lemma.

Let Y = (Y1, . . . , Yn). Recall that when Yj are i.i.d. random variables,
then for every μ ∈ M1(Σ) and every ν ∈ Ln, the conditional measure
Pμ(Y |LY

n = ν) is a uniform measure on the type class Tn(ν). In particular,
if S̃(ν, n) = 0, then

1
2
Pμ1(L

Y
n = ν) ≤ |Sν,n

0 |
|Tn(ν)|Pμ1(L

Y
n = ν) = Pμ1(Y ∈ Sν,n

0 ) .

Therefore,

β̃n =
∑

{ν:S̃(ν,n)=0}∩Ln

Pμ1(L
Y
n = ν)

≤ 2
∑

{ν:S̃(ν,n)=0}∩Ln

Pμ1(Y ∈ Sν,n
0 ) ≤ 2Pμ1(Y ∈ Sn

0 ) = 2βn .

Consequently,

lim sup
n→∞

1
n

log β̃n ≤ lim sup
n→∞

1
n

log βn .

A similar computation shows that α̃n ≤ 2αn, completing the proof.

Considering hereafter tests that depend only on Ly
n, the following theo-

rem presents an optimal decision test.
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Theorem 3.5.4 (Hoeffding) Let the test S∗ consist of the maps

S∗n(y) =
{

0 if H(Ly
n|μ0) < η

1 otherwise .
(3.5.5)

Then S∗ is an optimal test for η.

Remark: The test (3.5.5) is referred to as the Generalized Likelihood Ratio
Test. The reason is that one obtains (3.5.5) by taking the supremum, over
all product measures μn

1 , of the normalized observed log-likelihood ratio in
the Neyman–Pearson test (Definition 3.4.2). Theorem 3.5.4 may thus be
considered as a theoretical justification for this procedure.

Figure 3.5.1: Optimal decision rule.

Proof: By the upper bound of Sanov’s theorem (Theorem 2.1.10),

lim sup
n→∞

1
n

log Pμ0(H0 rejected by S∗n)

= lim sup
n→∞

1
n

log Pμ0(L
Y
n ∈ {ν : H(ν|μ0) ≥ η})

≤ − inf
{ν:H(ν|μ0)≥η}

H(ν|μ0) ≤ −η .

Therefore, S∗ satisfies the constraint (3.5.2) on αn. Fix μ1 ∈ M1(Σ) and
let β∗

n denote the βn error probabilities associated with the test S∗. Then,
by the same upper bound,

lim sup
n→∞

1
n

log β∗
n = lim sup

n→∞

1
n

log Pμ1(L
Y
n ∈ {ν : H(ν|μ0) < η})

≤ − inf
{ν:H(ν|μ0)<η}

H(ν|μ1)
�
=− J(η) . (3.5.6)
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Let S be a test determined by the binary function S(Ly
n, n) on M1(Σ)×ZZ+.

Suppose that for some δ > 0 and for some n, there exists a ν ∈ Ln such
that H(ν|μ0) ≤ (η − δ) while S(ν, n) = 1. Then, by Lemma 2.1.9, for this
test and this value of n,

αn ≥ Pμ0(L
Y
n = ν) ≥ (n + 1)−|Σ| e−nH(ν|μ0) ≥ (n + 1)−|Σ|e−n(η−δ) .

Thus, if the error probabilities αn associated with S satisfy the constraint
(3.5.2), then for every δ > 0 and for all n large enough,

Ln ∩ {ν : H(ν|μ0) ≤ η − δ} ⊂ Ln ∩ {ν : S(ν, n) = 0} .

Therefore, for every δ > 0,

lim sup
n→∞

1
n

log βn ≥ lim inf
n→∞

1
n

log βn

≥ lim inf
n→∞

1
n

log Pμ1(L
Y
n ∈ {ν : H(ν|μ0) < η − δ}) .

If Σμ0 = Σ, then {ν : H(ν|μ0) < η − δ} is an open subset of M1(Σ).
Hence, by the preceding inequality and the lower bound of Sanov’s theorem
(Theorem 2.1.10),

lim sup
n→∞

1
n

log βn ≥ − inf
δ>0

inf
{ν: H(ν|μ0)<η−δ}

H(ν|μ1)

= − inf
δ>0

J(η − δ) = −J(η) , (3.5.7)

where the last equality follows from the strict inequality in the definition
of J(·) in (3.5.6). When Σμ0 
= Σ, the sets {ν : H(ν|μ0) < η − δ} are
not open. However, if H(ν|μi) < ∞ for i = 0, 1, then Σν ⊂ Σμ0 ∩ Σμ1 ,
and consequently there exist νn ∈ Ln such that H(νn|μi) → H(ν|μi) for
i = 0, 1. Therefore, the lower bound (3.5.7) follows from (2.1.15) even when
Σμ0 
= Σ.

The optimality of the test S∗ for the law μ1 results by comparing (3.5.6)
and (3.5.7). Since μ1 is arbitrary, the proof is complete.

Remarks:
(a) The finiteness of the alphabet is essential here, as (3.5.7) is obtained by
applying the lower bounds of Lemma 2.1.9 for individual types instead of
the large deviations lower bound for open sets of types. Indeed, for infinite
alphabets a considerable weakening of the optimality criterion is necessary,
as there are no non-trivial lower bounds for individual types. (See Section
7.1.) Note that the finiteness of Σ is also used in (3.5.6), where the upper
bound for arbitrary (not necessarily closed) sets is used. However, this can
be reproduced in a general situation by a careful approximation argument.
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(b) As soon as an LDP exists, the results of this section may be extended
to the hypothesis test problem for a known joint law μ0,n versus a family of
unknown joint laws μ1,n provided that the random variables Y1, . . . , Yn are
finitely exchangeable under μ0,n and any possible μ1,n so that the empirical
measure is still a sufficient statistic. This extension is outlined in Exercises
3.5.10 and 3.5.11.

Exercise 3.5.8 (a) Let Δ = {Δr, r = 1, 2, . . .} be a deterministic increasing
sequence of positive integers. Assume that {Yj , j 
∈ Δ} are i.i.d. random
variables taking values in the finite set Σ = Σμ0 , while {Yj , j ∈ Δ} are unknown
deterministic points in Σ. Prove that if Δr/r →∞, then the test S∗ of (3.5.5)
satisfies (3.5.2).
Hint: Let LY

n
∗

correspond to Δ = ∅ and prove that almost surely lim supn→∞
dV (LY

n , LY
n

∗) = 0, with some deterministic rate of convergence that depends
only upon the sequence Δ. Conclude the proof by using the continuity of
H(·|μ0) on M1(Σ).
(b) Construct a counterexample to the preceding claim when Σμ0 
= Σ.
Hint: Take Σ = {0, 1}, μ0 = δ0, and Yj = 1 for some j ∈ Δ.

Exercise 3.5.9 Prove that if in addition to the assumptions of part (a) of
Exercise 3.5.8, Σμ1 = Σ for every possible choice of μ1, then the test S∗ of
(3.5.5) is an optimal test.

Exercise 3.5.10 Suppose that for any n ∈ ZZ+, the random vector Y(n) =
(Y1, . . . , Yn) taking values in the finite alphabet Σn possesses a known joint
law μ0,n under the null hypothesis H0 and an unknown joint law μ1,n un-
der the alternative hypothesis H1. Suppose that for all n, the coordinates of
Y(n) are exchangeable random variables under both μ0,n and every possible
μ1,n (namely, the probability of any outcome Y(n) = y is invariant under per-
mutations of indices in the vector y). Let LY

n denote the empirical measure of
Y(n) and prove that Lemma 3.5.3 holds true in this case. (Note that {Yk}n

k=1

may well be dependent.)

Exercise 3.5.11 (a) Consider the setup of Exercise 3.5.10. Suppose that
In : M1(Σ) → [0,∞] are such that

lim
n→∞

sup
ν∈Ln, In(ν)<∞

∣
∣
∣
∣
1
n

log μ0,n(LY
n = ν) + In(ν)

∣
∣
∣
∣ = 0 , (3.5.12)

and μ0,n(LY
n = ν) = 0 whenever In(ν) = ∞. Prove that the test S∗ of (3.5.5)

with H(LY
n |μ0) replaced by In(LY

n ) is weakly optimal in the sense that for
any possible law μ1,n, and any test for which lim supn→∞

1
n log αn < −η ,

− lim supn→∞{ 1
n log β∗

n} ≥ − lim supn→∞( 1
n log βn).

(b) Apply part (a) to prove the weak optimality of I(LY
n | n

m , μm) >
< η, with

I(·|·, ·) of (2.1.32), when testing a given deterministic composition sequence μm

in a sampling without replacement procedure against an unknown composition
sequence for such a scheme.
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3.6 Rate Distortion Theory

This section deals with one of the basic problems in information theory,
namely, the problem of source coding. To understand the motivation behind
this problem, think of a computer (the source) that creates long strings of 0
and 1. Suppose one wishes to store the output of the computer in memory.
Of course, all the symbols could be stored in a long string. However, it is
reasonable to assume that typical output sequences follow certain patterns;
hence, by exploitation of these patterns the amount of digits required to
store such sequences could be reduced. Note that the word store here could
be replaced by the word transmit, and indeed it is the transmission problem
that was initially emphasized.

This problem was tackled by Shannon in the late 1940s. His insight
was that by looking at the source as a random source, one could hope to
analyze this situation and find the fundamental performance limits (i.e.,
how much the data can be compressed), as well as methods to achieve these
limits. Although Shannon’s initial interest centered on schemes in which
the compression involved no loss of data, later developments of the theory
also allowed for some error in the reconstruction. This is considered here,
and, as usual, we begin with a precise definition of the problem.

Let Ω = ΣZZ+ be the space of semi-infinite sequences over Σ. By a sta-
tionary and ergodic source, with alphabet Σ, we mean a stationary ergodic
probability measure P on Ω. Let x1, x2, . . . , xn, . . . denote an element of Ω,
and note that since P is only ergodic, the corresponding random variables
X1, X2, . . . , Xn, . . . may well be dependent.

Next, let the measurable function ρ(x, y) : Σ × Σ → [0, ρmax] be a one
symbol bounded distortion function (where ρmax < ∞). Typically, ρ(x, x) =
0, and ρ(x, y) 
= 0 for x 
= y. Common examples are ρ(x, y) = 0 if x = y and
1 otherwise (when Σ is a finite set) and ρ(x, y) = |x− y|2 (when Σ = [0, 1]).

A code is a deterministic map Cn : Σn → Σn, and

ρCn

�
=

1
n

n∑

i=1

E[ ρ(Xi, (Cn(X1, . . . , Xn))i) ]

denotes the average distortion per symbol when the code Cn is used.

The basic problem of source coding is to find a sequence of codes
{Cn}∞n=1 having small distortion, defined to be lim supn→∞ ρCn . To this
end, the range of Cn is to be a finite set, and the smaller this set, the fewer
different “messages” exist. Therefore, the incoming information (of possi-
ble values in Σn) has been compressed to a smaller number of alternatives.
The advantage of coding is that only the sequential number of the code
word has to be stored. Thus, since there are only relatively few such code
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words, less information is retained per incoming string X1, . . . , Xn. This
gain in transmission/storage requirement is referred to as the coding gain.

Clearly, by taking Cn to be the identity map, zero distortion is achieved
but without coding gain. To get to a more meaningful situation, it would
be desirable to have a reduction in the number of possible sequences when
using Cn. Let |Cn| denote the cardinality of the range of Cn. The rate of
the code Cn is defined as

RCn =
1
n

log |Cn| .

The smaller RCn is, the larger the coding gain when using Cn. (In the
original application, the rate of the code measured how much information
had to be transmitted per unit of time.) Shannon’s source coding theorem
asserts that it cannot be hoped to get RCn too small—i.e., under a bound on
the distortion, RCn is generally bounded below by some positive quantity.
Moreover, Shannon discovered, first for the case where distortion is not
present and then for certain cases with distortion, that there are codes that
are arbitrarily close to this bound.

Later proofs of Shannon’s result, in its full generality, involve three dis-
tinct arguments: First, by information theory tools, it is shown that the
rate cannot be too low. Next, by an ergodic theory argument, the problem
is reduced to a token problem. Finally, this latter problem is analyzed by
large deviations methods based on the Gärtner–Ellis theorem. Since this
book deals with large deviations applications, we concentrate on the latter
token problem, and only state and sketch the proof of Shannon’s general re-
sult at the end of this section. In order to state the problem to be analyzed,
another round of definitions is required.

The distortion associated with a probability measure Q on Σ× Σ is

ρQ

�
=
∫

Σ×Σ

ρ(x, y) Q(dx, dy) .

Let QX and QY be the marginals of Q. The mutual information associated
with Q is

H(Q|QX ×QY )
�
=
∫

Σ×Σ

log
(

dQ

dQX ×QY

)

dQ (3.6.1)

when the preceding integral is well-defined and finite and H(Q|QX ×QY ) =
∞ otherwise.1

The single-symbol rate distortion function is defined as

R1(D) = inf
{Q:ρQ≤D, QX=P1}

H(Q|QX ×QY ) ,

1In information theory, the mutual information is usually denoted by I(X; Y ). The
notation H(Q|QX × QY ) is consistent with other notation in this book.
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where P1 is the one-dimensional marginal distribution of the stationary
measure P on ΣZZ+ .

The following is the “token problem” alluded to earlier. It is proved via
a sequence of lemmas based on the LDP of Section 2.3.

Theorem 3.6.2 (Shannon’s weak source coding theorem) For any
D ≥ 0 such that R1(D) < ∞ and for any δ > 0, there exists a sequence of
codes {Cn}∞n=1 with distortion at most D, and rates RCn ≤ R1(D) + δ.

The proof of this theorem is based on a random coding argument, where
instead of explicitly constructing the codes Cn, the classes Cn of all codes of
some fixed size are considered. A probability measure on Cn is constructed
using a law that is independent of the sequence X�

=(X1, . . . , Xn, . . .). Let
ρn

�
=ECn [ρCn ] be the expectation of ρCn over Cn according to this measure.

Clearly, there exists at least one code in Cn for which ρCn ≤ ρn. With
this approach, Theorem 3.6.2 is a consequence of the upper bound on ρn

to be derived in Lemma 3.6.5. This in turn is based on the following large
deviations lower bound.

Lemma 3.6.3 Suppose Q is a probability measure on Σ × Σ for which
H(Q|QX × QY ) < ∞ and QX = P1. Let Zn(x)�= 1

n

∑n
j=1 ρ(xj , Yj), where

Yj are i.i.d. random variables, each distributed on Σ according to the law
QY , and all of which are independent of x�

=(x1, . . . , xn, . . .). Then, for every
δ > 0, and for P almost every semi-infinite sequence x,

lim inf
n→∞

1
n

log P(Zn(x) < ρQ + δ) ≥ −H(Q|QX ×QY ) .

Proof: Let

Λ(θ)
�
=

∫

Σ

log
(∫

Σ

eθρ(x,y)QY (dy)
)

P1(dx)

=
∫

Σ

log
(∫

Σ

eθρ(x,y)QY (dy)
)

QX(dx) ,

where the second equality follows by our assumption that QX = P1. As
ρ(·, ·) is uniformly bounded, Λ(·) is finite, and by dominated convergence it
is also differentiable everywhere in IR.

Consider now the logarithmic moment generating functions Λn(θ) �
=

log E[eθZn(x)]. For P almost every sequence x emitted by the source,
Birkhoff’s ergodic theorem yields

lim
n→∞

1
n

Λn(nθ) = lim
n→∞

1
n

n∑

j=1

log
∫

Σ

eθρ(xj ,y)QY (dy) = Λ(θ) .
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Fix x ∈ Ω = ΣZZ+ for which the preceding identity holds. Then, by the
Gärtner–Ellis theorem (Theorem 2.3.6), the sequence of random variables
{Zn(x)} satisfies the LDP with the rate function Λ∗(·). In particular, con-
sidering the open set (−∞, ρQ + δ), this LDP yields

lim inf
n→∞

1
n

log P(Zn(x) < ρQ + δ) ≥ − inf
x<ρQ+δ

Λ∗(x) ≥ −Λ∗(ρQ) . (3.6.4)

It remains to be shown that H(Q|QX×QY ) ≥ Λ∗(ρQ). To this end, associate
with every λ ∈ IR a probability measure Qλ on Σ× Σ via

dQλ

dQX ×QY

(x, y) =
eλρ(x,y)

∫
Σ

eλρ(x,z)QY (dz)
.

Since ρ(·, ·) is bounded, the measures Qλ and QX ×QY are mutually abso-
lutely continuous. As H(Q|QX ×QY ) < ∞, the relative entropy H(Q|Qλ)
is well-defined. Moreover,

0 ≤ H(Q|Qλ) =
∫

Σ×Σ

log
(

dQ

dQλ
(x, y)

)

Q(dx, dy)

=
∫

Σ×Σ

Q(dx, dy) log
{

dQ

dQX ×QY

(x, y)e−λρ(x,y)

∫

Σ

eλρ(x,z)QY (dz)
}

= H(Q|QX ×QY )− λρQ + Λ(λ) .

Since this inequality holds for all λ, it follows that H(Q|QX×QY ) ≥ Λ∗(ρQ),
and the proof is complete in view of (3.6.4).

Lemma 3.6.5 Suppose Q is a probability measure on Σ × Σ for which
H(Q|QX × QY ) < ∞ and QX = P1. Fix δ > 0 arbitrarily small and let
Cn be the class of all codes Cn of size kn

�
=�en(H(Q|QX×QY )+δ)�. Then there

exist distributions on Cn for which lim supn→∞ ρn ≤ ρQ + δ.

Proof: For any x = (x1, . . . , xn, . . .), define the set

Sn(x)
�
=
{

(y1, . . . , yn) :
1
n

n∑

j=1

ρ(xj , yj) < ρQ + δ
}

,

and let Cn(x) be any element of Cn ∩Sn(x), where if this set is empty then
Cn(x) is arbitrarily chosen. For this mapping,

1
n

n∑

j=1

ρ(xj , (Cn(x))j) ≤ ρQ + δ + ρmax1{Cn∩Sn(x)=∅} ,
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and consequently, for any measure on the class of codes Cn,

ρn ≤ ρQ + δ + ρmaxP(Cn ∩ Sn(X) = ∅) . (3.6.6)

The probability distribution on the class of codes Cn is generated by con-
sidering the codes with code words Y(i)�

=(Y (i)
1 , . . . , Y

(i)
n ) for i = 1, . . . , kn,

where Y
(i)
j , j = 1, . . . , n, i = 1, . . . , kn, are i.i.d. random variables of law

QY , independent of the sequence emitted by the source. Hence,

P(Cn ∩ Sn(x) = ∅) = P(Y(i) /∈ Sn(x) for all i) =[1− P(Y(1) ∈ Sn(x))]kn

≤ exp
(
−knP(Y(1) ∈ Sn(x))

)
. (3.6.7)

Note that the event {Y(1) ∈ Sn(x)} has the same probability as the event
{Zn(x) < ρQ + δ} considered in Lemma 3.6.3. Thus, by the definition of
kn and by the conclusion of Lemma 3.6.3, for P almost every semi-infinite
sequence x,

lim
n→∞

knP(Y(1) ∈ Sn(x)) = ∞ .

Consequently, by the inequality (3.6.7),

lim
n→∞

P(Cn ∩ Sn(X) = ∅) = 0 .

Substituting in (3.6.6) completes the proof.

Proof of Theorem 3.6.2: Since R1(D) < ∞, there exists a sequence of
measures {Q(m)}∞m=1 such that Im

�
=H(Q(m)|Q(m)

X × Q(m)
Y ) → R1(D), while

ρQ(m) ≤ D and Q(m)
X = P1. By applying Lemma 3.6.5 for Q(m) and δm =

1/m, it follows that for all n there exists a distribution on the class of all
codes of size �en(Im+1/m)� such that lim supn→∞ ρn ≤ ρQ(m) + 1/m. Fix
an arbitrary δ > 0. For all m large enough and for all n, one can enlarge
these codes to size �en(R1(D)+δ)� with no increase in ρn. Hence, for every
n, there exists a distribution on the class of all codes of size �en(R1(D)+δ)�
such that

lim sup
n→∞

ρn ≤ lim sup
m→∞

(
ρQ(m) +

1
m

)
≤ D .

The existence of a sequence of codes Cn of rates RCn ≤ R1(D) + δ and of
distortion lim supn→∞ ρCn ≤ D is deduced by extracting the codes Cn of
minimal ρCn from these ensembles.

We now return to the original problem of source coding discussed in
the introduction of this section. Note that the one symbol distortion func-
tion ρ(x, y) may be used to construct the corresponding J-symbol average
distortion for J = 2, 3, . . .,

ρ(J)((x1, . . . , xJ), (y1, . . . , yJ ))
�
=

1
J

J∑

�=1

ρ(x�, y�) .
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The J-symbol distortion of a probability measure Q on ΣJ × ΣJ is

ρ(J)
Q =

∫

ΣJ×ΣJ

ρ(J)(x,y) Q(dx, dy) .

The mutual information associated with the measure Q having marginals
QX , QY on ΣJ is defined via (3.6.1) with ΣJ instead of Σ. The J-symbol
rate distortion function is defined as

RJ(D)
�
= inf

{Q: ρ
(J)
Q

≤D, QX=PJ}

1
J

H(Q|QX ×QY ) ,

where PJ is the J-dimensional marginal distribution of the stationary mea-
sure P. Finally, the rate distortion function is

R(D)
�
= inf

J≥1
RJ(D) .

Shannon’s source coding theorem states that the rate distortion function
is the optimal performance of any sequence of codes, and that it may be
achieved to arbitrary accuracy.

Theorem 3.6.8 (Source coding theorem)

(a) Direct part: For any D ≥ 0 such that R(D) < ∞ and any δ > 0,
there exists a sequence of codes {Cn}∞n=1 with distortion at most D and
rates RCn ≤ R(D) + δ for all sufficiently large n.
(b) Converse part: For any sequence of codes {Cn}∞n=1 of distortion D
and all δ > 0, lim infn→∞ RCn ≥ R(D + δ).

Remarks:
(a) Note that |Σ| may be infinite and there are no structural conditions
on Σ besides the requirement that P be based on ΣZZ+ , and conditioning
and product measures are well-defined. (All the latter hold as soon as Σ
is Polish.) On the other hand, whenever R(D) is finite, the resulting codes
always take values in some finite set and, in particular, may be represented
by finite binary sequences.
(b) For i.i.d. source symbols, R(D) = R1(D) (see Exercise 3.6.11) and the
direct part of the source coding theorem amounts to Theorem 3.6.2.

We sketch below the elements of the proof of Theorem 3.6.8. Beginning
with the direct part, life is much easier when the source possesses strong
ergodic properties. In this case, the proof of Lemma 3.6.9 is a repeat of the
arguments used in the proof of Lemma 3.6.5 and is omitted.

Lemma 3.6.9 Suppose P is ergodic with respect to the Jth shift operation
(namely, it is ergodic in blocks of size J). Then, for any δ > 0 and each
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probability measure Q on ΣJ ×ΣJ with QX = PJ and H(Q|QX ×QY ) < ∞,
there exists a sequence of codes Cn of rates RCn ≤ J−1H(Q|QX ×QY ) + δ
and of distortion at most ρ(J)

Q + δ. In particular, if P is ergodic in blocks
of size J for any J ∈ ZZ+, then the direct part of the source coding theorem
holds.

While in general an ergodic P might be non-ergodic in blocks, an ergodic
theory argument shows that Lemma 3.6.9 holds true for any stationary
and ergodic P. A full proof of this fact may be found in [Ber71, pages
278–280], and [Ga68, pages 496–500]. This proof is based on showing that
when considering blocks of size J , the emitted semi-infinite sequences of the
source may almost surely be divided into J equally probable ergodic modes,
E0, . . . , EJ−1, such that if the sequence (x1, x2, . . . , xn, . . .) belongs to mode
Ei, then (x1+k, x2+k, . . . , xn+k, . . .) belongs to the mode E(i+k)mod J .

Finally, we sketch the proof of the converse part of the source coding
theorem. Clearly, it suffices to consider codes Cn of finite rates and of
distortion D. Such a code Cn is a mapping from Σn to Σn. When its
domain Σn is equipped with the probability measure Pn (the nth marginal
of P), Cn induces a (degenerate) joint measure Q(n) on Σn×Σn. Note that
Q

(n)
X = Pn and ρQ(n) = ρCn ≤ D + δ for any δ > 0 and all n large enough.

Therefore, for such δ and n,

H(Q(n)|Q(n)
X ×Q

(n)
Y ) ≥ nRn(D + δ) ≥ nR(D + δ).

Since Q
(n)
Y is supported on the finite range of Cn, the entropy

H(Q(n)
Y )

�
=−

|Cn|∑

i=1

Q
(n)
Y (yi) log Q

(n)
Y (yi)

is a lower bound on log |Cn| = nRCn . The Radon–Nikodym derivative
fn(x, yi)

�
= dQ(n)/dQ

(n)
X × dQ

(n)
Y (x, yi) is well-defined, and

∫

Σn

fn(x, yi)Q
(n)
X (dx) = 1,

|Cn|∑

i=1

fn(x, yi)Q
(n)
Y (yi) = 1 , Q

(n)
X − a.e..

Thus, Q
(n)
X –a.e., fn(x, yi)Q

(n)
Y (yi) ≤ 1, and

H(Q(n)
Y )−H(Q(n)|Q(n)

X ×Q
(n)
Y )

=
|Cn|∑

i=1

Q
(n)
Y (yi)

[
log

1

Q
(n)
Y (yi)

−
∫

Σn

fn(x, yi) log fn(x, yi)Q
(n)
X (dx)

]

=
∫

Σn

Q
(n)
X (dx)

[|Cn|∑

i=1

fn(x, yi)Q
(n)
Y (yi) log

1

fn(x, yi)Q
(n)
Y (yi)

]
≥ 0 .
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Therefore,

lim inf
n→∞

RCn ≥ lim inf
n→∞

1
n

H(Q(n)
Y )

≥ lim inf
n→∞

1
n

H(Q(n)|Q(n)
X ×Q

(n)
Y ) ≥ R(D + δ) .

Exercise 3.6.10 (a) Prove that if Σ is a finite set and R1(D) > 0, then
there exists a probability measure Q on Σ × Σ for which QX = P1, ρQ = D,
and H(Q|QX ×QY ) = R1(D).
(b) Prove that for this measure also Λ∗(ρQ) = H(Q|QX ×QY ).

Exercise 3.6.11 Prove that when P is a product measure (namely, the emit-
ted symbols X1, X2, . . . , Xn are i.i.d.), then RJ(D) = R1(D) for all J ∈ ZZ+.
Hint: Apply Jensen’s inequality to show, for any measure Q on ΣJ ×ΣJ such
that QX = PJ , that

H(Q|QX ×QY ) ≥
|J|∑

i=1

H(Qi|P1 ×Qi
Y ) ,

where Qi (Qi
Y ) denote the ith coordinate marginal of Q (QY , respectively).

Then, use the convexity of R1(·).
Exercise 3.6.12 (a) Show that for all integers m, n,

(m + n)Rm+n(D) ≤ mRm(D) + nRn(D).

(b) Conclude that

lim sup
J→∞

RJ (D) < ∞⇒ R(D) = lim
J→∞

RJ(D).

This is a particular instance of the sub-additivity lemma (Lemma 6.1.11).

3.7 Moderate Deviations and Exact
Asymptotics in IRd

Cramér’s theorem deals with the tails of the empirical mean Ŝn of i.i.d.
random variables. On a finer scale, the random variables

√
nŜn possess a

limiting Normal distribution by the central limit theorem. In this situation,
for β ∈ (0, 1/2), the renormalized empirical mean nβŜn satisfies an LDP
but always with a quadratic (Normal-like) rate function. This statement
is made precise in the following theorem. (Choose an = n(2β−1) in the
theorem to obtain Zn = nβŜn.)
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Theorem 3.7.1 (Moderate Deviations) Let X1, . . . , Xn be a sequence
of IRd-valued i.i.d. random vectors such that ΛX(λ)�= log E[e〈λ,Xi〉] < ∞
in some ball around the origin, E(Xi) = 0, and C, the covariance matrix
of X1, is invertible. Fix an → 0 such that nan → ∞ as n → ∞, and let
Zn

�
=
√

an/n
∑n

i=1 Xi =
√

nanŜn. Then, for every measurable set Γ,

− 1
2

inf
x∈Γo

〈x,C−1x〉 ≤ lim inf
n→∞

an log P (Zn ∈ Γ)

≤ lim sup
n→∞

an log P (Zn ∈ Γ)

≤ −1
2

inf
x∈Γ

〈x,C−1x〉 . (3.7.2)

Proof: Let Λ(λ)�= E[ 〈λ,X1〉2]/2 = 〈λ,Cλ〉/2. It follows that the Fenchel–
Legendre transform of Λ(·) is

Λ∗(x) = sup
λ∈IRd

{ 〈λ, x〉 − Λ(λ)}

= sup
λ∈IRd

{ 〈λ, x〉 − 1
2
〈λ,Cλ〉} =

1
2
〈x,C−1x〉 .

Let Λn(·) be the logarithmic moment generating function of Zn. As will be
shown, for every λ ∈ IRd,

Λ(λ) = lim
n→∞

anΛn(a−1
n λ) . (3.7.3)

Consequently, the theorem is an application of the Gärtner–Ellis theorem,
where an replaces 1/n throughout. Indeed, Λ(·) is finite and differentiable
everywhere.

Turning now to establish the limit (3.7.3), observe that

Λn(a−1
n λ) = log E

(
ea−1

n 〈λ,Zn〉
)

=
n∑

i=1

log E
(
e(nan)−1/2 〈λ,Xi〉

)
= n log E

(
e(nan)−1/2 〈λ,X1〉

)
.

Since ΛX(λ) < ∞ in a ball around the origin and nan →∞, it follows that
E
(
exp((nan)−1/2 〈λ,X1〉)

)
< ∞ for each λ ∈ IRd, and all n large enough.

By dominated convergence,

E
(
exp((nan)−1/2〈λ,X1〉)

)

= 1 + (nan)−1/2 E[〈λ,X1〉] +
1
2

(nan)−1 E[〈λ,X1〉2] + O
(
(nan)−3/2

)
,
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where g(n) = O
(
(nan)−3/2

)
means that lim supn→∞(nan)3/2g(n) < ∞.

Hence, since E[〈λ,X1〉] = 0,

anΛn(a−1
n λ) = nan log

{

1 +
1
2

(nan)−1E[〈λ,X1〉2] + O((nan)−3/2)
}

.

Consequently,

lim
n→∞

anΛn(a−1
n λ) =

1
2

E[ 〈λ,X1〉2] = Λ(λ) .

Remarks:
(a) Note that the preceding theorem is nothing more than what is obtainable
from a naive Taylor expansion applied on the ersatz P(Ŝn = x) ≈ e−nI(x),
where I(·) is the rate function of Cramér’s theorem.
(b) A similar result may be obtained in the context of the Markov additive
process discussed in Section 3.1.1.
(c) Theorem 3.7.1 is representative of the so-called Moderate Deviation Prin-
ciple (MDP), in which for some γ(·) and a whole range of an → 0, the
sequences {γ(an)Yn} satisfy the LDP with the same rate function. Here,
Yn =

√
nŜn and γ(a) = a1/2 (as in other situations in which Yn obeys the

central limit theorem).

Another refinement of Cramér’s theorem involves a more accurate es-
timate of the law μn of Ŝn. Specifically, for a “nice” set A, one seeks
an estimate J−1

n of μn(A) in the sense that limn→∞ Jnμn(A) = 1. Such
an estimate is an improvement over the normalized logarithmic limit im-
plied by the LDP. The following theorem, a representative of the so-called
exact asymptotics, deals with the estimate Jn for certain half intervals
A = [q,∞) ⊂ IR.

Theorem 3.7.4 (Bahadur and Rao) Let μn denote the law of Ŝn =
1
n

∑n
i=1 Xi, where Xi are i.i.d. real valued random variables with logarith-

mic moment generating function Λ(λ) = log E[eλX1 ]. Consider the set
A = [q,∞), where q = Λ′(η) for some positive η ∈ Do

Λ.
(a) If the law of X1 is non-lattice, then

lim
n→∞

Jnμn(A) = 1 , (3.7.5)

where Jn = η
√

Λ′′(η) 2πn enΛ∗(q).
(b) Suppose X1 has a lattice law, i.e., for some x0, d, the random variable
d−1(X1 − x0) is (a.s.) an integer number, and d is the largest number with
this property. Assume further that 1 > P (X1 = q) > 0. (In particular, this
implies that d−1(q − x0) is an integer and that Λ′′(η) > 0.) Then

lim
n→∞

Jnμn(A) =
ηd

1− e−ηd
. (3.7.6)
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Remarks:
(a) Recall that by part (c) of Lemma 2.2.5 and Exercise 2.2.24, Λ∗(q) =
ηq − Λ(η), Λ(·) is C∞ in some open neighborhood of η, η = Λ∗′(q) and
Λ∗′′(q) = 1/Λ′′(η). Hence, Jn = Λ∗′(q)

√
2πn/Λ∗′′(q)enΛ∗(q).

(b) Theorem 3.7.4 holds even when A is a small interval of size of order
O(log n/n). (See Exercise 3.7.10.)
(c) The proof of this theorem is based on an exponential translation of a
local CLT. This approach is applicable for the dependent case of Section
2.3 and to a certain extent applies also in IRd, d > 1.

Proof: Consider the probability measure μ̃ defined by dμ̃/dμ(x) =
eηx−Λ(η), and let Yi

�
=(Xi − q)/

√
Λ′′(η), for i = 1, 2, . . . , n. Note that

Y1, . . . , Yn are i.i.d. random variables, with Eμ̃[Y1] = 0 and Eμ̃[Y 2
1 ] =

1. Let ψn
�
=η
√

nΛ′′(η) and let Fn(·) denote the distribution function of
Wn

�
=n−1/2

∑n
i=1 Yi when Xi are i.i.d. with marginal law μ̃. Since Ŝn =

q +
√

Λ′′(η)/n Wn, it follows that

μn(A) = μn([q,∞)) = Eμ̃[e−n[ηŜn−Λ(η)]1{Ŝn≥q}]

= e−nΛ∗(q)Eμ̃

[
e−ψnWn 1{Wn≥0}

]
= e−nΛ∗(q)

∫ ∞

0

e−ψnxdFn .

Hence, by an integration by parts,

Jnμn(A) =
√

2π

∫ ∞

0

ψ2
ne−ψnx[Fn(x)− Fn(0)] dx

=
√

2π

∫ ∞

0

ψne−t

[

Fn

(
t

ψn

)

− Fn(0)
]

dt . (3.7.7)

(a) When Xi are non-lattice, the Berry–Esséen expansion of Fn(x) (see
[Fel71, page 538]) results in

lim
n→∞

{√
n sup

x

∣
∣
∣
∣Fn(x)− Φ(x)− m3

6
√

n
(1− x2)φ(x)

∣
∣
∣
∣

}

= 0 , (3.7.8)

where m3
�
=Eμ̃[Y 3

1 ] < ∞, φ(x) = 1/
√

2π exp(−x2/2) is the standard Normal
density, and Φ(x) =

∫ x

−∞ φ(θ)dθ. Define

cn
�
=

√
2π

∫ ∞

0

ψne−t
(
Φ
( t

ψn

)
+

m3

6
√

n

[
1−

( t

ψn

)2
]

· φ
( t

ψn

)
− Φ(0)− m3

6
√

n
φ(0)

)
dt . (3.7.9)

Comparing (3.7.7) and (3.7.9), observe that the Berry–Esséen expansion
(3.7.8) yields the relation limn→∞ |Jnμn(A)− cn| = 0. Moreover, since

sup
x≥0

|φ′(x)| < ∞, lim
x→0

|φ′(x)| = 0 ,
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it follows by a Taylor expansion of Φ(t/ψn) and the dominated convergence
theorem that

lim
n→∞

cn = lim
n→∞

√
2π

∫ ∞

0

ψne−t

[

Φ
(

t

ψn

)

− Φ(0)
]

dt

=
√

2π φ(0)
∫ ∞

0

te−t dt = 1 .

(b) In the lattice case, the range of Yi is {md/
√

Λ′′(η) : m ∈ ZZ}. Conse-
quently, here the Berry–Esséen expansion (see [Fel71, page 540] or [Pet75,
page 171], Theorem 6), is

lim
n→∞

(√
n sup

x

∣
∣
∣Fn(x)− Φ(x)− m3

6
√

n
(1− x2)φ(x)

−φ(x)g
(
x,

d
√

Λ′′(η)n

)∣
∣
∣
)

= 0 ,

where g(x, h) = h/2 − (x mod h) if (x mod h) 
= 0 and g(x, h) = −h/2 if
(x mod h) = 0.

Figure 3.7.1: The function g(x, h).

Thus, paraphrasing the preceding argument for the lattice case,

lim
n→∞

Jnμn(A) = 1 + lim
n→∞

√
2π

∫ ∞

0

ψne−t

[

φ

(
t

ψn

)

g

(
t

ψn
,

ηd

ψn

)

− φ(0)g
(

0,
ηd

ψn

)]

dt .

Since ψng(t/ψn, ηd/ψn) = g(t, ηd), it follows that

lim
n→∞

Jnμn(A)

= 1 + lim
n→∞

√
2π

∫ ∞

0

e−t

(

φ

(
t

ψn

)

g(t, ηd)− φ(0)g(0, ηd)
)

dt

= 1 +
√

2π φ(0)
∫ ∞

0

e−t [g(t, ηd)− g(0, ηd)] dt .
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The proof is completed by combining the preceding limit with
∫ ∞

0

e−t[g(t, ηd)− g(0, ηd)] dt

=
( ∞∑

n=0

e−nηd
)∫ ηd

0

e−t(ηd− t) dt =
ηd

1− e−ηd
− 1 .

Exercise 3.7.10 (a) Let A = [q, q + a/n), where in the lattice case a/d is
restricted to being an integer. Prove that for any a ∈ (0,∞), both (3.7.5) and
(3.7.6) hold with Jn = η

√
Λ′′(η) 2πn enΛ∗(q)/(1− e−ηa).

(b) As a consequence of part (a), conclude that for any set A = [q, q + bn),
both (3.7.5) and (3.7.6) hold for the Jn given in Theorem 3.7.4 as long as
limn→∞ nbn = ∞.

Exercise 3.7.11 Let η > 0 denote the minimizer of Λ(λ) and suppose that
Λ(λ) < ∞ in some open interval around η.
(a) Based on Exercise 3.7.10, prove that when X1 has a non-lattice distri-
bution, the limiting distribution of Sn

�
=
∑n

i=1 Xi conditioned on {Sn ≥ 0} is
Exponential(η) .
(b) Suppose now that X1 has a lattice distribution of span d and 1 > P(X1 =
0) > 0. Prove that the limiting distribution of Sn/d conditioned on {Sn ≥ 0}
is Geometric(p), with p = 1 − e−ηd (i.e., P(Sn = kd|Sn ≥ 0) → pqk for
k = 0, 1, 2, . . .).

Exercise 3.7.12 Returning to the situation discussed in Section 3.4, consider
a Neyman–Pearson test with constant threshold γ ∈ (x0, x1). Suppose that
X1 = log(dμ1/dμ0(Y1)) has a non-lattice distribution. Let λγ ∈ (0, 1) be the
unique solution of Λ′

0(λ) = γ. Deduce from (3.7.5) that

lim
n→∞

(

αnenΛ∗
0(γ)λγ

√
Λ′′

0(λγ) 2πn

)

= 1 (3.7.13)

and

lim
n→∞

(
enγαn

βn

)

=
1− λγ

λγ
. (3.7.14)

3.8 Historical Notes and References

The large deviations statements for Markov chains have a long history,
and several approaches exist to derive them. To avoid repetition, they
are partially described in the historical notes of Chapter 6. In the finite
state setup, an early reference is Miller [Mil61]. The approach taken here
is based, in part, on the ideas of Ellis [Ell84] and [Ell88]. The method of
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types and estimates as in Exercise 3.1.21 are applied in [AM92] to provide
tight large deviation bounds for certain sets with empty interior.

Theorem 3.2.1 is motivated by the results in [ArGW90]. Exercise 3.2.7 is
taken from [DKZ94a], where part (b) is strengthened to a full convergence.
See also [DKZ94b] for limit laws and references to related works. For similar
results in the context of ZZd-indexed Gibbs fields, see [Com94].

Gibbs’s conditioning principle has served as a driving force behind Ru-
elle and Lanford’s treatment of large deviations (without calling it by that
name) [Rue65, Rue67, Lan73]. The form of the Gibbs’s principle here
was proved using large deviations methods in the discrete, uniform case
in [Vas80], via the method of types by Campenhout and Cover [CaC81] and
more generally by Csiszár [Cs84], and Stroock and Zeitouni [StZ91]. For
other references to the statistical mechanics literature, see the historical
notes of Chapter 7.

One of the early reasons for deriving the LDP was their use in evaluating
the performance of estimators and decision rules, and in comparing different
estimators (see, e.g., [Che52]). A good summary of this early work may be
found in [Bah67, Bah71]. More recent accounts are [BaZG80, Rad83, KK86]
(in the i.i.d. case) and [Bah83] (for Markov chains). The material of Section
3.4 may be traced back to Chernoff [Che52, Che56], who derived Theorem
3.4.3. Lemma 3.4.7 appears first in [Che56], which attributes it to an un-
published manuscript of C. Stein. Other statistical applications, some of
which are based on abstract LDPs, may be found in the collection [As79].

The generalized likelihood ratio test of Section 3.5 was considered by Ho-
effding [Hoe65], whose approach we basically follow here. See the historical
notes of Chapter 7 for extensions to other situations.

The source coding theorem is attributed to Shannon [Sha59]. See also
[Sha48] and [Ber71]. Our treatment of it in Section 3.6 is a combination
of the method of this book and the particular case treated by Bucklew
in [Buc90].

Theorem 3.7.1 follows [Pet75], although some of the methods are much
older and may be found in Feller’s book [Fel71]. Theorem 3.7.4 was proved
in the discrete case by [BH59] and in the form here by [BaR60]. (The
saddle point approximation of [Dan54] is also closely related.) A review
of related asymptotic expansions may be found in [Hea67, Pet75, BhR76].
Other refinements and applications in statistics may be found in [Barn78].
An early IRd local CLT type expansion is contained in [BoR65]. For related
results, see [Boo75]. The extension of Theorem 3.7.4 to IRd-valued random
variables is provided in [Ilt95], which builds upon the results of [Ney83]. For
a full asymptotic expansion, even when the exponential moments condition
is not satisfied, see [Roz86] and references therein.



Chapter 4

General Principles

In this chapter, we initiate the investigation of large deviation principles
(LDPs) for families of measures on general spaces. As will be obvious in
subsequent chapters, the objects on which the LDP is sought may vary
considerably. Hence, it is necessary to undertake a study of the LDP in an
abstract setting. We shall focus our attention on the abstract statement of
the LDP as presented in Section 1.2 and give conditions for the existence of
such a principle and various approaches for the identification of the resulting
rate function.

Since this chapter deals with different approaches to the LDP, some of
its sections are independent of the others. A rough structure of it is as
follows. In Section 4.1, extensions of the basic properties of the LDP are
provided. In particular, relations between the topological structure of the
space, the existence of certain limits, and the existence and uniqueness of
the LDP are explored. Section 4.2 describes how to move around the LDP
from one space to another. Thus, under appropriate conditions, the LDP
can be proved in a simple situation and then effortlessly transferred to a
more complex one. Of course, one should not be misled by the word effort-
lessly: It often occurs in applications that much of the technical work to
be done is checking that the conditions for such a transformation are sat-
isfied! Sections 4.3 and 4.4 investigate the relation between the LDP and
the computation of exponential integrals. Although in some applications
the computation of the exponential integrals is a goal in itself, it is more
often the case that such computations are an intermediate step in deriving
the LDP. Such a situation has already been described, though implicitly,
in the treatment of the Chebycheff upper bound in Section 2.2. This line of
thought is tackled again in Section 4.5.1, in the case where X is a topolog-
ical vector space, such that the Fenchel–Legendre transform is well-defined

A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications,
Stochastic Modelling and Applied Probability 38,
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and an upper bound may be derived based on it. Section 4.5.2 complements
this approach by providing the tools that will enable us to exploit convexity,
again in the case of topological vector spaces, to derive the lower bound.
The attentive reader may have already suspected that such an attack on the
LDP is possible when he followed the arguments of Section 2.3. Section 4.6
is somewhat independent of the rest of the chapter. Its goal is to show
that the LDP is preserved under projective limits. Although at first sight
this may not look useful for applications, it will become clear to the patient
reader that this approach is quite general and may lead from finite dimen-
sional computations to the LDP in abstract spaces. Finally, Section 4.7
draws attention to the similarity between the LDP and weak convergence
in metric spaces.

Since this chapter deals with the LDP in abstract spaces, some topolog-
ical and analytical preliminaries are in order. The reader may find Appen-
dices B and C helpful reminders of a particular definition or theorem.

The convention that B contains the Borel σ-field BX is used through-
out this chapter, except in Lemma 4.1.5, Theorem 4.2.1, Exercise 4.2.9,
Exercise 4.2.32, and Section 4.6.

4.1 Existence of an LDP and Related
Properties

If a set X is given the coarse topology {∅,X}, the only information implied
by the LDP is that infx∈X I(x) = 0, and many rate functions satisfy this
requirement. To avoid such trivialities, we must put some constraint on the
topology of the set X . Recall that a topological space is Hausdorff if, for
every pair of distinct points x and y, there exist disjoint neighborhoods of
x and y. The natural condition that prevails throughout this book is that,
in addition to being Hausdorff, X is a regular space as defined next.

Definition 4.1.1 A Hausdorff topological space X is regular if, for any
closed set F ⊂ X and any point x 
∈ F , there exist disjoint open subsets G1

and G2 such that F ⊂ G1 and x ∈ G2.

In the rest of the book, the term regular will mean Hausdorff and regular.
The following observations regarding regular spaces are of crucial impor-
tance here:
(a) For any neighborhood G of x ∈ X , there exists a neighborhood A of x
such that A ⊂ G.
(b) Every metric space is regular. Moreover, if a real topological vector
space is Hausdorff, then it is regular. All examples of an LDP considered
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in this book are either for metric spaces, or for Hausdorff real topological
vector spaces.
(c) A lower semicontinuous function f satisfies, at every point x,

f(x) = sup
{G neighborhood of x}

inf
y∈G

f(y) . (4.1.2)

Therefore, for any x ∈ X and any δ > 0, one may find a neighborhood
G = G(x, δ) of x, such that infy∈G f(y) ≥ (f(x)− δ)∧ 1/δ. Let A = A(x, δ)
be a neighborhood of x such that A ⊂ G. (Such a set exists by property
(a).) One then has

inf
y∈A

f(y) ≥ inf
y∈G

f(y) ≥ (f(x)− δ) ∧ 1
δ

. (4.1.3)

The sets G = G(x, δ) frequently appear in the proofs of large deviations
statements and properties. Observe that in a metric space, G(x, δ) may be
taken as a ball centered at x and having a small enough radius.

4.1.1 Properties of the LDP

The first desirable consequence of the assumption that X is a regular topo-
logical space is the uniqueness of the rate function associated with the LDP.

Lemma 4.1.4 A family of probability measures {με} on a regular topolog-
ical space can have at most one rate function associated with its LDP.

Proof: Suppose there exist two rate functions I1(·) and I2(·), both asso-
ciated with the LDP for {με}. Without loss of generality, assume that for
some x0 ∈ X , I1(x0) > I2(x0). Fix δ > 0 and consider the open set A for
which x0 ∈ A, while infy∈A I1(y) ≥ (I1(x0)− δ) ∧ 1/δ. Such a set exists by
(4.1.3). It follows by the LDP for {με} that

− inf
y∈A

I1(y) ≥ lim sup
ε→0

ε log με(A) ≥ lim inf
ε→0

ε log με(A) ≥ − inf
y∈A

I2(y) .

Therefore,

I2(x0) ≥ inf
y∈A

I2(y) ≥ inf
y∈A

I1(y) ≥ (I1(x0)− δ) ∧ 1
δ

.

Since δ is arbitrary, this contradicts the assumption that I1(x0) > I2(x0).

Remarks:
(a) It is evident from the proof that if X is a locally compact space (e.g.,
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X = IRd), the rate function is unique as soon as a weak LDP holds. As
shown in Exercise 4.1.30, if X is a Polish space, then also the rate function
is unique as soon as a weak LDP holds.
(b) The uniqueness of the rate function does not depend on the Hausdorff
part of the definition of regular spaces. However, the rate function assigns
the same value to any two points of X that are not separated. (See Exercise
4.1.9.) Thus, in terms of the LDP, such points are indistinguishable.

As shown in the next lemma, the LDP is preserved under suitable inclu-
sions. Hence, in applications, one may first prove an LDP in a space that
possesses additional structure (for example, a topological vector space), and
then use this lemma to deduce the LDP in the subspace of interest.

Lemma 4.1.5 Let E be a measurable subset of X such that με(E) = 1 for
all ε > 0. Suppose that E is equipped with the topology induced by X .
(a) If E is a closed subset of X and {με} satisfies the LDP in E with rate
function I, then {με} satisfies the LDP in X with rate function I ′ such that
I ′ = I on E and I ′ = ∞ on Ec.
(b) If {με} satisfies the LDP in X with rate function I and DI ⊂ E, then
the same LDP holds in E. In particular, if E is a closed subset of X , then
DI ⊂ E and hence the LDP holds in E.

Proof: In the topology induced on E by X , the open sets are the sets
of the form G ∩ E with G ⊆ X open. Similarly, the closed sets in this
topology are the sets of the form F ∩ E with F ⊆ X closed. Furthermore,
με(Γ) = με(Γ ∩ E) for any Γ ∈ B.
(a) Suppose that an LDP holds in E , which is a closed subset of X . Extend
the rate function I to be a lower semicontinuous function on X by setting
I(x) = ∞ for any x ∈ Ec. Thus, infx∈Γ I(x) = infx∈Γ∩E I(x) for any Γ ⊂ X
and the large deviations lower (upper) bound holds.
(b) Suppose that an LDP holds in X . If E is closed, then DI ⊂ E by the
large deviations lower bound (since με(Ec) = 0 for all ε > 0 and Ec is open).
Now, DI ⊂ E implies that infx∈Γ I(x) = infx∈Γ∩E I(x) for any Γ ⊂ X and
the large deviations lower (upper) bound holds for all measurable subsets
of E . Further, since the level sets ΨI(α) are closed subsets of E , the rate
function I remains lower semicontinuous when restricted to E .

Remarks:
(a) The preceding lemma also holds for the weak LDP, since compact subsets
of E are just the compact subsets of X contained in E . Similarly, under the
assumptions of the lemma, I is a good rate function on X iff it is a good
rate function when restricted to E .
(b) Lemma 4.1.5 holds without any change in the proof even when BX 
⊆ B.

The following is an important property of good rate functions.
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Lemma 4.1.6 Let I be a good rate function.
(a) Let {Fδ}δ>0 be a nested family of closed sets, i.e., Fδ ⊆ Fδ′ if δ < δ′.
Define F0 = ∩δ>0Fδ. Then

inf
y∈F0

I(y) = lim
δ→0

inf
y∈Fδ

I(y) .

(b) Suppose (X , d) is a metric space. Then, for any set A,

inf
y∈A

I(y) = lim
δ→0

inf
y∈Aδ

I(y) , (4.1.7)

where
Aδ�={y : d(y,A) = inf

z∈A
d(y, z) ≤ δ} (4.1.8)

denotes the closed blowup of A.

Proof: (a) Since F0 ⊆ Fδ for all δ > 0, it suffices to prove that for all η > 0,

γ
�
= lim

δ→0
inf

y∈Fδ

I(y) ≥ inf
y∈F0

I(y)− η .

This inequality holds trivially when γ = ∞. If γ < ∞, fix η > 0 and let
α = γ +η. The sets Fδ∩ΨI(α), δ > 0, are non-empty, nested, and compact.
Consequently,

F0

⋂
ΨI(α) =

⋂

δ>0

Fδ

⋂
ΨI(α)

is also non-empty, and the proof of part (a) is thus completed.
(b) Note that d(·, A) is a continuous function and hence {Aδ}δ>0 are nested,
closed sets. Moreover,

⋂

δ>0

Aδ = {y : d(y,A) = 0} = A .

Exercise 4.1.9 Suppose that for any closed subset F of X and any point
x 
∈ F , there exist two disjoint open sets G1 and G2 such that F ⊂ G1 and
x ∈ G2. Prove that if I(x) 
= I(y) for some lower semicontinuous function I,
then there exist disjoint neighborhoods of x and y.

Exercise 4.1.10 [[LyS87], Lemma 2.6. See also [Puk91], Theorem (P).]
Let {μn} be a sequence of probability measures on a Polish space X .
(a) Show that {μn} is exponentially tight if for every α < ∞ and every η > 0,
there exist m ∈ ZZ+ and x1, . . . , xm ∈ X such that for all n,

μn

([ m⋃

i=1

Bxi,η

]c)
≤ e−αn .
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Hint: Observe that for every sequence {mk} and any x
(k)
i ∈ X , the set

∩∞
k=1 ∪

mk
i=1 B

x
(k)
i

,1/k
is pre-compact.

(b) Suppose that {μn} satisfies the large deviations upper bound with a good
rate function. Show that for every countable dense subset of X , e.g., {xi},
every η > 0, every α < ∞, and every m large enough,

lim sup
n→∞

1
n

log μn

([ m⋃

i=1

Bxi,η

]c)
< −α .

Hint: Use Lemma 4.1.6.
(c) Deduce that if {μn} satisfies the large deviations upper bound with a good
rate function, then {μn} is exponentially tight.

Remark: When a non-countable family of measures {με, ε > 0} satisfies
the large deviations upper bound in a Polish space with a good rate function,
the preceding yields the exponential tightness of every sequence {μεn}, where
εn → 0 as n → ∞. As far as large deviations results are concerned, this is
indistinguishable from exponential tightness of the whole family.

4.1.2 The Existence of an LDP

The following theorem introduces a general, indirect approach for establish-
ing the existence of a weak LDP.

Theorem 4.1.11 Let A be a base of the topology of X . For every A ∈ A,
define

LA
�
=− lim inf

ε→0
ε log με(A) (4.1.12)

and
I(x)

�
= sup

{A∈A: x∈A}
LA . (4.1.13)

Suppose that for all x ∈ X ,

I(x) = sup
{A∈A: x∈A}

[

− lim sup
ε→0

ε log με(A)
]

. (4.1.14)

Then με satisfies the weak LDP with the rate function I(x).

Remarks:
(a) Observe that condition (4.1.14) holds when the limits limε→0 ε log με(A)
exist for all A ∈ A (with −∞ as a possible value).
(b) When X is a locally convex, Hausdorff topological vector space, the base
A is often chosen to be the collection of open, convex sets. For concrete
examples, see Sections 6.1 and 6.3.
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Proof: Since A is a base for the topology of X , for any open set G and any
point x ∈ G there exists an A ∈ A such that x ∈ A ⊂ G. Therefore, by
definition,

lim inf
ε→0

ε log με(G) ≥ lim inf
ε→0

ε log με(A) = −LA ≥ −I(x) .

As seen in Section 1.2, this is just one of the alternative statements of the
large deviations lower bound.

Clearly, I(x) is a nonnegative function. Moreover, if I(x) > α, then
LA > α for some A ∈ A such that x ∈ A. Therefore, I(y) ≥ LA > α for
every y ∈ A. Hence, the sets {x : I(x) > α} are open, and consequently I
is a rate function.

Note that the lower bound and the fact that I is a rate function do
not depend on (4.1.14). This condition is used in the proof of the upper
bound. Fix δ > 0 and a compact F ⊂ X . Let Iδ be the δ-rate function,
i.e., Iδ(x)�= min{I(x)− δ, 1/δ}. Then, (4.1.14) implies that for every x ∈ F ,
there exists a set Ax ∈ A (which may depend on δ) such that x ∈ Ax and

− lim sup
ε→0

ε log με(Ax) ≥ Iδ(x) .

Since F is compact, one can extract from the open cover ∪x∈F Ax of F a
finite cover of F by the sets Ax1 , . . . , Axm . Thus,

με(F ) ≤
m∑

i=1

με(Axi) ,

and consequently,

lim sup
ε→0

ε log με(F ) ≤ max
i=1,...,m

lim sup
ε→0

ε log με(Axi)

≤ − min
i=1,...,m

Iδ(xi) ≤ − inf
x∈F

Iδ(x) .

The proof of the upper bound for compact sets is completed by considering
the limit as δ → 0.

Theorem 4.1.11 is extended in the following lemma, which concerns the
LDP of a family of probability measures {με,σ} that is indexed by an addi-
tional parameter σ. For a concrete application, see Section 6.3, where σ is
the initial state of a Markov chain.

Lemma 4.1.15 Let με,σ be a family of probability measures on X , indexed
by σ, whose range is the set Σ. Let A be a base for the topology of X . For
each A ∈ A, define

LA
�
=− lim inf

ε→0
ε log

[
inf
σ∈Σ

με,σ(A)
]
. (4.1.16)
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Let
I(x) = sup

{A∈A: x∈A}
LA .

If for every x ∈ X ,

I(x) = sup
{A∈A: x∈A}

{

− lim sup
ε→0

ε log
[
sup
σ∈Σ

με,σ(A)
]}

, (4.1.17)

then, for each σ ∈ Σ, the measures με,σ satisfy a weak LDP with the (same)
rate function I(·).

Proof: The proof parallels that of Theorem 4.1.11. (See Exercise 4.1.29.)

It is aesthetically pleasing to know that the following partial converse of
Theorem 4.1.11 holds.

Theorem 4.1.18 Suppose that {με} satisfies the LDP in a regular topolog-
ical space X with rate function I. Then, for any base A of the topology of
X , and for any x ∈ X ,

I(x) = sup
{A∈A: x∈A}

{
− lim inf

ε→0
ε log με(A)

}

= sup
{A∈A: x∈A}

{

− lim sup
ε→0

ε log με(A)
}

. (4.1.19)

Remark: As shown in Exercise 4.1.30, for a Polish space X suffices to
assume in Theorem 4.1.18 that {με} satisfies the weak LDP. Consequently,
by Theorem 4.1.11, in this context (4.1.19) is equivalent to the weak LDP.

Proof: Fix x ∈ X and let

�(x) = sup
{A∈A: x∈A}

inf
y∈A

I(y) . (4.1.20)

Suppose that I(x) > �(x). Then, in particular, �(x) < ∞ and x ∈ ΨI(α)c

for some α > �(x). Since ΨI(α)c is an open set and A is a base for the
topology of the regular space X , there exists a set A ∈ A such that x ∈ A
and A ⊆ ΨI(α)c. Therefore, infy∈A I(y) ≥ α, which contradicts (4.1.20).
We conclude that �(x) ≥ I(x). The large deviations lower bound implies

I(x) ≥ sup
{A∈A: x∈A}

{
− lim inf

ε→0
ε log με(A)

}
,

while the large deviations upper bound implies that for all A ∈ A,

− lim inf
ε→0

ε log με(A) ≥ − lim sup
ε→0

ε log με(A) ≥ inf
y∈A

I(y) .
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These two inequalities yield (4.1.19), since �(x) ≥ I(x).

The characterization of the rate function in Theorem 4.1.11 and Lemma
4.1.15 involves the supremum over a large collection of sets. Hence, it does
not yield a convenient explicit formula. As shown in Section 4.5.2, if X
is a Hausdorff topological vector space, this rate function can sometimes
be identified with the Fenchel–Legendre transform of a limiting logarithmic
moment generating function. This approach requires an a priori proof that
the rate function is convex. The following lemma improves on Theorem
4.1.11 by giving a sufficient condition for the convexity of the rate function.
Throughout, for any sets A1, A2 ∈ X ,

A1 + A2

2
�
= {x : x = (x1 + x2)/2, x1 ∈ A1, x2 ∈ A2} .

Lemma 4.1.21 Let A be a base for a Hausdorff topological vector space X ,
such that in addition to condition (4.1.14), for every A1, A2 ∈ A,

lim sup
ε→0

ε log με

(
A1 + A2

2

)

≥ −1
2

(LA1 + LA2) . (4.1.22)

Then the rate function I of (4.1.13), which governs the weak LDP associated
with {με}, is convex.

Proof: It suffices to show that the condition (4.1.22) yields the convexity
of the rate function I of (4.1.13). To this end, fix x1, x2 ∈ X and δ > 0. Let
x = (x1 + x2)/2 and let Iδ denote the δ-rate function. Then, by (4.1.14),
there exists an A ∈ A such that x ∈ A and − lim supε→0 ε log με(A) ≥ Iδ(x).
The pair (x1, x2) belongs to the set {(y1, y2) : (y1 +y2)/2 ∈ A}, which is an
open subset of X ×X . Therefore, there exist open sets A1 ⊆ X and A2 ⊆ X
with x1 ∈ A1 and x2 ∈ A2 such that (A1 + A2)/2 ⊆ A. Furthermore, since
A is a base for the topology of X , one may take A1 and A2 in A. Thus, our
assumptions imply that

−Iδ(x) ≥ lim sup
ε→0

ε log με(A)

≥ lim sup
ε→0

ε log με

(
A1 + A2

2

)

≥ −1
2

(LA1 + LA2) .

Since x1 ∈ A1 and x2 ∈ A2, it follows that

1
2

I(x1) +
1
2

I(x2) ≥
1
2
LA1 +

1
2
LA2 ≥ Iδ(x) = Iδ

(
1
2

x1 +
1
2

x2

)

.

Considering the limit δ ↘ 0, one obtains

1
2

I(x1) +
1
2

I(x2) ≥ I

(
1
2

x1 +
1
2

x2

)

.
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By iterating, this inequality can be extended to any x of the form (k/2n)x1+
(1−k/2n)x2 with k, n ∈ ZZ+. The definition of a topological vector space and
the lower semicontinuity of I imply that I(βx1 +(1−β)x2) : [0, 1] → [0,∞]
is a lower semicontinuous function of β. Hence, the preceding inequality
holds for all convex combinations of x1, x2 and the proof of the lemma is
complete.

When combined with exponential tightness, Theorem 4.1.11 implies the
following large deviations analog of Prohorov’s theorem (Theorem D.9).

Lemma 4.1.23 Suppose the topological space X has a countable base. For
any family of probability measures {με}, there exists a sequence εk → 0 such
that {μεk

} satisfies the weak LDP in X . If {με} is an exponentially tight
family of probability measures, then {μεk

} also satisfies the LDP with a good
rate function.

Proof: Fix a countable base A for the topology of X and a sequence εn → 0.
By Tychonoff’s theorem (Theorem B.3), the product topology makes Y =
[0, 1]A into a compact metrizable space. Since Y is sequentially compact
(Theorem B.2) and με(·)ε : A → [0, 1] is in Y for each ε > 0, the sequence
μεn(·)εn has a convergent subsequence in Y . Hence, passing to the latter
subsequence, denoted εk, the limits limk→∞ εk log μεk

(A) exist for all A ∈ A
(with −∞ as a possible value). In particular, condition (4.1.14) holds and
by Theorem 4.1.11, {μεk

: k ∈ ZZ+} satisfies the weak LDP. Applying
Lemma 1.2.18, the LDP with a good rate function follows when {με} is
an exponentially tight family of probability measures.

The next lemma applies for tight Borel probability measures με on metric
spaces. In this context, it allows replacement of the assumed LDP in either
Lemma 4.1.4 or Theorem 4.1.18 by a weak LDP (see Exercise 4.1.30).

Lemma 4.1.24 Suppose {με} is a family of tight (Borel) probability mea-
sures on a metric space (X , d), such that the upper bound (1.2.12) holds for
all compact sets and some rate function I(·). Then, for any base A of the
topology of X , and for any x ∈ X ,

I(x) ≤ sup
{A∈A: x∈A}

{

− lim sup
ε→0

ε log με(A)
}

. (4.1.25)

Proof: We argue by contradiction, fixing a base A of the metric topology
and x ∈ X for which (4.1.25) fails. For any m ∈ ZZ+, there exists some
A ∈ A such that x ∈ A ⊂ Bx,m−1 . Hence, for some δ > 0 and any m ∈ ZZ+,

lim sup
ε→0

ε log με(Bx,m−1) > −Iδ(x) = −min{I(x)− δ, 1/δ} ,
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implying that for some εm → 0,

μεm(Bx,m−1) > e−Iδ(x)/εm ∀m ∈ ZZ+ . (4.1.26)

Recall that the probability measures μεm are regular (by Theorem C.5),
hence in (4.1.26) we may replace each open set Bx,m−1 by some closed
subset Fm. With each μεm assumed tight, we may further replace the
closed sets Fm by compact subsets Km ⊂ Fm ⊂ Bx,m−1 such that

μεm(Km) > e−Iδ(x)/εm ∀m ∈ ZZ+ . (4.1.27)

Note that the sets K∗
r = {x} ∪m≥r Km are also compact. Indeed, in any

open covering of K∗
r there is an open set Go such that x ∈ Go and hence

∪m>m0Km ⊂ Bx,m−1
0

⊂ Go for some mo ∈ ZZ+, whereas the compact set
∪mo

m=rKm is contained in the union of some Gi, i = 1, . . . ,M , from this
cover. In view of (4.1.27), the upper bound (1.2.12) yields for K∗

r ⊂ Bx,r−1

that,

− inf
y∈Bx,r−1

I(y) ≥ − inf
y∈K∗

r

I(y) ≥ lim sup
ε→0

ε log με(K∗
r ) (4.1.28)

≥ lim sup
m→∞

εm log μεm(Km) ≥ −Iδ(x) .

By lower semicontinuity, limr→∞ infy∈Bx,r−1 I(y) = I(x) > Iδ(x), in con-
tradiction with (4.1.28). Necessarily, (4.1.25) holds for any x ∈ X and any
base A.

Exercise 4.1.29 Prove Lemma 4.1.15 using the following steps.
(a) Check that the large deviations lower bound (for each σ ∈ Σ) and the lower
semicontinuity of I may be proved exactly as done in Theorem 4.1.11.
(b) Fix σ ∈ Σ and prove the large deviations upper bound for compact sets.

Exercise 4.1.30 Suppose a family of tight (Borel) probability measures {με}
satisfies the weak LDP in a metric space (X , d) with rate function I(·).
(a) Combine Lemma 4.1.24 with the large deviations lower bound to conclude
that (4.1.19) holds for any base A of the topology of X and any x ∈ X .
(b) Conclude that in this context the rate function I(·) associated with the
weak LDP is unique.

Exercise 4.1.31 Suppose Xi ∈ IRd−1, d ≥ 2, with |Xi| ≤ C and Yi ∈
[m, M ] for some 0 < m < M, C < ∞, are such that n−1

∑n
i=1(Xi, Yi) satisfy

the LDP in IRd with a good rate function J(x, y). Let τε = inf{n :
∑n

i=1 Yi >

ε−1}. Show that (ε
∑τε

i=1 Xi, (ετε)−1) satisfies the LDP in IRd with good rate
function y−1J(xy, y).
Hint: A convenient way to handle the move from the random variables



126 4. General Principles

n−1
∑n

i=1(Xi, Yi) to (ε
∑τε

i=1 Xi, (ετε)−1) is in looking at small balls in IRd

and applying the characterization of the weak LDP as in Theorem 4.1.11.

Remark: Such transformations appear, for example, in the study of regen-
erative (or renewal) processes [KucC91, Jia94, PuW97], and of multifractal
formalism [Rei95, Zoh96].

Exercise 4.1.32 Suppose the topological space X has a countable base.
Show that for any rate function I(·) such that infx I(x) = 0, the LDP with
rate function I(·) holds for some family of probability measures {με} on X .
Hint: For A a countable base for the topology of X and each A ∈ A,
let xA,m ∈ A be such that I(xA,m) → infx∈A I(x) as m → ∞. Let
Y = {yk : k ∈ ZZ+} denote the countable set ∪A∈A ∪m xA,m. Check that
infx∈G I(x) = infx∈Y∩G I(x) for any open set G ⊂ X , and try the probability
measures με such that με({yk}) = c−1

ε exp(−k − I(yk)/ε) for yk ∈ Y and
cε =

∑
k exp(−k − I(yk)/ε).

4.2 Transformations of LDPs

This section is devoted to transformations that preserve the LDP, although,
possibly, changing the rate function. Once the LDP with a good rate func-
tion is established for με, the basic contraction principle yields the LDP for
με ◦ f−1, where f is any continuous map. The inverse contraction principle
deals with f which is the inverse of a continuous bijection, and this is a use-
ful tool for strengthening the topology under which the LDP holds. These
two transformations are presented in Section 4.2.1. Section 4.2.2 is devoted
to exponentially good approximations and their implications; for example,
it is shown that when two families of measures defined on the same prob-
ability space are exponentially equivalent, then one can infer the LDP for
one family from the other. A direct consequence is Theorem 4.2.23, which
extends the contraction principle to “approximately continuous” maps.

4.2.1 Contraction Principles

The LDP is preserved under continuous mappings, as the following elemen-
tary theorem shows.

Theorem 4.2.1 (Contraction principle) Let X and Y be Hausdorff
topological spaces and f : X → Y a continuous function. Consider a good
rate function I : X → [0,∞].
(a) For each y ∈ Y, define

I ′(y)
�
= inf{I(x) : x ∈ X , y = f(x)} . (4.2.2)
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Then I ′ is a good rate function on Y, where as usual the infimum over the
empty set is taken as ∞.
(b) If I controls the LDP associated with a family of probability measures
{με} on X , then I ′ controls the LDP associated with the family of probability
measures {με ◦ f−1} on Y.

Proof: (a) Clearly, I ′ is nonnegative. Since I is a good rate function, for
all y ∈ f(X ) the infimum in the definition of I ′ is obtained at some point
of X . Thus, the level sets of I ′, ΨI′(α)�={y : I ′(y) ≤ α}, are

ΨI′(α) = {f(x) : I(x) ≤ α} = f(ΨI(α)) ,

where ΨI(α) are the corresponding level sets of I. As ΨI(α) ⊂ X are
compact, so are the sets ΨI′(α) ⊂ Y .
(b) The definition of I ′ implies that for any A ⊂ Y ,

inf
y∈A

I ′(y) = inf
x∈f−1(A)

I(x) . (4.2.3)

Since f is continuous, the set f−1(A) is an open (closed) subset of X for
any open (closed) A ⊂ Y . Therefore, the LDP for με ◦ f−1 follows as a
consequence of the LDP for με and (4.2.3).

Remarks:
(a) This theorem holds even when BX 
⊆ B, since for any (measurable) set
A ⊂ Y , both f−1(A) ⊂ f−1(A) and f−1(Ao) ⊂ (f−1(A))o.
(b) Note that the upper and lower bounds implied by part (b) of Theorem
4.2.1 hold even when I is not a good rate function. However, if I is not
a good rate function, it may happen that I ′ is not a rate function, as the
example X = Y = IR, I(x) = 0, and f(x) = ex demonstrates.
(c) Theorem 4.2.1 holds as long as f is continuous at every x ∈ DI ; namely,
for every x ∈ DI and every neighborhood G of f(x) ∈ Y , there exists
a neighborhood A of x such that A ⊆ f−1(G). This suggests that the
contraction principle may be further extended to cover a certain class of
“approximately continuous” maps. Such an extension will be pursued in
Theorem 4.2.23.

We remind the reader that in what follows, it is always assumed that
BX ⊆ B, and therefore open sets are always measurable. The following
theorem shows that in the presence of exponential tightness, the contraction
principle can be made to work in the reverse direction. This property is
extremely useful for strengthening large deviations results from a coarse
topology to a finer one.

Theorem 4.2.4 (Inverse contraction principle) Let X and Y be Haus-
dorff topological spaces. Suppose that g : Y → X is a continuous bijection,
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and that {νε} is an exponentially tight family of probability measures on Y.
If {νε ◦ g−1} satisfies the LDP with the rate function I : X → [0,∞], then
{νε} satisfies the LDP with the good rate function I ′(·)�=I(g(·)).

Remarks:
(a) In view of Lemma 4.1.5, it suffices for g to be a continuous injection, for
then the exponential tightness of {νε} implies that DI ⊆ g(Y) even if the
latter is not a closed subset of X .
(b) The requirement that BY ⊆ B is relaxed in Exercise 4.2.9.

Proof: Note first that for every α < ∞, by the continuity of g, the level
set {y : I ′(y) ≤ α} = g−1(ΨI(α)) is closed. Moreover, I ′ ≥ 0, and hence
I ′ is a rate function. Next, because {νε} is an exponentially tight family,
it suffices to prove a weak LDP with the rate function I ′(·). Starting with
the upper bound, fix an arbitrary compact set K ⊂ Y and apply the large
deviations upper bound for νε ◦ g−1 on the compact set g(K) to obtain

lim sup
ε→0

ε log νε(K) = lim sup
ε→0

ε log[νε ◦ g−1(g(K))]

≤ − inf
x∈g(K)

I(x) = − inf
y∈K

I ′(y) ,

which is the specified upper bound for νε.

To prove the large deviations lower bound, fix y ∈ Y with I ′(y) =
I(g(y)) = α < ∞, and a neighborhood G of y. Since {νε} is exponentially
tight, there exists a compact set Kα ⊂ Y such that

lim sup
ε→0

ε log νε(Kc
α) < −α . (4.2.5)

Because g is a bijection, Kc
α = g−1 ◦ g(Kc

α) and g(Kc
α) = g(Kα)c. By the

continuity of g, the set g(Kα) is compact, and consequently g(Kα)c is an
open set. Thus, the large deviations lower bound for the measures {νε◦g−1}
results in

− inf
x∈g(Kc

α)
I(x) ≤ lim inf

ε→0
ε log νε(Kc

α) < −α .

Recall that I(g(y)) = α, and thus by the preceding inequality it must be
that y ∈ Kα. Since g is a continuous bijection, it is a homeomorphism
between the compact sets Kα and g(Kα). Therefore, the set g(G∩Kα) is a
neighborhood of g(y) in the induced topology on g(Kα) ⊂ X . Hence, there
exists a neighborhood G′ of g(y) in X such that

G′ ⊂ g(G ∩Kα) ∪ g(Kα)c = g(G ∪Kc
α) ,

where the last equality holds because g is a bijection. Consequently, for
every ε > 0,

νε(G) + νε(Kc
α) ≥ νε ◦ g−1(G′) ,
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and by the large deviations lower bound for {νε ◦ g−1},

max { lim inf
ε→0

ε log νε(G), lim sup
ε→0

ε log νε(Kc
α) }

≥ lim inf
ε→0

ε log{νε ◦ g−1(G′)}

≥ −I(g(y)) = −I ′(y) .

Since I ′(y) = α, it follows by combining this inequality and (4.2.5) that

lim inf
ε→0

ε log νε(G) ≥ −I ′(y) .

The proof is complete, since the preceding holds for every y ∈ Y and every
neighborhood G of y.

Corollary 4.2.6 Let {με} be an exponentially tight family of probability
measures on X equipped with the topology τ1. If {με} satisfies an LDP with
respect to a Hausdorff topology τ2 on X that is coarser than τ1, then the
same LDP holds with respect to the topology τ1.

Proof: The proof follows from Theorem 4.2.4 by using as g the natural
embedding of (X , τ1) onto (X , τ2), which is continuous because τ1 is finer
than τ2. Note that, since g is continuous, the measures με are well-defined
as Borel measures on (X , τ2).

Exercise 4.2.7 Suppose that X is a separable regular space, and that for all
ε > 0, (Xε, Yε) is distributed according to the product measure με × νε on
BX × BX (namely, Xε is independent of Yε). Assume that {με} satisfies the
LDP with the good rate function IX(·), while νε satisfies the LDP with the
good rate function IY (·), and both {με} and {νε} are exponentially tight.
Prove that for any continuous F : X × X → Y , the family of laws induced on
Y by Zε = F (Xε, Yε) satisfies the LDP with the good rate function

IZ(z) = inf
{(x,y):z=F (x,y)}

IX(x) + IY (y) . (4.2.8)

Hint: Recall that BX ×BX = BX×X by Theorem D.4. To establish the LDP
for με × νε, apply Theorems 4.1.11 and 4.1.18.

Exercise 4.2.9 (a) Prove that Theorem 4.2.4 holds even when the exponen-
tially tight {νε : ε > 0} are not Borel measures on Y , provided {νε◦g−1 : ε > 0}
are Borel probability measures on X .
(b) Show that in particular, Corollary 4.2.6 holds as soon as B contains the
Borel σ-field of (X , τ2) and all compact subsets of (X , τ1).
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4.2.2 Exponential Approximations

In order to extend the contraction principle beyond the continuous case, it
is obvious that one should consider approximations by continuous functions.
It is beneficial to consider a somewhat wider question, namely, when the
LDP for a family of laws {μ̃ε} can be deduced from the LDP for a fam-
ily {με}. The application to approximate contractions follows from these
general results.

Definition 4.2.10 Let (Y , d) be a metric space. The probability measures
{με} and {μ̃ε} on Y are called exponentially equivalent if there exist probabil-
ity spaces {(Ω,Bε, Pε)} and two families of Y-valued random variables {Zε}
and {Z̃ε} with joint laws {Pε} and marginals {με} and {μ̃ε}, respectively,
such that the following condition is satisfied:

For each δ > 0, the set {ω : (Z̃ε, Zε) ∈ Γδ} is Bε measurable, and

lim sup
ε→0

ε log Pε(Γδ) = −∞ , (4.2.11)

where

Γδ
�
={(ỹ, y) : d(ỹ, y) > δ} ⊂ Y × Y . (4.2.12)

Remarks:
(a) The random variables {Zε} and {Z̃ε} in Definition 4.2.10 are called ex-
ponentially equivalent.
(b) It is relatively easy to check that the measurability requirement is satis-
fied whenever Y is a separable space, or whenever the laws {Pε} are induced
by separable real-valued stochastic processes and d is the supremum norm.

As far as the LDP is concerned, exponentially equivalent measures are
indistinguishable, as the following theorem attests.

Theorem 4.2.13 If an LDP with a good rate function I(·) holds for the
probability measures {με}, which are exponentially equivalent to {μ̃ε}, then
the same LDP holds for {μ̃ε}.

Proof: This theorem is a consequence of the forthcoming Theorem 4.2.16.
To avoid repetitions, a direct proof is omitted.

As pointed out in the beginning of this section, an important goal in
considering exponential equivalence is the treatment of approximations. To
this end, the notion of exponential equivalence is replaced by the notion of
exponential approximation, as follows.
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Definition 4.2.14 Let Y and Γδ be as in Definition 4.2.10. For each ε > 0
and all m ∈ ZZ+, let (Ω,Bε, Pε,m) be a probability space, and let the Y-valued
random variables Z̃ε and Zε,m be distributed according to the joint law Pε,m,
with marginals μ̃ε and με,m, respectively. {Zε,m} are called exponentially
good approximations of {Z̃ε} if, for every δ > 0, the set {ω : (Z̃ε, Zε,m) ∈
Γδ} is Bε measurable and

lim
m→∞

lim sup
ε→0

ε log Pε,m(Γδ) = −∞ . (4.2.15)

Similarly, the measures {με,m} are exponentially good approximations of
{μ̃ε} if one can construct probability spaces {(Ω,Bε, Pε,m)} as above.

It should be obvious that Definition 4.2.14 reduces to Definition 4.2.10 if
the laws Pε,m do not depend on m.

The main (highly technical) result of this section is the following relation
between the LDPs of exponentially good approximations.

Theorem 4.2.16 Suppose that for every m, the family of measures {με,m}
satisfies the LDP with rate function Im(·) and that {με,m} are exponentially
good approximations of {μ̃ε}. Then
(a) {μ̃ε} satisfies a weak LDP with the rate function

I(y)
�
= sup

δ>0
lim inf
m→∞

inf
z∈By,δ

Im(z) , (4.2.17)

where By,δ denotes the ball {z : d(y, z) < δ}.
(b) If I(·) is a good rate function and for every closed set F ,

inf
y∈F

I(y) ≤ lim sup
m→∞

inf
y∈F

Im(y) , (4.2.18)

then the full LDP holds for {μ̃ε} with rate function I.

Remarks:
(a) The sets Γδ may be replaced by sets Γ̃δ,m such that the sets {ω :
(Z̃ε, Zε,m) ∈ Γ̃δ,m} differ from Bε measurable sets by Pε,m null sets, and
Γ̃δ,m satisfy both (4.2.15) and Γδ ⊂ Γ̃δ,m.
(b) If the rate functions Im(·) are independent of m, and are good rate
functions, then by Theorem 4.2.16, {μ̃ε} satisfies the LDP with I(·) = Im(·).
In particular, Theorem 4.2.13 is a direct consequence of Theorem 4.2.16.

Proof: (a) Throughout, let {Zε,m} be the exponentially good approxima-
tions of {Z̃ε}, having the joint laws {Pε,m} with marginals {με,m} and
{μ̃ε}, respectively, and let Γδ be as defined in (4.2.12). The weak LDP is
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obtained by applying Theorem 4.1.11 for the base {By,δ}y∈Y,δ>0 of (Y , d).
Specifically, it suffices to show that

I(y) = −inf
δ>0

lim sup
ε→0

ε log μ̃ε(By,δ) = − inf
δ>0

lim inf
ε→0

ε log μ̃ε(By,δ) . (4.2.19)

To this end, fix δ > 0, y ∈ Y . Note that for every m ∈ ZZ+ and every ε > 0,

{Zε,m ∈ By,δ} ⊆ {Z̃ε ∈ By,2δ} ∪ {(Z̃ε, Zε,m) ∈ Γδ} .

Hence, by the union of events bound,

με,m(By,δ) ≤ μ̃ε(By,2δ) + Pε,m(Γδ) .

By the large deviations lower bounds for {με,m},

− inf
z∈By,δ

Im(z) ≤ lim inf
ε→0

ε log με,m(By,δ)

≤ lim inf
ε→0

ε log [μ̃ε(By,2δ) + Pε,m(Γδ)] (4.2.20)

≤ lim inf
ε→0

ε log μ̃ε(By,2δ) ∨ lim sup
ε→0

ε log Pε,m(Γδ) .

Because {με,m} are exponentially good approximations of {μ̃ε},

lim inf
ε→0

ε log μ̃ε(By,2δ) ≥ lim sup
m→∞

{
− inf

z∈By,δ

Im(z)
}

.

Repeating the derivation leading to (4.2.20) with the roles of Zε,m and Z̃ε

reversed yields

lim sup
ε→0

ε log μ̃ε(By,δ) ≤ lim inf
m→∞

{
− inf

z∈By,2δ

Im(z)
}

.

Since By,2δ ⊂ By,3δ , (4.2.19) follows by considering the infimum over δ >
0 in the preceding two inequalities (recall the definition (4.2.17) of I(·)).
Moreover, this argument also implies that

I(y) = sup
δ>0

lim sup
m→∞

inf
z∈By,δ

Im(z) = sup
δ>0

lim sup
m→∞

inf
z∈By,δ

Im(z) .

(b) Fix δ > 0 and a closed set F ⊆ Y . Observe that for m = 1, 2, . . ., and
for all ε > 0,

{Z̃ε ∈ F} ⊆ {Zε,m ∈ F δ} ∪ {(Z̃ε, Zε,m) ∈ Γδ} ,

where F δ = {z : d(z, F ) ≤ δ} is the closed blowup of F . Thus, the large
deviations upper bounds for {με,m} imply that for every m,

lim sup
ε→0

ε log μ̃ε(F ) ≤ lim sup
ε→0

ε log με,m(F δ) ∨ lim sup
ε→0

ε log Pε,m(Γδ)

≤ [− inf
y∈F δ

Im(y)] ∨ lim sup
ε→0

ε log Pε,m(Γδ) .
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Hence, as {Zε,m} are exponentially good approximations of {Z̃ε}, consider-
ing m →∞, it follows that

lim sup
ε→0

ε log μ̃ε(F ) ≤ − lim sup
m→∞

inf
y∈F δ

Im(y) ≤ − inf
y∈F δ

I(y) ,

where the second inequality is just our condition (4.2.18) for the closed set
F δ. Taking δ → 0, Lemma 4.1.6 yields the large deviations upper bound
and completes the proof of the full LDP .

It should be obvious that the results on exponential approximations
imply results on approximate contractions. We now present two such results.
The first is related to Theorem 4.2.13 and considers approximations that
are ε dependent. The second allows one to consider approximations that
depend on an auxiliary parameter.

Corollary 4.2.21 Suppose f : X → Y is a continuous map from a Haus-
dorff topological space X to the metric space (Y , d) and that {με} satisfy the
LDP with the good rate function I : X → [0,∞]. Suppose further that for
all ε > 0, fε : X → Y are measurable maps such that for all δ > 0, the set
Γε,δ

�
={x ∈ X : d(f(x), fε(x)) > δ} is measurable, and

lim sup
ε→0

ε log με(Γε,δ) = −∞ . (4.2.22)

Then the LDP with the good rate function I ′(·) of (4.2.2) holds for the
measures με ◦ f−1

ε on Y.

Proof: The contraction principle (Theorem 4.2.1) yields the desired LDP
for {με ◦ f−1}. By (4.2.22), these measures are exponentially equivalent to
{με ◦ f−1

ε }, and the corollary follows from Theorem 4.2.13.

A special case of Theorem 4.2.16 is the following extension of the con-
traction principle to maps that are not continuous, but that can be approx-
imated well by continuous maps.

Theorem 4.2.23 Let {με} be a family of probability measures that satisfies
the LDP with a good rate function I on a Hausdorff topological space X ,
and for m = 1, 2, . . ., let fm : X → Y be continuous functions, with (Y , d) a
metric space. Assume there exists a measurable map f : X → Y such that
for every α < ∞,

lim sup
m→∞

sup
{x:I(x)≤α}

d(fm(x), f(x)) = 0 . (4.2.24)

Then any family of probability measures {μ̃ε} for which {με ◦ f−1
m } are ex-

ponentially good approximations satisfies the LDP in Y with the good rate
function I ′(y) = inf{I(x) : y = f(x)}.
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Remarks:
(a) The condition (4.2.24) implies that for every α < ∞, the function f
is continuous on the level set ΨI(α) = {x : I(x) ≤ α}. Suppose that in
addition,

lim
m→∞

inf
x∈ΨI(m)c

I(x) = ∞ . (4.2.25)

Then the LDP for με◦f−1 follows as a direct consequence of Theorem 4.2.23
by considering a sequence fm of continuous extensions of f from ΨI(m) to
X . (Such a sequence exists whenever X is a completely regular space.) That
(4.2.25) need not hold true, even when X = IR, may be seen by considering
the following example. It is easy to check that με = (δ{0} + δ{ε})/2 satisfies
the LDP on IR with the good rate function I(0) = 0 and I(x) = ∞, x 
= 0.
On the other hand, the closure of the complement of any level set is the
whole real line. If one now considers the function f : IR → IR such that
f(0) = 0 and f(x) = 1, x 
= 0, then με ◦ f−1 does not satisfy the LDP with
the rate function I ′(y) = inf{I(x) : x ∈ IR, y = f(x)}, i.e., I ′(0) = 0 and
I ′(y) = ∞, y 
= 0.
(b) Suppose for each m ∈ ZZ+, the family of measures {με,m} satisfies the
LDP on Y with the good rate function Im(·) of (4.2.26), where the continu-
ous functions fm : DI → Y and the measurable function f : DI → Y satisfy
condition (4.2.24). Then any {μ̃ε} for which {με,m} are exponentially good
approximations satisfies the LDP in Y with good rate function I ′(·). This
easy adaptation of the proof of Theorem 4.2.23 is left for the reader.

Proof: By assumption, the functions fm : X → Y are continuous. Hence,
by the contraction principle (Theorem 4.2.1), for each m ∈ ZZ+, the family
of measures {με ◦ f−1

m } satisfies the LDP on Y with the good rate function

Im(y) = inf{I(x) : x ∈ X , y = fm(x)} . (4.2.26)

Recall that the condition (4.2.24) implies that f is continuous on each
level set ΨI(α). Therefore, I ′ is a good rate function on Y with level sets
f(ΨI(α)) (while the corresponding level set of Im is fm(ΨI(α))).

Fix a closed set F and for any m ∈ ZZ+, let

γm
�
= inf

y∈F
Im(y) = inf

x∈f−1
m (F )

I(x) .

Assume first that γ�
= lim infm→∞ γm < ∞, and pass to a subsequence of m’s

such that γm → γ and supm γm = α < ∞. Since I(·) is a good rate function
and f−1

m (F ) are closed sets, there exist xm ∈ X such that fm(xm) ∈ F and
I(xm) = γm ≤ α. Now, the uniform convergence assumption of (4.2.24)
implies that f(xm) ∈ F δ for every δ > 0 and all m large enough. Therefore,
infy∈F δ I ′(y) ≤ I ′(f(xm)) ≤ I(xm) = γm for all m large enough. Hence,
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for all δ > 0,
inf

y∈F δ
I ′(y) ≤ lim inf

m→∞
inf
y∈F

Im(y) .

(Note that this inequality trivially holds when γ = ∞.) Taking δ → 0, it
follows from Lemma 4.1.6 that for every closed set F ,

inf
y∈F

I ′(y) ≤ lim inf
m→∞

inf
y∈F

Im(y) . (4.2.27)

In particular, this inequality implies that (4.2.18) holds for the good rate
function I ′(·). Moreover, considering F = By,δ, and taking δ → 0, it follows
from Lemma 4.1.6 that

I ′(y) = sup
δ>0

inf
z∈By,δ

I ′(z) ≤ sup
δ>0

lim inf
m→∞

inf
z∈By,δ

Im(z)
�
=Ī(y) .

Note that Ī(·) is the rate function defined in Theorem 4.2.16, and conse-
quently the proof is complete as soon as we show that Ī(y) ≤ I ′(y) for all
y ∈ Y . To this end, assume with no loss of generality that I ′(y) = α < ∞.
Then, y ∈ f(ΨI(α)), i.e., there exists x ∈ ΨI(α) such that f(x) = y.
Note that ym = fm(x) ∈ fm(ΨI(α)), and consequently Im(ym) ≤ α for all
m ∈ ZZ+. The condition (4.2.24) then implies that d(y, ym) → 0, and hence
Ī(y) ≤ lim infm→∞ Im(ym) ≤ α, as required.

Exercise 4.2.28 [Based on [DV75a]] Let Σ = {1, · · · , r}, and let Yt be
a Σ-valued continuous time Markov process with irreducible generator A =
{a(i, j)}. In this exercise, you derive the LDP for the empirical measures

Ly
ε (i) = ε

∫ 1/ε

0

1i(Yt)dt, i = 1, . . . , r .

(a) Define

Ly
ε,m(i) =

ε

m

�m
ε �∑

j=1

1i(Y j
m

), i = 1, . . . , r .

Show that {Ly
ε,m} are exponentially good approximations of {Ly

ε }.
Hint: Note that

|Ly
ε (i)− Ly

ε,m(i)| ≤ ε

m

{
total number of jumps in
the path Yt, t ∈ [0, 1/ε]

}
�
=

ε

m
Nε ,

and Nε is stochastically dominated by a Poisson(c/ε) random variable for some
constant c < ∞.
(b) Note that Ly

ε,m is the empirical measure of a Σ-valued, discrete time Markov

process with irreducible transition probability matrix eA/m. Using Theorem
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3.1.6 and Exercise 3.1.11, show that for every m, Ly
ε,m satisfies the LDP with

the good rate function

Im(q) = m sup
u�0

r∑

j=1

qj log
[

uj

(eA/mu)j

]

,

where q ∈ M1(Σ).

(c) Applying Theorem 4.2.16, prove that {Ly
ε } satisfies the LDP with the good

rate function

I(q) = sup
u�0

{
−

r∑

j=1

qj
(Au)j

uj

}
.

Hint: Check that for all q ∈ M1(Σ), I(q) ≥ Im(q), and that for each fixed

u � 0, Im(q) ≥ −
∑

j qj
(Au)j

uj
− c(u)

m for some c(u) < ∞.

(d) Assume that A is symmetric and check that then

I(q) = −
r∑

i,j=1

√
qi a(i, j)

√
qj .

Exercise 4.2.29 Suppose that for every m, the family of measures {με,m}
satisfies the LDP with good rate function Im(·) and that {με,m} are exponen-
tially good approximations of {μ̃ε}.
(a) Show that if (Y , d) is a Polish space, then {μ̃εn} is exponentially tight for
any εn → 0. Hence, by part (a) of Theorem 4.2.16, {μ̃ε} satisfies the LDP
with the good rate function I(·) of (4.2.17).
Hint: See Exercise 4.1.10.
(b) Let Y = {1/m,m ∈ ZZ+} with the metric d(·, ·) induced on Y by IR and
Y-valued random variables Ym such that P (Ym = 1 for every m) = 1/2, and
P (Ym = 1/m for every m) = 1/2. Check that Zε,m

�
=Ym are exponentially

good approximations of Z̃ε
�
=Y[1/ε] (ε ≤ 1), which for any fixed m ∈ ZZ+ satisfy

the LDP in Y with the good rate function Im(y) = 0 for y = 1, y = 1/m, and
Im(y) = ∞ otherwise. Check that in this case, the good rate function I(·)
of (4.2.17) is such that I(y) = ∞ for every y 
= 1 and in particular, the large
deviations upper bound fails for {Z̃ε 
= 1} and this rate function.

Remark: This example shows that when (Y , d) is not a Polish space one can
not dispense of condition (4.2.18) in Theorem 4.2.16.

Exercise 4.2.30 For any δ > 0 and probability measures ν, μ on the metric
space (Y , d) let

ρδ(ν, μ)
�
= sup{ν(A)− μ(Aδ) : A ∈ BY } .

(a) Show that if {με,m} are exponentially good approximations of {μ̃ε} then

lim
m→∞

lim sup
ε→0

ε log ρδ(με,m, μ̃ε) = −∞ . (4.2.31)
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(b) Show that if (Y , d) is a Polish space and (4.2.31) holds for any δ > 0, then
{με,m} are exponentially good approximations of {μ̃ε}.
Hint: Recall the following consequence of [Str65, Theorem 11]. For any open
set Γ ⊂ Y2 and any Borel probability measures ν, μ on the Polish space (Y , d)
there exists a Borel probability measure P on Y2 with marginals μ, ν such that

P (Γ) = sup{ν(G)−μ({ỹ : ∃y ∈ G, such that (ỹ, y) ∈ Γc}) : G ⊂ Y open } .

Conclude that Pε,m(Γδ′) ≤ ρδ(με,m, μ̃ε) for any m, ε > 0, and δ′ > δ > 0.

Exercise 4.2.32 Prove Theorem 4.2.13, assuming that {με} are Borel prob-
ability measures, but {μ̃ε} are not necessarily such.

4.3 Varadhan’s Integral Lemma

Throughout this section, {Zε} is a family of random variables taking val-
ues in the regular topological space X , and {με} denotes the probability
measures associated with {Zε}. The next theorem could actually be used
as a starting point for developing the large deviations paradigm. It is a
very useful tool in many applications of large deviations. For example, the
asymptotics of the partition function in statistical mechanics can be derived
using this theorem.

Theorem 4.3.1 (Varadhan) Suppose that {με} satisfies the LDP with a
good rate function I : X → [0,∞], and let φ : X → IR be any continuous
function. Assume further either the tail condition

lim
M→∞

lim sup
ε→0

ε log E
[
eφ(Zε)/ε 1{φ(Zε)≥M}

]
= −∞ , (4.3.2)

or the following moment condition for some γ > 1,

lim sup
ε→0

ε log E
[
eγφ(Zε)/ε

]
< ∞ . (4.3.3)

Then
lim
ε→0

ε log E
[
eφ(Zε)/ε

]
= sup

x∈X
{φ(x)− I(x)} .

Remark: This theorem is the natural extension of Laplace’s method to
infinite dimensional spaces. Indeed, let X = IR and assume for the mo-
ment that the density of με with respect to Lebesgue’s measure is such that
dμε/dx ≈ e−I(x)/ε. Then

∫

IR

eφ(x)/εμε(dx) ≈
∫

IR

e(φ(x)−I(x))/εdx .
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Assume that I(·) and φ(·) are twice differentiable, with (φ(x)−I(x)) concave
and possessing a unique global maximum at some x. Then

φ(x)− I(x) = φ(x)− I(x) +
(x− x)2

2
(φ(x)− I(x))′′|x=ξ ,

where ξ ∈ [x, x]. Therefore,
∫

IR

eφ(x)/εμε(dx) ≈ e(φ(x)−I(x))/ε

∫

IR

e−B(x)(x−x)2/2εdx ,

where B(·) ≥ 0. The content of Laplace’s method (and of Theorem 4.3.1)
is that on a logarithmic scale the rightmost integral may be ignored.

Theorem 4.3.1 is a direct consequence of the following three lemmas.

Lemma 4.3.4 If φ : X → IR is lower semicontinuous and the large devia-
tions lower bound holds with I : X → [0,∞], then

lim inf
ε→0

ε log E
[
eφ(Zε)/ε

]
≥ sup

x∈X
{φ(x)− I(x)} . (4.3.5)

Lemma 4.3.6 If φ : X → IR is an upper semicontinuous function for which
the tail condition (4.3.2) holds, and the large deviations upper bound holds
with the good rate function I : X → [0,∞], then

lim sup
ε→0

ε log E
[
eφ(Zε)/ε

]
≤ sup

x∈X
{φ(x)− I(x)} . (4.3.7)

Lemma 4.3.8 Condition (4.3.3) implies the tail condition (4.3.2).

Proof of Lemma 4.3.4: Fix x ∈ X and δ > 0. Since φ(·) is lower
semicontinuous, it follows that there exists a neighborhood G of x such that
infy∈G φ(y) ≥ φ(x)− δ. Hence,

lim inf
ε→0

ε log E
[
eφ(Zε)/ε

]
≥ lim inf

ε→0
ε log E

[
eφ(Zε)/ε1{Zε∈G}

]

≥ inf
y∈G

φ(y) + lim inf
ε→0

ε log με(G) .

By the large deviations lower bound and the choice of G,

inf
y∈G

φ(y) + lim inf
ε→0

ε log με(G) ≥ inf
y∈G

φ(y)− inf
y∈G

I(y) ≥ φ(x)− I(x)− δ .

The inequality (4.3.5) now follows, since δ > 0 and x ∈ X are arbitrary.

Proof of Lemma 4.3.6: Consider first a function φ bounded above, i.e.,
supx∈X φ(x) ≤ M < ∞. For such functions, the tail condition (4.3.2)
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holds trivially. Fix α < ∞ and δ > 0, and let ΨI(α) = {x : I(x) ≤ α}
denote the compact level set of the good rate function I. Since I(·) is lower
semicontinuous, φ(·) is upper semicontinuous, and X is a regular topological
space, for every x ∈ ΨI(α), there exists a neighborhood Ax of x such that

inf
y∈Ax

I(y) ≥ I(x)− δ , sup
y∈Ax

φ(y) ≤ φ(x) + δ . (4.3.9)

From the open cover ∪x∈ΨI(α)Ax of the compact set ΨI(α), one can extract
a finite cover of ΨI(α), e.g., ∪N

i=1Axi . Therefore,

E
[
eφ(Zε)/ε

]
≤

N∑

i=1

E
[
eφ(Zε)/ε1{Zε∈Axi

}

]
+ eM/εμε

(( N⋃

i=1

Axi

)c )

≤
N∑

i=1

e(φ(xi)+δ)/εμε(Axi ) + eM/εμε

(( N⋃

i=1

Axi

)c )

where the last inequality follows by (4.3.9). Applying the large deviations
upper bound to the sets Axi , i = 1, . . . , N and (∪N

i=1Axi)
c ⊆ ΨI(α)c, one

obtains (again, in view of (4.3.9)),

lim sup
ε→0

ε log E
[
eφ(Zε)/ε

]

≤ max
{

N
max
i=1

{φ(xi) + δ − inf
y∈Axi

I(y) }, M − inf
y∈(∪N

i=1Axi
)c

I(y)
}

≤ max
{

N
max
i=1

{φ(xi)− I(xi) + 2δ}, M − α
}

≤ max
{

sup
x∈X

{φ(x)− I(x)}, M − α
}

+ 2δ .

Thus, for any φ(·) bounded above, the lemma follows by taking the limits
δ → 0 and α →∞.

To treat the general case, set φM (x) = φ(x) ∧ M ≤ φ(x), and use the
preceding to show that for every M < ∞,

lim sup
ε→0

ε log E
[
eφ(Zε)/ε

]

≤ sup
x∈X

{φ(x)− I(x)} ∨ lim sup
ε→0

ε log E
[
eφ(Zε)/ε 1{φ(Zε)≥M}

]
.

The tail condition (4.3.2) completes the proof of the lemma by taking the
limit M →∞.

Proof of Lemma 4.3.8: For ε > 0, define Xε
�
= exp((φ(Zε) −M)/ε), and
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let γ > 1 be the constant given in the moment condition (4.3.3). Then

e−M/εE
[
eφ(Zε)/ε 1{φ(Zε)≥M}

]
= E

[
Xε 1{Xε≥1}

]

≤ E [(Xε)γ ] = e−γM/εE
[
eγφ(Zε)/ε

]
.

Therefore,

lim sup
ε→0

ε log E
[
eφ(Zε)/ε 1{φ(Zε)≥M}

]

≤ −(γ − 1)M + lim sup
ε→0

ε log E
[
eγφ(Zε)/ε

]
.

The right side of this inequality is finite by the moment condition (4.3.3).
In the limit M →∞, it yields the tail condition (4.3.2).

Exercise 4.3.10 Let φ : X → [−∞,∞] be an upper semicontinuous function,
and let I(·) be a good rate function. Prove that in any closed set F ⊂ X on
which φ is bounded above, there exists a point x0 such that

φ(x0)− I(x0) = sup
x∈F

{φ(x)− I(x)} .

Exercise 4.3.11 [From [DeuS89b], Exercise 2.1.24]. Assume that {με} sat-
isfies the LDP with good rate function I(·) and that the tail condition (4.3.2)
holds for the continuous function φ : X → IR. Show that

lim inf
ε→0

ε log
(∫

G

eφ(x)/εdμε

)

≥ sup
x∈G

{φ(x)− I(x)}, ∀G open ,

lim sup
ε→0

ε log
(∫

F

eφ(x)/εdμε

)

≤ sup
x∈F

{φ(x)− I(x)}, ∀F closed .

Exercise 4.3.12 The purpose of this exercise is to demonstrate that some
tail condition like (4.3.2) is necessary for Lemma 4.3.6 to hold. In particular,
this lemma may not hold for linear functions.

Consider a family of real valued random variables {Zε}, where P(Zε = 0) =
1− 2pε, P(Zε = −mε) = pε, and P(Zε = mε) = pε.
(a) Prove that if

lim
ε→0

ε log pε = −∞ ,

then the laws of {Zε} are exponentially tight, and moreover they satisfy the
LDP with the convex, good rate function

I(x) =

{
0 x = 0

∞ otherwise .
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(b) Let mε = −ε log pε and define

Λ(λ) = lim
ε→0

ε log E
(
eλZε/ε

)
.

Prove that

Λ(λ) =

{
0 |λ| ≤ 1

∞ otherwise ,

and its Fenchel–Legendre transform is Λ∗(x) = |x|.
(c) Observe that Λ(λ) 
= supx∈IR {λx− I(x)}, and Λ∗(·) 
= I(·).

4.4 Bryc’s Inverse Varadhan Lemma

As will be seen in Section 4.5, in the setting of topological vector spaces,
linear functionals play an important role in establishing the LDP, partic-
ularly when convexity is involved. Note, however, that Varadhan’s lemma
applies to nonlinear functions as well. It is the goal of this section to de-
rive the inverse of Varadhan’s lemma. Specifically, let {με} be a family of
probability measures on a topological space X . For each Borel measurable
function f : X → IR, define

Λf
�
= lim

ε→0
ε log

∫

X
ef(x)/εμε(dx) , (4.4.1)

provided the limit exists. For example, when X is a vector space, then
the {Λf} for continuous linear functionals (i.e., for f ∈ X ∗) are just the
values of the logarithmic moment generating function defined in Section
4.5. The main result of this section is that the LDP is a consequence of
exponential tightness and the existence of the limits (4.4.1) for every f ∈ G,
for appropriate families of functions G. This result is used in Section 6.4,
where the smoothness assumptions of the Gärtner–Ellis theorem (Theorem
2.3.6) are replaced by mixing assumptions en route to the LDP for the
empirical measures of Markov chains.

Throughout this section, it is assumed that X is a completely regular
topological space, i.e., X is Hausdorff, and for any closed set F ⊂ X and
any point x /∈ F , there exists a continuous function f : X → [0, 1] such that
f(x) = 1 and f(y) = 0 for all y ∈ F . It is also not hard to verify that such
a space is regular and that both metric spaces and Hausdorff topological
vector spaces are completely regular.

The class of all bounded, real valued continuous functions on X is de-
noted throughout by Cb(X ).
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Theorem 4.4.2 (Bryc) Suppose that the family {με} is exponentially ti-
ght and that the limit Λf in (4.4.1) exists for every f ∈ Cb(X ). Then {με}
satisfies the LDP with the good rate function

I(x) = sup
f∈Cb(X )

{f(x)− Λf} . (4.4.3)

Furthermore, for every f ∈ Cb(X ),

Λf = sup
x∈X

{f(x)− I(x)} . (4.4.4)

Remark: In the case where X is a topological vector space, it is tempting
to compare (4.4.3) and (4.4.4) with the Fenchel–Legendre transform pair
Λ(·) and Λ∗(·) of Section 4.5. Note, however, that here the rate function
I(x) need not be convex.

Proof: Since Λ0 = 0, it follows that I(·) ≥ 0. Moreover, I(x) is lower
semicontinuous, since it is the supremum of continuous functions. Due
to the exponential tightness of {με}, the LDP asserted follows once the
weak LDP (with rate function I(·)) is proved. Moreover, by an application
of Varadhan’s lemma (Theorem 4.3.1), the identity (4.4.4) then holds. It
remains, therefore, only to prove the weak LDP, which is a consequence of
the following two lemmas.

Lemma 4.4.5 (Upper bound) If Λf exists for each f ∈ Cb(X ), then, for
every compact Γ ⊂ X ,

lim sup
ε→0

ε log με(Γ) ≤ − inf
x∈Γ

I(x) .

Lemma 4.4.6 (Lower bound) If Λf exists for each f ∈ Cb(X ), then, for
every open G ⊂ X and each x ∈ G,

lim inf
ε→0

ε log με(G) ≥ −I(x) .

Proof of Lemma 4.4.5: The proof is almost identical to the proof of part
(b) of Theorem 4.5.3, substituting f(x) for 〈λ, x〉. To avoid repetition, the
details are omitted.

Proof of Lemma 4.4.6: Fix x ∈ X and a neighborhood G of x. Since X
is a completely regular topological space, there exists a continuous function
f : X → [0, 1], such that f(x) = 1 and f(y) = 0 for all y ∈ Gc. For m > 0,
define fm(·)�=m(f(·)− 1). Then

∫

X
efm(x)/εμε(dx) ≤ e−m/εμε(Gc) + με(G) ≤ e−m/ε + με(G) .
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Since fm ∈ Cb(X ) and fm(x) = 0, it now follows that

max{ lim inf
ε→0

ε log με(G), −m }

≥ lim inf
ε→0

ε log
∫

X
efm(x)/εμε(dx) = Λfm

= −[fm(x)− Λfm ] ≥ − sup
f∈Cb(X )

{f(x)− Λf} = −I(x) ,

and the lower bound follows by letting m →∞.

This proof works because indicators on open sets are approximated well
enough by bounded continuous functions. It is clear, however, that not all
of Cb(X ) is needed for that purpose. The following definition is the tool for
relaxing the assumptions of Theorem 4.4.2.

Definition 4.4.7 A class G of continuous, real valued functions on a topo-
logical space X is said to be well-separating if:
(1) G contains the constant functions.
(2) G is closed under finite pointwise minima, i.e., g1, g2 ∈ G ⇒ g1∧g2 ∈ G.
(3) G separates points of X , i.e., given two points x, y ∈ X with x 
= y, and
a, b ∈ IR, there exists a function g ∈ G such that g(x) = a and g(y) = b.

Remark: It is easy to check that if G is well-separating, so is G+, the class
of all bounded above functions in G.

When X is a vector space, a particularly useful class of well-separating
functions exists.

Lemma 4.4.8 Let X be a locally convex, Hausdorff topological vector space.
Then the class G of all continuous, bounded above, concave functions on X
is well-separating.

Proof: Let X ∗ denote the topological dual of X , and let G0
�
={λ(x) + c :

λ ∈ X ∗, c ∈ IR}. Note that G0 contains the constant functions, and by
the Hahn–Banach theorem, G0 separates points of X . Since G0 consists of
continuous, concave functions, it follows that the class of all continuous,
concave functions separates points. Moreover, as the pointwise minimum
of concave, continuous functions is concave and continuous, this class of
functions is well-separating. Finally, by the earlier remark, it suffices to
consider only the bounded above, continuous, concave functions.

The following lemma, whose proof is deferred to the end of the sec-
tion, states the specific approximation property of well-separating classes
of functions that allows their use instead of Cb(X ). It will be used in the
proof of Theorem 4.4.10.
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Lemma 4.4.9 Let G be a well-separating class of functions on X . Then
for any compact set Γ ⊂ X , any f ∈ Cb(Γ), and any δ > 0, there exists an
integer d < ∞ and functions g1, . . . , gd ∈ G such that

sup
x∈Γ

|f(x)− d
max
i=1

gi(x)| ≤ δ

and
sup
x∈X

gi(x) ≤ sup
x∈Γ

f(x) < ∞ .

Theorem 4.4.10 Let {με} be an exponentially tight family of probability
measures on a completely regular topological space X , and suppose G is a
well-separating class of functions on X . If Λg exists for each g ∈ G, then
Λf exists for each f ∈ Cb(X ). Consequently, all the conclusions of Theorem
4.4.2 hold.

Proof: Fix a bounded continuous function f(x) with |f(x)| ≤ M . Since the
family {με} is exponentially tight, there exists a compact set Γ such that
for all ε small enough,

με(Γc) ≤ e−3M/ε .

Fix δ > 0 and let g1, . . . , gd ∈ G, d < ∞ be as in Lemma 4.4.9, with
h(x)�= maxd

i=1 gi(x). Then, for every ε > 0,

d
max
i=1

{∫

X
egi(x)/εμε(dx)

}

≤
∫

X
eh(x)/εμε(dx) ≤

d∑

i=1

∫

X
egi(x)/εμε(dx) .

Hence, by the assumption of the theorem, the limit

Λh = lim
ε→0

ε log
∫

X
eh(x)/εμε(dx)

exists, and Λh = maxd
i=1 Λgi . Moreover, by Lemma 4.4.9, h(x) ≤ M for all

x ∈ X , and h(x) ≥ (f(x)− δ) ≥ −(M + δ) for all x ∈ Γ. Consequently, for
all ε small enough, ∫

Γc

eh(x)/εμε(dx) ≤ e−2M/ε

and ∫

Γ

eh(x)/εμε(dx) ≥ e−(M+δ)/εμε(Γ) ≥ 1
2

e−(M+δ)/ε.

Hence, for any δ < M ,

Λh = lim
ε→0

ε log
∫

Γ

eh(x)/εμε(dx) .
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Since supx∈Γ |f(x)− h(x)| ≤ δ,

lim sup
ε→0

ε log
∫

Γ

ef(x)/εμε(dx) ≤ δ + lim sup
ε→0

ε log
∫

Γ

eh(x)/εμε(dx)

= δ + Λh = δ + lim inf
ε→0

ε log
∫

Γ

eh(x)/εμε(dx)

≤ 2δ + lim inf
ε→0

ε log
∫

Γ

ef(x)/εμε(dx) .

Thus, taking δ → 0, it follows that

lim
ε→0

ε log
∫

Γ

ef(x)/εμε(dx)

exists. This limit equals Λf , since, for all ε small enough,
∫

Γc

ef(x)/εμε(dx) ≤ e−2M/ε ,

∫

Γ

ef(x)/εμε(dx) ≥ 1
2

e−M/ε .

Proof of Lemma 4.4.9: Fix Γ ⊂ X compact, f ∈ Cb(Γ) and δ > 0. Let
x, y ∈ Γ with x 
= y. Since G separates points in Γ, there is a function
gx,y(·) ∈ G such that gx,y(x) = f(x) and gx,y(y) = f(y). Because each of
the functions f(·) − gx,y(·) is continuous, one may find for each y ∈ Γ a
neighborhood Uy of y such that

inf
u∈Uy

{f(u)− gx,y(u)} ≥ −δ .

The neighborhoods {Uy} form a cover of Γ; hence, Γ may be covered by
a finite collection Uy1 , . . . , Uym of such neighborhoods. For every x ∈ Γ,
define

gx(·) = gx,y1(·) ∧ gx,y2(·) ∧ · · · ∧ gx,ym(·) ∈ G .

Then
inf
u∈Γ

{f(u)− gx(u)} ≥ −δ . (4.4.11)

Recall now that, for all i, gx,yi(x) = f(x) and hence gx(x) = f(x). Since
each of the functions f(·)− gx(·) is continuous, one may find a finite cover
V1, . . . , Vd of Γ and functions gx1 , . . . , gxd

∈ G such that

sup
v∈Vi

{f(v)− gxi(v)} ≤ δ . (4.4.12)

By the two preceding inequalities,

sup
v∈Γ

|f(v)− d
max
i=1

gxi(v)| ≤ δ .
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To complete the proof, observe that the constant M�
= supx∈Γ f(x) belongs

to G, and hence so does gi(·) = gxi(·) ∧M , while for all v ∈ Γ,

|f(v)− d
max
i=1

gi(v)| ≤ |f(v)− d
max
i=1

gxi(v)| .

The following variant of Theorem 4.4.2 dispenses with the exponential
tightness of {με}, assuming instead that (4.4.4) holds for some good rate
function I(·). See Section 6.6 for an application of this result.

Theorem 4.4.13 Let I(·) be a good rate function. A family of probability
measures {με} satisfies the LDP in X with the rate function I(·) if and only
if the limit Λf in (4.4.1) exists for every f ∈ Cb(X ) and satisfies (4.4.4).

Proof: Suppose first that {με} satisfies the LDP in X with the good rate
function I(·). Then, by Varadhan’s Lemma (Theorem 4.3.1), the limit Λf

in (4.4.1) exists for every f ∈ Cb(X ) and satisfies (4.4.4).

Conversely, suppose that the limit Λf in (4.4.1) exists for every f ∈
Cb(X ) and satisfies (4.4.4) for some good rate function I(·). The rela-
tion (4.4.4) implies that Λf − f(x) ≥ −I(x) for any x ∈ X and any
f ∈ Cb(X ). Therefore, by Lemma 4.4.6, the existence of Λf implies that
{με} satisfies the large deviations lower bound, with the good rate function
I(·). Turning to prove the complementary upper bound, it suffices to con-
sider closed sets F ⊂ X for which infx∈F I(x) > 0. Fix such a set and
δ > 0 small enough so that α�

= infx∈F Iδ(x) ∈ (0,∞) for the δ-rate func-
tion Iδ(·) = min{I(·) − δ, 1

δ}. With Λ0 = 0, the relation (4.4.4) implies
that ΨI(α) is non-empty. Since F and ΨI(α) are disjoint subsets of the
completely regular topological space X , for any y ∈ ΨI(α) there exists a
continuous function fy : X → [0, 1] such that fy(y) = 1 and fy(x) = 0
for all x ∈ F . The neighborhoods Uy

�
={z : fy(z) > 1/2} form a cover

of ΨI(α); hence, the compact set ΨI(α) may be covered by a finite col-
lection Uy1 , . . . , Uyn of such neighborhoods. For any m ∈ ZZ+, the non-
negative function hm(·)�=2m maxn

i=1 fyi(·) is continuous and bounded, with
hm(x) = 0 for all x ∈ F and hm(y) ≥ m for all y ∈ ΨI(α). Therefore,
by (4.4.4),

lim sup
ε→0

ε log με(F ) ≤ lim sup
ε→0

ε log
∫

X
e−hm(x)/εμε(dx)

= Λ−hm = − inf
x∈X

{hm(x) + I(x)} .

Note that hm(x) + I(x) ≥ m for any x ∈ ΨI(α), whereas hm(x) + I(x) ≥ α
for any x /∈ ΨI(α). Consequently, taking m ≥ α,

lim sup
ε→0

ε log με(F ) ≤ −α .
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Since δ > 0 is arbitrarily small, the large deviations upper bound holds (see
(1.2.11)).

Exercise 4.4.14 Let {με} be an exponentially tight family of probability mea-
sures on a completely regular topological space X . Let G be a well-separating
class of real valued, continuous functions on X , and let G+ denote the functions
in G that are bounded above.
(a) Suppose that Λg exists for all g ∈ G+. For g /∈ G+, define

Λg = lim inf
ε→0

ε log
∫

X
eg(x)/εμε(dx) .

Let Î(x) = supg∈G+{g(x)− Λg} and show that

Î(x) = sup
g∈G

{g(x)− Λg} .

Hint: Observe that for every g ∈ G and every constant M < ∞, both
g(x) ∧M ∈ G+ and Λg∧M ≤ Λg.
(b) Note that G+ is well-separating, and hence {με} satisfies the LDP with the
good rate function

I(x) = sup
f∈Cb(X )

{f(x)− Λf} .

Prove that I(·) = Î(·).
Hint: Varadhan’s lemma applies to every g ∈ G+. Consequently, I(x) ≥ Î(x) .
Fix x ∈ X and f ∈ Cb(X ). Following the proof of Theorem 4.4.10 with the
compact set Γ enlarged to ensure that x ∈ Γ, show that

f(x)− Λf ≤ sup
d<∞

sup
gi∈G+

{
d

max
i=1

gi(x)− d
max
i=1

Λgi

}
= Î(x) .

(c) To derive the converse of Theorem 4.4.10, suppose now that {με} satisfies
the LDP with rate function I(·). Use Varadhan’s lemma to deduce that Λg

exists for all g ∈ G+, and consequently by parts (a) and (b) of this exercise,

I(x) = sup
g∈G

{g(x)− Λg} .

Exercise 4.4.15 Suppose the topological space X has a countable base. Let
G be a class of continuous, bounded above, real valued functions on X such
that for any good rate function J(·),

J(y) ≤ sup
g∈G

inf
x∈X

{ g(y)− g(x) + J(x) } . (4.4.16)

(a) Suppose the family of probability measures {με} satisfies the LDP in X
with a good rate function I(·). Then, by Varadhan’s Lemma, Λg exists for
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g ∈ G and is given by (4.4.4). Show that I(·) = Î(·)�= supg∈G{g(·)− Λg}.
(b) Suppose {με} is an exponentially tight family of probability measures, such
that Λg exists for any g ∈ G. Show that {με} satisfies the LDP in X with the

good rate function Î(·).
Hint: By Lemma 4.1.23 for any sequence εn → 0, there exists a subsequence
n(k) →∞ such that {μεn(k)} satisfies the LDP with a good rate function. Use
part (a) to show that this good rate function is independent of εn → 0.
(c) Show that (4.4.16) holds if for any compact set K ⊂ X , y /∈ K and α, δ > 0,
there exists g ∈ G such that supx∈X g(x) ≤ g(y) + δ and supx∈K g(x) ≤
g(y)− α.
Hint: Consider g ∈ G corresponding to K = ΨJ(α), α ↗ J(y) and δ → 0.
(d) Use part (c) to verify that (4.4.16) holds for G = Cb(X ) and X a completely
regular topological space, thus providing an alternative proof of Theorem 4.4.2
under somewhat stronger conditions.
Hint: See the construction of hm(·) in Theorem 4.4.13.

Exercise 4.4.17 Complete the proof of Lemma 4.4.5.

4.5 LDP in Topological Vector Spaces

In Section 2.3, it was shown that when a limiting logarithmic moment gen-
erating function exists for a family of IRd-valued random variables, then its
Fenchel–Legendre transform is the natural candidate rate function for the
LDP associated with these variables. The goal of this section is to extend
this result to topological vector spaces. As will be seen, convexity plays a
major role as soon as the linear structure is introduced. For this reason,
after the upper bound is established for all compact sets in Section 4.5.1,
Section 4.5.2 turns to the study of some generalities involving the convex
duality of Λ and Λ∗. These convexity considerations play an essential role
in applications. Finally, Section 4.5.3 is devoted to a direct derivation of a
weak version of the Gärtner–Ellis theorem in an abstract setup (Theorem
4.5.20), and to a Banach space variant of it.

Throughout this section, X is a Hausdorff (real) topological vector space.
Recall that such spaces are regular, so the results of Sections 4.1 and 4.3
apply. The dual space of X , namely, the space of all continuous linear func-
tionals on X , is denoted throughout by X ∗. Let Zε be a family of random
variables taking values in X , and let με ∈ M1(X ) denote the probability
measure associated with Zε. By analogy with the IRd case presented in Sec-
tion 2.3, the logarithmic moment generating function Λμε : X ∗ → (−∞,∞]
is defined to be

Λμε(λ) = log E
[
e〈λ,Zε〉

]
= log

∫

X
eλ(x)με(dx) , λ ∈ X ∗ ,
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where for x ∈ X and λ ∈ X ∗, 〈λ, x〉 denotes the value of λ(x) ∈ IR.

Let

Λ̄(λ)
�
= lim sup

ε→0
εΛμε

(
λ

ε

)

, (4.5.1)

using the notation Λ(λ) whenever the limit exists. In most of the examples
considered in Chapter 2, when εΛμε(·/ε) converges pointwise to Λ(·) for
X = IRd and an LDP holds for {με}, the rate function associated with this
LDP is the Fenchel–Legendre transform of Λ(·). In the current setup, the
Fenchel–Legendre transform of a function f : X ∗ → [−∞,∞] is defined as

f∗(x)
�
= sup

λ∈X∗
{〈λ, x〉 − f(λ)} , x ∈ X . (4.5.2)

Thus, Λ̄∗ denotes the Fenchel–Legendre transform of Λ̄, and Λ∗ denotes
that of Λ when the latter exists for all λ ∈ X ∗.

4.5.1 A General Upper Bound

As in the IRd case, Λ̄∗ plays a prominent role in the LDP bounds.

Theorem 4.5.3
(a) Λ̄(·) of (4.5.1) is convex on X ∗ and Λ̄∗(·) is a convex rate function.
(b) For any compact set Γ ⊂ X ,

lim sup
ε→0

ε log με(Γ) ≤ − inf
x∈Γ

Λ̄∗(x) . (4.5.4)

Remarks:
(a) In Theorem 2.3.6, which corresponds to X = IRd, it was assumed, for
the purpose of establishing exponential tightness, that 0 ∈ Do

Λ. In the
abstract setup considered here, the exponential tightness does not follow
from this assumption, and therefore must be handled on a case-by-case
basis. (See, however, [deA85a] for a criterion for exponential tightness which
is applicable in a variety of situations.)
(b) Note that any bound of the form Λ̄(λ) ≤ K(λ) for all λ ∈ X ∗ implies
that the Fenchel–Legendre transform K∗(·) may be substituted for Λ̄∗(·) in
(4.5.4). This is useful in situations in which Λ̄(λ) is easy to bound but hard
to compute.
(c) The inequality (4.5.4) may serve as the upper bound related to a weak
LDP. Thus, when {με} is an exponentially tight family of measures, (4.5.4)
extends to all closed sets. If in addition, the large deviations lower bound
is also satisfied with Λ̄∗(·), then this is a good rate function that controls
the large deviations of the family {με}.
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Proof: (a) The proof is similar to the proof of these properties in the spe-
cial case X = IRd, which is presented in the context of the Gärtner–Ellis
theorem.

Using the linearity of (λ/ε) and applying Hölder’s inequality, one shows
that the functions Λμε(λ/ε) are convex. Thus, Λ̄(·) = lim supε→0 εΛμε(·/ε),
is also a convex function. Since Λμε(0) = 0 for all ε > 0, it follows that
Λ̄(0) = 0. Consequently, Λ̄∗(·) is a nonnegative function. Since the supre-
mum of a family of continuous functions is lower semicontinuous, the lower
semicontinuity of Λ̄∗(·) follows from the continuity of gλ(x) = 〈λ, x〉 − Λ̄(λ)
for every λ ∈ X ∗. The convexity of Λ̄∗(·) is a direct consequence of its
definition via (4.5.2).
(b) The proof of the upper bound (4.5.4) is a repeat of the relevant part
of the proof of Theorem 2.2.30. In particular, fix a compact set Γ ⊂ X
and a δ > 0. Let Iδ be the δ-rate function associated with Λ̄∗, i.e.,
Iδ(x)�= min{Λ̄∗(x) − δ, 1/δ}. Then, for any x ∈ Γ, there exists a λx ∈ X ∗

such that
〈λx, x〉 − Λ̄(λx) ≥ Iδ(x) .

Since λx is a continuous functional, there exists a neighborhood of x, de-
noted Ax, such that

inf
y∈Ax

{〈λx, y〉 − 〈λx, x〉} ≥ −δ .

For any θ ∈ X ∗, by Chebycheff’s inequality,

με(Ax) ≤ E
[
e〈θ,Zε〉−〈θ,x〉

]
exp

(

− inf
y∈Ax

{〈θ, y〉 − 〈θ, x〉}
)

.

Substituting θ = λx/ε yields

ε log με(Ax) ≤ δ −
{

〈λx, x〉 − εΛμε

(
λx

ε

)}

.

A finite cover, ∪N
i=1Axi , can be extracted from the open cover ∪x∈ΓAx of

the compact set Γ. Therefore, by the union of events bound,

ε log με(Γ) ≤ ε log N + δ − min
i=1,...,N

{

〈λxi , xi〉 − εΛμε

(
λxi

ε

)}

.

Thus, by (4.5.1) and the choice of λx,

lim sup
ε→0

ε log με(Γ) ≤ δ − min
i=1,...,N

{〈λxi , xi〉 − Λ̄(λxi)}

≤ δ − min
i=1,...,N

Iδ(xi) .
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Moreover, xi ∈ Γ for each i, yielding the inequality

lim sup
ε→0

ε log με(Γ) ≤ δ − inf
x∈Γ

Iδ(x) .

The proof of the theorem is complete by taking δ → 0.

Exercise 4.5.5 An upper bound, valid for all ε, is developed in this exercise.
This bound may be made specific in various situations (c.f. Exercise 6.2.19).
(a) Let X be a Hausdorff topological vector space and V ⊂ X a compact,
convex set. Prove that for any ε > 0,

με(V ) ≤ exp
(

−1
ε

inf
x∈V

Λ∗
ε (x)

)

, (4.5.6)

where

Λ∗
ε (x) = sup

λ∈X∗

{

〈λ, x〉 − εΛμε

(
λ

ε

)}

.

Hint: Recall the following version of the min–max theorem ([Sio58], Theorem
4.2’). Let f(x, λ) be concave in λ and convex and lower semicontinuous in x.
Then

sup
λ∈X∗

inf
x∈V

f(x, λ) = inf
x∈V

sup
λ∈X∗

f(x, λ) .

To prove (4.5.6), first use Chebycheff’s inequality and then apply the min–max
theorem to the function

f(x, λ) = [〈λ, x〉 − εΛμε(λ/ε)].

(b) Suppose that E is a convex metric subspace of X (in a metric compatible
with the induced topology). Assume that all balls in E are convex, pre-compact
subsets of X . Show that for every measurable set A ∈ E ,

με(A) ≤ inf
δ>0

{

m(A, δ) exp
(

−1
ε

inf
x∈Aδ

Λ∗
ε (x)

) }

, (4.5.7)

where Aδ is the closed δ blowup of A, and m(A, δ) denotes the metric entropy
of A, i.e., the minimal number of balls of radius δ needed to cover A.

4.5.2 Convexity Considerations

The implications of the existence of an LDP with a convex rate function to
the structure of Λ and Λ∗ are explored here. Building on Varadhan’s lemma
and Theorem 4.5.3, it is first shown that when the quantities εΛμε(λ/ε)
are uniformly bounded (in ε) and an LDP holds with a good convex rate
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function, then εΛμε(·/ε) converges pointwise to Λ(·) and the rate function
equals Λ∗(·). Consequently, the assumptions of Lemma 4.1.21 together with
the exponential tightness of {με} and the uniform boundedness mentioned
earlier, suffice to establish the LDP with rate function Λ∗(·). Alternatively,
if the relation (4.5.15) between I and Λ∗ holds, then Λ∗(·) controls a weak
LDP even when Λ(λ) = ∞ for some λ and {με} are not exponentially tight.
This statement is the key to Cramér’s theorem at its most general.

Before proceeding with the attempt to identify the rate function of the
LDP as Λ∗(·), note that while Λ∗(·) is always convex by Theorem 4.5.3,
the rate function may well be non-convex. For example, such a situation
may occur when contractions using non-convex functions are considered.
However, it may be expected that I(·) is identical to Λ∗(·) when I(·) is
convex.

An instrumental tool in the identification of I as Λ∗ is the following
duality property of the Fenchel–Legendre transform, whose proof is deferred
to the end of this section.

Lemma 4.5.8 (Duality lemma) Let X be a locally convex Hausdorff top-
ological vector space. Let f : X → (−∞, ∞] be a lower semicontinuous,
convex function, and define

g(λ) = sup
x∈X

{〈λ, x〉 − f(x)} .

Then f(·) is the Fenchel–Legendre transform of g(·), i.e.,

f(x) = sup
λ∈X∗

{〈λ, x〉 − g(λ)} . (4.5.9)

Remark: This lemma has the following geometric interpretation. For every
hyperplane defined by λ, g(λ) is the largest amount one may push up the
tangent before it hits f(·) and becomes a tangent hyperplane. The duality
lemma states the “obvious result” that to reconstruct f(·), one only needs
to find the tangent at x and “push it down” by g(λ). (See Fig. 4.5.2.)

The first application of the duality lemma is in the following theorem,
where convex rate functions are identified as Λ∗(·).

Theorem 4.5.10 Let X be a locally convex Hausdorff topological vector
space. Assume that με satisfies the LDP with a good rate function I. Sup-
pose in addition that

Λ̄(λ)
�
= lim sup

ε→0
εΛμε(λ/ε) < ∞, ∀λ ∈ X ∗ . (4.5.11)



4.5 LDP In Topological Vector Spaces 153

Figure 4.5.1: Duality lemma.

Figure 4.5.2: Duality reconstruction. ci = f(xi) and xi is the point of
tangency of the line with slope λi to the graph of f(·).

(a) For each λ ∈ X ∗, the limit Λ(λ) = lim
ε→0

εΛμε(λ/ε) exists, is finite, and
satisfies

Λ(λ) = sup
x∈X

{〈λ, x〉 − I(x)} . (4.5.12)

(b) If I is convex, then it is the Fenchel–Legendre transform of Λ, namely,

I(x) = Λ∗(x)
�
= sup

λ∈X∗
{〈λ, x〉 − Λ(λ)} .

(c) If I is not convex, then Λ∗ is the affine regularization of I, i.e., Λ∗(·) ≤
I(·), and for any convex rate function f , f(·) ≤ I(·) implies f(·) ≤ Λ∗(·).
(See Fig. 4.5.3.)

Remark: The weak∗ topology on X ∗ makes the functions 〈λ, x〉 − I(x)
continuous in λ for all x ∈ X . By part (a), Λ(·) is lower semicontinuous
with respect to this topology, which explains why lower semicontinuity of
Λ(·) is necessary in Rockafellar’s lemma (Lemma 2.3.12).

Proof: (a) Fix λ ∈ X ∗ and γ > 1. By assumption, Λ̄(γλ) < ∞, and
Varadhan’s lemma (Theorem 4.3.1) applies for the continuous function
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Figure 4.5.3: Λ∗ as affine regularization of I.

λ : X → IR. Thus, Λ(λ) = limε→0 εΛμε(λ/ε) exists, and satisfies the
identity (4.5.12). By the assumption (4.5.11), Λ(·) < ∞ everywhere. Since
Λ(0) = 0 and Λ(·) is convex by part (a) of Theorem 4.5.3, it also holds that
Λ(λ) > −∞ everywhere.
(b) This is a direct consequence of the duality lemma (Lemma 4.5.8), ap-
plied to the lower semicontinuous, convex function I.
(c) The proof of this part of the theorem is left as Exercise 4.5.18.

Corollary 4.5.13 Suppose that both condition (4.5.11) and the assump-
tions of Lemma 4.1.21 hold for the family {με}, which is exponentially tight.
Then {με} satisfies in X the LDP with the good, convex rate function Λ∗.

Proof: By Lemma 4.1.21, {με} satisfies a weak LDP with a convex rate
function. As {με} is exponentially tight, it is deduced that it satisfies the
full LDP with a convex, good rate function. The corollary then follows from
parts (a) and (b) of Theorem 4.5.10.

Theorem 4.5.10 is not applicable when Λ(·) exists but is infinite at some
λ ∈ X ∗, and moreover, it requires the full LDP with a convex, good rate
function. As seen in the case of Cramér’s theorem in IR, these conditions
are not necessary. The following theorem replaces the finiteness conditions
on Λ by an appropriate inequality on open half-spaces. Of course, there is
a price to pay: The resulting Λ∗ may not be a good rate function and only
the weak LDP is proved.

Theorem 4.5.14 Suppose that {με} satisfies a weak LDP with a con-
vex rate function I(·), and that X is a locally convex, Hausdorff topo-
logical vector space. Assume that for each λ ∈ X ∗, the limits Λλ(t) =
limε→0 εΛμε(tλ/ε) exist as extended real numbers, and that Λλ(t) is a lower
semicontinuous function of t ∈ IR. Let Λ∗

λ(·) be the Fenchel–Legendre
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transform of Λλ(·), i.e.,

Λ∗
λ(z)

�
= sup

θ∈IR
{ θz − Λλ(θ) } .

If for every λ ∈ X ∗ and every a ∈ IR,

inf
{x:(〈λ,x〉−a)>0}

I(x) ≤ inf
z>a

Λ∗
λ(z) , (4.5.15)

then I(·) = Λ∗(·), and consequently, Λ∗ controls a weak LDP associated
with {με}.

Proof: Fix λ ∈ X ∗. By the inequality (4.5.15),

sup
x∈X

{〈λ, x〉 − I(x)} = sup
a∈IR

sup
{x:(〈λ,x〉−a)>0}

{〈λ, x〉 − I(x)}

≥ sup
a∈IR

{
a− inf

{x:(〈λ,x〉−a)>0}
I(x)

}
(4.5.16)

≥ sup
a∈IR

{
a− inf

z>a
Λ∗

λ(z)
}

= sup
z∈IR

{
z − Λ∗

λ(z)
}

.

Note that Λλ(·) is convex with Λλ(0) = 0 and is assumed lower semicontin-
uous. Therefore, it can not attain the value −∞. Hence, by applying the
duality lemma (Lemma 4.5.8) to Λλ : IR → (−∞,∞], it follows that

Λλ(1) = sup
z∈IR

{z − Λ∗
λ(z)} .

Combining this identity with (4.5.16) yields

sup
x∈X

{〈λ, x〉 − I(x)} ≥ Λλ(1) = Λ(λ) .

The opposite inequality follows by applying Lemma 4.3.4 to the continuous
linear functional λ ∈ X ∗. Thus, the identity (4.5.12) holds for all λ ∈ X ∗,
and the proof of the theorem is completed by applying the duality lemma
(Lemma 4.5.8) to the convex rate function I.

Proof of Lemma 4.5.8: Consider the sets X × IR and X ∗ × IR. Each of
these can be made into a locally convex, Hausdorff topological vector space
in the obvious way. If f is identically ∞, then g is identically −∞ and the
lemma trivially holds. Assume otherwise and define

E = {(x, α) ∈ X × IR : f(x) ≤ α} ,

E∗ = {(λ, β) ∈ X ∗ × IR : g(λ) ≤ β} .

Note that for any (λ, β) ∈ E∗ and any x ∈ X ,

f(x) ≥ 〈λ, x〉 − β .
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Therefore, it also holds that

f(x) ≥ sup
(λ,β)∈E∗

{〈λ, x〉 − β} = sup
λ∈X∗

{〈λ, x〉 − g(λ)} .

It thus suffices to show that for any (x, α) 
∈ E (i.e., f(x) > α), there exists
a (λ, β) ∈ E∗ such that

〈λ, x〉 − β > α , (4.5.17)

in order to complete the proof of the lemma.

Since f is a lower semicontinuous function, the set E is closed (alter-
natively, the set Ec is open). Indeed, whenever f(x) > γ, there exists a
neighborhood V of x such that infy∈V f(y) > γ, and thus Ec contains a
neighborhood of (x, γ). Moreover, since f(·) is convex and not identically
∞, the set E is a non-empty convex subset of X × IR.

Fix (x, α) 
∈ E . The product space X ×IR is locally convex and therefore,
by the Hahn–Banach theorem (Theorem B.6), there exists a hyperplane in
X × IR that strictly separates the non-empty, closed, and convex set E and
the point (x, α) in its complement. Hence, as the topological dual of X × IR
is X ∗ × IR, for some μ ∈ X ∗, ρ ∈ IR, and γ ∈ IR,

sup
(y,ξ)∈E

{〈μ, y〉 − ρξ} ≤ γ < 〈μ, x〉 − ρα .

In particular, since f is not identically∞, it follows that ρ ≥ 0, for otherwise
a contradiction results when ξ → ∞. Moreover, by considering (y, ξ) =
(x, f(x)), the preceding inequality implies that ρ > 0 whenever f(x) < ∞.

Suppose first that ρ > 0. Then, (4.5.17) holds for the point (μ/ρ, γ/ρ).
This point must be in E∗, for otherwise there exists a y0 ∈ X such that
〈μ, y0〉 − ρf(y0) > γ, contradicting the previous construction of the sepa-
rating hyperplane (since (y0, f(y0)) ∈ E). In particular, since f(x) < ∞ for
some x ∈ X it follows that E∗ is non-empty.

Now suppose that ρ = 0 so that

sup
{y:f(y)<∞}

{〈μ, y〉 − γ} ≤ 0 ,

while 〈μ, x〉 − γ > 0. Consider the points

(λδ, βδ)
�
=
(μ

δ
+ λ0,

γ

δ
+ β0

)
, ∀δ > 0 ,

where (λ0, β0) is an arbitrary point in E∗. Then, for all y ∈ X ,

〈λδ, y〉 − βδ =
1
δ
(〈μ, y〉 − γ) + (〈λ0, y〉 − β0) ≤ f(y) .
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Therefore, (λδ, βδ) ∈ E∗ for any δ > 0. Moreover,

lim
δ→0

(〈λδ, x〉 − βδ) = lim
δ→0

{
1
δ
(〈μ, x〉 − γ) + (〈λ0, x〉 − β0)

}

= ∞ .

Thus, for any α < ∞, there exists δ > 0 small enough so that 〈λδ, x〉−βδ >
α. This completes the proof of (4.5.17) and of Lemma 4.5.8.

Exercise 4.5.18 Prove part (c) of Theorem 4.5.10.

Exercise 4.5.19 Consider the setup of Exercise 4.2.7, except that now X = Y
is a locally convex, separable, Hausdorff topological vector space. Let Zε =
Xε + Yε.
(a) Prove that if IX and IY are convex, then so is IZ .
(b) Deduce that if in addition, the condition (4.5.11) holds for both με—the
laws of Xε and νε—the laws of Yε, then IZ is the Fenchel–Legendre transform
of ΛX(·) + ΛY (·).

4.5.3 Abstract Gärtner–Ellis Theorem

Having seen a general upper bound in Section 4.5.1, we turn next to suffi-
cient conditions for the existence of a complementary lower bound. To this
end, recall that a point x ∈ X is called an exposed point of Λ̄∗ if there exists
an exposing hyperplane λ ∈ X ∗ such that

〈λ, x〉 − Λ̄∗(x) > 〈λ, z〉 − Λ̄∗(z) , ∀z 
= x .

An exposed point of Λ̄∗ is, in convex analysis parlance, an exposed point of
the epigraph of Λ̄∗. For a geometrical interpretation, see Fig. 2.3.2.

Theorem 4.5.20 (Baldi) Suppose that {με} are exponentially tight prob-
ability measures on X .
(a) For every closed set F ⊂ X ,

lim sup
ε→0

ε log με(F ) ≤ − inf
x∈F

Λ̄∗(x) .

(b) Let F be the set of exposed points of Λ̄∗ with an exposing hyperplane λ
for which

Λ(λ) = lim
ε→0

εΛμε

(
λ

ε

)

exists and Λ̄(γλ) < ∞ for some γ > 1 . (4.5.21)

Then, for every open set G ⊂ X ,

lim inf
ε→0

ε log με(G) ≥ − inf
x∈G∩F

Λ̄∗(x) .
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(c) If for every open set G,

inf
x∈G∩F

Λ̄∗(x) = inf
x∈G

Λ̄∗(x) , (4.5.22)

then {με} satisfies the LDP with the good rate function Λ̄∗.

Proof: (a) The upper bound is a consequence of Theorem 4.5.3 and the
assumed exponential tightness.
(b) If Λ̄(λ) = −∞ for some λ ∈ X ∗, then Λ̄∗(·) ≡ ∞ and the large deviations
lower bound trivially holds. So, without loss of generality, it is assumed
throughout that Λ̄ : X ∗ → (−∞,∞]. Fix an open set G, an exposed point
y ∈ G ∩ F , and δ > 0 arbitrarily small. Let η be an exposing hyperplane
for Λ̄∗ at y such that (4.5.21) holds. The proof is now a repeat of the proof
of (2.3.13). Indeed, by the continuity of η, there exists an open subset of G,
denoted Bδ, such that y ∈ Bδ and

sup
z∈Bδ

{〈η, z − y〉} < δ .

Observe that Λ(η) < ∞ in view of (4.5.21). Hence, by (4.5.1), Λμε(η/ε) <
∞ for all ε small enough. Thus, for all ε > 0 small enough, define the
probability measures μ̃ε via

dμ̃ε

dμε
(z) = exp

[〈η

ε
, z
〉
− Λμε

(η

ε

)]
. (4.5.23)

Using this definition,

ε log με(Bδ) = ε Λμε

(η

ε

)
− 〈η, y〉+ ε log

∫

z∈Bδ

exp
(〈η

ε
, y − z

〉)
μ̃ε(dz)

≥ εΛμε

(η

ε

)
− 〈η, y〉 − δ + ε log μ̃ε(Bδ) .

Therefore, by (4.5.21),

lim inf
ε→0

ε log με(G) ≥ lim
δ→0

lim inf
ε→0

ε log με(Bδ) (4.5.24)

≥ Λ(η)− 〈η, y〉+ lim
δ→0

lim inf
ε→0

ε log μ̃ε(Bδ)

≥ −Λ̄∗(y) + lim
δ→0

lim inf
ε→0

ε log μ̃ε(Bδ) .

Recall that {με} are exponentially tight, so for each α < ∞, there exists a
compact set Kα such that

lim sup
ε→0

ε log με(Kc
α) < −α .
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If for all δ > 0 and all α < ∞,

lim sup
ε→0

ε log μ̃ε(Bc
δ ∩Kα) < 0 , (4.5.25)

and for all α large enough,

lim sup
ε→0

ε log μ̃ε(Kc
α) < 0 , (4.5.26)

then μ̃ε(Bδ) → 1 when ε → 0 and part (b) of the theorem follows by (4.5.24),
since y ∈ G ∩ F is arbitrary.

To establish (4.5.25), let Λμ̃ε(·) denote the logarithmic moment gener-
ating function associated with the law μ̃ε. By the definition (4.5.23), for
every θ ∈ X ∗,

εΛμ̃ε

(
θ

ε

)

= εΛμε

(
θ + η

ε

)

− εΛμε

(η

ε

)
.

Hence, by (4.5.1) and (4.5.21),

Λ̃(θ)
�
= lim sup

ε→0
εΛμ̃ε

(
θ

ε

)

= Λ̄(θ + η)− Λ(η) .

Let Λ̃∗ denote the Fenchel–Legendre transform of Λ̃. It follows that for all
z ∈ X ,

Λ̃∗(z) = Λ̄∗(z) + Λ(η)− 〈η, z〉 ≥ Λ̄∗(z)− Λ̄∗(y)− 〈η, z − y〉 .

Since η is an exposing hyperplane for Λ̄∗ at y, this inequality implies that
Λ̃∗(z) > 0 for all z 
= y. Theorem 4.5.3, applied to the measures μ̃ε and the
compact sets Bc

δ ∩Kα, now yields

lim sup
ε→0

ε log μ̃ε(Bc
δ ∩Kα) ≤ − inf

z∈Bc
δ
∩Kα

Λ̃∗(z) < 0 ,

where the strict inequality follows because Λ̃∗(·) is a lower semicontinuous
function and y ∈ Bδ.

Turning now to establish (4.5.26), consider the open half-spaces

Hρ = {z ∈ X : 〈η, z〉 − ρ < 0} .

By Chebycheff’s inequality, for any β > 0,

ε log μ̃ε(Hc
ρ) = ε log

∫

{z:〈η,z〉≥ρ}
μ̃ε(dz)

≤ ε log
[∫

X
exp

(
β〈η, z〉

ε

)

μ̃ε(dz)
]

− βρ

= εΛμ̃ε

(
βη

ε

)

− βρ .
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Hence,
lim sup

ε→0
ε log μ̃ε(Hc

ρ) ≤ inf
β>0

{Λ̃(βη)− βρ} .

Due to condition (4.5.21), Λ̃(βη) < ∞ for some β > 0, implying that for
large enough ρ,

lim sup
ε→0

ε log μ̃ε(Hc
ρ) < 0 .

Now, for every α and every ρ > 0,

lim sup
ε→0

ε log μ̃ε(Kc
α ∩Hρ)

= lim sup
ε→0

ε log
∫

Kc
α∩Hρ

exp
[〈η

ε
, z
〉
− Λμε

(η

ε

)]
με(dz)

< ρ− Λ(η)− α .

Finally, (4.5.26) follows by combining the two preceding inequalities.
(c) Starting with (4.5.22), the LDP is established by combining parts (a)
and (b).

In the following corollary, the smoothness of Λ(·) yields the identity
(4.5.22) for exponentially tight probability measures on a Banach space,
resulting in the LDP. Its proof is based on a theorem of Brønsted and
Rockafellar whose proof is not reproduced here. Recall that a function
f : X ∗ → IR is Gateaux differentiable if, for every λ, θ ∈ X ∗, the function
f(λ + tθ) is differentiable with respect to t at t = 0.

Corollary 4.5.27 Let {με} be exponentially tight probability measures on
the Banach space X . Suppose that Λ(·) = limε→0 εΛμε(·/ε) is finite valued,
Gateaux differentiable, and lower semicontinuous in X ∗ with respect to the
weak∗ topology. Then {με} satisfies the LDP with the good rate function
Λ∗.

Remark: For a somewhat stronger version, see Corollary 4.6.14.

Proof: By Baldi’s theorem (Theorem 4.5.20), it suffices to show that for
any x ∈ DΛ∗ , there exists a sequence of exposed points xk such that xk → x
and Λ∗(xk) → Λ∗(x). Let λ ∈ ∂Λ∗(x) iff

〈λ, x〉 − Λ∗(x) = sup
z∈X

{〈λ, z〉 − Λ∗(z)} ,

and define
dom ∂Λ∗�={x : ∃λ ∈ ∂Λ∗(x)} .

Note that it may be assumed that the convex, lower semicontinuous
function Λ∗ : X → [0,∞] is proper (i.e., DΛ∗ is not empty). Therefore,
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by the Brønsted–Rockafellar theorem (see [BrR65], Theorem 2), for every
x ∈ DΛ∗ , there exists a sequence xk → x such that xk ∈ dom ∂Λ∗ and
Λ∗(xk) → Λ∗(x).

It is therefore enough to prove that when Λ is Gateaux differentiable
and weak∗ lower semicontinuous, any point in dom ∂Λ∗ is also an exposed
point. To this end, fix x ∈ dom∂Λ∗ and λ ∈ ∂Λ∗(x). Observe that X ∗ when
equipped with the weak∗ topology is a locally convex, Hausdorff topological
vector space with X being its topological dual. Hence, it follows by apply-
ing the duality lemma (Lemma 4.5.8) for the convex, lower semicontinuous
function Λ : X ∗ → IR that

Λ(λ) = sup
z∈X

{〈λ, z〉 − Λ∗(z)} = 〈λ, x〉 − Λ∗(x) .

Therefore, for any t > 0, and any θ ∈ X ∗,

〈θ, x〉 ≤ 1
t
[Λ(λ + tθ)− Λ(λ)] .

Thus, by the Gateaux differentiability of Λ, it follows that

〈θ, x〉 ≤ lim
t↘0

1
t
[Λ(λ + tθ)− Λ(λ)]

�
=DΛ(θ) .

Moreover, DΛ(θ) = −DΛ(−θ), and consequently 〈θ, x〉 = DΛ(θ) for all
θ ∈ X ∗. Similarly, if there exists y ∈ X , y 
= x, such that

〈λ, x〉 − Λ∗(x) = 〈λ, y〉 − Λ∗(y) ,

then, by exactly the same argument, 〈θ, y〉 = DΛ(θ) for all θ ∈ X ∗. Since
〈θ, x− y〉 = 0 for all θ ∈ X ∗, it follows that x = y. Hence, x is an exposed
point and the proof is complete.

4.6 Large Deviations for Projective Limits

In this section, we develop a method of lifting a collection of LDPs in
“small” spaces into the LDP in the “large” space X , which is their projec-
tive limit. (See definition below.) The motivation for such an approach is
as follows. Suppose we are interested in proving the LDP associated with
a sequence of random variables X1, X2, . . . in some abstract space X . The
identification of X ∗ (if X is a topological vector space) and the computa-
tion of the Fenchel–Legendre transform of the moment generating function
may involve the solution of variational problems in an infinite dimensional
setting. Moreover, proving exponential tightness in X , the main tool of get-
ting at the upper bound, may be a difficult task. On the other hand, the
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evaluation of the limiting logarithmic moment generating function involves
probabilistic computations at the level of real-valued random variables, al-
beit an infinite number of such computations. It is often relatively easy
to derive the LDP for every finite collection of these real-valued random
variables. Hence, it is reasonable to inquire if this implies that the laws of
the original, X -valued random variables satisfy the LDP.

An affirmative result is derived shortly in a somewhat abstract setting
that will serve us well in diverse situations. The idea is to identify X with
the projective limit of a family of spaces {Yj}j∈J with the hope that the
LDP for any given family {με} of probability measures on X follows as the
consequence of the fact that the LDP holds for any of the projections of με

to {Yj}j∈J .

To make the program described precise, we first review a few standard
topological definitions. Let (J,≤) be a partially ordered, right-filtering
set. (The latter notion means that for any i, j in J , there exists k ∈ J
such that both i ≤ k and j ≤ k.) Note that J need not be countable.
A projective system (Yj , pij)i≤j∈J consists of Hausdorff topological spaces
{Yj}j∈J and continuous maps pij : Yj → Yi such that pik = pij ◦ pjk

whenever i ≤ j ≤ k ({pjj}j∈J are the appropriate identity maps). The
projective limit of this system, denoted by X = lim←−Yj , is the subset of
the topological product space Y =

∏
j∈J Yj , consisting of all the elements

x = (yj)j∈J for which yi = pij(yj) whenever i ≤ j, equipped with the
topology induced by Y . Projective limits of closed subsets Fj ⊆ Yj are
defined analogously and denoted F = lim←−Fj . The canonical projections of
X , which are the restrictions pj : X → Yj of the coordinate maps from Y
to Yj , are continuous. Some properties of projective limits are recalled in
Appendix B.

The following theorem yields the LDP in X as a consequence of the
LDPs associated with {με ◦ p−1

j , ε > 0}. In order to have a specific example
in mind, think of X as the space of all maps f : [0, 1] → IR such that
f(0) = 0, equipped with the topology of pointwise convergence. Then
pj : X → IRd is the projection of functions onto their values at the time
instances 0 ≤ t1 < t2 < · · · < td ≤ 1, with the partial ordering induced on
the set J = ∪∞

d=1{(t1, . . . , td) : 0 ≤ t1 < t2 < · · · < td ≤ 1} by inclusions.
For details of this construction, see Section 5.1.

Theorem 4.6.1 (Dawson–Gärtner) Let {με} be a family of probability
measures on X , such that for any j ∈ J the Borel probability measures
με ◦ p−1

j on Yj satisfy the LDP with the good rate function Ij(·). Then {με}
satisfies the LDP with the good rate function

I(x) = sup
j∈J

{ Ij(pj(x)) } , x ∈ X . (4.6.2)
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Remark: Throughout this section, we drop the blanket assumption that
BX ⊆ B. This is natural in view of the fact that the set J need not be
countable. It is worthwhile to note that B is required to contain all sets
p−1

j (Bj), where Bj ∈ BYj .

Proof: Clearly, I(x) is nonnegative. For any α ∈ [0,∞) and j ∈ J , let
ΨIj (α) denote the compact level set of Ij , i.e., ΨIj (α)�={yj : Ij(yj) ≤ α}.
Recall that for any i ≤ j ∈ J , pij : Yj → Yi is a continuous map and
με ◦ p−1

i = (με ◦ p−1
j ) ◦ p−1

ij . Hence, by the contraction principle (Theorem
4.2.1), Ii(yi) = infyj∈p−1

ij
(yi)

Ij(yj), or alternatively, ΨIi(α) = pij(ΨIj (α)).
Therefore,

ΨI(α) = X ∩
∏

j∈J

ΨIj (α) = lim←−ΨIj (α) , (4.6.3)

and I(x) is a good rate function, since by Tychonoff’s theorem (Theorem
B.3), the projective limit of compact subsets of Yj , j ∈ J , is a compact
subset of X .

In order to prove the large deviations lower bound, it suffices to show
that for every measurable set A ⊂ X and each x ∈ Ao, there exists a j ∈ J
such that

lim inf
ε→0

ε log με(A) ≥ −Ij(pj(x)) .

Since the collection {p−1
j (Uj) : Uj ⊂ Yj is open} is a base of the topology

of X , there exists some j ∈ J and an open set Uj ⊂ Yj such that x ∈
p−1

j (Uj) ⊂ Ao. Thus, by the large deviations lower bound for {με ◦ p−1
j },

lim inf
ε→0

ε log με(A) ≥ lim inf
ε→0

ε log(με ◦ p−1
j (Uj) )

≥ − inf
y∈Uj

Ij(y) ≥ −Ij(pj(x)) ,

as desired.

Considering the large deviations upper bound, fix a measurable set A ⊂
X and let Aj

�
=pj(A ). Then, Ai = pij(Aj) for any i ≤ j, implying that

pij(Aj) ⊆ Ai (since pij are continuous). Hence, A ⊆ lim←−Aj . To prove the
converse inclusion, fix x ∈ (A)c. Since (A)c is an open subset of X , there
exists some j ∈ J and an open set Uj ⊆ Yj such that x ∈ p−1

j (Uj) ⊆ (A)c.
Consequently, for this value of j, pj(x) ∈ Uj ⊆ Ac

j , implying that pj(x) /∈
Aj . Hence,

A = lim←−Aj . (4.6.4)

Combining this identity with (4.6.3), it follows that for every α < ∞,

A ∩ΨI(α) = lim←−
(
Aj ∩ΨIj (α)

)
.
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Fix α < infx∈A I(x), for which A ∩ ΨI(α) = ∅. Then, by Theorem B.4,
Aj ∩ ΨIj (α) = ∅ for some j ∈ J . Therefore, as A ⊆ p−1

j (Aj ), by the LDP
upper bound associated with the Borel measures {με ◦ p−1

j },

lim sup
ε→0

ε log με(A) ≤ lim sup
ε→0

ε log με ◦ p−1
j (Aj) ≤ −α .

This inequality holds for every measurable A and α < ∞ such that A ∩
ΨI(α) = ∅. Consequently, it yields the LDP upper bound for {με}.

The following lemma is often useful for simplifying the formula (4.6.2)
of the Dawson–Gärtner rate function.

Lemma 4.6.5 If I(·) is a good rate function on X such that

Ij(y) = inf{I(x) : x ∈ X , y = pj(x)} , (4.6.6)

for any y ∈ Yj, j ∈ J , then the identity (4.6.2) holds.

Proof: Fix α ∈ [0,∞) and let A denote the compact level set ΨI(α). Since
pj : X → Yj is continuous for any j ∈ J , by (4.6.6) Aj

�
=ΨIj (α) = pj(A)

is a compact subset of Yj . With Ai = pij(Aj) for any i ≤ j, the set
{x : supj∈J Ij(pj(x)) ≤ α} is the projective limit of the closed sets Aj , and
as such it is merely the closed set A = ΨI(α) (see (4.6.4)). The identity
(4.6.2) follows since α ∈ [0,∞) is arbitrary.

The preceding theorem is particularly suitable for situations involving
topological vector spaces that satisfy the following assumptions.

Assumption 4.6.7 Let W be an infinite dimensional real vector space,
and W ′ its algebraic dual, i.e., the space of all linear functionals λ �→
〈λ, x〉 : W → IR. The topological (vector) space X consists of W ′ equipped
with the W-topology, i.e., the weakest topology such that for each λ ∈ W,
the linear functional x �→ 〈λ, x〉 : X → IR is continuous.

Remark: The W-topology of W ′ makes W into the topological dual of X ,
i.e., W = X ∗.

For any d ∈ ZZ+ and λ1, . . . , λd ∈ W , define the projection pλ1,...,λd
:

X → IRd by pλ1,...,λd
(x) = (〈λ1, x〉, 〈λ2, x〉, . . . , 〈λd, x〉) .

Assumption 4.6.8 Let (X ,B, με) be probability spaces such that:
(a) X satisfies Assumption 4.6.7.
(b) For any λ ∈ W and any Borel set B in IR, p−1

λ (B) ∈ B.

Remark: Note that if {με} are Borel measures, then Assumption 4.6.8
reduces to Assumption 4.6.7.
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Theorem 4.6.9 Let Assumption 4.6.8 hold. Further assume that for every
d ∈ ZZ+ and every λ1, . . . , λd ∈ W, the measures {με ◦ p−1

λ1,...,λd
, ε > 0}

satisfy the LDP with the good rate function Iλ1,...,λd
(·). Then {με} satisfies

the LDP in X , with the good rate function

I(x) = sup
d∈ZZ+

sup
λ1,...,λd∈W

Iλ1,...,λd
((〈λ1, x〉, 〈λ2, x〉, . . . , 〈λd, x〉)) . (4.6.10)

Remark: In most applications, one is interested in obtaining an LDP on E
that is a non-closed subset of X . Hence, the relatively effortless projective
limit approach is then followed by an application specific check that DI ⊂
E , as needed for Lemma 4.1.5. For example, in the study of empirical
measures on a Polish space Σ, it is known a priori that με(M1(Σ)) = 1 for
all ε > 0, where M1(Σ) is the space of Borel probability measures on Σ,
equipped with the B(Σ)-topology, and B(Σ) = {f : Σ → IR, f bounded,
Borel measurable}. Identifying each ν ∈ M1(Σ) with the linear functional
f �→

∫
Σ

fdν, ∀f ∈ B(Σ), it follows that M1(Σ) is homeomorphic to E ⊂ X ,
where here X denotes the algebraic dual of B(Σ) equipped with the B(Σ)-
topology. Thus, X satisfies Assumption 4.6.7, and E is not a closed subset
of X . It is worthwhile to note that in this setup, με is not necessarily a
Borel probability measure.

Proof: Let V be the system of all finite dimensional linear subspaces
of W, equipped with the partial ordering defined by inclusion. To each
V ∈ V, attach its (finite dimensional) algebraic dual V ′ equipped with the
V -topology. The latter are clearly Hausdorff topological spaces. For any
V ⊆ U and any linear functional f : U → IR, let pV,U(f) : V → IR be
the restriction of f on the subspace V . The projections pV,U : U ′ → V ′

thus defined are continuous, and compatible with the inclusion ordering of
V. Let X̃ be the projective limit of the system (V ′, pV,U). Consider the
map x �→ x̃ = (pV (x)) ∈ X̃ , where for each V ∈ V, pV (x) ∈ V ′ is the
linear functional λ �→ 〈λ, x〉, ∀λ ∈ V . This map is a bijection between
W ′ and X̃ , since the consistency conditions in the definition of X̃ imply
that any x̃ ∈ X̃ is determined by its values on the one-dimensional lin-
ear subspaces of W, and any such collection of values determines a point
in X̃ . By Assumption 4.6.7, X consists of the vector space W ′ equipped
with the W-topology that is generated by the sets {x : |〈λ, x〉 − ρ| < δ}
for λ ∈ W , ρ ∈ IR, δ > 0. It is not hard to check that the image of these
sets under the map x �→ x̃ generates the projective topology of X̃ . Con-
sequently, this map is a homeomorphism between X and X̃ . Hence, if for
every V ∈ V, {με ◦ p−1

V , ε > 0} satisfies the LDP in V ′ with the good rate
function IV (·), then by Theorem 4.6.1, {με} satisfies the LDP in X with the
good rate function supV ∈V IV (pV (·)).
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Fix d ∈ ZZ+ and V ∈ V, a d-dimensional linear subspace of W. Let
λ1, . . . , λd be any algebraic base of V . Observe that the map f �→ (f(λ1),
. . . , f(λd)) is a homeomorphism between V ′ and IRd under which the image
of pV (x) ∈ V ′ is pλ1,...,λd

(x) = (〈λ1, x〉, . . . , 〈λd, x〉) ∈ IRd. Consequently, by
our assumptions, the family of Borel probability measures {με ◦ p−1

V , ε > 0}
satisfies the LDP in V ′, and moreover, IV (pV (x)) = Iλ1,...,λd

((〈λ1, x〉, . . . ,
〈λd, x〉)). The proof is complete, as the preceding holds for every V ∈ V,
while because of the contraction principle (Theorem 4.2.1), there is no need
to consider only linearly independent λ1, . . . , λd in (4.6.10).

When using Theorem 4.6.9, either the convexity of Iλ1,...,λd
(·) or the

existence and smoothness of the limiting logarithmic moment generating
function Λ(·) are relied upon in order to identify the good rate function
of (4.6.10) with Λ∗(·), in a manner similar to that encountered in Section
4.5.2. This is spelled out in the following corollary.

Corollary 4.6.11 Let Assumption 4.6.8 hold.
(a) Suppose that for each λ ∈ W, the limit

Λ(λ) = lim
ε→0

ε log
∫

X
eε−1〈λ,x〉με(dx) (4.6.12)

exists as an extended real number, and moreover that for any d ∈ ZZ+ and
any λ1, . . . , λd ∈ W, the function

g((t1, . . . , td))
�
=Λ(

d∑

i=1

tiλi) : IRd → (−∞,∞]

is essentially smooth, lower semicontinuous, and finite in some neighborhood
of 0.
Then {με} satisfies the LDP in (X ,B) with the convex, good rate function

Λ∗(x) = sup
λ∈W

{〈λ, x〉 − Λ(λ)} . (4.6.13)

(b) Alternatively, if for any λ1, . . . , λd ∈ W, there exists a compact set
K ⊂ IRd such that με ◦p−1

λ1,...,λd
(K) = 1, and moreover {με ◦p−1

λ1,...,λd
, ε > 0}

satisfies the LDP with a convex rate function, then Λ : W → IR exists, is
finite everywhere, and {με} satisfies the LDP in (X ,B) with the convex,
good rate function Λ∗(·) as defined in (4.6.13).

Remark: Since X satisfies Assumption 4.6.7, the only continuous linear
functionals on X are of the form x �→ 〈λ, x〉, where λ ∈ W. Consequently,
X ∗ may be identified with W, and Λ∗(·) is the Fenchel–Legendre transform
of Λ(·) as defined in Section 4.5.
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Proof: (a) Fix d ∈ ZZ+ and λ1, . . . , λd ∈ W. Note that the limiting loga-
rithmic moment generating function associated with {με ◦ p−1

λ1,...,λd
, ε > 0}

is g((t1, . . . , td)). Hence, by our assumptions, the Gärtner–Ellis theorem
(Theorem 2.3.6) implies that these measures satisfy the LDP in IRd with
the good rate function Iλ1,...,λd

= g∗ : IRd → [0,∞], where

Iλ1,...,λd
((〈λ1, x〉, 〈λ2, x〉, . . . , 〈λd, x〉))

= sup
t1,...,td∈IR

{ d∑

i=1

ti〈λi, x〉 − Λ
( d∑

i=1

tiλi

)}
.

Consequently, for every x ∈ X ,

Iλ1,...,λd
((〈λ1, x〉, 〈λ2, x〉, . . . , 〈λd, x〉)) ≤ Λ∗(x) = sup

λ∈W
Iλ(〈λ, x〉) .

Since the preceding holds for every λ1, . . . , λd ∈ W, the LDP of {με} with
the good rate function Λ∗(·) is a direct consequence of Theorem 4.6.9.
(b) Fix d ∈ ZZ+ and λ1, . . . , λd ∈ W . Since με ◦ p−1

λ1,...,λd
are supported on

a compact set K, they satisfy the boundedness condition (4.5.11). Hence,
by our assumptions, Theorem 4.5.10 applies. It then follows that the limit-
ing moment generating function g(·) associated with {με ◦ p−1

λ1,...,λd
, ε > 0}

exists, and the LDP for these probability measures is controlled by g∗(·).
With Iλ1,...,λd

= g∗ for any λ1, . . . , λd ∈ W, the proof is completed as in
part (a).

The following corollary of the projective limit approach is a somewhat
stronger version of Corollary 4.5.27.

Corollary 4.6.14 Let {με} be an exponentially tight family of Borel prob-
ability measures on the locally convex Hausdorff topological vector space E.
Suppose Λ(·) = limε→0 εΛμε(·/ε) is finite valued and Gateaux differentiable.
Then {με} satisfies the LDP in E with the convex, good rate function Λ∗.

Proof: Let W be the topological dual of E . Suppose first that W is an
infinite dimensional vector space, and define X according to Assumption
4.6.7. Let i : E → X denote the map x �→ i(x), where i(x) is the linear func-
tional λ �→ 〈λ, x〉, ∀λ ∈ W. Since E is a locally convex topological vector
space, by the Hahn–Banach theorem, W is separating. Therefore, E when
equipped with the weak topology is Hausdorff, and i is a homeomorphism
between this topological space and i(E) ⊂ X . Consequently, {με ◦ i−1}
are Borel probability measures on X such that με ◦ i−1(i(E)) = 1 for all
ε > 0. All the conditions in part (a) of Corollary 4.6.11 hold for {με ◦ i−1},
since we assumed that Λ : W → IR exists, and is a finite valued, Gateaux
differentiable function. Hence, {με ◦ i−1} satisfies the LDP in X with the
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convex, good rate function Λ∗(·). Recall that i : E → X is a continuous
injection with respect to the weak topology on E , and hence it is also con-
tinuous with respect to the original topology on E . Now, the exponential
tightness of {με}, Theorem 4.2.4, and the remark following it, imply that
{με} satisfies the LDP in E with the good rate function Λ∗(·).

We now turn to settle the (trivial) case where W is a d-dimensional
vector space for some d < ∞. Observe that then X is of the same dimension
as W. The finite dimensional topological vector space X can be represented
as IRd. Hence, our assumptions about the function Λ(·) imply the LDP in
X associated with {με ◦ i−1} by a direct application of the Gärtner–Ellis
theorem (Theorem 2.3.6). The LDP (in E) associated with {με} follows
exactly as in the infinite dimensional case.

Exercise 4.6.15 Suppose that all the conditions of Corollary 4.6.14 hold ex-
cept for the exponential tightness of {με}. Prove that {με} satisfies a weak
LDP with respect to the weak topology on E , with the rate function Λ∗(·)
defined in (4.6.13).
Hint: Follow the proof of the corollary and observe that the LDP of {με ◦ i−1}
in X still holds. Note that if K ⊂ E is weakly compact, then i(K) ⊂ i(E) is a
compact subset of X .

4.7 The LDP and Weak Convergence in
Metric Spaces

Throughout this section (X , d) is a metric space and all probability measures
are Borel. For δ > 0, let

Aδ,o�={y : d(y,A)�= inf
z∈A

d(y, z) < δ} (4.7.1)

denote the open blowups of A (compare with (4.1.8)), with A−δ = ((Ac)δ,o)c

a closed set (possibly empty). The proof of the next lemma which summa-
rizes immediate relations between these sets is left as Exercise 4.7.18.

Lemma 4.7.2 For any δ > 0, η > 0 and Γ ⊂ X
(a) (Γ−δ)δ,o ⊂ Γ ⊂ (Γδ,o)−δ.
(b) Γ−(δ+η) ⊂ (Γ−δ)−η and (Γδ,o)η,o ⊂ Γ(δ+η),o.
(c) G−δ increases to G for any open set G and F δ,o decreases to F for any
closed set F .
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Let Q(X ) denote the collection of set functions ν : BX → [0, 1] such
that:

(a) ν(∅) = 0.

(b) ν(Γ) = inf{ν(G) : Γ ⊂ G open} for any Γ ∈ BX .

(c) ν(∪∞
i=1Γi) ≤

∑∞
i=1 ν(Γi) for any Γi ∈ BX .

(d) ν(G) = limδ→0 ν(G−δ) for any open set G ⊂ X .

Condition (b) implies the monotonicity property ν(A) ≤ ν(B) whenever
A ⊂ B.

The following important subset of Q(X ) represents the rate functions.

Definition 4.7.3 A set function ν : BX → [0, 1] is called a sup-measure if
ν(Γ) = supy∈Γ ν({y}) for any Γ ∈ BX and ν({y}) is an upper semicontinu-
ous function of y ∈ X . With a sup-measure ν uniquely characterized by the
rate function I(y) = − log ν({y}), we adopt the notation ν = e−I .

The next lemma explains why Q(X ) is useful for exploring similarities
between the LDP and the well known theory of weak convergence of prob-
ability measures.

Lemma 4.7.4 Q(X ) contains all sup-measures and all set functions of the
form με for μ a probability measure on X and ε ∈ (0, 1].

Proof: Conditions (a) and (c) trivially hold for any sup-measure. Since
any point y in an open set G is also in G−δ for some δ = δ(y) > 0, all sup-
measures satisfy condition (d). For (b), let ν({y}) = e−I(y). Fix Γ ∈ BX
and G(x, δ) as in (4.1.3), such that

eδν({x}) = e−(I(x)−δ) ≥ e− infy∈G(x,δ) I(y) = sup
y∈G(x,δ)

ν({y}) .

It follows that for the open set Gδ = ∪x∈ΓG(x, δ),

eδν(Γ) = eδ sup
x∈Γ

ν({x}) ≥ sup
y∈Gδ

ν({y}) = ν(Gδ) .

Taking δ → 0, we have condition (b) holding for an arbitrary Γ ∈ BX .

Turning to the second part of the lemma, note that conditions (a)–(d)
hold when ν is a probability measure. Suppose next that ν(·) = f(μ(·))
for a probability measure μ and f ∈ Cb([0, 1]) non-decreasing such that
f(0) = 0 and f(p + q) ≤ f(p) + f(q) for 0 ≤ p ≤ 1 − q ≤ 1. By induction,
f(
∑k

i=1 pi) ≤
∑k

i=1 f(pi) for all k ∈ ZZ+ and non-negative pi such that
∑k

i=1 pi ≤ 1. The continuity of f(·) at 0 extends this property to k =
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∞. Therefore, condition (c) holds for ν by the subadditivity of μ and
monotonicity of f(·). The set function ν inherits conditions (b) and (d)
from μ by the continuity and monotonicity of f(·). Similarly, it inherits
condition (a) because f(0) = 0. In particular, this applies to f(p) = pε for
all ε ∈ (0, 1].

The next definition of convergence in Q(X ) coincides by the Portman-
teau theorem with weak convergence when restricted to probability mea-
sures νε, ν0 (see Theorem D.10 for X Polish).

Definition 4.7.5 νε → ν0 in Q(X ) if for any closed set F ⊂ X

lim sup
ε→0

νε(F ) ≤ ν0(F ) , (4.7.6)

and for any open set G ⊂ X ,

lim inf
ε→0

νε(G) ≥ ν0(G) . (4.7.7)

For probability measures νε, ν0 the two conditions (4.7.6) and (4.7.7) are
equivalent. However, this is not the case in general. For example, if ν0(·) ≡ 0
(an element of Q(X )), then (4.7.7) holds for any νε but (4.7.6) fails unless
νε(X ) → 0.

For a family of probability measures {με}, the convergence of νε = με
ε

to a sup-measure ν0 = e−I is exactly the LDP statement (compare (4.7.6)
and (4.7.7) with (1.2.12) and (1.2.13), respectively).

With this in mind, we next extend the definition of tightness and uniform
tightness from M1(X ) to Q(X ) in such a way that a sup-measure ν = e−I is
tight if and only if the corresponding rate function is good, and exponential
tightness of {με} is essentially the same as uniform tightness of the set
functions {με

ε}.

Definition 4.7.8 A set function ν ∈ Q(X ) is tight if for each η > 0,
there exists a compact set Kη ⊂ X such that ν(Kc

η) < η. A collection
{νε} ⊂ Q(X ) is uniformly tight if the set Kη may be chosen independently
of ε.

The following lemma provides a useful consequence of tightness in Q(X ).

Lemma 4.7.9 If ν ∈ Q(X ) is tight, then for any Γ ∈ BX ,

ν(Γ) = lim
δ→0

ν(Γδ,o) . (4.7.10)
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Remark: For sup-measures this is merely part (b) of Lemma 4.1.6.

Proof: Fix a non-empty set Γ ∈ BX , η > 0 and a compact set K = Kη for
which ν(Kc

η) < η. For any open set G ⊂ X such that Γ ⊂ G, either K ⊂ G

or else the non-empty compact set K ∩Gc and the closed set Γ are disjoint,
with infx∈K∩Gc d(x,Γ) > 0. In both cases, Γδ,o ∩ K = Γ

δ,o ∩ K ⊂ G for
some δ > 0, and by properties (b), (c) and monotonicity of set functions in
Q(X ),

ν(Γ) = inf{ν(G) : Γ ⊂ G open } ≥ lim
δ→0

ν(Γδ,o ∩K)

≥ lim
δ→0

ν(Γδ,o)− η ≥ ν(Γ)− η .

The limit as η → 0 yields (4.7.10).

For ν̃, ν ∈ Q(X ), let

ρ(ν̃, ν)
�
= inf{δ > 0 : ν̃(F ) ≤ ν(F δ,o) + δ ∀ F ⊂ X closed,

ν̃(G) ≥ ν(G−δ)− δ ∀G ⊂ X open } (4.7.11)

When ρ(·, ·) is restricted to M1(X ) × M1(X ), it coincides with the Lévy
metric (see Theorem D.8). Indeed, in this special case, if δ > 0 is such that
ν̃(F ) ≤ ν(F δ,o) + δ for a closed set F ⊂ X , then ν̃(G) ≥ ν((F δ,o)c) − δ =
ν(G−δ)− δ for the open set G = F c.

The next theorem shows that in analogy with the theory of weak con-
vergence, (Q(X ), ρ) is a metric space for which convergence to a tight limit
point is characterized by Definition 4.7.5.

Theorem 4.7.12
(a) ρ(·, ·) is a metric on Q(X ).
(b) For ν0 tight, ρ(νε, ν0) → 0 if and only if νε → ν0 in Q(X ).

Remarks:
(a) By Theorem 4.7.12, the Borel probability measures {με} satisfy the LDP
in (X , d) with good rate function I(·) if and only if ρ(με

ε, e
−I) → 0.

(b) In general, one can not dispense of tightness of ν0 = e−I when relating
the ρ(νε, ν0) convergence to the LDP. Indeed, with μ1 a probability measure
on IR such that dμ1/dx = C/(1+ |x|2) it is easy to check that με(·)�=μ1(·/ε)
satisfies the LDP in IR with rate function I(·) ≡ 0 while considering the
open sets Gx = (x,∞) for x →∞ we see that ρ(με

ε, e
−I) = 1 for all ε > 0.

(c) By part (a) of Lemma 4.7.2, F ⊂ G−δ for the open set G = F δ,o and
F δ,o ⊂ G for the closed set F = G−δ. Therefore, the monotonicity of the
set functions ν̃, ν ∈ Q(X ), results with

ρ(ν̃, ν) = inf{δ > 0 : ν̃(F ) ≤ ν(F δ,o) + δ and (4.7.13)
ν(F ) ≤ ν̃(F δ,o) + δ ∀F ⊂ X closed }.
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Proof: (a) The alternative definition (4.7.13) of ρ shows that it is a non-
negative, symmetric function, such that ρ(ν, ν) = 0 (by the monotonicity
of set functions in Q(X )). If ρ(ν̃, ν) = 0, then by (4.7.11), for any open set
G ⊂ X ,

ν̃(G) ≥ lim sup
δ→0

[ν(G−δ)− δ] = ν(G)

(see property (d) of set functions in Q(X )). Since ρ is symmetric, by same
reasoning also ν(G) ≥ ν̃(G), so that ν̃(G) = ν(G) for every open set G ⊂ X .
Thus, by property (b) of set functions in Q(X ) we conclude that ν̃ = ν.

Fix ν̃, ν, ω ∈ Q(X ) and δ > ρ(ν̃, ω), η > ρ(ω, ν). Then, by (4.7.11) and
part (b) of Lemma 4.7.2, for any closed set F ⊂ X ,

ν̃(F ) ≤ ω(F δ,o) + δ ≤ ν((F δ,o)η,o) + δ + η ≤ ν(F (δ+η),o) + δ + η .

By symmetry of ρ we can reverse the roles of ν̃ and ν, hence concluding by
(4.7.13) that ρ(ν̃, ν) ≤ δ + η. Taking δ → ρ(ν̃, ω) and η → ρ(ω, ν) we have
the triangle inequality ρ(ν̃, ν) ≤ ρ(ν̃, ω) + ρ(ω, ν).

(b) Suppose ρ(νε, ν0) → 0 for tight ν0 ∈ Q(X ). By (4.7.11), for any open
set G ⊂ X ,

lim inf
ε→0

νε(G) ≥ lim
δ→0

(ν0(G−δ)− δ) = ν0(G) ,

yielding the lower bound (4.7.7). Similarly, by (4.7.11) and Lemma 4.7.9,
for any closed set F ⊂ X

lim sup
ε→0

νε(F ) ≤ lim
δ→0

ν0(F δ,o) = ν0(F ) .

Thus, the upper bound (4.7.6) holds for any closed set F ⊂ X and so
νε → ν0.

Suppose now that νε → ν0 for tight ν0 ∈ Q(X ). Fix η > 0 and a compact
set K = Kη such that ν0(Kc) < η. Extract a finite cover of K by open
balls of radius η/2, each centered in K. Let {Γi; i = 0, . . . , M} be the finite
collection of all unions of elements of this cover, with Γ0 ⊃ K denoting the
union of all the elements of the cover. Since ν0(Γc

0) < η, by (4.7.6) also
νε(Γc

0) ≤ η for some ε0 > 0 and all ε ≤ ε0. For any closed set F ⊂ X there
exists an i ∈ {0, . . . ,M} such that

(F ∩ Γ0) ⊂ Γi ⊂ F 2η,o (4.7.14)

(take for Γi the union of those elements of the cover that intersect F ∩ Γ0).
Thus, for ε ≤ ε0, by monotonicity and subadditivity of νε, ν0 and by the
choice of K,

νε(F ) ≤ νε(F ∩ Γ0) + νε(Γc
0) ≤ max

0≤i≤M
{νε(Γi)− ν0(Γi)}+ ν0(F 2η,o) + η.
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With ε0, M , and {Γi} independent of F , since νε → ν0, it thus follows that

lim sup
ε→0

sup
F closed

(νε(F )− ν0(F 2η,o)) ≤ η. (4.7.15)

For an open set G ⊂ X , let F = G−2η and note that (4.7.14) still holds
with Γi replacing Γi. Hence, reverse the roles of ν0 and νε to get for all
ε ≤ ε0,

ν0(G−2η) ≤ max
0≤i≤M

{ν0(Γi)− νε(Γi)}+ νε((G−2η)2η,o) + η. (4.7.16)

Recall that (G−2η)2η,o ⊂ G by Lemma 4.7.2. Hence, by (4.7.7), (4.7.16),
and monotonicity of νε

lim sup
ε→0

sup
G open

(ν0(G−2η)− νε(G)) ≤ η . (4.7.17)

Combining (4.7.15) and (4.7.17), we see that ρ(νε, ν0) ≤ 2η for all ε small
enough. Taking η → 0, we conclude that ρ(νε, ν0) → 0.

Exercise 4.7.18 Prove Lemma 4.7.2.

4.8 Historical Notes and References

A statement of the LDP in a general setup appears in various places, c.f.
[Var66, FW84, St84, Var84]. As mentioned in the historical notes referring
to Chapter 2, various forms of this principle in specific applications have
appeared earlier. The motivation for Theorem 4.1.11 and Lemma 4.1.21
comes from the analysis of [Rue67] and [Lan73].

Exercise 4.1.10 is taken from [LyS87]. Its converse, Lemma 4.1.23, is
proved in [Puk91]. In that paper and in its follow-up [Puk94a], Pukhalskii
derives many other parallels between exponential convergence in the form
of large deviations and weak convergence. Our exposition of Lemma 4.1.23
follows that of [deA97a]. Other useful criteria for exponential tightness
exist; see, for example, Theorem 3.1 in [deA85a].

The contraction principle was used by Donsker and Varadhan [DV76]
in their treatment of Markov chains empirical measures. Statements of
approximate contraction principles play a predominant role in Azencott’s
study of the large deviations for sample paths of diffusion processes [Aze80].
A general approximate contraction principle appears also in [DeuS89b].
The concept of exponentially good approximation is closely related to the
comparison principle of [BxJ88, BxJ96]. In particular, the latter motivates
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Exercises 4.2.29 and 4.2.30. For the extension of most of the results of
Section 4.2.2 to Y a completely regular topological space, see [EicS96]. Fi-
nally, the inverse contraction principle in the form of Theorem 4.2.4 and
Corollary 4.2.6 is taken from [Io91a].

The original version of Varadhan’s lemma appears in [Var66]. As men-
tioned in the text, this lemma is related to Laplace’s method in an abstract
setting. See [Mal82] for a simple application in IR1. For more on this
method and its refinements, see the historical notes of Chapters 5 and 6.
The inverse to Varadhan’s lemma stated here is a modification of [Bry90],
which also proves a version of Theorem 4.4.10.

The form of the upper bound presented in Section 4.5.1 dates back (for
the empirical mean of real valued i.i.d. random variables) to Cramér and
Chernoff. The bound of Theorem 4.5.3 appears in [Gär77] under additional
restrictions, which are removed by Stroock [St84] and de Acosta [deA85a].
A general procedure for extending the upper bound from compact sets
to closed sets without an exponential tightness condition is described in
[DeuS89b], Chapter 5.1. For another version geared towards weak topolo-
gies see [deA90]. Exercise 4.5.5 and the specific computation in Exercise
6.2.19 are motivated by the derivation in [ZK95].

Convex analysis played a prominent role in the derivation of the LDP. As
seen in Chapter 2, convex analysis methods had already made their en-
trance in IRd. They were systematically used by Lanford and Ruelle in their
treatment of thermodynamical limits via sub-additivity, and later applied
in the derivation of Sanov’s theorem (c.f. the historical notes of Chap-
ter 6). Indeed, the statements here build on [DeuS89b] with an eye to the
weak LDP presented by Bahadur and Zabell [BaZ79]. The extension of the
Gärtner–Ellis theorem to the general setup of Section 4.5.3 borrows mainly
from [Bal88] (who proved implicitly Theorem 4.5.20) and [Io91b]. For other
variants of Corollaries 4.5.27 and 4.6.14, see also [Kif90a, deA94c, OBS96].

The projective limits approach to large deviations was formalized by
Dawson and Gärtner in [DaG87], and was used in the context of obtaining
the LDP for the empirical process by Ellis [Ell88] and by Deuschel and
Stroock [DeuS89b]. It is a powerful tool for proving large deviations state-
ments, as demonstrated in Section 5.1 (when combined with the inverse
contraction principle) and in Section 6.4. The identification Lemma 4.6.5
is taken from [deA97a], where certain variants and generalizations of The-
orem 4.6.1 are also provided. See also [deA94c] for their applications.

Our exposition of Section 4.7 is taken from [Jia95] as is Exercise 4.1.32.
In [OBV91, OBV95, OBr96], O’Brien and Vervaat provide a comprehen-
sive abstract unified treatment of weak convergence and of large deviation
theory, a small part of which inspired Lemma 4.1.24 and its consequences.



Chapter 5

Sample Path Large
Deviations

The finite dimensional LDPs considered in Chapter 2 allow computations
of the tail behavior of rare events associated with various sorts of empirical
means. In many problems, the interest is actually in rare events that de-
pend on a collection of random variables, or, more generally, on a random
process. Whereas some of these questions may be cast in terms of empirical
measures, this is not always the most fruitful approach. Interest often lies in
the probability that a path of a random process hits a particular set. Ques-
tions of this nature are addressed in this chapter. In Section 5.1, the case of
a random walk, the simplest example of all, is analyzed. The Brownian mo-
tion counterpart is then an easy application of exponential equivalence, and
the diffusion case follows by suitable approximate contractions. The range
of applications presented in this chapter is also representative: stochastic
dynamical systems (Sections 5.4, 5.7, and 5.8), DNA matching problems
and statistical change point questions (Section 5.5).

In this chapter, all probability measures are Borel with the appropriate
completion. Since all processes involved here are separable, all measurability
issues are obvious, and we shall not bother to make them precise. A word
of caution is that these issues have to be considered when more complex
processes are involved, particularly in the case of general continuous time
Markov processes.

A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications,
Stochastic Modelling and Applied Probability 38,
DOI 10.1007/978-3-642-03311-7 5,
© Springer-Verlag Berlin Heidelberg 1998, corrected printing 2010
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5.1 Sample Path Large Deviations for
Random Walks

Let X1, X2, . . . be a sequence of i.i.d. random vectors taking values in IRd,
with Λ(λ)�= log E(e〈λ,X1〉) < ∞ for all λ ∈ IRd. Cramér’s theorem (Theorem
2.2.30) allows the analysis of the large deviations of 1

n

∑n
i=1 Xi. Similarly,

the large deviations behavior of the pair of random variables 1
n

∑n
i=1 Xi

and 1
n

∑[n/2]
i=1 Xi can be obtained, where [c] as usual denotes the integer

part of c. In this section, the large deviations joint behavior of a family of
random variables indexed by t is considered.

Define

Zn(t) =
1
n

[nt]∑

i=1

Xi, 0 ≤ t ≤ 1 , (5.1.1)

and let μn be the law of Zn(·) in L∞([0, 1]). Throughout, |x|�=
√
〈x, x〉

denotes the Euclidean norm on IRd, ‖ f ‖ denotes the supremum norm on
L∞([0, 1]), and Λ∗(x)�= supλ∈IRd [〈λ, x〉−Λ(λ)] denotes the Fenchel–Legendre
transform of Λ(·).

The following theorem is the main result of this section.

Theorem 5.1.2 (Mogulskii)The measures μn satisfy in L∞([0, 1]) the
LDP with the good rate function

I(φ) =

⎧
⎨

⎩

∫ 1

0
Λ∗(φ̇(t)) dt, if φ ∈ AC, φ(0) = 0

∞ otherwise ,

(5.1.3)

where AC denotes the space of absolutely continuous functions, i.e.,

AC�
=
{

φ ∈ C([0, 1]) :

k∑

�=1

|t� − s�| → 0 , s� < t� ≤ s�+1 < t�+1 =⇒
k∑

�=1

|φ(t�)− φ(s�)| → 0
}

.

Remarks:
(a) Recall that φ : [0, 1] → IRd absolutely continuous implies that φ is
differentiable almost everywhere; in particular, that it is the integral of an
L1([0, 1]) function.
(b) Since {μn} are supported on the space of functions continuous from the
right and having left limits, of which DI is a subset, the preceding LDP
holds in this space when equipped with the supremum norm topology. In
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fact, all steps of the proof would have been the same had we been working
in that space, instead of L∞([0, 1]), throughout.
(c) Theorem 5.1.2 possesses extensions to stochastic processes with jumps
at random times; To avoid measurability problems, one usually works in the
space of functions continuous from the right and having left limits, equipped
with a topology which renders the latter Polish (the Skorohod topology).
Results may then be strengthened to the supremum norm topology by using
Exercise 4.2.9.

The proof of Theorem 5.1.2 is based on the following three lemmas,
whose proofs follow the proof of the theorem. For an alternative proof, see
Section 7.2.

Lemma 5.1.4 Let μ̃n denote the law of Z̃n(·) in L∞([0, 1]), where

Z̃n(t)
�
=Zn(t) +

(

t− [nt]
n

)

X[nt]+1 (5.1.5)

is the polygonal approximation of Zn(t). Then the probability measures μn

and μ̃n are exponentially equivalent in L∞([0, 1]).

Figure 5.1.1: Zn and Z̃n for n = 6.

Lemma 5.1.6 Let X consist of all the maps from [0, 1] to IRd such that
t = 0 is mapped to the origin, and equip X with the topology of pointwise
convergence on [0, 1]. Then the probability measures μ̃n of Lemma 5.1.4
(defined on X by the natural embedding) satisfy the LDP in this Hausdorff
topological space with the good rate function I(·) of (5.1.3).

Lemma 5.1.7 The probability measures μ̃n are exponentially tight in the
space C0([0, 1]) of all continuous functions f : [0, 1] → IRd such that f(0) =
0, equipped with the supremum norm topology.
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Proof of Theorem 5.1.2: By Lemma 5.1.6, {μ̃n} satisfies the LDP in X .
Note that DI ⊂ C0([0, 1]), and by (5.1.1) and (5.1.5), μ̃n(C0([0, 1])) = 1
for all n. Thus, by Lemma 4.1.5, the LDP for {μ̃n} also holds in the space
C0([0, 1]) when equipped with the relative (Hausdorff) topology induced by
X . The latter is the pointwise convergence topology, which is generated by
the sets Vt,x,δ

�
={g ∈ C0([0, 1]) : |g(t) − x| < δ} with t ∈ (0, 1], x ∈ IRd and

δ > 0. Since each Vt,x,δ is an open set under the supremum norm, the latter
topology is finer (stronger) than the pointwise convergence topology. Hence,
the exponential tightness of {μ̃n} as established in Lemma 5.1.7 allows, by
Corollary 4.2.6, for the strengthening of the LDP to the supremum norm
topology on C0([0, 1]). Since C0([0, 1]) is a closed subset of L∞([0, 1]), the
same LDP holds in L∞([0, 1]) by again using Lemma 4.1.5, now in the
opposite direction. Finally, in view of Lemma 5.1.4, the LDP of {μn} in
the metric space L∞([0, 1]) follows from that of {μ̃n} by an application of
Theorem 4.2.13.

Proof of Lemma 5.1.4: The sets {ω : ‖ Z̃n − Zn ‖> η} are obviously
measurable. Note that |Z̃n(t) − Zn(t)| ≤ |X[nt]+1|/n. Thus, for any η > 0
and any λ > 0,

P(||Z̃n − Zn|| > η) ≤ nP(|X1| > nη) ≤ nE
(
eλ|X1|

)
e−λnη .

Since DΛ = IRd, it follows, by considering first n → ∞ and then λ → ∞,
that for any η > 0,

lim sup
n→∞

1
n

log P(||Z̃n − Zn|| > η) = −∞ .

Therefore, the probability measures μn and μ̃n are exponentially equivalent.
(See Definition 4.2.10.)

The proof of Lemma 5.1.6 relies on the following finite dimensional LDP.

Lemma 5.1.8 Let J denote the collection of all ordered finite subsets of
(0, 1]. For any j = {0 < t1 < t2 < · · · < t|j| ≤ 1} ∈ J and any f : [0, 1] →
IRd, let pj(f) denote the vector (f(t1), f(t2), . . . , f(t|j|)) ∈ (IRd)|j|. Then
the sequence of laws {μn ◦ p−1

j } satisfies the LDP in (IRd)|j| with the good
rate function

Ij(z) =
|j|∑

�=1

(t� − t�−1)Λ∗
(

z� − z�−1

t� − t�−1

)

, (5.1.9)

where z = (z1, . . . , z|j|) and t0 = 0, z0 = 0.

Proof: Fix j ∈ J and observe that μn ◦ p−1
j is the law of the random vector

Zj
n
�
=(Zn(t1), Zn(t2), . . . , Zn(t|j|)) .
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Let
Y j

n
�
=(Zn(t1), Zn(t2)− Zn(t1), . . . , Zn(t|j|)− Zn(t|j|−1) ) .

Since the map Y j
n �→ Zj

n of (IRd)|j| onto itself is continuous and one to one,
the specified LDP for Zj

n follows by the contraction principle (Theorem
4.2.1) from an LDP for Y j

n , with rate function

Λ∗
j (y)

�
=

|j|∑

�=1

(t� − t�−1)Λ∗
(

y�

t� − t�−1

)

,

where y = (y1, . . . , y|j|) ∈ (IRd)|j|. Note that

Λ∗
j (y) =

|j|∑

�=1

(t� − t�−1) sup
λ�∈IRd

{〈λ�, y�/(t� − t�−1)〉 − Λ(λ�)}

= sup
λ∈(IRd)|j|

{ |j|∑

�=1

〈λ�, y�〉 − (t� − t�−1)Λ(λ�)
}

= sup
λ∈(IRd)|j|

{〈λ,y〉 − Λj(λ)} ,

where λ�
=(λ1, . . . , λ|j|) ∈ (IRd)|j| and

Λj(λ) =
|j|∑

�=1

(t� − t�−1)Λ(λ�) .

Thus, Λ∗
j (y) is the Fenchel–Legendre transform of the finite and differen-

tiable function Λj(λ). The LDP for Y j
n now follows from the Gärtner–Ellis

theorem (Theorem 2.3.6), since by the independence of Xi,

lim
n→∞

1
n

log E[en〈λ,Y j
n 〉] = lim

n→∞

|j|∑

�=1

1
n

([n t�]− [n t�−1]) Λ(λ�) = Λj(λ) .

The probability measures {μn ◦ p−1
j } and {μ̃n ◦ p−1

j } are exponentially
equivalent in (IRd)|j| as a consequence of Lemma 5.1.4. Thus, the following
is an immediate corollary of Lemma 5.1.8.

Corollary 5.1.10 For any j ∈ J , {μ̃n ◦ p−1
j } satisfies the LDP in (IRd)|j|

with the good rate function Ij of (5.1.9).

Proof of Lemma 5.1.6: A partial order by inclusions is defined on J as
follows. For i, j ∈ J , i = {s1, . . . , s|i|} ≤ j = {t1, . . . , t|j|} iff for any �,
s� = tq(�) for some q(�). Then, for i ≤ j ∈ J , the projection

pij : (IRd)|j| → (IRd)|i|
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is defined in the natural way. Let X̃ denote the projective limit of {Yj =
(IRd)|j|}j∈J with respect to the projections pij , i.e., X̃ = lim←−Yj . Actually,
X̃ may be identified with the space X . Indeed, each f ∈ X corresponds to
(pj(f))j∈J , which belongs to X̃ since pi(f) = pij(pj(f)) for i ≤ j ∈ J . In
the reverse direction, each point x = (xj)j∈J of X̃ may be identified with
the map f : [0, 1] → IRd, where f(t) = x{t} for t > 0 and f(0) = 0. Further,
with this identification, the projective topology on X̃ coincides with the
pointwise convergence topology of X , and pj as defined in the statement
of Lemma 5.1.8 are the canonical projections for X̃ . The LDP for {μ̃n} in
the Hausdorff topological space X thus follows by applying the Dawson–
Gärtner theorem (Theorem 4.6.1) in conjunction with Corollary 5.1.10.
(Note that (IRd)|j| are Hausdorff spaces and Ij are good rate functions.)
The rate function governing this LDP is

IX (f) = sup
0=t0<t1<t2<...<tk≤1

k∑

�=1

(t�−t�−1)Λ∗
(

f(t�)− f(t�−1)
t� − t�−1

)

. (5.1.11)

Since Λ∗ is nonnegative, without loss of generality, assume hereafter
that tk = 1. It remains to be shown that IX (·) = I(·). The convexity of
Λ∗ implies by Jensen’s inequality that I(φ) ≥ IX (φ). As for the opposite
inequality, first consider φ ∈ AC. Let g(t)�=dφ(t)/dt ∈ L1([0, 1]) and, for
k ≥ 1, define

gk(t)�=k

∫ ([kt]+1)/k

[kt]/k

g(s)ds t ∈ [0, 1), gk(1) = k

∫ 1

1−1/k

g(s)ds .

With these notations, observe that

IX (φ) ≥ lim inf
k→∞

k∑

�=1

1
k

Λ∗
(

k

[

φ
( �

k

)
− φ

(�− 1
k

)])

= lim inf
k→∞

∫ 1

0

Λ∗(gk(t))dt . (5.1.12)

By Lebesgue’s theorem (Theorem C.13), limk→∞ gk(t) = g(t) almost ev-
erywhere in [0, 1]. Hence, by Fatou’s lemma and the lower semicontinuity
of Λ∗(·),

lim inf
k→∞

∫ 1

0

Λ∗(gk(t))dt ≥
∫ 1

0

lim inf
k→∞

Λ∗(gk(t))dt

≥
∫ 1

0

Λ∗(g(t))dt = I(φ) . (5.1.13)
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The inequality IX (φ) ≥ I(φ) results by combining (5.1.12) and (5.1.13).

Finally, suppose that φ ∈ X and φ 
∈ AC. Then there exist δ > 0
and {sn

1 < tn1 ≤ · · · ≤ sn
kn

< tnkn
} such that

∑kn

�=1(t
n
� − sn

� ) → 0, while
∑kn

�=1 |φ(tn� )− φ(sn
� )| ≥ δ. Note that, since Λ∗ is nonnegative,

IX (φ) = sup
0<t1<t2<...<tk

λ1,...,λk∈IRd

k∑

�=1

[〈λ�, φ(t�)− φ(t�−1)〉 − (t� − t�−1)Λ(λ�)]

≥ sup
0≤s1<t1≤s2<t2≤...≤sk<tk

λ1,...,λk∈IRd

k∑

�=1

[〈λ�, φ(t�)− φ(s�)〉 − (t� − s�)Λ(λ�)] .

Hence, for t� = tn� , s� = sn
� , and λ� proportional to φ(t�) − φ(s�) and with

|λ�| = ρ, the following bound is obtained:

IX (φ) ≥ lim sup
n→∞

{
ρ

kn∑

�=1

|φ(tn� )− φ(sn
� )| − [ sup

|λ|=ρ

Λ(λ)]
kn∑

�=1

(tn� − sn
� )
}
≥ ρδ .

(Recall that Λ(·) is continuous everywhere.) The arbitrariness of ρ implies
that IX (φ) = ∞, completing the proof of the lemma.

The proof of Lemma 5.1.7 relies on the following one-dimensional result.

Lemma 5.1.14 Let X be a real valued random variable distributed accord-
ing to the law ν. Then E

[
eδΛ∗

ν(X)
]

< ∞ for all δ < 1.

Proof: Let Λν denotes the logarithmic moment generating function of X. If
Λν(λ) = ∞ for all λ 
= 0, then Λ∗

ν is identically zero and the lemma trivially
holds. Assume otherwise and recall that then x = Eν [X] exists, possibly as
an extended real number. Observe that for any x ∈ IR,

eΛν(λ) ≥

⎧
⎨

⎩

eλxν([x,∞)) if λ ≥ 0

eλxν((−∞, x]) if λ ≤ 0 .

Hence, by (2.2.6) and (2.2.7),

Λ∗
ν(x) ≤

⎧
⎨

⎩

− log ν([x,∞)) if x ≥ x

− log ν((−∞, x]) if x ≤ x .

Let δ < 1. Then

E
[
eδΛ∗

ν(X)
]

=
∫ x

−∞
ν(dx)eδΛ∗

ν(x) +
∫ ∞

x

ν(dx)eδΛ∗
ν(x)

≤
∫ x

−∞

ν(dx)
ν((−∞, x])δ

+
∫ ∞

x

ν(dx)
ν([x,∞))δ

. (5.1.15)
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For any M < x̄ such that ν((−∞, M ]) > 0, integration by parts yields

∫ x

M

ν(dx)
ν((−∞, x])δ

= ν((−∞, x])1−δ − ν((−∞, M ])1−δ + δ

∫ x

M

ν(dx)
ν((−∞, x])δ

.

Hence,

∫ x

M

ν(dx)
ν((−∞, x])δ

=
1

1− δ

{
ν((−∞, x])1−δ − ν((−∞, M ])1−δ

}
≤ 1

1− δ
.

By monotone convergence, one may set M = −∞. Then, substituting the
last inequality into (5.1.15) and repeating this procedure for the integral on
[x,∞) yields

E
[
eδΛ∗

ν(X)
]
≤ 2

1− δ
< ∞. (5.1.16)

Proof of Lemma 5.1.7: To see the exponential tightness of μ̃n in C0([0, 1])
when equipped with the supremum norm topology, denote by Xj

1 the jth
component of X1, define

Λj(λ)
�
= log

(
E[exp(λXj

1)]
)

,

with Λ∗
j (·) being the Fenchel–Legendre transform of Λj(·). Fix α > 0 and

Kj
α
�
={f ∈ AC : f(0) = 0,

∫ 1

0

Λ∗
j (ḟj(θ))dθ ≤ α} ,

where fj(·) is the jth component of f : [0, 1] → IRd. Now let Kα
�
=∩d

j=1 Kj
α.

Note that dZ̃n(t)/dt = X[nt]+1 for almost all t ∈ [0, 1). Thus,

μ̃n(Kc
α) ≤ d

d
max
j=1

P
( 1

n

n∑

i=1

Λ∗
j (X

j
i ) > α

)
.

Since {Xi}n
i=1 are independent, it now follows by Chebycheff’s inequality

that for any δ > 0,

1
n

log μ̃n(Kc
α) ≤ −δα +

1
n

log d +
d

max
j=1

log E
[
eδΛ∗

j (Xj
1)
]

.

In view of Lemma 5.1.14, it follows by considering δ = 1
2 and α →∞ that

limα→∞ lim supn→∞
1
n log μ̃n(Kc

α) = −∞.

By the Arzelà–Ascoli theorem (Theorem C.8), the proof of the lemma
is complete as soon as we show that Kα is a bounded set of equicontinuous
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functions. To see the equicontinuity, note that if f ∈ Kα, then the continu-
ous function f is differentiable almost everywhere, and for all 0 ≤ s < t ≤ 1
and j = 1, 2, . . . , d,

Λ∗
j

(fj(t)− fj(s)
t− s

)
≤ 1

t− s

∫ t

s

Λ∗
j (ḟj(θ))dθ ≤ α

t− s
.

Since Λ∗
j (x) ≥ M |x| − {Λj(M)∨Λj(−M)} for all M > 0, it follows that for

all (t− s) ≤ δ,

|fj(t)− fj(s)| ≤
1
M

(α + δ{Λj(M) ∨ Λj(−M)}) . (5.1.17)

Since Λj(·) is continuous on IR, there exist Mj = Mj(δ) such that Λj(Mj) ≤
1/δ, Λj(−Mj) ≤ 1/δ, and limδ→0 Mj(δ) = ∞. Hence, ε(δ)�= maxj=1,···,d(α+
1)/Mj(δ) is a uniform modulus of continuity for the set Kα. Finally, Kα is
bounded by (5.1.17) (for s = 0, δ = 1).

Theorem 5.1.2 can be extended to the laws νε of

Yε(t) = ε

[ t
ε ]∑

i=1

Xi, 0 ≤ t ≤ 1 , (5.1.18)

where μn (and Zn(t)) correspond to the special case of ε = n−1. The precise
statement is given in the following theorem.

Theorem 5.1.19 The probability measures νε induced on L∞([0, 1]) by
Yε(·) satisfy the LDP with the good rate function I(·) of (5.1.3).

Proof: For any sequence εm → 0 such that ε−1
m are integers, Theorem 5.1.19

is a consequence of Theorem 5.1.2. Consider now an arbitrary sequence
εm → 0 and let nm

�
=[ε−1

m ]. By Theorem 5.1.2, {μnm}∞m=1 satisfies an LDP
with the rate function I(·) of (5.1.3) and rate 1/nm. Since nmεm → 1, the
proof of the theorem is completed by applying Theorem 4.2.13, provided
that for any δ > 0,

lim sup
m→∞

1
nm

log P(‖ Yεm − Znm ‖≥ δ) = −∞ . (5.1.20)

To this end, observe that εmnm ∈ [1− εm, 1] and
[

t
εm

]
∈ {[nmt], [nmt] + 1}.

Hence, by (5.1.1) and (5.1.18),

|Yεm(t)− Znm(t)| ≤ (1− εmnm)|Znm(t)|+ εm|X[ t
εm

]|

≤ 2εm max
i=1,...,nm

|Xi| .
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Now, by the union of events bound,

1
nm

log P(‖ Yεm − Znm ‖≥ δ) ≤ 1
nm

log nm +
1

nm
log P(|X1| ≥

δ

2εm
) ,

and the limit (5.1.20) follows, since, by Exercise 5.1.24,

lim
ε→0

ε log P(|X1| ≥
1
ε
) = −∞ . (5.1.21)

Exercise 5.1.22 Establish the LDP associated with Yε(·) over the time inter-
val [0, T ], where T is arbitrary (but finite), i.e., prove that {Yε(·)} satisfies the
LDP in L∞([0, T ]) with the good rate function

IT (φ) =

⎧
⎪⎨

⎪⎩

∫ T

0
Λ∗(φ̇(t)) dt, if φ ∈ ACT , φ(0) = 0

∞ otherwise ,

(5.1.23)

where ACT is defined in the obvious way as the space of absolutely continuous
functions on [0, T ].

Exercise 5.1.24 Prove (5.1.21).
Hint: Include the event {|X1| ≥ 1/ε} within the union of 2d simpler one-
dimensional events.

Remark: Observe that (5.1.21) is false when Λ(λ) = ∞ for some λ ∈ IRd.
For example, check that (5.1.21) is false for d = 1 and X1 ∼ Exponential(1).

Exercise 5.1.25 Let Zn(t)�= 1
n S[nt], where

Sk = Sk−1 + g(
1
n

Sk−1) + Xk , k ≥ 1 , S0 = 0 ,

Xk are as in Theorem 5.1.2, and g : IRd → IRd is a bounded, deterministic
Lipschitz continuous function. Prove that Zn(·) satisfy the LDP in L∞([0, 1])
with the good rate function

I(φ) =

⎧
⎨

⎩

∫ 1

0
Λ∗(φ̇(t)− g(φ(t))) dt, if φ ∈ AC , φ(0) = 0

∞ otherwise .

(5.1.26)

Note that Theorem 5.1.2 corresponds to g = 0.
Hint: You may want to take a look at the proof of Theorem 5.8.14.

Exercise 5.1.27 Prove Theorem 5.1.2 for Xi = f(Yi) where f is a deter-
ministic function, {Yi} is the realization of a finite state, irreducible Markov
chain (c.f. Section 3.1), and Λ∗ is replaced by I(·) of Theorem 3.1.2.
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5.2 Brownian Motion Sample Path
Large Deviations

Let wt, t ∈ [0, 1] denote a standard Brownian motion in IRd. Consider the
process

wε(t) =
√

εwt ,

and let νε be the probability measure induced by wε(·) on C0([0, 1]), the
space of all continuous functions φ : [0, 1] → IRd such that φ(0) = 0,
equipped with the supremum norm topology. The process wε(·) is a candi-
date for an LDP similar to the one developed for Yε(·) in Section 5.1. Indeed,
‖ wε ‖ −→ε→0 0 in probability (actually, almost surely) and exponentially fast
in 1/ε as implied by the following useful (though elementary) lemma whose
proof is deferred to the end of this section.

Lemma 5.2.1 For any integer d and any τ, ε, δ > 0,

P
(

sup
0≤t≤τ

|wε(t)| ≥ δ

)

≤ 4de−δ2/2dτε . (5.2.2)

The LDP for wε(·) is stated in the following theorem. Let H1
�
={
∫ t

0
f(s)ds :

f ∈ L2([0, 1])} denote the space of all absolutely continuous functions with
value 0 at 0 that possess a square integrable derivative, equipped with the
norm ‖g‖H1 =[

∫ 1

0
|ġ(t)|2 dt] 1

2 .

Theorem 5.2.3 (Schilder) {νε} satisfies, in C0([0, 1]), an LDP with good
rate function

Iw(φ) =
{

1
2

∫ 1

0
|φ̇(t)|2 dt, φ ∈ H1

∞ otherwise .

Proof: Observe that the process

ŵε(t)
�
=wε

(

ε

[
t

ε

])

is merely the process Yε(·) of Section 5.1, for the particular choice of Xi,
which are standard Normal random variables in IRd (namely, of zero mean
and of the identity covariance matrix).

Thus, by Theorem 5.1.19, the probability laws of ŵε(·) satisfy the LDP in
L∞([0, 1]) with the good rate function I(·) of (5.1.3). For the standard
Normal variables considered here,

Λ(λ) = log E
[
e〈λ,X1〉

]
=

1
2
|λ|2 ,
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Figure 5.2.1: Typical wε and ŵε for ε = 1/6.

implying that

Λ∗(x) = sup
λ∈IRd

{

〈λ, x〉 − 1
2
|λ|2

}

=
1
2
|x|2 . (5.2.4)

Hence, for these variables DI = H1, and the rate function I(·) specializes
to Iw(·).

Observe that for any δ > 0,

P(‖ wε − ŵε ‖≥ δ) ≤ ([1/ε] + 1)P
(

sup
0≤t≤ε

|wε(t)| ≥ δ

)

≤ 4dε−1(1 + ε)e−δ2/(2dε2),

where the first inequality follows by the time-homogeneity of increments of
the Brownian motion, and the second by (5.2.2). Consequently,

lim sup
ε→0

ε log P(‖ wε − ŵε ‖≥ δ) = −∞ ,

and by Theorem 4.2.13, it follows that {νε} satisfies the LDP in L∞([0, 1])
with the good rate function Iw(·). The restriction to C0([0, 1]) follows from
Lemma 4.1.5, since wε(·) ∈ C0([0, 1]) with probability one.

Proof of Lemma 5.2.1: First note that

P
(

sup
0≤t≤τ

|wε(t)| ≥ δ

)

= P
(

sup
0≤t≤τ

|wt|2 ≥ ε−1δ2

)

≤ d P
(

sup
0≤t≤τ

(wt)21 ≥
δ2

dε

)

, (5.2.5)
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where (wt)1 is a Brownian motion in IR and the last inequality is a conse-
quence of the set inclusion

{x ∈ IRd : |x|2 ≥ α} ⊂
d⋃

i=1

{
x ∈ IRd : |xi|2 ≥

α

d

}
,

where xi is the ith coordinate of x ∈ IRd. Since the laws of wt and
√

τwt/τ

are identical, one obtains from (5.2.5) by time rescaling

P
(

sup
0≤t≤τ

|wε(t)| ≥ δ

)

≤ d P
(

‖ (wt)1 ‖≥
δ√
dτε

)

. (5.2.6)

Let wt
�
=(wt)1, where wt is a one-dimensional Brownian motion. Since wt

and −wt possess the same law in C0([0, 1]),

P(‖ wt ‖≥ η) ≤ 2P( sup
0≤t≤1

wt ≥ η) = 4P(w1 ≥ η) ≤ 4e−η2/2 , (5.2.7)

where the equality is Désiré André’s reflection principle (Theorem E.4), and
the last inequality follows from Chebycheff’s bound. Substituting (5.2.7)
into (5.2.6) yields the lemma.

Exercise 5.2.8 Establish, for any T < ∞, Schilder’s theorem in C0([0, T ]),
the space of all continuous functions φ : [0, T ] → IRd such that φ(0) = 0,
equipped with the supremum norm topology. Here, the rate function is

Iw(φ) =
{

1
2

∫ T

0
|φ̇(t)|2 dt, φ ∈ H1([0, T ])
∞ otherwise ,

(5.2.9)

where H1([0, T ])�={
∫ t

0
f(s)ds : f ∈ L2([0, T ])} denotes the space of absolutely

continuous functions with value 0 at 0 that possess a square integrable deriva-
tive.

Exercise 5.2.10 Note that, as a by-product of the proof of Theorem 5.2.3,
it is known that Iw(·) is a good rate function. Prove this fact directly.

Exercise 5.2.11 Obviously, Theorem 5.2.3 may be proved directly.
(a) Prove the upper bound by considering a discretized version of wt and esti-
mating the distance between wt and its discretized version.
(b) Let φ ∈ H1 be given and let με be the measure induced on C0([0, 1]) by
the process Xt = −φ(t) +

√
εwt. Compute the Radon–Nikodym derivative

dμε/dνε and prove the lower bound by mimicking the arguments in the proof
of Theorem 2.2.30.

Exercise 5.2.12 Prove the analog of Schilder’s theorem for Poisson pro-
cess. Specifically, let με be the probability measures induced on L∞([0, 1])
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by εN̂(t/ε), where N̂(·) is a Poisson process on [0,∞) of intensity one. Prove
that {με} satisfies the LDP with the good rate function

IN̂ (φ) =

⎧
⎨

⎩

∫ 1

0
[φ̇(t) log φ̇(t)− φ̇(t) + 1] dt

if φ ∈ AC, φ is increasing , φ(0) = 0
∞ otherwise .

Hint: The process εN̂(
[

t
ε

]
) is a particular instance of Yε(·) of Section 5.1 for

d = 1 and Xi which are Poisson(1) random variables. Use part (a) of Exercise
2.2.23 to determine the rate function. Complete the proof by establishing the
analog of Theorem 5.2.3 and using Exercise 4.2.32.

Exercise 5.2.13 Show that the results of Exercise 5.2.12 hold for any Poisson
process N(·) of intensity ψ(t) over [0,∞) provided that limt→∞ ψ(t) = 1.

Hint: Let Ψ(t)�=
∫ t

0
ψ(s)ds, and represent N(t) = N̂(Ψ(t)). Then show that

{εN̂(t/ε), ε > 0} and {εN(t/ε), ε > 0} are exponentially equivalent.

Exercise 5.2.14 For α < 1/2, let Lipα([0, 1]) denote the space of α Hölder
continuous functions in C0([0, 1]), equipped with the norm ||f ||α�

=

supt�=s |f(t)− f(s)|/|t− s|α. Establish Schilder’s theorem in Lipα([0, 1]).
Hint: Since νε(Lipα([0, 1])) = 1, it is enough to prove the exponential tight-
ness of {νε} in Lipα([0, 1]). Fix α′ ∈ (α, 1/2) and consider the following
pre-compact subsets of Lipα([0, 1]) (c.f. [Joh70], Corollary 3.3)

Kβ
�
={φ ∈ C0([0, 1]) : ‖ φ ‖α′≤ β} .

Recall Borell’s inequality [Bore75], which states that any centered Gaussian
process Xt,s, with a.s. bounded sample paths, satisfies

P

(

sup
0≤t,s≤1

|Xt,s| ≥ δ

)

≤ 2e−(δ−E)2/2V (5.2.15)

for all δ > E, where E�
=E

(
sup0≤t,s≤1 |Xt,s|

)
< ∞, V = sup0≤s,t≤1 E|Xt,s|2.

Apply this inequality to Xt,s = 1
(t−s)α′ (wt − ws) (where Xt,t is defined to be

zero).

5.3 Multivariate Random Walk and
Brownian Sheet

The results of Sections 5.1 and 5.2 may be extended to the situation where
more than one time index is present. To avoid cumbersome notations, real
valued random variables are considered. The case of IRk-valued random
variables, being similar, is presented in Exercise 5.3.5.
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Let d be a given integer. Throughout, i = (i1, . . . , id) ∈ ZZd
+ is a multi-

index. Let {Xi} denote a family of i.i.d. random variables with

Λ(λ)
�
= log E

[
eλXi

]
< ∞ for all λ ∈ IR .

As usual, Λ∗(x) = supλ∈IR{λx−Λ(λ)} denotes the Fenchel–Legendre trans-
form of Λ(·).

Let t = (t1, . . . , td) ∈ [0, 1]d. Define the multi-index random process

Zn(t) =
1
n

[n1/dt1]∑

i1=1

· · ·
[n1/dtd]∑

id=1

Xi ,

and let μn be the law of Zn(·) on L∞([0, 1]d).

Motivated by the results of Section 5.1, it is natural to look for the
large deviations behavior of {μn}. As a preliminary step, the notion of
absolute continuity is defined for functions on [0, 1]d, in order to describe
the resulting rate function. Let φ be a map from [0, 1]d to IR, and let ε > 0
be a given constant. The ε approximate derivative of φ in the jth direction,
j = 1, . . . , d, is defined as

Δε
jφ(t) =

1
ε

[φ(t1, . . . , tj + ε, . . . , td)− φ(t1, . . . , tj , . . . , td)] .

Similarly, the ε = (ε1, . . . , εd) mixed derivative of φ at t is defined as

Δεφ(t) = (Δεd

d · · · (Δε2
2 (Δε1

1 φ)))(t) .

Let Q denote the following collection of cubes in [0, 1]d; q ∈ Q if either q is
the empty set, or q = [a1, b1) × [a2, b2) × · · · × [ad, bd) for some 0 ≤ aj <
bj ≤ 1, j = 1, . . . , d. For any φ : [0, 1]d → IR, define

φ(q) = Δεφ(a1, . . . , ad)
d∏

k=1

(bk − ak),

where ε = (b1 − a1, b2 − a2, . . . , bd − ad), and φ(∅) = 0. The function φ is of
bounded variation if

sup
k

sup
q1,...,qk∈Q

q1,...,qk disjoint

k∑

�=1

|φ(q�)| < ∞ .

Hence, each φ : [0, 1]d → IR defines an additive set function on Q. This
set function is extended in the obvious manner to an additive set function
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on the field generated by Q. If φ is of bounded variation, then this exten-
sion is also bounded and countably additive. In this case, it possesses a
unique extension, denoted μφ, to a bounded (signed) measure on the σ-field
generated by Q. The latter is exactly the Borel σ-field of [0, 1]d (since every
open set in [0, 1]d may be expressed as a countable union of elements of
Q). The function φ is called absolutely continuous if it is of bounded vari-
ation and μφ is absolutely continuous with respect to the Lebesgue mea-
sure on [0, 1]d. By the Radon–Nikodym theorem (Theorem C.9), when
∂dφ/∂t1 · · · ∂td ∈ L1(m), where m denotes the Lebesgue measure on [0, 1]d,
then dμφ/dm = ∂dφ/∂t1 · · · ∂td ∈ L1(m) (m a.e.). Let

AC0
�
= {φ : φ absolutely continuous,

φ(0, t2, . . . , td) = φ(t1, 0, . . . , td) = · · · = φ(t1, . . . , td−1, 0) = 0} .

The following is the analog of Mogulskii’s theorem (Theorem 5.1.2).

Theorem 5.3.1 The sequence {μn} satisfies in L∞([0, 1]d) the LDP with
the good rate function

I(φ) =

{ ∫
[0,1]d

Λ∗
(

dμφ

dm

)
dm if φ ∈ AC0

∞ otherwise .
(5.3.2)

Remark: Note that AC0 is a subset of

C0([0, 1]d)
�
={φ ∈ C([0, 1]d) :

φ(0, t2, . . . , td)=φ(t1, 0, . . . , td)= · · · =φ(t1, . . . , td−1, 0)= 0}.

Proof: The proof of the theorem follows closely the proof of Theorem 5.1.2.
Let μ̃n denote the law on L∞([0, 1]d) induced by the natural polygonal
interpolation of Zn(t). E.g., for d = 2, it is induced by the random variables

Z̃n(t) = Zn(
[
√

nt1]√
n

,
[
√

nt2]√
n

)

+
√

n(t1 −
[
√

nt1]√
n

)
{

Zn(
[
√

nt1] + 1√
n

,
[
√

nt2]√
n

)−Zn(
[
√

nt1]√
n

,
[
√

nt2]√
n

)
}

+
√

n(t2 −
[
√

nt2]√
n

)
{

Zn(
[
√

nt1]√
n

,
[
√

nt2] + 1√
n

)−Zn(
[
√

nt1]√
n

,
[
√

nt2]√
n

)
}

+ (t1 −
[
√

nt1]√
n

)(t2 −
[
√

nt2]√
n

)X([
√

nt1]+1,[
√

nt2]+1) .

By the same proof as in Lemma 5.1.4, {μn} and {μ̃n} are exponen-
tially equivalent on L∞([0, 1]d). Moreover, mimicking the proof of Lemma
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5.1.7 (c.f. Exercise 5.3.6), it follows that {μ̃n} are exponentially tight on
C0([0, 1]d) when the latter is equipped with the supremum norm topology.
Thus, Theorem 5.3.1 is a consequence of the following lemma in the same
way that Theorem 5.1.2 is a consequence of Lemma 5.1.6.

Lemma 5.3.3 Let X consist of all the maps from [0, 1]d to IR such that the
axis (0, t2, . . . , td), (t1, 0, . . . , td), . . ., (t1, . . . , td−1, 0) are mapped to zero,
and equip X with the topology of pointwise convergence on [0, 1]d. Then the
probability measures μ̃n satisfy the LDP in X with the good rate function
I(·) of (5.3.2).

Proof of Lemma 5.3.3: Applying the projective limit argument as in the
proof of Lemma 5.1.6, one concludes that μ̃n satisfies the LDP in X with
the good rate function

IX (φ) = sup
k<∞

sup
q1,...,qk∈Q

q1,...,qk disjoint

[0,1)d=
⋃k

�=1
q�

k∑

�=1

m(q�)Λ∗
(

φ(q�)
m(q�)

)

.

By the convexity of Λ∗, I(φ) ≥ IX (φ). As for the opposite inequality,
first consider φ absolutely continuous such that dμφ/dm ∈ L1([0, 1]d). Let
{q̃k(�)}kd

�=1 denote the cover of [0, 1)d by disjoint cubes of volume k−d and
equal side length. Then

IX (φ) ≥ lim inf
k→∞

kd
∑

�=1

1
kd

Λ∗ (kdμφ(q̃k(�))
)

= lim inf
k→∞

∫

[0,1]d
Λ∗(gk(t))dt ,

where gk(t) is constant on each of the cubes q̃k(�) , � = 1, . . . , kd. Moreover,
for each t ∈ [0, 1)d, the sequence of cubes qk ∈ {q̃k(·)}, chosen such that
t ∈ qk for all k, shrinks nicely to t in the sense of Theorem C.13. Hence,
by this theorem, gn(t) −→n→∞

dμφ

dm (t), for m-a.e. values of t. Therefore, by
Fatou’s lemma and the lower semicontinuity of Λ∗(·),

IX (φ) ≥ lim inf
k→∞

∫

[0,1]d
Λ∗(gk(t)) dt

≥
∫

[0,1]d
lim inf
k→∞

Λ∗(gk(t)) dt

≥
∫

[0,1]d
Λ∗
(dμφ

dm
(t)
)

dt = I(φ) .
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The remaining step is to check that IX (φ) = ∞ whenever μφ is not ab-
solutely continuous with respect to Lebesgue’s measure. Since for every
disjoint collection of cubes {q�}k

�=1,

IX (φ) ≥ sup
λ1,...,λk∈IR

k∑

�=1

[
λ�φ(q�)−m(q�)Λ(λ�)

]

≥
k∑

�=1

|φ(q�)| −max{Λ(−1), Λ(1)} ,

it follows that IX (φ) = ∞ whenever φ is of unbounded variation. Assume
now that φ is of bounded variation, but μφ is not absolutely continuous
with respect to Lebesgue measure. Then there exist a δ > 0 and a sequence
of measurable sets Ak, with m(Ak) −→k→∞ 0 and |μφ(Ak)| ≥ δ. Using the
regularity and boundedness (over [0, 1]d) of both m and μφ, it is enough to
consider Ak open. Hence, without loss of generality, assume that each Ak is
a disjoint union of countably many cubes. Fix k, and let Ak =

⋃
� q�. Then

for every ρ > 0,

IX (φ) ≥ sup
λ�∈IR

∑

�

[
λ�μφ(q�)−m(q�)Λ(λ�)

]

≥ ρ
∑

�

|μφ(q�)| −m(Ak)max{Λ(−ρ), Λ(ρ)}

≥ ρ|μφ(Ak)| −m(Ak)max{Λ(−ρ), Λ(ρ)} .

Hence, considering k →∞, we obtain

IX (φ) ≥ lim sup
k→∞

{ρ|μφ(Ak)| −m(Ak)max{Λ(−ρ), Λ(ρ)}} ≥ ρδ .

Taking ρ →∞ yields IX (φ) = ∞ and completes the proof.

The following corollary is obtained in the same way as Theorem 5.2.3 is
obtained from Theorem 5.1.2, and yields the LDP for sample paths of the
Brownian sheet.

Corollary 5.3.4 Let Zt, t ∈ [0, 1]2 be the Brownian sheet, i.e., the Gaus-
sian process on [0, 1]2 with zero mean and covariance

E(ZtZs) = (s1 ∧ t1)(s2 ∧ t2) .

Let με denote the law of
√

εZt. Then {με} satisfies in C0([0, 1]2) the LDP
with the good rate function

I(φ) =

⎧
⎪⎨

⎪⎩

1
2

∫
[0,1]2

(
dμφ

dm

)2

dm if dμφ

dm ∈ L2(m)

∞ otherwise .
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Exercise 5.3.5 Prove that Theorem 5.3.1 remains valid if {Xi} take values
in IRk, with the rate function now being

I(φ) =

{ ∫
[0,1]d

Λ∗
(

dμφ1
dm , . . . ,

dμφk

dm

)
dm if, for all j,

dμφj

dm ∈ L1([0, 1]d)
∞ otherwise ,

where φ = (φ1, . . . , φk) and φj ∈ C0([0, 1]d) for j = 1, . . . , k.

Exercise 5.3.6 Prove the exponential tightness of {μ̃n} in C0([0, 1]d).
Hint: Define the sets

Kα =

{

φ of bounded variation :
∫

[0,1]d
Λ∗
(

dμφ

dm

)

dm ≤ α

}

.

Show that for every α < ∞, the set Kα is bounded, and equicontinuous. Then
follow the proof of Lemma 5.1.7.

Exercise 5.3.7 Complete the proof of Corollary 5.3.4.
Hint: As in Exercise 5.2.14, use Borell’s inequality [Bore75].

5.4 Performance Analysis of DMPSK
Modulation

Large deviations techniques are useful in the asymptotic performance anal-
ysis of various communication systems. An example of such an analysis for
Differential Multiple Phase Shift Key (DMPSK) modulation, which is ex-
tensively used in digital optical communication systems, is presented here.
For references to the literature on such systems, see the historical notes at
the end of this chapter.

Figure 5.4.1: A DMPSK receiver.
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A typical DMPSK system is depicted in Fig. 5.4.1. Let γk, k = 1, 2, . . .
be a sequence of angles (phases) such that

γk ∈
{
0,

2π

M
,

4π

M
, . . . ,

(M − 1) 2π

M

}
.

The phase difference (γk−1−γk) represents the information to be transmitted
(with M≥2 possible values). Ideally, the modulator transmits the signal

V (t) = cos(ωot + γ[ t
T ]) = cos(γ[ t

T ]) cos ωot− sin(γ[ t
T ]) sin ωot , (5.4.1)

where ωo is the carrier frequency and T is the time duration devoted to
each information symbol. Typically, ωo � 1

T , and, without loss of general-
ity, assume that ωoT (mod 2π) = 0. The (synchronous) DMPSK detection
scheme creates the quadrature signals

Qk =
∫ (k+1)T

kT

V (t)V
(

t− T +
π

2ωo

)

dt

Ik =
∫ (k+1)T

kT

V (t)V (t− T ) dt .

Note that Ik = T cos(γk − γk−1 + ωoT )/2 = T cos(γk − γk−1)/2, and since
ωoT � 1, Qk $ T sin(γk − γk−1 + ωoT )/2 = T sin(γk − γk−1)/2. Therefore,
Δγ̂k, the phase of the complex number Ik + iQk, is a very good estimate of
the phase difference (γk − γk−1).

In the preceding situation, M may be taken arbitrarily large and yet
almost no error is made in the detection scheme. Unfortunately, in practice,
a phase noise always exists. This is modeled by the noisy modulated signal

V (t) = cos(ωot + γ[ t
T ] +

√
εwt) , (5.4.2)

where wt is a standard Brownian motion and the coefficient
√

ε emphasizes
the fact that the modulation noise power is much smaller than that of
the information process. In the presence of modulation phase noise, the
quadrature components Qk and Ik become

Qk =
∫ (k+1)T

kT

V (t)V

(

t− T +
π

2ωo

)

dt

$ 1
2

∫ (k+1)T

kT

cos
(
2ωot + γk + γk−1 +

√
ε(wt + wt−T ) +

π

2

)
dt

+
1
2

∫ (k+1)T

kT

cos
(
γk − γk−1 +

√
ε(wt − wt−T )− π

2

)
dt (5.4.3)
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and

Ik =
∫ (k+1)T

kT

V (t)V (t− T ) dt

=
1
2

∫ (k+1)T

kT

cos (2ωot + γk + γk−1 +
√

ε(wt + wt−T )) dt

+
1
2

∫ (k+1)T

kT

cos (γk − γk−1 +
√

ε(wt − wt−T )) dt .

Since ωoT � 1, the first term in (5.4.3) is negligible, and therefore,

Qk $
1
2

∫ (k+1)T

kT

sin (γk − γk−1 +
√

ε(wt − wt−T )) dt . (5.4.4)

Similarly,

Ik $
1
2

∫ (k+1)T

kT

cos (γk − γk−1 +
√

ε(wt − wt−T )) dt . (5.4.5)

The analysis continues under the assumption of equality in (5.4.4) and
(5.4.5). A discussion of this approximation is left to Exercise 5.4.19.

The decision rule is still based on the phase Δγ̂k of Ik + iQk and is
typically achieved by thresholding the ratio Qk/Ik. Since the probability of
error should not depend on the value of (γk−γk−1), it follows by symmetry
that the decision rule partitions the unit circle eiθ, θ ∈ [−π, π] into the
decision regions

(
− π

M , π
M

]
,
(

π
M , 3π

M

]
, . . . ,

(
−3π

M ,− π
M

]
.

Without loss of generality, assume now that (γk − γk−1) = 0 and k = 1.
Then the error event is the event A ∪B, where

A =
{

ω : Δγ̂1 ∈
[
− π

M
− π,− π

M

]}

=
{

ω : Ik sin
π

M
+ Qk cos

π

M
≤ 0

}

=

{

ω :
∫ 2T

T

sin(
π

M
+
√

ε(wt − wt−T ))dt ≤ 0

}

and

B =
{

ω : Δγ̂1 ∈
( π

M
,

π

M
+ π

)}

=
{

ω : Ik sin
π

M
−Qk cos

π

M
< 0

}

=

{

ω :
∫ 2T

T

sin(
π

M
−
√

ε(wt − wt−T ))dt < 0

}

.
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Therefore, A = {ω : F (
√

εw.) ≤ 0} where F : C0([0, 2T ]) → IR is given by

F (φ) =
∫ 2T

T

sin
(
φt − φt−T +

π

M

)
dt .

Similarly, B = {ω : F (−
√

εw.) < 0}. The asymptotics as ε → 0 of
P ε

e
�
=P(A ∪ B), the probability of error per symbol, are stated in the fol-

lowing theorem.

Theorem 5.4.6

− lim
ε→0

ε log P ε
e = inf

φ∈Φ
Iw(φ)

�
=I0 < ∞ ,

where

Iw(φ) =
{

1
2

∫ 2T

0
φ̇2

t dt, φ ∈ H1([0, 2T ])
∞ otherwise

and
Φ

�
={φ ∈ C0([0, 2T ]) : F (φ) ≤ 0} .

Proof: Let φ̂t = −πt/MT . Since F (φ̂) = 0, it follows that

I0 ≤ Iw(φ̂) =
π2

M2T
< ∞ . (5.4.7)

Now, note that

P(F (
√

εw.) ≤ 0) ≤ P ε
e ≤ P(F (

√
εw.) ≤ 0) + P(F (−

√
εw.) < 0)

≤ 2 P(F (
√

εw.) ≤ 0) ,

where the last inequality is due to the symmetry around zero of the Brow-
nian motion. Therefore,

lim
ε→0

|ε log P ε
e − ε log νε(Φ)| = 0 ,

where νε is the law of
√

εw. on [0, 2T ]. Since F (·) is continuous with respect
to convergence in the supremum norm, the set Φ is a closed set containing
the open subset {φ : F (φ) < 0}. Hence, by the version of Schilder’s theorem
described in Exercise 5.2.8,

− inf
{φ : F (φ)<0}

Iw(φ) ≤ lim inf
ε→0

ε log P ε
e (5.4.8)

≤ lim sup
ε→0

ε log P ε
e ≤ − inf

φ∈Φ
Iw(φ) = −I0 .

Now fix φ ∈ H1([0, 2T ]) and let

ψt = −(t− T ) cos
(
φt − φt−T +

π

M

)
1[T,2T ](t) .
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Note that ψ ∈ H1([0, 2T ]) and

d

dx
F (φ + xψ)|x=0 = −

∫ 2T

T

(t− T ) cos2
(
φt − φt−T +

π

M

)
dt ≤ 0 ,

with equality only if for some integer m, φt = φt−T − π/M + π/2 + πm,
for all t ∈ [T, 2T ]. In particular, equality implies that F (φ) 
= 0. Thus,
if F (φ) = 0, it follows that F (φ + ηψ) < 0 for all η > 0 small enough.
Since Iw(φ + ηψ) → Iw(φ) as η → 0, the lower and upper bounds in (5.4.8)
coincide and the proof is complete.

Unfortunately, an exact analytic evaluation of I0 seems impossible to
obtain. On the other hand, there exists a path that minimizes the good
rate function Iw(·) over the closed set Φ. Whereas a formal study of this
minimization problem is deferred to Exercise 5.4.18, bounds on I0 and in-
formation on its limit as M → ∞ are presented in the following theorem.

Theorem 5.4.9
π2

2M2T
≤ I0 ≤

π2

M2T
. (5.4.10)

Moreover,

lim
M→∞

TM2I0 =
3
4

π2 . (5.4.11)

Proof: The upper bound on I0 is merely (5.4.7), and it implies that

I0 = inf
φ∈Φ̂

Iw(φ) ,

where

Φ̂ = Φ ∩
{

φ : Iw(φ) ≤ π2

M2T

}

.

Fix φ ∈ Φ̂ ⊂ H1([0, 2T ]). Then for t ∈ [T, 2T ], it follows from the Cauchy–
Schwartz inequality that

Iw(φ) =
1
2

∫ 2T

0

φ̇2
s ds ≥ 1

2

∫ t

t−T

φ̇2
s ds ≥ 1

2T

(∫ t

t−T

φ̇s ds

)2

=
1

2T
|φt − φt−T |2 . (5.4.12)

To complete the proof of (5.4.10), note that F (φ) ≤ 0 implies that

τ
�
= inf{t ≥ T : |φt − φt−T | ≥

π

M
} ≤ 2T ,

and apply the inequality (5.4.12) for t = τ .
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Turning now to the proof of (5.4.11), observe that for all φ ∈ Φ̂,

√
2π

M
≥
√

2TIw(φ) ≥ sup
t∈[T,2T ]

|φt − φt−T | .

Since | sin x− x| ≤ |x|3/6, it follows that

sup
t∈[T,2T ]

∣
∣
∣ sin

( π

M
+ φt − φt−T

)
−
( π

M
+ φt − φt−T

)∣
∣
∣ ≤

(1 +
√

2)3π3

6M3
.

Hence,

∫ 2T

T

(
φt − φt−T +

π

M

)
dt− (1 +

√
2)3π3T

6M3
≤ F (φ)

≤
∫ 2T

T

(
φt − φt−T +

π

M

)
dt +

(1 +
√

2)3π3T

6M3
. (5.4.13)

Let

Φ̃(α)=

{

φ ∈ C0([0, 2T ]) :
∫ 2T

T

(φt − φt−T + α) dt ≤ 0, Iw(φ) ≤ π2

M2T

}

;

then (5.4.13) implies that

Φ̃

(
π

M
+

(1 +
√

2)3π3

6M3

)

⊂ Φ̂ ⊂ Φ̃

(
π

M
− (1 +

√
2)3π3

6M3

)

.

Consequently,

Ĩ

(
π

M
− (1 +

√
2)3π3

6M3

)

≤ I0 ≤ Ĩ

(
π

M
+

(1 +
√

2)3π3

6M3

)

, (5.4.14)

where
Ĩ(α)

�
= inf

φ∈Φ̃(α)
Iw(φ) .

Therefore, (5.4.11) follows from (5.4.14) and Lemma 5.4.15.

Lemma 5.4.15 If |α| ≤ 2π/
√

3M , then

Ĩ(α) =
3 α2

4 T
.
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Figure 5.4.2: The function ψs .

Proof: Let ψs = min{2T, T + s} − max{T, s} (see Fig. 5.4.2), and note
that for any φ ∈ H1([0, 2T ]),

∫ 2T

T

(φt − φt−T ) dt =
∫ 2T

T

∫ t

t−T

φ̇s ds dt =
∫ 2T

0

φ̇sψs ds .

Therefore,

Φ̃(α) = {φ ∈ H1([0, 2T ]) :
∫ 2T

0

φ̇sψsds ≤ −αT,
1
2

∫ 2T

0

φ̇2
sds ≤ π2

M2T
} .

Hence, for φ ∈ Φ̃(α),

(∫ 2T

0

φ̇2
s ds

)(∫ 2T

0

ψ2
s ds

)

≥
(∫ 2T

0

φ̇sψs ds

)2

≥ α2T 2 ,

implying that

Iw(φ) ≥ α2T 2

2
∫ 2T

0
ψ2

s ds
=

α2T 2

4
∫ T

0
s2ds

=
3α2

4T
. (5.4.16)

Thus,

Ĩ(α) = inf
φ∈Φ̃(α)

Iw(φ) ≥ 3α2

4T
. (5.4.17)

Observe now that the inequality (5.4.16) holds with equality if φ̇t = λψt,
where λ = −αT/(

∫ 2T

0
ψ2

s ds). This results in φ ∈ Φ̃(α), provided that
3α2/4T ≤ π2/M2T . Hence, for these values of α, (5.4.17) also holds with
equality and the proof of the lemma is complete.
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Exercise 5.4.18 Write down formally the Euler–Lagrange equations that cor-
respond to the minimization of Iw(·) over Φ and those corresponding to the min-

imization over {φ ∈ H1([0, 2T ]) :
∫ 2T

0
φ̇sψsds ≤ −αT}. Show that λ

∫ t

0
ψsds

is the solution to the Euler–Lagrange equations for the latter (where ψs and λ
are as defined in the proof of Lemma 5.4.15).

Exercise 5.4.19 Let k be fixed. Repeat the analysis leading to Theorem 5.4.6
without omitting the first term in (5.4.3) and in the corresponding expression
for Ik. Show that Theorem 5.4.6 continues to hold true when ωo →∞.
Hint: Take ωo = 2πm/T,m = 1, 2, . . . and show that Qk of (5.4.3) are
exponentially good approximations (in m) of the Qk of (5.4.4).

5.5 Large Exceedances in IRd

In some applications related to DNA sequence matching, queuing networks
analysis, and abrupt change detection in dynamical systems, the following
problem is relevant: Let Xi, i = 1, 2, . . . , be i.i.d. IRd-valued random vari-
ables, with zero mean and logarithmic moment generating function Λ(λ),
which is finite. Let b 
= 0 be a given drift vector in IRd and define

Zn =
n∑

i=1

(Xi − b) .

The increments Zn − Zm of the random walk are of the form Zn − Zm ∼
−(n − m)b + ξn−m, where ξn−m has zero mean and covariance of order
(n −m). Thus, with n −m large, it becomes unlikely that Zn − Zm is far
away from −(n−m)b. Interest then lies in the probability of the rare events
{Zn−Zm ∈ A/ε}, for small ε, where A is a closed set that does not intersect
the typical ray {−αb}α≥0.

Some specific applications where the preceding problem occurs are as
follows. (For references, see the historical notes at the end of this chapter.)
First, the false alarm rate in the sequential detection of change points by
the commonly used generalized likelihood ratio test (also known as the
CUSUM method) corresponds to the location of the first such unlikely
event, where Xi−b is the log-likelihood score for the ith variable, A = [1,∞)
and 1/ε is the log-likelihood decision threshold. The same question also
appears in the analysis of long DNA sequences where Xi − b are letter
scores measuring properties of biological importance. A third application
involves general one-server queues, where the events {Zn − Zm ∈ A/ε} are
related to unusually long waiting times for completion of service. Here, too,
A = [1,∞), while Xi − b is the net difference between the service time and
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inter-arrival time for the ith customer, and the condition b > 0 ensures that
the queue is stable.

To be able to handle this question, it is helpful to rescale variables. Thus,
define the rescaled time t = εn, and the rescaled variables

Y ε
t = εZ[ t

ε ] = ε

[ t
ε ]∑

i=1

(Xi − b), t ∈ [0,∞) .

The rare events of interest correspond to events of the form Y ε
t − Y ε

τ ∈ A.
To formalize the results, define the following random times:

Tε
�
= inf{t : ∃s ∈ [0, t) such that Y ε

t − Y ε
s ∈ A} ,

τε
�
=sup{s ∈ [0, Tε) : Y ε

Tε
− Y ε

s ∈ A} − ε , Lε
�
=Tε − τε . (5.5.1)

Figure 5.5.1: Typical A, Y ε
t , Tε, τε.

The main results of this section are that, under appropriate conditions,
as ε → 0, both ε log Tε and Lε converge in probability. More notations
are now introduced in order to formalize the conditions under which such
convergence takes place. First, let It : L∞([0, t]) → [0,∞] be the rate
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functions associated with the trajectories Y ε
. , namely,

It(φ)
�
=
{ ∫ t

0
Λ∗(φ̇s + b) ds, if φ ∈ ACt, φ0 = 0

∞ otherwise ,

where ACt is the space of absolutely continuous functions φ : [0, t] → IRd.
(See Exercise 5.1.22.) The cost associated with a termination point x ∈ IRd

at time t ∈ (0,∞) is given by

V (x, t)
�
= inf

{φ∈ACt: φ0=0,φt=x}
It(φ) . (5.5.2)

The following lemma motivates the preceding definition of V (x, t).

Lemma 5.5.3 For all x ∈ IRd, t > 0,

V (x, t) = sup
λ∈IRd

{〈λ, x〉+ t[〈λ, b〉 − Λ(λ)]} = t Λ∗
(x

t
+ b

)
, (5.5.4)

and V (x, t) = It( s
t x). Moreover, with V (x, 0)�=∞ for x 
= 0 and V (0, 0) = 0,

V (x, t) is a convex rate function on IRd × [0,∞).

Proof: Recall that Λ∗(·) is convex. Hence, for all t > 0 and any φ ∈ ACt

with φ0 = 0, by Jensen’s inequality,

It(φ) = t

∫ t

0

Λ∗(φ̇s + b)
ds

t
≥ tΛ∗

(∫ t

0

(φ̇s + b)
ds

t

)

= tΛ∗
(

φt − φ0

t
+ b

)

,

with equality for φs = sx/t. Thus, (5.5.4) follows by (5.5.2). Since Λ∗(·) is
nonnegative, so is V (x, t). By the first equality in (5.5.4), which also holds
for t = 0, V (x, t), being the supremum of convex, continuous functions is
convex and lower semicontinuous on IRd × [0,∞).

The quasi-potential associated with any set Γ ⊂ IRd is defined as

VΓ
�
= inf

x∈Γ,t>0
V (x, t) = inf

x∈Γ,t>0
tΛ∗

(x

t
+ b

)
.

The following assumption is made throughout about the set A.

Assumption 5.5.5 A is a closed, convex set and
(A-1) VA = VAo ∈ (0,∞) (where Ao denotes the interior of A).
(A-2) There is a unique pair x ∈ A, t ∈ (0,∞) such that VA = V (x, t).
Moreover, the straight line φ∗

s
�
=(s/ t)x is the unique path for which the value

of V (x, t) is achieved.
(A-3)

lim
r→∞

VA∩{x:|x|>r} > 2VA .
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The need for this assumption is evident in the statement and proof of
the following theorem, which is the main result of this section.

Theorem 5.5.6 Let Assumption 5.5.5 hold. Then

VA = lim
ε→0

ε log Tε in probability (5.5.7)

and
t = lim

ε→0
Lε in probability . (5.5.8)

Let Ŷ ε
s

�
=Y ε

τε+s − Y ε
τε

. Then

lim
ε→0

sup
0≤s≤t

|Ŷ ε
s − φ∗

s| = 0 in probability . (5.5.9)

Finally, with pε = P (Tε ≤ θε) and any θε → ∞ such that ε log θε → 0,
the random variables θ−1

ε pεTε converge in distribution to an Exponential(1)
random variable.

Figure 5.5.2: Minimizing path for A.

Proof: The following properties of the cost function, whose proofs are de-
ferred to the end of the section, are needed.

Lemma 5.5.10
lim

r→∞
inf

x∈A,t≥r
V (x, t) > 2VA . (5.5.11)

For all T > t,

lim
δ→0

inf
x∈A−δ,t∈[0,T ]

V (x, t) = inf
x∈Ao,t∈[0,T ]

V (x, t) = VA , (5.5.12)

where
A−δ�={x : inf

y/∈A
|x− y| > δ} . (5.5.13)

For all δ > 0,
inf

x∈A, |t−t|≥δ
V (x, t) > VA . (5.5.14)
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The main difficulty in proving Theorem 5.5.6 is that it involves events on an
infinite time scale; this excludes directly using the large deviations bounds
of Section 5.1. The proof is therefore based on decoupling the infinite time
horizon to finite time intervals that are weakly coupled. In these intervals,
we use the following short time estimates, which are a specialization of
Mogulskii’s theorem (Theorem 5.1.2), and whose proof is deferred to the
end of this section.

Lemma 5.5.15 For every fixed T ∈ (t,∞),

lim
ε→0

ε log P(Tε ≤ T ) = −VA . (5.5.16)

Moreover, for all δ > 0,

lim sup
ε→0

ε log P(|Lε − t| ≥ δ and Tε ≤ T ) < −VA (5.5.17)

and

lim sup
ε→0

ε log P( sup
0≤s≤t

|Ŷ ε
s − φ∗

s| ≥ δ and Tε ≤ T ) < −VA . (5.5.18)

Remark: The preceding estimates hold when T is replaced by any de-
terministic function of ε whose range is a bounded subset of (t,∞) that is
bounded away from t.

Equipped with Lemma 5.5.15, the large time estimates may be handled.
The first step in this direction is the following upper bound on Tε.

Lemma 5.5.19 For any δ > 0,

lim
ε→0

P(Tε > e(VA+δ)/ε) = 0 .

Proof: Let Δ = [(t + 2)/ε]ε and split the time interval [0, e(VA+δ)/ε] into
disjoint intervals of length Δ each. Let Nε be the (integer part of the)
number of such intervals. Observe that

P(Tε > e(VA+δ)/ε) ≤ P(Y ε
kΔ+t − Y ε

kΔ+s /∈ A ,

0 ≤ s ≤ t ≤ Δ , k = 0, . . . , Nε − 1) .

The preceding events are independent for different values of k as they cor-
respond to disjoint segments of the original random walk (Zn). Moreover,
they are of equal probability because the joint law of the increments of Y ε

.

is invariant under any shift of the form nε with n integer. Hence,

P(Tε > e(VA+δ)/ε) ≤ [1− P(Tε ≤ Δ)]Nε .
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Note that Δ ∈ [ t + 1, t + 2] for all ε < 1. Hence, for some 0 < c < ∞
(independent of ε) and all ε < 1,

Nε ≥ ce(VA+δ)/ε ,

while for all ε > 0 small enough,

P(Tε ≤ Δ) ≥ P(Tε ≤ t + 1) ≥ e−(VA+δ/2)/ε ,

where the second inequality follows from (5.5.16). Combining all these
bounds yields

lim sup
ε→0

P(Tε > e(VA+δ)/ε) ≤ lim sup
ε→0

(1− e−(VA+δ/2)/ε)ce(VA+δ)/ε

= lim sup
ε→0

e−ceδ/2ε
= 0 .

Lemma 5.5.19 is not enough yet, for the upper bounds on Tε are un-
bounded (as ε → 0). The following lemma allows for restricting attention
to increments within finite time lags.

Lemma 5.5.20 There exists a constant C < ∞ such that

lim
ε→0

P(Lε ≥ C) = 0 .

Proof: Observe that the process Y ε
. is constant over intervals of size ε,

and Tε and τε are always the starting points of such intervals. Let Kε
�
=[

ε−1e(VA+δ)/ε
]

denote the number of such points in (0, e(VA+δ)/ε], and define

Qε,δ
�
=

Kε∑

k,�=0,k−�≥C/ε

P(Y ε
kε − Y ε

�ε ∈ A) .

It suffices to show that limδ→0 limε→0 Qε,δ = 0 for large enough constant
C, for then the proof of the lemma is completed by applying the union of
events bound together with Lemma 5.5.19. To this end, the invariance of
the law of increments of Y ε

. to shifts of nε and the identity Y ε
nε = εZn for

all integer n yield the following upper bound on Qε,δ.

Qε,δ ≤ Kε

Kε∑

n≥C/ε

P(Y ε
nε ∈ A) ≤ ε−2e2(VA+δ)/ε max

n≥C/ε
P(εZn ∈ A) . (5.5.21)

Let Ŝn denote the empirical mean of X1, . . . , Xn. Observe that

{εZn ∈ A} ≡ {Ŝn ∈ Ã} ,
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where Ã�
={z : εn(z − b) ∈ A} is a convex, closed set (because A is). Hence,

by the min–max theorem (see Exercise 2.2.38 for details),

ε log P(εZn ∈ A) = ε log P(Ŝn ∈ Ã) ≤ −nε inf
z∈Ã

Λ∗(z)

= −nε inf
x∈A

Λ∗(
x

nε
+ b) = − inf

x∈A
V (x, nε) .

Combining this inequality and (5.5.21) yields, for all C, δ, ε > 0,

Qε,δ ≤ ε−2e−[infx∈A,t≥C V (x,t)−2(VA+δ)]/ε .

By (5.5.11), C can be chosen large enough so that for all δ small enough
and all ε small enough,

inf
x∈A,t≥C

V (x, t) > 2VA + 3δ − 2ε log ε ,

yielding Qε,δ ≤ e−δ/ε.

Returning now to the proof of the theorem, let C be the constant from
Lemma 5.5.20 and define Cε

�
=ε [1 + C/ε] ≥ C. For any integer n, define the

decoupled random times

Tε,n
�
= inf{t : Y ε

t − Y ε
s ∈ A for some t > s ≥ 2nCε[t/(2nCε)]} .

Lemma 5.5.22

lim
n→∞

lim
ε→0

P(Tε,n 
= Tε) = 0 .

Proof: Divide [Cε,∞) into the disjoint intervals I�
�
=[(2�−1)Cε, (2�+1)Cε),

� = 1, . . .. Define the events

J�
�
={Y ε

t − Y ε
τ ∈ A for some τ ≤ t, t, τ ∈ I�} ,

and the stopping time

N = inf{� ≥ 1 : J� occurs } .

By the translation invariance, with respect to n, of Zn+m − Zn and the
fact that Cε is an integer multiple of ε, the events J� are independent and
equally likely. Let p = P(J�). Then P(N = �) = p(1 − p)�−1 for � ∈ ZZ+.
Hence,

P({Tε < Tε,n} ∩ {Lε < Cε}) ≤ P(
∞⋃

k=1

{N = kn})

=
∞∑

k=1

p(1− p)kn−1 =
p(1− p)n−1

1− (1− p)n
≤ 1

n
.
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Since by definition Tε ≤ Tε,n, and Cε ≥ C, the proof is completed by
applying the union of events bound and using Lemma 5.5.20.

Returning to the proof of the theorem, it is enough to consider the rare
events of interest with respect to the decoupled times for n large enough
(and finite). This procedure results with a sequence of i.i.d. random vari-
ables corresponding to disjoint segments of Y ε

. of length 2nCε each. The
short time estimates of Lemma 5.5.15 can then be applied. In particular,
with Nε

�
=
[
(2nCε)−1e(VA−δ)/ε

]
+1 denoting the number of such segments in

[0, e(VA−δ)/ε], the following lower bound on Tε,n is obtained

P(Tε,n < e(VA−δ)/ε) ≤
Nε−1∑

k=0

P
([ Tε,n

2nCε

]

= k
)

≤ NεP(Tε,n < 2nCε) = NεP(Tε < 2nCε)

≤
( e(VA−δ)/ε

2nC
+ 1

)
P(Tε ≤ 2nCε) .

Therefore, with n large enough for 2nC > t, because limε→0 Cε = C, the
short time estimate (5.5.16) implies that

lim
ε→0

P(Tε,n < e(VA−δ)/ε) ≤ lim
ε→0

e(VA−δ)/ε

2nC
e−(VA−δ/2)/ε = 0 .

Hence, for all δ > 0,

lim
ε→0

P(Tε < e(VA−δ)/ε) = lim
n→∞

lim
ε→0

P(Tε,n < e(VA−δ)/ε) = 0 ,

and (5.5.7) results in view of the upper bound of Lemma 5.5.19. The proofs
of (5.5.8) and (5.5.9) as consequences of the short time estimates of Lemma
5.5.15 are similar and thus left to Exercise 5.5.29.

Suppose θε/ε are integers and θε →∞. Let

Tε,θε

�
= inf{t : Y ε

t − Y ε
s ∈ A for some t > s ≥ θε[t/θε]} .

By the same argument as in Lemma 5.5.22, as ε → 0,

P ({Tε,θε < Tε} ∩ {Lε < Cε}) ≤ �θε/(2Cε)�−1 → 0 .

Hence, by Lemma 5.5.20, also P (Tε,θε 
= Tε) → 0. Fix y > 0 and let
mε = �y/pε� and yε = pεmε. The event {θ−1

ε pεTε,θε > yε} is merely the
intersection of mε independent events, each of which occurs with probability
(1− pε). Consequently,

P (θ−1
ε pεTε,θε > yε) = (1− pε)mε .
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Since ε log θε → 0, it follows from (5.5.7) that pε → 0 and yε → y. Therefore,
(1− pε)mε → e−y and the Exponential limit law of θ−1

ε pεTε follows.

Since pε is not affected by replacing θε with ε�θε/ε�, the convergence in
law extends to possibly non-integer θε/ε (by the continuity of the Exponen-
tial law).

Of particular interest is the case where Xi are Normal random vectors
with uncorrelated components and unit variance. Then V (x, t) = |x+bt|2/2t
and is obtained uniquely by a straight line. The infimum (in t) of V (x, t)
is obtained uniquely at t = |x|/|b|, yielding V{x} = |x||b| + 〈x, b〉. V{x} is
an homogeneous, continuous function, that is nonconstant on any ray other
than {−αb}α≥0. Therefore, the Assumptions (A-1)–(A-3) are satisfied, for
example, when A is a closed, convex set of non-empty interior which, for
η > 0 small enough, excludes the cone

Cη
�
=
{

x : 1 +
〈x, b〉
|x ‖ b| < η

}

.

Due to the exponential equivalence of the random walk and the (scaled)
Brownian motion, the following is proved exactly as Theorem 5.5.6. (See
Exercise 5.5.32 for an outline of the derivation.)

Theorem 5.5.23 Suppose A is a closed convex set of non-empty interior
with Cη ⊂ Ac for η > 0 small enough. Define

Y ε
t = −bt +

√
εwt , (5.5.24)

where w. is a d-dimensional Brownian motion. Then all the results of The-
orem 5.5.6 hold true.

Remark: In the definition (5.5.1) of τε, the −ε term compensates for
discretization effects. It is omitted when considering the continuous time
process Y ε of (5.5.24).

The proof of the auxiliary lemmas used before concludes this section.

Proof of Lemma 5.5.10: To establish (5.5.11), observe that ∇Λ(0) =
E(X1) = 0, so it follows by part (b) of Lemma 2.3.9 that Λ∗(z) > 0 for
z 
= 0. Moreover, Λ∗(·) is a good rate function, so also

a
�
= inf

|z−b|≤|b|/2
Λ∗(z) > 0 .

Hence, by (5.5.4), for all r > 0,

inf
|x|≤r

inf
t≥2r/|b|

V (x, t) ≥ inf
t≥2r/|b|

inf
|x|≤ |b|

2 t

tΛ∗
(x

t
+ b

)
≥ 2ra

|b| ,
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implying that

lim
r→∞

inf
x∈A,t≥r

V (x, t) ≥ lim
r→∞

min{ inf
x∈A,|x|>r

V{x} ,
2ra

|b| } > 2VA ,

where the last inequality follows by Assumption (A-3).

Similarly, there exists an r < ∞ such that

VA = VAo = inf
x∈Ao,|x|≤r,t≤r

V (x, t), (5.5.25)

and
inf

x∈A,t≥r
V (x, t) > VA . (5.5.26)

Consider an arbitrary sequence (xn, tn) such that xn ∈ A, |xn| ≤ r, tn ∈
[0, r] and V (xn, tn) → VA. Such a sequence has at least one limit point,
e.g., (x, t), and by the lower semicontinuity of V (·, ·),

VA = lim
n→∞

V (xn, tn) ≥ V (x, t) .

However, x ∈ A and t < ∞, implying by Assumption (A-2) that x = x,
t = t (and for all T > t, eventually tn ∈ [0, T ]). When combined with
(5.5.25) (or (5.5.26)), it yields (5.5.12) (or (5.5.14), respectively). Indeed,
Ao may be replaced by A−δ, δ → 0, since for any x ∈ Ao, also x ∈ A−δ for
all δ small enough.

Proof of Lemma 5.5.15: Let Ỹ ε
. denote the polygonal approximation of

Y ε
. , namely,

Ỹ ε
t
�
=Y ε

t + (t− [t/ε]ε)(X[t/ε]+1 − b) ,

and define

T̃ε
�
= inf{t : ∃s ∈ [0, t) such that Ỹ ε

t − Ỹ ε
s ∈ A} .

Recall that for any T ∈ (0,∞), Y ε
. satisfy the LDP on L∞([0, T ]) with rate

function IT (·). (See Exercise 5.1.22.) Moreover, the continuous processes
Ỹ ε

. , being exponentially equivalent to Y ε
. (see Lemma 5.1.4 and the proof

of Theorem 5.1.19), satisfy the same LDP on C0([0, T ]). The proof is based
on relating the events of interest with events determined by Ỹ ε and then
applying the large deviations bounds for Ỹ ε.

Starting with upper bounding Tε, note that T̃ε ≤ Tε with probability
one, and hence,

P(Tε ≤ T ) ≤ P(T̃ε ≤ T ) = P(Ỹ ε
. ∈ Ψ) ,
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where

Ψ
�
={ψ ∈ C0([0, T ]) : ψt − ψτ ∈ A for some τ ≤ t ∈ [0, T ]}. (5.5.27)

As for lower bounding Tε define for all δ > 0

T̃−δ
ε

�
= inf{t : ∃s ∈ [0, t) such that Ỹ ε

t − Ỹ ε
s ∈ A−δ} ,

where A−δ is defined in (5.5.13), and define the sets Ψ−δ in analogy with
(5.5.27). Hence,

P(Ỹ ε
. ∈ Ψ−δ) = P(T̃−δ

ε ≤ T ) ≤ P(Tε ≤ T ) + P(‖ Ỹ ε − Y ε ‖≥ δ) ,

where ‖ · ‖ denotes throughout the supremum norm over [0, T ].

As for the proof of (5.5.17) and (5.5.18), note that

P(|Lε − t| ≥ δ and Tε ≤ T ) ≤ P(Ỹ ε
. ∈ Φδ) ,

where

Φδ
�
=
{
ψ ∈ C0([0, T ]) : ψt − ψτ ∈ A for some τ ≤ t ∈ [0, T ] ,

such that t− τ ∈ [0, t− δ] ∪ [t + δ, T ]
}

,

and
P( sup

0≤s≤t

|Ŷ ε
s − φ∗

s| ≥ δ and Tε ≤ T ) ≤ P(Ỹ ε
. ∈ Φ∗

δ) ,

where

Φ∗
δ
�
=
{
ψ ∈ C0([0, T + t]) : ψt − ψτ ∈ A, sup

0≤s≤t

|ψs+τ − ψτ − φ∗
s| ≥ δ

for some τ ≤ t ∈ [0, T ]
}

.

By these probability bounds, the fact that Ỹ ε
. satisfy the LDP in C0([0, T ])

with rate IT (·), and the exponential equivalence of the processes Y ε
. and

Ỹ ε
. , (5.5.16)–(5.5.18) are obtained as a consequence of the following lemma,

whose proof, being elementary, is omitted.

Lemma 5.5.28 The set Ψ is closed, and so are Φδ and Φ∗
δ for all δ > 0,

while Ψ−δ are open. Moreover,

VA = inf
ψ∈Ψ

IT (ψ) = lim
δ→0

inf
ψ∈Ψ−δ

IT (ψ) ,

while for all δ > 0,
inf

ψ∈Φδ

IT (ψ) > VA

and
inf

ψ∈Φ∗
δ

IT+t(ψ) > VA .
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Exercise 5.5.29 Define

τε,n
�
=sup{s : s ∈ [0, Tε,n) Y ε

Tε,n
− Y ε

s ∈ A} − ε .

Observe that Tε,n ≥ Tε, and if Tε,n = Tε, then also τε,n = τε. Complete the
derivation of (5.5.8) and (5.5.9) according to the following outline.
(a) Check that for all n and all ε, the law governing the random segment
[τε,n , Tε,n] is the same as the law of [τε , Tε] conditioned on Tε ≤ 2nCε.
(b) Check that the estimates of Lemma 5.5.15 imply that for all δ > 0 and any
n large enough,

lim
ε→0

P(|Lε − t| ≥ δ|Tε ≤ 2nCε) = 0

and
lim
ε→0

P( sup
0≤s≤t

|Ŷ ε
s − φ∗

s| ≥ δ|Tε ≤ 2nCε) = 0 .

(c) Combine the preceding with Lemma 5.5.22 to deduce (5.5.8) and (5.5.9).

Exercise 5.5.30 Let Xi and I(·) = Λ∗(·) be as in Exercise 5.1.27. Prove the
analog of Theorem 5.5.6 for this setup.

Exercise 5.5.31 Prove that Theorem 5.5.6 still holds true if A is not convex,
provided that Assumption (A-3) is replaced with

lim
r→∞

Vco(A)∩{x:|x|>r} > 2VA ,

where co(A) denotes the closed convex hull of A.
Hint: The convexity of A was only used in the proof of Lemma 5.5.20 when
applying the min–max theorem. Check that under the preceding condition, you
can still establish this lemma with A replaced by co(A) throughout the proof.

Exercise 5.5.32 The following outline leads to Theorem 5.5.23.
(a) Verify that if A is a convex, closed set of non-empty interior with Cη ⊂ Ac

for some η > 0, then Assumptions (A-1)–(A-3) hold for Λ∗(x) = |x|2/2.
(b) Observe that the analytic Lemmas 5.5.3, 5.5.10, and 5.5.28 are unchanged.
Combine them with the LDP derived in Theorem 5.2.3 (and Exercise 5.2.8) for√

εwt to prove the short time estimates of Lemma 5.5.15.
(c) Observe that Tε for the Brownian motion with drift is almost surely bounded
above by the stopping time Tε, associated with the random walk Zn generated
by the standard Normal variables Xi

�
=ε−1/2(wiε− w(i−1)ε). Deduce that the

statement of Lemma 5.5.19 is valid for the Brownian motion with drift.
(d) Combine a union of events bound with the short time estimate of Lemma
5.2.1 to prove that for any η > 0 and any M < ∞,

lim
ε→0

P( sup
0≤t≤eM/ε

|Y ε
t − Y ε

[ t
ε ]ε| > η) = 0 .
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(e) Use part (d) of this exercise to prove Lemma 5.5.20 for the Brownian motion
with drift.
Hint: Observe that Y ε

[t/ε]ε correspond to the (discrete time) random walk

introduced in part (c) and apply Lemma 5.5.20 for this random walk and for
the η closed blowups of A (with η > 0 sufficiently small so that indeed this
lemma holds).
(f) Check that Lemma 5.5.22 holds true with a minor modification of τε,n

paralleling the remark below Theorem 5.5.23. (You may let Cε = C, since
there are now no discretization effects.) Conclude by proving that (5.5.7)–
(5.5.9) hold.

5.6 The Freidlin–Wentzell Theory

The results of Section 5.2 are extended here to the case of strong solutions of
stochastic differential equations. Note that these, in general, do not possess
independent increments. However, some underlying independence exists in
the process via the Brownian motion, which generates the diffusion. This
is exploited in this section, where large deviations principles are derived by
applying various contraction principles.

First consider the following relatively simple situation. Let {xε
t} be the

diffusion process that is the unique solution of the stochastic differential
equation

dxε
t = b(xε

t)dt +
√

εdwt 0 ≤ t ≤ 1, xε
0 = 0 , (5.6.1)

where b : IR → IR is a uniformly Lipschitz continuous function (namely,
|b(x) − b(y)| ≤ B|x − y|). The existence and uniqueness of the strong
solution {xε

t} of (5.6.1) is standard. (See Theorem E.7.) Let μ̃ε denote the
probability measure induced by {xε

t} on C0([0, 1]). Then μ̃ε = με ◦ F−1,
where με is the measure induced by {

√
εwt}, and the deterministic map

F : C0([0, 1]) → C0([0, 1]) is defined by f = F (g), where f is the unique
continuous solution of

f(t) =
∫ t

0

b(f(s))ds + g(t) , t ∈ [0, 1] . (5.6.2)

The LDP associated with xε
t is therefore a direct application of the contrac-

tion principle with respect to the map F .

Theorem 5.6.3 {xε
t} satisfies the LDP in C0([0, 1]) with the good rate

function

I(f)
�
=
{

1
2

∫ 1

0
|ḟ(t)− b(f(t))|2dt , f ∈ H1

∞ , f 
∈ H1 .
(5.6.4)



5.6 The Freidlin–Wentzell Theory 213

Proof: Theorem 4.2.1 is applicable here, as F is continuous on C0([0, 1]).
Indeed, if f1 = F (g1), f2 = F (g2), then by (5.6.2),

f1(t)− f2(t) =
∫ t

0

[b(f1(s))− b(f2(s))]ds + g1(t)− g2(t) .

Define e(t)�=|f1(t)− f2(t)| and consider any two functions g1, g2 ∈ C0([0, 1])
such that ‖ g1 − g2 ‖≤ δ. Then

e(t) ≤
∫ t

0

|b(f1(s))− b(f2(s))|ds + |g1(t)− g2(t)| ≤ B

∫ t

0

e(s)ds + δ ,

and by Gronwall’s lemma (Lemma E.6), it follows that e(t) ≤ δeBt. Thus,
‖ f1 − f2 ‖≤ δeB and the continuity of F is established. Combining
Schilder’s theorem (Theorem 5.2.3) and the contraction principle (Theo-
rem 4.2.1), it follows that μ̃ε satisfies, in C0([0, 1]), an LDP with the good
rate function

I(f) = inf
{g∈H1:f=F (g)}

1
2

∫ 1

0

ġ2(t) dt .

In order to identify I(·) with (5.6.4), observe that F is an injection, and
further that g ∈ H1 implies that f = F (g) is differentiable a.e. with

ḟ(t) = b(f(t)) + ġ(t) , f(0) = 0 .

Thus,

|ḟ(t)| ≤ B

∫ t

0

|ḟ(s)|ds + |b(0)|+ |ġ(t)| ,

and consequently, by Gronwall’s lemma (Lemma E.6), g ∈ H1 implies that
f = F (g) ∈ H1 as well.

Now, let {xε
t} be the diffusion process that is the unique solution of the

stochastic differential equation

dxε
t = b(xε

t)dt +
√

εσ(xε
t)dwt, 0 ≤ t ≤ 1, xε

0 = x , (5.6.5)

where x ∈ IRd is deterministic, b : IRd → IRd is a uniformly Lipschitz
continuous function, all the elements of the diffusion matrix σ are bounded,
uniformly Lipschitz continuous functions, and w. is a standard Brownian
motion in IRd. The existence and uniqueness of the strong solution {xε

t} of
(5.6.5) is standard. (See Theorem E.7.)

The map defined by the process xε
. on C([0, 1]) is measurable but need

not be continuous, and thus the proof of Theorem 5.6.3 does not apply
directly. Indeed, this noncontinuity is strikingly demonstrated by the fact
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that the solution to (5.6.5), when wt is replaced by its polygonal approxi-
mation, differs in the limit from xε by a nonzero (Wong–Zakai) correction
term. On the other hand, this correction term is of the order of ε, so it is
not expected to influence the large deviations results. Such an argument
leads to the guess that the appropriate rate function for (5.6.5) is

Ix(f) = inf
{g∈H1:f(t)=x+

∫ t

0
b(f(s))ds+

∫ t

0
σ(f(s))ġ(s)ds}

1
2

∫ 1

0

|ġ(t)|2dt , (5.6.6)

where the infimum over an empty set is taken as +∞, and | · | denotes both
the usual Euclidean norm on IRd and the corresponding operator norm of
matrices. The spaces H1, and L2([0, 1]) for IRd-valued functions are defined
using this norm.

Theorem 5.6.7 If all the entries of b and σ are bounded, uniformly Lip-
schitz continuous functions, then {xε

t}, the solution of (5.6.5), satisfies the
LDP in C([0, 1]) with the good rate function Ix(·) of (5.6.6).

Remark: For σ(·), a square matrix, and nonsingular diffusions, namely,
solutions of (5.6.5) with a(·)�=σ(·)σ′(·) which is uniformly positive definite,
the preceding formula for the rate function simplifies considerably to

Ix(f) =
{

1
2

∫ 1

0
(ḟ(t)− b(f(t)))′a−1(f(t))(ḟ(t)− b(f(t))) dt , f ∈ Hx

1

∞ , f 
∈ Hx
1 ,

where Hx
1

�
={f : f(t) = x +

∫ t

0
φ(s)ds, φ ∈ L2([0, 1])}.

Proof: It suffices to prove the theorem for x = 0 (as x may always be moved
to the origin by a translation of the coordinates). Then the measure μ̃ε of
xε is supported on C0([0, 1]). The proof here is based on approximating the
process xε

. in the sense of Theorem 4.2.23. To this end, let xε,m, m = 1, 2, . . .
be the solution of the stochastic differential equation

dxε,m
t = b(xε,m

[mt]
m

)dt +
√

εσ(xε,m
[mt]

m

)dwt, 0 ≤ t ≤ 1, xε,m
0 = 0 , (5.6.8)

in which the coefficients of (5.6.5) are frozen over the time intervals [ k
m , k+1

m ).
Since xε and xε,m are strong solutions of (5.6.5) and (5.6.8), respectively,
they are defined on the same probability space. The following lemma, whose
proof is deferred to the end of the section, shows that xε,m are exponentially
good approximations of xε.

Lemma 5.6.9 For any δ > 0,

lim
m→∞

lim sup
ε→0

ε log P(‖ xε,m − xε ‖> δ) = −∞ .
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Let the map Fm be defined via h = Fm(g), where

h(t) = h
( k

m

)
+ b

(
h
( k

m

))(
t− k

m

)
+ σ

(
h
( k

m

))(
g(t)− g

( k

m

))
,

t ∈
[ k

m
,
k + 1

m

]
, k = 0, . . . , m− 1, h(0) = 0 .

Now, observe that Fm is a map of C0([0, 1]) onto itself and that xε,m
. =

Fm(
√

εw.). Let g1, g2 ∈ C0([0, 1]) and e�
=|Fm(g1) − Fm(g2)|. Then by the

assumptions on b(·) and σ(·),

sup
t∈[ k

m , k+1
m ]

e(t) ≤ C
(

e
( k

m

)
+ ||g1 − g2||

)
,

where C < ∞ is some constant that depends only on ||g1||. Since e(0) = 0,
the continuity of Fm with respect to the supremum norm follows by iterating
this bound over k = 0, . . . , m− 1.

Let F be defined on the space H1 such that f = F (g) is the unique
solution of the integral equation

f(t) =
∫ t

0

b(f(s))ds +
∫ t

0

σ(f(s))ġ(s)ds , 0 ≤ t ≤ 1 .

The existence and uniqueness of the solution is a consequence of the Lip-
schitz continuity of b and σ and is standard. In view of Lemma 5.6.9, the
proof of the theorem is completed by combining Schilder’s theorem (Theo-
rem 5.2.3) and Theorem 4.2.23, as soon as we show that for every α < ∞,

lim
m→∞

sup
{g:||g||H1≤α}

‖ Fm(g)− F (g) ‖= 0 . (5.6.10)

To this end, fix α < ∞ and g ∈ H1 such that ||g||H1 ≤ α. Let h = Fm(g),
f = F (g), and e(t) = |f(t)− h(t)|2. Then for all t ∈ [0, 1],

h(t) =
∫ t

0

b
(
h
( [ms]

m

))
ds +

∫ t

0

σ
(
h
( [ms]

m

))
ġ(s)ds .

By the Cauchy–Schwartz inequality and the boundedness of b(·) and σ(·),

sup
0≤t≤1

∣
∣
∣h(t)− h

( [mt]
m

)∣∣
∣ ≤ (α + 1)δm , (5.6.11)

where δm are independent of g, and converge to zero as m →∞. Applying
the Cauchy–Schwartz inequality again, it follows by the uniform Lipschitz
continuity of b(·) and σ(·) that

|f(t)− h(t)| ≤ (α + 1)C
[∫ t

0

|f(s)− h(
[ms]
m

)|2ds

]1/2
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for some constant C < ∞ independent of m and g. Thus, due to (5.6.11),

e(t) ≤ K

∫ t

0

e(s)ds + Kδ2
m , e(0) = 0 ,

where K is some constant that depends only on C and α. Hence, by Gron-
wall’s lemma (Lemma E.6), e(t) ≤ Kδ2

meKt. Consequently,

‖ F (g)− Fm(g) ‖≤
√

KδmeK/2 ,

which establishes (5.6.10) and completes the proof of the theorem.

The following theorem (whose proof is deferred to the end of the section)
strengthens Theorem 5.6.7 by allowing for ε dependent initial conditions.

Theorem 5.6.12 Assume the conditions of Theorem 5.6.7. Let {Xε,y
t }

denote the solution of (5.6.5) for the initial condition X0 = y. Then:
(a) For any closed F ⊂ C([0, 1]),

lim sup
ε→0
y→x

ε log P(Xε,y
. ∈ F ) ≤ − inf

φ∈F
Ix(φ) . (5.6.13)

(b) For any open G ⊂ C([0, 1]),

lim inf
ε→0
y→x

ε log P(Xε,y
. ∈ G) ≥ − inf

φ∈G
Ix(φ) . (5.6.14)

The following corollary is needed in Section 5.7.

Corollary 5.6.15 Assume the conditions of Theorem 5.6.7. Then for any
compact K ⊂ IRd and any closed F ⊂ C([0, 1]),

lim sup
ε→0

ε log sup
y∈K

P(Xε,y
. ∈ F ) ≤ − inf

φ∈F
y∈K

Iy(φ) . (5.6.16)

Similarly, for any open G ⊂ C([0, 1]),

lim inf
ε→0

ε log inf
y∈K

P(Xε,y
. ∈ G) ≥ − sup

y∈K
inf
φ∈G

Iy(φ) . (5.6.17)

Proof: Let −IK denote the right side of (5.6.16). Fix δ > 0 and let
Iδ
K

�
= min{IK − δ, 1/δ}. Then from (5.6.13), it follows that for any x ∈ K,

there exists an εx > 0 such that for all ε ≤ εx,

ε log sup
y∈Bx,εx

P(Xε,y
. ∈ F ) ≤ −Iδ

K .
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Let x1, . . . , xm ∈ K be such that the compact set K is covered by the set
∪m

i=1Bxi,εxi
. Then for ε ≤ minm

i=1 εxi ,

ε log sup
y∈K

P(Xε,y
. ∈ F ) ≤ −Iδ

K .

By first considering ε → 0 and then δ → 0, (5.6.16) follows. The inequality
(5.6.17) is obtained from (5.6.14) by a similar argument.

The proofs of Lemma 5.6.9 and Theorem 5.6.12 are based on the follow-
ing lemma.

Lemma 5.6.18 Let bt, σt be progressively measurable processes, and let

dzt = btdt +
√

εσtdwt , (5.6.19)

where z0 is deterministic. Let τ1 ∈ [0, 1] be a stopping time with respect to
the filtration of {wt, t ∈ [0, 1]}. Suppose that the coefficients of the diffusion
matrix σ are uniformly bounded, and for some constants M, B, ρ and any
t ∈ [0, τ1],

|σt| ≤ M
(
ρ2 + |zt|2

)1/2

|bt| ≤ B
(
ρ2 + |zt|2

)1/2
. (5.6.20)

Then for any δ > 0 and any ε ≤ 1,

ε log P( sup
t∈[0,τ1]

|zt| ≥ δ) ≤ K + log
(

ρ2 + |z0|2
ρ2 + δ2

)

,

where K = 2B + M2(2 + d).

Proof: Let ut = φ(zt), where φ(y) = (ρ2 + |y|2)1/ε. By Itô’s formula, ut is
the strong solution of the stochastic differential equation

dut = ∇φ(zt)′dzt +
ε

2
Trace

[
σtσ

′
tD

2φ(zt)
]
dt

�
=gtdt + σ̃tdwt , (5.6.21)

where D2φ(y) is the matrix of second derivatives of φ(y), and for a matrix
(vector) v, v′ denotes its transpose. Note that

∇φ(y) =
2φ(y)

ε(ρ2 + |y|2) y ,

which in view of (5.6.20) implies

|∇φ(zt)′bt| ≤
2B|zt|φ(zt)

ε(ρ2 + |zt|2)1/2
≤ 2B

ε
ut .
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Similarly, for ε ≤ 1,

ε

2
Trace[σtσ

′
tD

2φ(zt)] ≤
M2(2 + d)

ε
ut .

These bounds imply, in view of (5.6.21), that for any t ∈ [0, τ1],

gt ≤
Kut

ε
, (5.6.22)

where K = 2B + M2(2 + d) < ∞.

Fix δ > 0 and define the stopping time τ2
�
= inf{t : |zt| ≥ δ} ∧ τ1. Since

|σ̃t| ≤ 2Mut/
√

ε is uniformly bounded on [0, τ2], it follows that the stochas-
tic Itô integral ut −

∫ t

0
gsds is a continuous martingale up to τ2. Therefore,

Doob’s theorem (Theorem E.1) is applicable here, yielding

E[ut∧τ2 ] = u0 + E

[∫ t∧τ2

0

gsds

]

.

Hence, by (5.6.22) and the nonnegativity of u.,

E[ut∧τ2 ] ≤ u0 +
K

ε
E

[∫ t∧τ2

0

usds

]

= u0 +
K

ε
E

[∫ t∧τ2

0

us∧τ2ds

]

≤ u0 +
K

ε

∫ t

0

E[us∧τ2 ]ds .

Consequently, by Gronwall’s lemma (Lemma E.6),

E[uτ2 ] = E[u1∧τ2 ] ≤ u0e
K/ε = φ(z0)eK/ε .

Note that φ(y) is positive and monotone increasing in |y|. Therefore, by
Chebycheff’s inequality,

P(|zτ2 | ≥ δ) = P[φ(zτ2) ≥ φ(δ)] ≤ E[φ(zτ2)]
φ(δ)

=
E[uτ2 ]
φ(δ)

.

Combining the preceding two inequalities yields

ε log P(|zτ2 | ≥ δ) ≤ K + ε log φ(z0)− ε log φ(δ) = K + log
(

ρ2 + |z0|2
ρ2 + δ2

)

.

The proof of the lemma is completed as supt∈[0,τ1] |zt| ≥ δ iff |zτ2 | ≥ δ.

Proof of Lemma 5.6.9: Fix δ > 0. Let zt
�
=xε,m

t − xε
t, and for any ρ > 0,

define the stopping time

τ1 = inf{t : |xε,m
t − xε,m

[mt]
m

| ≥ ρ} ∧ 1 .
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The process zt is of the form (5.6.19), with z0 = 0, bt
�
=b(xε,m

[mt]/m) − b(xε
t)

and σt
�
=σ(xε,m

[mt]/m)−σ(xε
t). Thus, by the uniform Lipschitz continuity of b(·)

and σ(·) and the definition of τ1, it follows that Lemma 5.6.18 is applicable
here, yielding for any δ > 0 and any ε ≤ 1,

ε log P( sup
t∈[0,τ1]

|xε,m
t − xε

t| ≥ δ) ≤ K + log
(

ρ2

ρ2 + δ2

)

,

with K < ∞ independent of ε, δ, ρ, and m. Hence, by considering first
ε → 0 and then ρ → 0,

lim
ρ→0

sup
m≥1

lim sup
ε→0

ε log P( sup
t∈[0,τ1]

|xε,m
t − xε

t| ≥ δ) = −∞ .

Now, since

{‖ xε,m − xε ‖> δ} ⊂ {τ1 < 1} ∪ { sup
t∈[0,τ1]

|xε,m
t − xε

t| ≥ δ} ,

the lemma is proved as soon as we show that for all ρ > 0,

lim
m→∞

lim sup
ε→0

ε log P( sup
0≤t≤1

|xε,m
t − xε,m

[mt]
m

| ≥ ρ) = −∞ . (5.6.23)

To this end, observe first that
∣
∣
∣x

ε,m
t − xε,m

[mt]
m

∣
∣
∣ ≤ C

[ 1
m

+
√

ε
m−1
max
k=0

sup
0≤s≤ 1

m

|ws+ k
m
− w k

m
|
]

,

where C is the bound on |σ(·)| and |b(·)|. Therefore, for all m > C/ρ,

P( sup
0≤t≤1

|xε,m
t − xε,m

[mt]
m

| ≥ ρ) ≤ mP
(

sup
0≤s≤ 1

m

|ws| ≥
ρ− C/m√

εC

)

≤ 4dme−m(ρ−C/m)2/2dεC2
,

where the second inequality is the bound of Lemma 5.2.1. Hence, (5.6.23)
follows, and the lemma is established.

Proof of Theorem 5.6.12: By Theorem 4.2.13, it suffices to prove that
Xε,x

. are exponentially equivalent in C([0, 1]) to Xε,xε
. whenever xε → x.

Fix xε → x and let zt
�
=Xε,xε

t −Xε,x
t . Then zt is of the form (5.6.19), with

z0 = xε − x, σt
�
=σ(Xε,xε

t ) − σ(Xε,x
t ) and bt

�
=b(Xε,xε

t ) − b(Xε,x
t ). Hence, the

uniform Lipschitz continuity of b(·) and σ(·) implies that (5.6.20) holds for
any ρ > 0 and with τ1 = 1. Therefore, Lemma 5.6.18 yields

ε log P(‖ Xε,xε −Xε,x ‖≥ δ) ≤ K + log
(

ρ2 + |xε − x|2
ρ2 + δ2

)
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for any δ > 0 and any ρ > 0 (where K < ∞ is independent of ε, δ, and ρ).
Considering first ρ → 0 and then ε → 0 yields

lim sup
ε→0

ε log P(‖ Xε,xε −Xε,x ‖≥ δ) ≤ K + lim sup
ε→0

log
(
|xε − x|2

δ2

)

= −∞ .

With Xε,xε and Xε,x exponentially equivalent, the theorem is established.

Exercise 5.6.24 Prove that Theorem 5.6.7 holds when b(·) is Lipschitz con-
tinuous but possibly unbounded.

Exercise 5.6.25 Extend Theorem 5.6.7 to the time interval [0, T ], T < ∞.
Hint: The relevant rate function is now

Ix(f) = inf
{g∈H1([0,T ]) :f(t)=x+

∫ t

0
b(f(s))ds+

∫ t

0
σ(f(s))ġ(s)ds}

1
2

∫ T

0

|ġ(t)|2dt .

(5.6.26)

Exercise 5.6.27 Find I(·) for xε
t, where

dxε
t = yε

tdt , xε
0 = 0 ,

dyε
t = b(xε

t, y
ε
t )dt +

√
εσ(xε

t, y
ε
t )dwt , yε

0 = 0 ,

and b, σ : IR2 → IR are uniformly Lipschitz continuous, bounded functions,
such that infx,y σ(x, y) > 0.

Exercise 5.6.28 Suppose that xε
0, the initial conditions of (5.6.5), are random

variables that are independent of the Brownian motion {wt, t ≥ 0}. Prove that
Theorem 5.6.7 holds if there exists x ∈ IRd such that for any δ > 0,

lim sup
ε→0

ε log P(|xε
0 − x| ≥ δ) = −∞ .

Hint: Modify the arguments in the proof of Theorem 5.6.12.

5.7 The Problem of Diffusion Exit from a
Domain

Consider the system

dxε
t = b(xε

t)dt +
√

εσ(xε
t)dwt, xε

t ∈ IRd, xε
0 = x , (5.7.1)

in the open, bounded domain G, where b(·) and σ(·) are uniformly Lipschitz
continuous functions of appropriate dimensions and w. is a standard Brow-
nian motion. The following assumption prevails throughout this section.
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Assumption (A-1) The unique stable equilibrium point in G of the d-
dimensional ordinary differential equation

φ̇t = b(φt) (5.7.2)

is at 0 ∈ G, and

φ0 ∈ G ⇒ ∀t > 0, φt ∈ G and lim
t→∞

φt = 0 .

When ε is small, it is reasonable to guess that the system (5.7.1) tends
to stay inside G. Indeed, suppose that the boundary of G is smooth enough
for

τ ε�= inf{t > 0 : xε
t ∈ ∂G}

to be a well-defined stopping time. It may easily be shown that under mild
conditions, P (τ ε < T ) −→ε→0 0 for any T < ∞. (A proof of this fact follows
from the results of this section; c.f. Theorem 5.7.3.) From an engineering
point of view, (5.7.1) models a tracking loop in which some parasitic noise
exists. The parasitic noise may exist because of atmospheric noise (e.g., in
radar and astronomy), or because of a stochastic element in the signal model
(e.g., in a phase lock loop). From that point of view, exiting the domain
at ∂G is an undesirable event, for it means the loss of lock. An important
question (both in the analysis of a given system and in the design of new
systems) would be how probable is the loss of lock. For a detailed analysis
of such a tracking loop, the reader is referred to Section 5.8.

In many interesting systems, the time to lose lock is measured in terms
of a large multiple of the natural time constant of the system. For example,
in modern communication systems, where the natural time constant is a bit
duration, the error probabilities are in the order of 10−7 or 10−9. In such
situations, asymptotic computations of the exit time become meaningful.

Another important consideration in designing such systems is the ques-
tion of where the exit occurs on ∂G, for it may allow design of modified
loops, error detectors, etc.

It should be noted that here, as in Section 5.6, the choice of the model
(5.7.1) is highly arbitrary. In particular, the same type of theory can be
developed for Poisson processes, or more generally for Lévy processes. How-
ever, beware of using “natural” approximations, as those need not neces-
sarily have similar large deviations behavior. (Such a situation is described
in Section 5.8.)

Throughout, Ex denotes expectations with respect to the diffusion pro-
cess (5.7.1), where xε

0 = x. The following classical theorem (see [KS88, page
365]) characterizes such expectations, for any ε, in terms of the solutions of
appropriate partial differential equations.
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Theorem 5.7.3 Assume that for any y ∈ ∂G, there exists a ball B(y) such
that G ∩ B(y) = {y}, and for some η > 0 and all x ∈ G, the matrices
σ(x)σ′(x)− ηI are positive definite. Then for any Hölder continuous func-
tion g (on G) and any continuous function f (on ∂G), the function

u(x)
�
=Ex

[

f(xε
τε) +

∫ τε

0

g(xε
t)dt

]

has continuous second derivatives on G, is continuous on G, and is the
unique solution of the partial differential equation

Lεu = −g in G ,

u = f on ∂G ,

where the differential operator Lε is defined via

Lεv
�
=

ε

2

∑

i,j

(σσ′)ij(x)
∂2v

∂xi∂xj
+ b(x)′∇v .

The following corollary is of particular interest.

Corollary 5.7.4 Assume the conditions of Theorem 5.7.3. Let u1(x) =
Ex(τ ε). Then u1 is the unique solution of

Lεu1 = −1, in G ; u1 = 0 , on ∂G . (5.7.5)

Further, let u2(x) = Ex(f(xε
τε)). Then for any f continuous, u2 is the

unique solution of

Lεu2 = 0, in G ; u2 = f , on ∂G . (5.7.6)

Proof: To establish (5.7.5), specialize Theorem 5.7.3 to f ≡ 0 and g ≡ 1.
Similarly, let g ≡ 0 in Theorem 5.7.3 to establish (5.7.6).

Remark: Formally, for f(x) = δxa(x) and xa ∈ ∂G, the fundamental
solution (Green function) u2 of (5.7.6), as a function of xa, describes the
exit density on ∂G.

In principle, Corollary 5.7.4 enables the computation of the quantities
of interest for any ε. (Specific examples for d = 1 are presented in Exercises
5.7.32 and 5.7.35.) However, in general for d ≥ 2, neither (5.7.5) nor (5.7.6)
can be solved explicitly. Moreover, the numerical effort required in solving
these equations is considerable, in particular when the solution over a range
of values of ε is of interest. In view of that, the exit behavior analysis from
an asymptotic standpoint is crucial.
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Since large deviations estimates are for neighborhoods rather than for
points, it is convenient to extend the definition of (5.7.1) to IRd. From here
on, it is assumed that the original domain G is smooth enough to allow for
such an extension preserving the uniform Lipschitz continuity of b(·), σ(·).
Throughout this section, B < ∞ is large enough to bound supx∈G |b(x)|
and supx∈G |σ(x)| as well as the Lipschitz constants associated with b(·)
and σ(·). Other notations used throughout are Bρ

�
={x : |x| ≤ ρ} and

Sρ
�
={x : |x| = ρ}, where, without explicitly mentioning it, ρ > 0 is always

small enough so that Bρ ⊂ G.

Motivated by Theorem 5.6.7, define the cost function

V (y, z, t)
�
= inf

{φ∈C([0,t]):φt=z}
Iy,t(φ) (5.7.7)

= inf
{u.∈L2([0,t]):φt=z where φs=y+

∫ s

0
b(φθ)dθ+

∫ s

0
σ(φθ)uθdθ}

1
2

∫ t

0

|us|2ds ,

where Iy,t(·) is the good rate function of (5.6.26), which controls the LDP
associated with (5.7.1). This function is also denoted in as Iy(·), It(·) or
I(·) if no confusion may arise. Heuristically, V (y, z, t) is the cost of forcing
the system (5.7.1) to be at the point z at time t when starting at y. Define

V (y, z)
�
= inf

t>0
V (y, z, t) .

The function V (0, z) is called the quasi-potential. The treatment to follow is
guided by the heuristics that as ε → 0, the system (5.7.1) wanders around
the stable point x = 0 for an exponentially long time, during which its
chances of hitting any closed set N ⊂ ∂G are determined by infz∈N V (0, z).
The rationale here is that any excursion off the stable point x = 0 has an
overwhelmingly high probability of being pulled back there, and it is not
the time spent near any part of ∂G that matters but the a priori chance
for a direct, fast exit due to a rare segment in the Brownian motion’s path.
Caution, however, should be exercised, as there are examples where this
rationale fails.

Subsets of the following additional assumptions are used in various parts
of this section.

Assumption (A-2) All the trajectories of the deterministic system (5.7.2)
starting at φ0 ∈ ∂G converge to 0 as t →∞.

Assumption (A-3) V �
= infz∈∂G V (0, z) < ∞.

Assumption (A-4) There exists an M < ∞ such that, for all ρ > 0
small enough and all x, y with |x− z|+ |y − z| ≤ ρ for some z ∈ ∂G ∪ {0},
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there is a function u satisfying that ‖u‖ < M and φT (ρ) = y, where

φt = x +
∫ t

0

b(φs)ds +
∫ t

0

σ(φs)usds

and T (ρ) → 0 as ρ → 0.

Assumption (A-2) prevents consideration of situations in which ∂G is the
characteristic boundary of the domain of attraction of 0. Such boundaries
arise as the separating curves of several isolated minima, and are of mean-
ingful engineering and physical relevance. Some of the results that follow
extend to characteristic boundaries, as shown in Corollary 5.7.16. However,
caution is needed in that case. Assumption (A-3) is natural, for otherwise
all points on ∂G are equally unlikely on the large deviations scale. Assump-
tion (A-4) is related to the controllability of the system (5.7.1) (where a
smooth control replaces the Brownian motion). Note, however, that this is
a relatively mild assumption. In particular, in Exercise 5.7.29, one shows
that if the matrices σ(x)σ′(x) are positive definite for x = 0, and uniformly
positive definite on ∂G, then Assumption (A-4) is satisfied.

Assumption (A-4) implies the following useful continuity property.

Lemma 5.7.8 Assume (A-4). For any δ > 0, there exists ρ > 0 small
enough such that

sup
x,y∈Bρ

inf
t∈[0,1]

V (x, y, t) < δ (5.7.9)

and
sup

{x,y:infz∈∂G(|y−z|+|x−z|)≤ρ }
inf

t∈[0,1]

V (x, y, t) < δ . (5.7.10)

Proof: Observe that the function φs described in Assumption (A-4) results
in the upper bound V (x, y, t) ≤ M2t/2, where t = T (|x − y|) → 0 as
|x− y| → 0. Equations (5.7.9) and (5.7.10) follow from this bound.

The main result of this section is the following theorem, which yields
the precise exponential growth rate of τ ε, as well as valuable estimates on
the exit measure.

Theorem 5.7.11 Assume (A-1)–(A-4).
(a) For all x ∈ G and all δ > 0,

lim
ε→0

Px(e(V +δ)/ε > τ ε > e(V −δ)/ε) = 1 . (5.7.12)

Moreover, for all x ∈ G,

lim
ε→0

ε log Ex(τ ε) = V . (5.7.13)
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(b) If N ⊂ ∂G is a closed set and infz∈N V (0, z) > V , then for any x ∈ G,

lim
ε→0

Px(xε
τε ∈ N) = 0 . (5.7.14)

In particular, if there exists z∗ ∈ ∂G such that V (0, z∗) < V (0, z) for all
z 
= z∗, z ∈ ∂G, then

∀δ > 0, ∀x ∈ G, lim
ε→0

Px(|xε
τε − z∗| < δ) = 1 . (5.7.15)

Often, there is interest in the characteristic boundaries for which As-
sumption (A-2) is violated. This is the case when there are multiple stable
points of the dynamical system (5.7.2), and G is just the attraction region
of one of them. The exit measure analysis used for proving part (b) of the
preceding theorem could in principle be incorrect. That is because the sam-
ple path that spends increasingly large times inside G, while avoiding the
neighborhood of the stable point x = 0, could contribute a non-negligible
probability. As stated in the following corollary, the exit time estimates of
Theorem 5.7.11 hold true even without assuming (A-2).

Corollary 5.7.16 Part (a) of Theorem 5.7.11 holds true under Assump-
tions (A-1), (A-3), and (A-4). Moreover, it remains true for the exit time of
any processes {x̃ε} (not necessarily Markov) that satisfy for any T ′, δ fixed,
and any stopping times {Tε} (with respect to the natural filtration {Ft}),
the condition

lim sup
ε→0

ε log P

(

sup
t∈[0,T ′]

|xε
t − x̃ε

t+Tε
| > δ

∣
∣
∣
∣
∣
FTε , |xε

0 − x̃ε
Tε
| < δ

2

)

= −∞ .

(5.7.17)

Remarks:
(a) Actually, part (b) of Theorem 5.7.11 also holds true without assuming
(A-2), although the proof is more involved. (See [Day90a] for details.)

(b) When the quasi-potential V (0, ·) has multiple minima on ∂G, then the
question arises as to where the exit occurs. In symmetrical cases (like the
angular tracker treated in Section 5.8), it is easy to see that each mini-
mum point of V (0, ·) is equally likely. In general, by part (b) of Theorem
5.7.11, the exit occurs from a neighborhood of the set of minima of the
quasi-potential. However, refinements of the underlying large deviations es-
timates are needed for determining the exact weight among the minima.
(c) The results of this section can be, and were indeed, extended in vari-
ous ways to cover general Lévy processes, dynamical systems perturbed by
wide-band noise, queueing systems, partial differential equations, etc. The
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reader is referred to the historical notes at the end of this chapter for a
partial guide to references.

The following lemmas are instrumental for the proofs of Theorem 5.7.11
and Corollary 5.7.16. Their proof follows the proof of the theorem.

The first lemma gives a uniform lower bound on the probability of an
exit from G.

Lemma 5.7.18 For any η > 0 and any ρ > 0 small enough, there exists a
T0 < ∞ such that

lim inf
ε→0

ε log inf
x∈Bρ

Px(τ ε ≤ T0) > −(V + η) .

Next, it is shown that the probability that the diffusion (5.7.1) wanders in
G for an arbitrarily long time, without hitting a small neighborhood of 0,
is exponentially negligible. Note that the proof of this lemma is not valid
when ∂G is a characteristic boundary (or in general when Assumption (A-2)
is violated).

Lemma 5.7.19 Let

σρ
�
= inf{t : t ≥ 0, xε

t ∈ Bρ ∪ ∂G} , (5.7.20)

where Bρ ⊂ G. Then

lim
t→∞

lim sup
ε→0

ε log sup
x∈G

Px(σρ > t) = −∞ .

The following upper bound relates the quasi-potential with the probability
that an excursion starting from a small sphere around 0 hits a given subset
of ∂G before hitting an even smaller sphere.

Lemma 5.7.21 For any closed set N ⊂ ∂G,

lim
ρ→0

lim sup
ε→0

ε log sup
y∈S2ρ

Py(xε
σρ
∈ N) ≤ − inf

z∈N
V (0, z) ,

where σρ is the stopping time defined in (5.7.20).

In order to extend the upper bound to hold for every xε
0 ∈ G, observe that

with high probability the process xε is attracted to an arbitrarily small
neighborhood of 0 without hitting ∂G on its way, i.e.,

Lemma 5.7.22 For every ρ > 0 such that Bρ ⊂ G and all x ∈ G,

lim
ε→0

Px(xε
σρ
∈ Bρ) = 1 .
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Figure 5.7.1: σρ hitting times for different trajectories.

Finally, a useful uniform estimate, which states that over short time intervals
the process xε has an exponentially negligible probability of getting too far
from its starting point, is required.

Lemma 5.7.23 For every ρ > 0 and every c > 0, there exists a constant
T (c, ρ) < ∞ such that

lim sup
ε→0

ε log sup
x∈G

Px( sup
t∈[0,T (c,ρ)]

|xε
t − x| ≥ ρ) < −c .

All the preliminary steps required for the proof of Theorem 5.7.11 have now
been completed.
Proof of Theorem 5.7.11: (a) To upper bound τ ε, fix δ > 0 arbitrarily
small. Let η = δ/2 and ρ and T0 be as in Lemma 5.7.18. By Lemma 5.7.19,
there exists a T1 < ∞ large enough that

lim sup
ε→0

ε log sup
x∈G

Px(σρ > T1) < 0 .

Let T = (T0 + T1). Then there exists some ε0 > 0 such that for all ε ≤ ε0,

q
�
= inf

x∈G
Px(τ ε ≤ T ) ≥ inf

x∈G
Px(σρ ≤ T1) inf

x∈Bρ

Px(τ ε ≤ T0)

≥ e−(V +η)/ε . (5.7.24)
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Considering the events {τ ε > kT} for k = 1, 2, . . . yields

Px(τ ε > (k + 1)T ) = [1− Px(τ ε ≤ (k + 1)T |τ ε > kT )]Px(τ ε > kT )
≤ (1− q)Px(τ ε > kT ) .

Iterating over k = 1, 2, . . . gives

sup
x∈G

Px(τ ε > kT ) ≤ (1− q)k .

Therefore,

sup
x∈G

Ex(τ ε) ≤ T
[
1 +

∞∑

k=1

sup
x∈G

Px(τ ε > kT )
]
≤ T

∞∑

k=0

(1− q)k =
T

q
,

and since q ≥ e−(V +η)/ε,

sup
x∈G

Ex(τ ε) ≤ Te(V +η)/ε . (5.7.25)

Now, by Chebycheff’s bound,

Px(τ ε ≥ e(V +δ)/ε) ≤ e−(V +δ)/εEx(τ ε) ≤ Te−δ/2ε ,

and the announced upper bound on τ ε is established by considering ε → 0.

To prove the lower bound on τ ε, let ρ > 0 be small enough that S2ρ ⊂ G
(ρ is to be specified later). Let θ0 = 0 and for m = 0, 1, . . . define the
stopping times

τm = inf{t : t ≥ θm, xε
t ∈ Bρ ∪ ∂G} ,

θm+1 = inf{t : t > τm, xε
t ∈ S2ρ} ,

with the convention that θm+1 = ∞ if τm ∈ ∂G. Each time interval
[τm, τm+1] represents one significant excursion off Bρ. Note that necessarily
τ ε = τm for some integer m. Moreover, since τm are stopping times and xε

t

is a strong Markov process, the process zm
�
=xε

τm
is a Markov chain.

For V = 0, the lower bound on τ ε in (5.7.12) is an easy consequence of
Lemmas 5.7.22 and 5.7.23. Hence, assume hereafter that V > 0, and fix
δ > 0 arbitrarily small. Note that ∂G is a closed set and choose ρ > 0 small
enough as needed by Lemma 5.7.21 for

lim sup
ε→0

ε log sup
y∈S2ρ

Py(xε
σρ
∈ ∂G) < −V +

δ

2
.
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Figure 5.7.2: Stopping times θm, τm.

Now, let c = V and let T0 = T (c, ρ) be as determined by Lemma 5.7.23.
Then there exists ε0 > 0 such that for all ε ≤ ε0 and all m ≥ 1,

sup
x∈G

Px(τ ε = τm) ≤ sup
y∈S2ρ

Py(xε
σρ
∈ ∂G) ≤ e−(V −δ/2)/ε (5.7.26)

and

sup
x∈G

Px(θm − τm−1 ≤ T0) ≤ sup
x∈G

Px( sup
t∈[0,T0]

|xε
t − x| ≥ ρ) ≤ e−(V −δ/2)/ε .

(5.7.27)
The event {τ ε ≤ kT0} implies that either one of the first k + 1 among the
mutually exclusive events {τ ε = τm} occurs, or else that at least one of the
first k excursions [τm, τm+1] off Bρ is of length at most T0. Thus, by the
union of events bound, utilizing the preceding worst-case estimates, for all
x ∈ G and any integer k,

Px(τ ε ≤ kT0) ≤
k∑

m=0

Px(τ ε = τm) + Px( min
1≤m≤k

{θm − τm−1} ≤ T0)

≤ Px(τ ε = τ0) + 2ke−(V −δ/2)/ε .

Recall the identity {τ ε = τ0} ≡ {xε
σρ

/∈ Bρ} and apply the preceding
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inequality with k = [T−1
0 e(V −δ)/ε] + 1 to obtain (for small enough ε)

Px(τ ε ≤ e(V −δ)/ε) ≤ Px(τ ε ≤ kT0) ≤ Px(xε
σρ

/∈ Bρ) + 4T−1
0 e−δ/2ε .

By Lemma 5.7.22, the left side of this inequality approaches zero as ε → 0;
hence, the proof of (5.7.12) is complete. By Chebycheff’s bound, (5.7.12)
implies a lower bound on Ex(τ ε), which yields (5.7.13) when complemented
by the upper bound of (5.7.25).
(b) Fix a closed set N ⊂ ∂G such that VN = infz∈N V (0, z) > V . (If
VN = ∞, then simply use throughout the proof an arbitrarily large finite
constant as VN .) The proof is a repeat of the argument presented before
when lower bounding τ ε. Indeed, fix η > 0 such that η < (VN − V )/3, and
set ρ, ε0 > 0 small enough as needed by Lemma 5.7.21 for

sup
y∈S2ρ

Py(xε
σρ
∈ N) ≤ e−(VN−η)/ε , ∀ε ≤ ε0 .

Let c = VN − η and T0 = T (c, ρ) as determined by Lemma 5.7.23. Then
reducing ε0 if necessary, this lemma implies that for every ε ≤ ε0 and every
integer �,

sup
x∈G

Px(τ� ≤ �T0) ≤ � sup
x∈G

Px( sup
t∈[0,T0]

|xε
t − x| ≥ ρ) ≤ �e−(VN−η)/ε .

Decomposing the event {xε
τε ∈ N}, for all y ∈ Bρ (for which τ ε > τ0 = 0),

and all integer �, yields

Py(xε
τε ∈ N) ≤ Py(τ ε > τ�) +

�∑

m=1

Py(τ ε > τm−1)Py(zm ∈ N |τ ε > τm−1)

≤ Py(τ ε > �T0) + Py(τ� ≤ �T0)

+
�∑

m=1

Py(τ ε > τm−1)Ey[Pxε
θm

(xε
σρ
∈ N)|τ ε > τm−1]

≤ Py(τ ε > �T0) + Py(τ� ≤ �T0) + � sup
x∈S2ρ

Px(xε
σρ
∈ N)

≤ Py(τ ε > �T0) + 2�e−(VN−η)/ε .

Further reducing ε0 as needed, one can guarantee that the inequality (5.7.25)
holds for some T < ∞ and all ε ≤ ε0. Choosing � = [e(V +2η)/ε], it then
follows that

lim sup
ε→0

sup
y∈Bρ

Py(xε
τε ∈ N) ≤ lim sup

ε→0

(
T

�T0
e(V +η)/ε + 2�e−(VN−η)/ε

)

= 0 .
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(Recall that 0 < η < (VN − V )/3.) The proof of (5.7.14) is now completed
by combining Lemma 5.7.22 and the inequality

Px(xε
τε ∈ N) ≤ Px(xε

σρ
/∈ Bρ) + sup

y∈Bρ

Py(xε
τε ∈ N) .

Specializing (5.7.14) to N = {z ∈ ∂G : |z − z∗| ≥ δ} yields (5.7.15).

Proof of Corollary 5.7.16: Let G−ρ�
={x ∈ G : |x− z| > ρ ∀z ∈ ∂G } .

Observe that G−ρ are open sets with G−ρ ⊂ G. Hence, Assumption (A-2)
holds for these sets, and for ρ > 0 small enough, so does Assumption (A-4).
Therefore, Theorem 5.7.11 is applicable for the sets G−ρ. The stopping
times τ ε related to G−ρ are monotonically decreasing in ρ. This procedure
results with the announced lower bound on τ ε because the continuity of
the quasi-potential as ρ → 0 is implied by (5.7.10). The upper bound on
τ ε is derived directly for G exactly as in Theorem 5.7.11. It only needs
to be checked that the uniform bound of (5.7.24) holds. With G replaced
by G−ρ, this bound can be derived exactly as before (since Assumption
(A-2) is not required for Lemma 5.7.18, and Lemma 5.7.19 is now valid
for x ∈ G−ρ). Moreover, when xε

0 is near ∂G, the probability of a (fast)
direct exit of G is large enough for reestablishing the uniform lower bound
of (5.7.24). Specifically, by a construction similar to the one used in the
proof of Lemma 5.7.18, utilizing (5.7.10) and the compactness of G\G−ρ,
for any η > 0 there exists ρ > 0 such that

lim inf
ε→0

ε log inf
x∈G\G−ρ

Px(τ ε ≤ 1) > −η .

Finally, by Theorem 4.2.13, xε
t and x̃ε

t share the same large deviations
properties on any fixed time interval. In the proof of (5.7.12), the Markov
structure of xε

t is used over exponentially growing time horizon twice. First,
it is used in (5.7.24) and in the equation following it when deriving the
upper bound on τ ε. Note, however, that by relating the exit from G for x̃ε

t

to the exit from Gδ for xε
t, it still holds that for any k (even ε-dependent),

inf
x∈G

Px(τ ε ≤ (k + 1)T |τ ε > kT ) ≥ e−(V +η/2)/ε ,

and the rest of the proof of the upper bound is unchanged. The Markov
property of xε

t is used again when deriving the worst-case estimates of
(5.7.26) and (5.7.27), where the strong Markov property of the chain zm

is of importance. Under condition (5.7.17), these estimates for x̃ε
t can be

related to those of xε
t. The details are left to Exercise 5.7.31.

The proofs of the five preceding lemmas are now completed.

Proof of Lemma 5.7.18: Fix η > 0, and let ρ > 0 be small enough
for Bρ ⊂ G and for Lemma 5.7.8 to hold with δ = η/3. Then for all
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x ∈ Bρ, there exists a continuous path ψx of length tx ≤ 1 such that
I(ψx) ≤ η/3, ψx

0 = x, and ψx
tx

= 0. By (5.7.10) and Assumption (A-3),
there exist z /∈ G, T1 < ∞ and φ ∈ C([0, T1]) such that I0,T1(φ) ≤ V + η/3,
φ0 = 0, and φT1 = z. The distance Δ between z /∈ G and the compact
set G is positive. Let φx denote the path obtained by concatenating ψx

and φ (in that order) and extending the resulting function to be of length
T0 = T1 + 1 by following the trajectory of (5.7.2) after reaching z. Since
the latter part does not contribute to the rate function, it follows that
Ix,T0(φ

x) ≤ V + 2η/3.

Figure 5.7.3: The exit path φx.

Consider the set

Ψ
�
=

⋃

x∈Bρ

{ψ ∈ C([0, T0]) : ‖ψ − φx‖ < Δ/2 } .

Observe that Ψ is an open subset of C([0, T0]) that contains the functions
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{φx}x∈Bρ . Therefore, by Corollary 5.6.15,

lim inf
ε→0

ε log inf
x∈Bρ

Px(xε ∈ Ψ) ≥ − sup
x∈Bρ

inf
ψ∈Ψ

Ix,T0(ψ)

≥ − sup
x∈Bρ

Ix,T0(φ
x) > −(V + η) .

If ψ ∈ Ψ, then ψt /∈ G for some t ∈ [0, T0]. Hence, for xε
0 = x ∈ Bρ, the

event {xε ∈ Ψ} is contained in {τ ε ≤ T0}, and the proof is complete.

Proof of Lemma 5.7.19: If xε
0 = x ∈ Bρ, then σρ = 0 and the lemma

trivially holds. Otherwise, consider the closed sets

Ψt
�
={φ ∈ C([0, t]) : φs ∈ G\Bρ ∀s ∈ [0, t]} ,

and observe that, for xε
0 = x ∈ G, the event {σρ > t} is contained in

{xε ∈ Ψt}. Recall that Corollary 5.6.15 yields, for all t < ∞,

lim sup
ε→0

ε log sup
x∈G\Bρ

Px(xε ∈ Ψt) ≤ − inf
ψ∈Ψt

It(ψ) ,

where throughout this proof It(ψ) stands for Iψ0,t(ψ), with ψ0 ∈ G. Hence,
in order to complete the proof of the lemma, it suffices to show that

lim
t→∞

inf
ψ∈Ψt

It(ψ) = ∞ . (5.7.28)

Let φx denote the trajectory of (5.7.2) starting at φ0 = x ∈ G\Bρ. By
Assumption (A-2), φx hits Sρ/3 in a finite time, denoted Tx. Moreover,
by the uniform Lipschitz continuity of b(·) and Gronwall’s lemma (Lemma
E.6), there exists an open neighborhood Wx of x such that, for all y ∈ Wx,
the path φy hits S2ρ/3 before Tx. Extracting a finite cover of G\Bρ by such
sets (using the compactness of G\Bρ), it follows that there exists a T < ∞
so that for all y ∈ G\Bρ, the trajectory φy hits S2ρ/3 before time T . Assume
now that (5.7.28) does not hold true. Then for some M < ∞ and every
integer n, there exists ψn ∈ ΨnT such that InT (ψn) ≤ M . Consequently,
for some ψn,k ∈ ΨT ,

M ≥ InT (ψn) =
n∑

k=1

IT (ψn,k) ≥ n
n

min
k=1

IT (ψn,k) .

Hence, there exists a sequence φn ∈ ΨT with limn→∞ IT (φn) = 0. Since
{φ : Iφ0,T (φ) ≤ 1 , φ0 ∈ G} is a compact subset of C([0, T ]), the sequence
φn has a limit point ψ∗ in ΨT . Consequently, IT (ψ∗) = 0 by the lower
semicontinuity of IT (·), implying that ψ∗ is a trajectory of (5.7.2). This
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trajectory, being in ΨT , remains outside of S2ρ/3 throughout [0, T ], con-
tradicting the earlier definition of T . In conclusion, (5.7.28) holds and the
proof of the lemma is complete.

Proof of Lemma 5.7.21: Fix a closed set N ⊂ ∂G. Fix δ > 0 and define
VN

�
=(infz∈N V (0, z)− δ) ∧ 1/δ. By (5.7.9), for ρ > 0 small enough,

inf
y∈S2ρ,z∈N

V (y, z) ≥ inf
z∈N

V (0, z)− sup
y∈S2ρ

V (0, y) ≥ VN .

Moreover, by Lemma 5.7.19, there exists a T < ∞ large enough for

lim sup
ε→0

ε log sup
y∈S2ρ

Py(σρ > T ) < −VN .

Consider the following closed subset of C([0, T ]):

Φ
�
={φ ∈ C([0, T ]) : ∃t ∈ [0, T ] such that φt ∈ N } .

Note that
inf

y∈S2ρ,φ∈Φ
Iy,T (φ) ≥ inf

y∈S2ρ,z∈N
V (y, z) ≥ VN ,

and thus by Corollary 5.6.15,

lim sup
ε→0

ε log sup
y∈S2ρ

Py(xε ∈ Φ) ≤ − inf
y∈S2ρ,φ∈Φ

Iy,T (φ) ≤ −VN .

Since
Py(xε

σρ
∈ N) ≤ Py(σρ > T ) + Py(xε ∈ Φ) ,

it follows that

lim sup
ε→0

ε log sup
y∈S2ρ

Py(xε
σρ
∈ N) ≤ −VN .

Taking δ → 0 completes the proof of the lemma.

Proof of Lemma 5.7.22: Let ρ > 0 be small enough so that Bρ ⊂ G.
For x ∈ Bρ, there is nothing to prove. Thus, fix x ∈ G\Bρ, let φ denote the
trajectory of (5.7.2) with initial condition φ0 = x, and let T�

= inf{t : φt ∈
Sρ/2} < ∞. Since φ is a continuous path that does not hit the compact set
∂G, there exists a positive distance Δ between {φt}t≤T and ∂G. Let Δ be
smaller, if necessary for Δ ≤ ρ, and let xε be the solution of (5.7.1), with
xε

0 = x. Then

sup
t∈[0,T ]

|xε
t − φt| ≤

Δ
2

⇒ xε
σρ
∈ Bρ .
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By the uniform Lipschitz continuity of b(·),

|xε
t − φt| ≤ B

∫ t

0

|xε
s − φs|ds +

√
ε|
∫ t

0

σ(xε
s)dws| .

Hence, by Gronwall’s lemma (Lemma E.6),

sup
t∈[0,T ]

|xε
t − φt| ≤

√
εeBT sup

t∈[0,T ]

|
∫ t

0

σ(xε
s)dws|

and

Px(xε
σρ
∈ ∂G) ≤ Px

(

sup
t∈[0,T ]

|xε
t − φt| >

Δ
2

)

≤ Px

(

sup
t∈[0,T ]

|
∫ t

0

σ(xε
s)dws| >

Δ
2
√

ε
e−BT

)

≤ ε c Ex

(∫ T

0

Trace [σ(xε
s)σ(xε

s)
′] ds

)

−→ε→0 0 ,

where the last inequality is an application of the Burkholder–Davis–Gundy
maximal inequality (Theorem E.3), and c < ∞ is independent of ε.

Proof of Lemma 5.7.23: For all ρ > 0 and all T ≤ ρ/(2B),

Px( sup
t∈[0,T ]

|xε
t − x| ≥ ρ) ≤ Px

(
√

ε sup
t∈[0,T ]

|Jt| ≥
ρ

2

)

,

where

Jt
�
=
∫ t

0

σ(xε
s)dws

is a continuous, square integrable martingale. By the union of events bound,
it suffices to consider the one-dimensional case (possibly changing the con-
stant ρ/2 into βρ with some dimensional constant β). Thus, from here
on, σ(xε

s) = σs is a scalar function bounded by B, and wt is a standard
one-dimensional Brownian motion. By the time change in Theorem E.2, a
standard one-dimensional Brownian motion, denoted νt, may be defined on
the same probability space, such that almost surely Jt = ντ(t), where

τ(t)
�
=
∫ t

0

σ2
θdθ .
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Moreover, almost surely, τ(t) ≤ B2t and is a continuous, increasing function.
Therefore,

Px

(
√

ε sup
t∈[0,T ]

|Jt| ≥ βρ

)

= Px

(
√

ε sup
t∈[0,T ]

|ντ(t)| ≥ βρ

)

≤ Px

(
√

ε sup
τ∈[0,B2T ]

|ντ | ≥ βρ

)

≤ 4e−β2ρ2/(2εB2T ),

where the last inequality follows by the estimate of Lemma 5.2.1. The proof
is completed by choosing T (c, ρ) <min{ρ/(2B), β2ρ2/(2B2c)}.

Exercise 5.7.29 (a) Suppose that σ(x)σ′(x) − ηI are positive definite for
some η > 0 and all x on the line segment connecting y to z. Show that

V (y, z, |z − y|) ≤ Kη−2|z − y| ,

where K < ∞ depends only on the bounds on |b(·)| and |σ(·)|.
Hint: Consider the path φs = y + s(z − y)/|z − y|, and

us = σ(φs)′[σ(φs)σ′(φs)]−1(φ̇s − b(φs)) .

Check that |us| ≤ K1η
−1 for all s ∈ [0, |z − y|] and some K1 < ∞.

(b) Show that for all x, y, z,

V (x, z) ≤ V (x, y) + V (y, z) .

(c) Prove that if there exists η > 0 such that the matrices σ(x)σ′(x) −ηI are
positive definite for all x ∈ ∂G ∪ {0}, then Assumption (A-4) holds.
Hint: Observe that by the uniform Lipschitz continuity of σ(·), the positive
definiteness of σ(·)σ(·)′ at a point x0 implies that the matrices σ(x)σ′(x)− ηI
are positive definite for all |x− x0| ≤ ρ when η, ρ > 0 are small enough.

Exercise 5.7.30 Assume (A-1)–(A-4). Prove that for any closed set N ⊂
∂G,

lim
ρ→0

lim sup
ε→0

ε log sup
y∈Bρ

Py(xε
τε ∈ N) ≤ −( inf

z∈N
V (0, z)− V ) .

Exercise 5.7.31 Complete the proof of Corollary 5.7.16.

Exercise 5.7.32 Consider the stochastic differential equations

dxε
t =

√
εdwt, xε

t ∈ IR , (5.7.33)

dxε
t = −αxε

tdt +
√

εdwt, xε
t ∈ IR, α > 0 . (5.7.34)

Let G = (a, b). Apply Theorem 5.7.3 for both cases to evaluate the following
expressions and limits.
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(a) Compute Ex(τ ε) and limε→0 ε log Ex(τ ε); compare the x dependence in
both cases.
(b) Let b → ∞. What happens to the asymptotic behavior of Ex(τ ε) in both
cases? Compare to the case in which α < 0 in (5.7.34).
(c) Compute Pa(x) = Px (exit at x = a). Compare (5.7.33) and (5.7.34) to
see the influence of x when ε → 0.

Exercise 5.7.35 Viterbi [Vit66, page 86] proposes the following model for a
first-order phased locked loop that tracks a constant phase:

dφt = (Δ−AK sinφt)dt + Kdwt ,

where Δ is a constant (which reflects the demodulated frequency), AK > Δ,
and A, K are given constants.

A cycle slip is defined as an exit from the basin of attraction of φ0
�
=

sin−1(Δ/AK). Compute the mean exit time. What happens when K → 0 ?

Exercise 5.7.36 In this exercise, the Hamilton–Jacobi equations associated
with the quasi-potential are derived.
(a) Consider the following optimization problem. Let L(x, y, t) be a function
that is convex in the variable y, C∞ in all its variables and bounded in the
variable x. Define

W (x, t) = inf
x0=0,xt=x

∫ t

0

L(xs, ẋs, s)ds

and
H(x, p, t) = inf

y
[L(x, y, t)− 〈p, y〉] .

Note that H(x, ·, t) is (up to sign) the Fenchel–Legendre transform of L(x, ·, t)
with respect to the variable y. Assume that W is C1 with respect to (x, t).
Prove that

∂W

∂t
= H(x,Wx, t) , (5.7.37)

where Wx
�
=∂W/∂x.

Hint: Use the optimality of W to write

W (x, t + Δt)−W (x, t)

$ inf
x′

[

W (x′, t)−W (x, t) +
∫ t+Δt

t

L(x,
x− x′

Δt
, s)ds

]

,

and use the regularity assumption on W to get (5.7.37).
(b) Suppose that L(x, y, t) = L(x, y), and define

W (x) = inf
t>0,x0=0,xt=x

∫ t

0

L(xs, ẋs)ds .
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Prove that
H(x,Wx) = 0 . (5.7.38)

Remark: Consider (5.7.1), where for some η > 0 the matrices σ(x)σ(x)′ −
ηI are positive definite for all x (uniform ellipticity), and b(x), σ(x) are C∞

functions. Then the quasi-potential V (0, x) = W (x) satisfies (5.7.38), with

L(x, y) =
1
2
〈y − b(x), (σ(x)σ(x)′)−1(y − b(x))〉 ,

and hence,

H(x, p) = −〈p, b(x)〉 − 1
2
|σ(x)′p|2 .

Exercise 5.7.39 Consider the system that is known as Langevin’s equation:

dx1 = x2dt , (5.7.40)

dx2 = −(x2 + U ′(x1))dt +
√

2
√

εdwt ,

where w. is a standard Brownian motion (and U ′(x) = dU/dx). By adding
a term β

√
εdvt to the right side of (5.7.40), where vt is a standard Brownian

motion independent of wt, compute the Hamilton–Jacobi equation for W (x) =
V (0, x) and show that as β → 0, the formula (5.7.38) takes the form

x2Wx1 − (x2 + U ′(x1))Wx2 + W 2
x2

= 0 . (5.7.41)

Show that W (x1, x2) = U(x1) + x2
2/2 is a solution of (5.7.41). Note that, al-

though W can be solved explicitly, Green’s fundamental solution is not explicitly
computable.

Remark: Here, W is differentiable, allowing for the justification of asymptotic
expansions (c.f. [Kam78]).

5.8 The Performance of Tracking Loops

In this section, two applications of the problem of exit from a domain to
the analysis of tracking problems are considered. In both cases, the bounds
of Section 5.7 are used to yield exponential bounds on the time to lose lock
and thus on the performance of the tracking loops.

5.8.1 An Angular Tracking Loop Analysis

Consider a radar tracking the angular location of a target. The angular
location of the target is modeled by the solution of the following stochastic
differential equation

dθt = m(θt) dt + dwt, θ0 = 0 , (5.8.1)
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where wt is a two-dimensional Brownian motion, θ ∈ IR2 consists of the
elevation and azimuthal angles, and m(·) is assumed to be bounded and
uniformly Lipschitz continuous. The random element in (5.8.1) models un-
certainties in the dynamics, such as random evasive maneuvers of the target.
The information available to the tracker comes from an observation device
(antenna or lens). Denoting by ut ∈ IR2 its angle, this information may be
modeled as the solution of the equation

dyt = (θt − ut) dt + ε dvt , (5.8.2)

where vt is a (two-dimensional) Brownian motion, independent of w. and
θ., which models the observation noise. Typical tracking loops are designed
to achieve good tracking. In such loops, the observation noise is small
compared to θt − ut, which is why the factor ε % 1 appears in (5.8.2). On
the other hand, the dynamics noise in (5.8.1) is not necessarily small.

Since the observation device has a limited field of view (which is mea-
sured in terms of its beam-width θcr), the diffusion equation (5.8.2) ceases
to model the observation process as soon as the tracking error θt − ut exits
from the field of view of the tracking device. In general, this field of view
can be seen as a domain D in IR2. Two particular cases are of interest here:
(a) D1 = B0,θcr . This is the case of a symmetric observation device.
(b) D2 = (−θx

cr, θ
x
cr) × (−θy

cr, θ
y
cr). This corresponds normally to decou-

pled motions in the elevation and azimuthal axis, and often is related to a
situation where θy

cr � θx
cr, or to situations where the elevation motion is

not present, both in the dynamics model and in the observation, making
the observation process one-dimensional. Therefore, consideration is given
to the case D2 = (−θcr, θcr) × IR. The exit event is referred to as track
loss. Based on the available observations {ys, 0 ≤ s ≤ t}, the tracker may
modify ut in order to minimize the probability to lose track in a certain
interval [0, T ], or to maximize the mean time to lose track. Such a notion
of optimality may in general be ill-posed, as an optimal solution might not
exist in the class of strong solutions of diffusions driven by the observation
process y. of (5.8.2). Therefore, the problem of designing an optimal control
ut is not dealt with here. Rather, the performance of a simple, sub-optimal
design is analyzed. However, when the motions in the elevation and az-
imuthal angles are decoupled, this sub-optimal design actually maximizes
the logarithmic rate associated both with the mean time to lose track and
the probability to lose track in [0, T ]. (See [ZZ92] for details.)

The tracking loop to be analyzed corresponds to ut such that

dut = m(ut)dt +
1
ε

dyt , u0 = 0 . (5.8.3)
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Figure 5.8.1: Tracking system.1

Since m(·) is uniformly Lipschitz continuous, a strong solution exists to
the system of equations (5.8.1)–(5.8.3). Let τ = inf{s : |θs − us| ≥ θcr}
be the time until the first loss of track starting with a perfect lock, where
| · | is understood in case D1 as the Euclidean norm and in case D2 as the
one-dimensional norm. The limiting behavior of τ , as ε → 0, is stated in
the following theorem.

Theorem 5.8.4

lim
ε→0

ε log E(τ) =
θ2

cr

2
.

Proof: Let zt = θt−ut denote the angular tracking error. Then zt satisfies
the equation

dzt = (m(θt)−m(ut))dt− 1
ε

ztdt− dvt + dwt, z0 = 0 ,

which under the time change t′ = t/ε becomes

dzt′ = ε(m(θt′)−m(ut′)) dt′ − zt′dt′ +
√

2εdw̃t′ ,

1Adapted with permission from [ZZ92]. ©1992 by the Society for Industrial and
Applied Mathematics, Philadelphia, Pennsylvania. All rights reserved.
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where w̃t′
�
=(wεt′ − vεt′)/

√
2ε is a standard Brownian motion. Note that

τ

ε
= τ ′�= inf{s′ : |zs′ | ≥ θcr} .

Let ẑt′ be the solution of

dẑt′ = −ẑt′dt′ +
√

2εdw̃t′ ẑ0 = 0 . (5.8.5)

By Theorem 5.7.11 (applied to τ̂ ′�
= inf{s′ : |ẑs′ | ≥ θcr}), it follows that

lim
ε→0

2ε log E(τ̂ ′) = inf
T>0

inf
φ: φ0=0

|φT |=θcr

1
2

∫ T

0

|φ̇t + φt|2 dt ,

where again the norm is the two-dimensional Euclidean norm in case D1

and the one-dimensional norm in case D2. It is worthwhile to note that
in both cases, the behavior of the model (5.8.5) is either a one-dimensional
question (in case D2) or may be reduced to such (by noting that |ẑt′ | is a
one-dimensional Bessel process), and therefore can in principle be analyzed
explicitly. The large deviations approach allows both a reduction to the
model (5.8.5) and a simplification of the computations to be made.

The proof of the following lemma is left to Exercise 5.8.10.

Lemma 5.8.6 In both cases D1 and D2,

inf
T>0

inf
φ: φ0=0

|φT |=θcr

1
2

∫ T

0

|φ̇t + φt|2 dt = θ2
cr . (5.8.7)

Hence, it suffices to show that limε→0 ε| log E(τ̂ ′) − log E(τ ′)| = 0 in order
to complete the proof of the theorem. This is a consequence of the following
lemma, which allows, for any η > 0, to bound τ ′ between the values of τ̂ ′

corresponding to θcr − η and θcr + η, provided that ε is small enough.

Lemma 5.8.8

sup
t′≥0

|zt′ − ẑt′ | ≤ 2ε sup
x∈IR2

|m(x)| almost surely .

Proof: Let et′ = zt′ − ẑt′ . Then

ėt′ = ε(m(θt′)−m(ut′)) − et′ , e0 = 0 .

Hence,

et′ = ε

∫ t′

0

(m(θs)−m(us))e−(t′−s)ds .
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Therefore,

|et′ | ≤ 2ε sup
x∈IR2

|m(x)|
∫ t′

0

e−(t′−s)ds .

Exercise 5.8.9 Prove that Theorem 5.8.4 holds for any tracking system of
the form

dut = f(ut)dt +
1
ε

dyt , u0 = 0

as long as f(·) is bounded and uniformly Lipschitz continuous.

Remark: In particular, the simple universal tracker ut = yt/ε can be used
with no knowledge about the target drift m(·), yielding the same limit of
ε log E(τ).

Exercise 5.8.10 Complete the proof of Lemma 5.8.6.
Hint: Observe that by symmetry it suffices to consider the one-dimensional
version of (5.8.7) with the constraint φT = θcr. Then substitute ψ̇t = φ̇t + φt

and paraphrase the proof of Lemma 5.4.15.

5.8.2 The Analysis of Range Tracking Loops

An important component of radar trackers is their range tracking abilities.
By transmitting a pulse s(t) and analyzing its return from a target s(t− τ),
one may estimate τ , the time it took the pulse to travel to the target and
return. Dividing by twice the speed of light, an estimate of the distance to
the target is obtained.

A range tracker keeps track of changes in τ . Suppose τ is itself a random
process, modeled by

τk+1 = τk − εTβ τk + εT 1/2vk , (5.8.11)

where τk denotes the value of τ at the kth pulse transmission instant, {vk}
denotes a sequence of zero mean i.i.d. random variables, T is a deterministic
constant that denotes the time interval between successive pulses (so 1/T is
the pulse repetition frequency), and β is a deterministic constant related to
the speed in which the target is approaching the radar and to the target’s
motion bandwidth. The changes in the dynamics of the target are slow in
comparison with the pulse repetition frequency, i.e., low bandwidth of its
motion. This is indicated by the ε % 1 factor in both terms in the right
side of (5.8.11).

If {vk} are standard Normal, then (5.8.11) may be obtained by discretiz-
ing at T -intervals the solution of the stochastic differential equa-
tion dτ = −εβ̃τdt + εα̃dvt, with vt a standard Brownian motion, β =
(1− e−εβ̃T )/εT $ β̃ and α̃2 = 2εβ̃T/(1− e−2εβ̃T ) $ 1.
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The radar transmits pulses with shape s(·) at times kT , k = 0, 1, . . .,
where s(t) = 0 for |t| ≥ δ

2 and δ % T . The kth pulse appears at the receiver
as s(t− kT − τk), and to this noise is added. Hence, the receiver input is

dyt =
∞∑

k=0

s(t− kT − τk) dt + N0 dwt ,

where wt is a standard Brownian motion independent of {vk} and τ0, while
N0 is a deterministic fixed constant reflecting the noise power level. Usually,
T is chosen such that no ambiguity occurs between adjacent pulses, i.e., T
is much larger then the dynamic range of the increments (τk+1 − τk). A

Figure 5.8.2: Block diagram of a range tracker.

typical radar receiver is depicted in Fig. 5.8.2. It contains a filter h(·)
(the range gate) that is normalized such that

∫ δ/2

−δ/2
|h(t)|2 dt = 1/δ and is

designed so that the function

g(x) =
∫ δ/2

−δ/2

s(t + x)h(t) dt

is bounded, uniformly Lipschitz continuous, with g(0) = 0, g′(0) < 0 and
xg(x) < 0 for 0 < |x| < δ.

A typical example is

s(t) = 1[− δ
2 , δ

2 ](t) and h(t) =
1
δ

sign(t)1[− δ
2 , δ

2 ](t)

for which

g(x) = −sign(x)
(
|x|
δ

1[0, δ
2 ](|x|) +

(

1− |x|
δ

)

1( δ
2 ,δ](|x|)

)

.

The receiver forms the estimates
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Figure 5.8.3: Typical range gate characteristics.

τ̂k+1 = τ̂k − εTβ τ̂k + εKT

∫ τ̂k+kT+δ/2

τ̂k+kT−δ/2

h(t− τ̂k − kT )dyt , (5.8.12)

where K > 0 is the receiver gain. The correction term in the preceding
estimates is taken of order ε to reduce the effective measurement noise to
the same level as the random maneuvers of the target.

Since T � δ, adjacent pulses do not overlap in (5.8.12), and the update
formula for τ̂k may be rewritten as

τ̂k+1 = τ̂k − εTβτ̂k + εKTg(τ̂k − τk) + ε
N0KT

δ1/2
wk ,

where wk ∼ N(0, 1) is a sequence of i.i.d. Normal random variables. As-
sume that τ̂0 = τ0, i.e., the tracker starts with perfect lock. Let Zk = τ̂k−τk

denote the range error process. A loss of track is the event {|Zk| ≥ δ}, and
the asymptotic probability of such an event determines the performance of
the range tracker. Note that Zk satisfies the equation

Zk+1 = Zk + εb(Zk) + ενk, Z0 = 0 , (5.8.13)

where b(z)�=− Tβz + KTg(z) and νk
�
=

N0KT
δ1/2 wk − T 1/2vk.
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In the absence of the noise sequence {νk} and when β ≥ 0, the dynamical
system (5.8.13) has 0 as its unique stable point in the interval [−δ, δ] due to
the design condition zg(z) < 0. (This stability extends to β < 0 if K is large
enough.) Therefore, as ε → 0, the probability of loss of lock in any finite
interval is small and it is reasonable to rescale time. Define the continuous
time process Zε(t), t ∈ [0, 1], via

Zε(t) = Z[t/ε] + ε−1 (t− ε[t/ε])
(

Z[t/ε]+1 − Z[t/ε]

)
.

Let Λ(·) be the logarithmic moment generating function of the random
variable ν1 and assume that Λ(λ) < ∞ for all λ ∈ IR.

The large deviations behavior of Zε(·) is stated in the following theorem.

Theorem 5.8.14 {Zε(·)} satisfies the LDP in C0([0, 1]) with the good rate
function

I(φ) =
{ ∫ 1

0
Λ∗(φ̇(t)− b(φ(t))) dt φ ∈ AC, φ(0) = 0

∞ otherwise .
(5.8.15)

Proof: Note first that, by Theorem 5.1.19, the process

Yε(t) = ε

[t/ε]−1∑

k=0

νk

satisfies an LDP in L∞([0, 1]) with the good rate function

Iν(φ) =
{ ∫ 1

0
Λ∗(φ̇(t))dt, φ ∈ AC, φ(0) = 0
∞ otherwise .

(5.8.16)

Let Ỹε(t) be the polygonal approximation of Yε(t), namely,

Ỹε(t)
�
=Yε(t) + (t− ε[t/ε]) ν[t/ε] .

Then the same arguments as in the proof of Lemma 5.1.4 result in the
exponential equivalence of Yε(·) and Ỹε(·) in L∞([0, 1]). Hence, as Ỹε(t)
takes values in C0([0, 1]), it satisfies the LDP there with the good rate
function Iν(·) of (5.8.16).

Since b(·) is Lipschitz continuous, the map ψ = F (φ) defined by

ψ(t) =
∫ t

0

b(ψ(s))ds + φ(t)

is a continuous map of C0([0, 1]) onto itself. Therefore, by the contraction
principle (Theorem 4.2.1), Ẑε

�
=F (Ỹε) satisfies an LDP in C0([0, 1]) with the
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good rate function I(·) of (5.8.15). (For more details, compare with the
proof of Theorem 5.6.3.) The proof is completed by applying Theorem
4.2.13, provided that Zε(·) and Ẑε(·) are exponentially equivalent, namely,
that for any η′ > 0,

lim
ε→0

ε log P(‖ Ẑε − Zε ‖≥ η′) = −∞ .

To this end, recall that

Zε(t)− Zε (ε[t/ε]) = (t− ε[t/ε])
(
b(Z[t/ε]) + ν[t/ε]

)
,

and therefore,
∫ 1

0

∣
∣Zε(t)− Zε(ε[t/ε])

∣
∣dt ≤ ε

(
[1/ε]
max
k=0

|νk|+ sup
z∈IR

|b(z)|
)

.

Since b(·) is bounded, it now follows that for any η > 0,

lim
ε→0

ε log P
(∫ 1

0

∣
∣Zε(t)− Zε(ε[t/ε])

∣
∣dt ≥ η

)

= −∞ . (5.8.17)

(Recall Exercise 5.1.24.) Observe that by iterating (5.8.13),

Zε(t) =
∫ t

0

b (Zε(ε[s/ε])) ds + Ỹε(t) ,

while

Ẑε(t) =
∫ t

0

b(Ẑε(s))ds + Ỹε(t) .

Let e(t) = |Ẑε(t)− Zε(t)|. Then

e(t) ≤
∫ t

0

∣
∣
∣b(Ẑε(s))− b (Zε (ε[s/ε]))

∣
∣
∣ ds

≤ B

∫ t

0

e(s)ds + B

∫ t

0

|Zε(s)− Zε (ε[s/ε])| ds ,

where B is the Lipschitz constant of b(·). Hence, Gronwall’s lemma (Lemma
E.6) yields

sup
0≤t≤1

e(t) ≤ BeB

∫ 1

0

|Zε(s)− Zε (ε[s/ε])| ds ,

and the exponential equivalence of Zε(·) and Ẑε(·) follows by (5.8.17).

Remarks:
(a) Observe that Theorem 5.8.14 applies for any random process that
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evolves according to (5.8.13), provided that b(·) is bounded and uniformly
Lipschitz continuous and νk are i.i.d. random variables whose logarith-
mic moment generating function Λ(·) is finite everywhere. The preceding
proof does not use other special properties of the range tracking problem.
Likewise, the theorem extends to finite intervals [0, T ] and to IRd-valued
processes.
(b) Focusing back on the range tracking application, since v1 has zero mean
and b(0) = 0, I(φ) = 0 only when φt ≡ 0. Moreover, by choosing K large
enough such that Kg′(0) < β, the point 0 becomes a stable point of the
deterministic ordinary differential equation

ẋs = b(xs) = −Tβxs + TKg(xs) ,

and it is the unique such point in some neighborhood of 0 that may be
strictly included in the domain G = (−δ, δ). However, for β ≥ 0, indeed,
x = 0 is the unique stable point in G and any trajectory with initial condi-
tion x0 ∈ G converges to 0 as s →∞. The analysis of the mean time until
loss of track follows the Freidlin–Wentzell approach presented in Section 5.7
for diffusion processes.
(c) It is interesting to note that a common model in the literature is to ap-
proximate first τk by a continuous model (obtained after a time rescaling)
and then compute the asymptotics of rare events. Since the time-rescaled
continuous time model involves Brownian motion, this computation results
in the rate function

IN (φ) =
{

c
2

∫ 1

0
(φ̇t − b(φt))2 dt , φ ∈ H1

∞ , otherwise
(5.8.18)

for some c > 0. As is obvious from the analysis, this approach is justified
only if either the random maneuvers vk are modeled by i.i.d. Normal ran-
dom variables or if vk are multiplied by a power of ε higher than 1, as in
Exercise 5.8.19.

Exercise 5.8.19 Assume that τk satisfies the equation

τk+1 = τk − εTβ τk + εαT 1/2vk

for some α > 1. Prove that then effectively νk = (N0KT/
√

δ)wk and the rate
function controlling the LDP of Zε(·) is IN (·) of (5.8.18) with c = (N0KT )2/δ.

Exercise 5.8.20 (a) Prove that Theorem 5.8.14 holds for any finite time
interval [0, T ] with the rate function

IT (φ) =
{ ∫ T

0
Λ∗(φ̇(t)− b(φ(t))) dt , φ ∈ ACT , φ(0) = 0

∞ , otherwise .
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(b) Let τ∗ = inf{k : |Zk| ≥ δ} and suppose that β ≥ 0. Repeating the
arguments in Section 5.7, prove that

lim
ε→0

ε log E(τ∗) = inf
T>0

inf
{φ: φ(0)=0,|φ(T )|=δ}

IT (φ) .

5.9 Historical Notes and References

Many of the large deviations results for sample path of stochastic processes,
with the notable exception of Schilder’s theorem, were developed by the
Russian school.

The random walk results of Section 5.1 appear implicitly in [Var66],
using a direct approach that did not make use of the projective limits dis-
cussed here. Building upon [Bor65, Bor67, Mog74], Mogulskii [Mog76] ex-
tends this result to accommodate different scalings and, using the Skorohod
topology, accommodates also moment generating functions that are finite
only in a neighborhood of the origin. See also [Pie81] for random variables
with sub-exponential tails and [LyS87] for random variables possessing a
one-sided heavy tail. See also [Mog93] for a general framework. Extensions
to Banach space valued random walks are derived in [BoM80, DeZa95].
Using the approach of Section 5.1, [DeZa95] also relaxes the independence
assumption.

Schilder [Sc66] derives Theorem 5.2.3 by a direct approach based on
Girsanov’s formula. A derivation related to ours may be found in [Puk94a].

As can be seen in Exercise 5.2.14, inequalities from the theory of Gaus-
sian processes may be used in order to prove exponential tightness and large
deviations for the sample path of such processes. A derivation of Schilder’s
theorem based on Fernique’s inequality may be found in [DeuS89b]. A
non-topological form of the LDP for centered Gaussian processes, which
is based on the isoperimetric inequality, may be found in [BeLd93]. This
version includes Schilder’s theorem as a particular case.

The results of Section 5.3 first appeared in the first edition of this book.
Large deviations for the Brownian sheet follow also from the Banach space
version of Cramér’s theorem described in Exercise 6.2.21, see [DoD86].

Freidlin and Wentzell derived both the sample path diffusion LDP and
the asymptotics of the problem of exit from a domain in a series of papers
beginning with [VF70, VF72] and culminating in the 1979 Russian edition
of their book [FW84], soon to be updated. (See also [Wen90].) Their
approach is based on a direct change of measure argument and explicit
computations. Our treatment in Section 5.6, based on suitable “almost
continuous” contractions, is a combination of the results of [Aze80, FW84,
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Var84]. For other sample path results and extensions, see [Mik88, Bal91,
DoS91, LP92, deA94a]. See also [MNS92, Cas93, BeC96] for analogous
LDPs for stochastic flows.

An intimate relation exists between the sample path LDP for diffusions
and Strassen’s law of the iterated logarithm [Str64]. A large deviations
proof of the latter in the case of Brownian motion is provided in [DeuS89b].
For the case of general diffusions and for references to the literature, see
[Bal86, Gan93, Car98].

Sample path large deviations have been used as a starting point to the
analysis of the heat kernel for diffusions, and to asymptotic expansions of
exponential integrals of the form appearing in Varadhan’s lemma. An early
introduction may be found in Azencott’s article in [As81]. The interested
reader should consult [Aze80, As81, Bis84, Ben88, BeLa91, KuS91, KuS94]
for details and references to the literature.

Sample path large deviations in the form of the results in Sections 5.1,
5.2, and 5.6 have been obtained for situations other than random walks or
diffusion processes. For such results, see [AzR77, Fre85a, LyS87, Bez87a,
Bez87b, DeuS89a, SW95, DuE97] and the comments relating to queueing
systems at the end of this section.

The origin of the problem of exit from a domain lies in the reaction
rate theory of chemical physics. Beginning with early results of Arrhenius
[Arr89], the theory evolved until the seminal paper of Kramers [Kra40],
who computed explicitly not only the exponential decay rate but also the
precise pre-exponents. Extensive reviews of the physical literature and
recent developments may be found in [Land89, HTB90]. A direct outgrowth
of this line of thought has been the asymptotic expansions approach to the
exit problem [MS77, BS82, MS82, MST83]. This approach, which is based
on formal expansions, has been made rigorous in certain cases [Kam78,
Day87, Day89]. A related point of view uses optimal stochastic control as
the starting point for handling the singular perturbation problem [Fle78].
Theorem 5.7.3 was first proved in the one-dimensional case as early as 1933
[PAV89].

As mentioned before, the results presented in Section 5.7 are due to
Freidlin and Wentzell [FW84], who also discuss the case of general Lévy
processes, multiple minima, and quasi-stationary distributions. These re-
sults have been extended in numerous ways, and applied in diverse fields. In
what follows, a partial list of such extensions and applications is presented.
This list is by no means exhaustive.

The discrete time version of the Freidlin-Wentzell theory was developed
by several authors, see [MoS89, Kif90b, KZ94, CatC97].

Kushner and Dupuis ([DuK86, DuK87] and references therein) discuss
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problems where the noise is not necessarily a Brownian motion, and apply
the theory to the analysis of a Phased Lock Loop (PLL) example. Some of
their results may be derived by using the second part of Corollary 5.7.16. A
detailed analysis of the exit measure, including some interesting examples
of nonconvergence for characteristic boundaries, has been presented by Day
[Day90a, Day90b, Day92] and by Eizenberg and Kifer [Kif81, Eiz84, EK87].
Generalizations of diffusion models are presented in [Bez87b]. Large devi-
ations and the exit problem for stochastic partial differential equations are
treated in [Fre85b, CM90, Io91a, DaPZ92].

For details about the DMPSK analysis in Section 5.4, including digital
communications background and simulation results, see [DGZ95] and the
references therein. For other applications to communication systems see
[Buc90].

The large exceedances statements in Section 5.5 are motivated by DNA
matching problems ([ArMW88, KaDK90]), the CUSUM method for the
detection of change points ([Sie85]), and light traffic queue analysis ([Igl72,
Ana88]). The case d = 1 has been studied extensively in the literature,
using its special renewal properties to obtain finer estimates than those
available via the LDP. For example, the exponential limit distribution for Tε

is derived in [Igl72], strong limit laws for Lε and Ŷ ε
. are derived in [DeK91a,

DeK91b], and the CLT for rescaled versions of the latter are derived in
[Sie75, Asm82]. For an extension of the results of Section 5.5 to a class
of uniformly recurrent Markov-additive processes and stationary strong-
mixing processes, see [Zaj95]. See also [DKZ94c] for a similar analysis and
almost sure results for Tε, with a continuous time multidimensional Lévy
process instead of a random walk.

The analysis of angular tracking was undertaken in [ZZ92], and in the
form presented there is based on the large deviations estimates for the non-
linear filtering problem contained in [Zei88]. For details about the analysis
of range tracking, motivated in part by [BS88], see [DeZ94] and the refer-
ences therein.

A notable omission in our discussion of applications of the exit problem
is the case of queueing systems. As mentioned before, the exceedances
analysis of Section 5.5 is related to such systems, but much more can be
said. We refer the reader to the book [SW95] for a detailed description
of such applications. See also the papers [DuE92, IMS94, BlD94, DuE95,
Na95, AH98] and the book [DuE97].



Chapter 6

The LDP for Abstract
Empirical Measures

One of the striking successes of the large deviations theory in the setting
of finite dimensional spaces explored in Chapter 2 was the ability to obtain
refinements, in the form of Cramér’s theorem and the Gärtner–Ellis theo-
rem, of the weak law of large numbers. As demonstrated in Chapter 3, this
particular example of an LDP leads to many important applications; and in
this chapter, the problem is tackled again in a more general setting, moving
away from the finite dimensional world.

The general paradigm developed in this book, namely, the attempt to
obtain an LDP by lifting to an infinite dimensional setting finite dimensional
results, is applicable here, too. An additional ingredient, however, makes its
appearance; namely, sub-additivity is exploited. Not only does this enable
abstract versions of the LDP to be obtained, but it also allows for explicit
mixing conditions that are sufficient for the existence of an LDP to be given,
even in the IRd case.

6.1 Cramér’s Theorem in Polish Spaces

A general version of Cramér’s theorem for i.i.d. random variables is pre-
sented in this section. This theorem is then specialized to strengthen
Cramér’s theorem in IRd. Sanov’s theorem is derived in Section 6.2 as a
consequence of the general formulation of this section. The core new idea
in the derivation presented here, namely, the use of sub-additivity as a tool
for proving the LDP, is applicable beyond the i.i.d. case.
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Let μ be a Borel probability measure on a locally convex, Hausdorff,
topological real vector space X . On the space X ∗ of continuous linear
functionals on X , define the logarithmic moment generating function

Λ(λ)
�
= log

∫

X
e〈λ,x〉dμ , (6.1.1)

and let Λ∗(·) denote the Fenchel–Legendre transform of Λ.

For every integer n, suppose that X1, . . . , Xn are i.i.d. random variables
on X , each distributed according to the law μ; namely, their joint distribu-
tion μn is the product measure on the space (Xn, (BX )n). We would like to
consider the partial averages

Ŝm
n

�
=

1
n−m

n∑

�=m+1

X� ,

with Ŝn
�
=Ŝ0

n being the empirical mean. Note that Ŝm
n are always measurable

with respect to the σ-field BXn , because the addition and scalar multiplica-
tion are continuous operations on Xn. In general, however, (BX )n ⊂ BXn

and Ŝm
n may be non-measurable with respect to the product σ-field (BX )n.

When X is separable, BXn = (BX )n, by Theorem D.4, and there is no need
to further address this measurability issue. In most of the applications we
have in mind, the measure μ is supported on a convex subset of X that is
made into a Polish (and hence, separable) space in the topology induced
by X . Consequently, in this setup, for every m, n ∈ ZZ+, Ŝm

n is measurable
with respect to (BX )n.

Let μn denote the law induced by Ŝn on X . In view of the preceding
discussion, μn is a Borel measure as soon as the convex hull of the sup-
port of μ is separable. The following (technical) assumption formalizes the
conditions required for our approach to Cramér’s theorem.

Assumption 6.1.2 (a) X is a locally convex, Hausdorff, topological real
vector space. E is a closed, convex subset of X such that μ(E) = 1 and E
can be made into a Polish space with respect to the topology induced by X .
(b) The closed convex hull of each compact K ⊂ E is compact.

The following is the extension of Cramér’s theorem (Theorem 2.2.3).

Theorem 6.1.3 Let Assumption 6.1.2 hold. Then {μn} satisfies in X (and
E) a weak LDP with rate function Λ∗. Moreover, for every open, convex
subset A ⊂ X ,

lim
n→∞

1
n

log μn(A) = − inf
x∈A

Λ∗(x) . (6.1.4)
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Remarks:
(a) If, instead of part (b) of Assumption 6.1.2, both the exponential tightness
of {μn} and the finiteness of Λ(·) are assumed, then the LDP for {μn} is a
direct consequence of Corollary 4.6.14.
(b) By Mazur’s theorem (Theorem B.13), part (b) of Assumption 6.1.2 fol-
lows from part (a) as soon as the metric d(·, ·) of E satisfies, for all α ∈ [0, 1],
x1, x2, y1, y2 ∈ E , the convexity condition

d(αx1 + (1− α)x2, αy1 + (1− α)y2) ≤ max{d(x1, y1), d(x2, y2)} . (6.1.5)

This condition is motivated by the two applications we have in mind,
namely, either X = E is a separable Banach space, or X = M(Σ), E =
M1(Σ) (see Section 6.2 for details). It is straight forward to verify that
(6.1.5) holds true in both cases.
(c) Observe that Ŝm

n are convex combinations of {X�}n
�=m, and hence with

probability one belong to E . Consider the sample space Ω = EZZ+ of
semi-infinite sequences of points in E with the product topology inherited
from the topology of E . Since E is separable, the Borel σ-field on Ω is
BΩ = (BE)ZZ+ , allowing the semi-infinite sequence X1, . . . , X�, . . . to be
viewed as a random point in Ω, where the latter is equipped with the Borel
product measure μZZ+ , and with Ŝn being measurable maps from (Ω,BΩ)
to (E ,BE). This viewpoint turns out to be particularly useful when dealing
with Markov extensions of the results of this section.

The following direct corollary of Theorem 6.1.3 for X = E = IRd is a
considerable strengthening of Cramér’s theorem (Theorem 2.2.30), since it
dispenses with the requirement that either DΛ = IRd or Λ be steep.

Corollary 6.1.6 The sequence {μn} of the laws of empirical means of IRd-
valued i.i.d. random variables satisfies a weak LDP with the convex rate
function Λ∗. Moreover, if 0 ∈ Do

Λ, then {μn} satisfies the full LDP with the
good, convex rate function Λ∗.

Proof: The weak LDP is merely a specialization of Theorem 6.1.3. If
0 ∈ Do

Λ, the full LDP follows, since {μn} ⊂ M1(IRd) is then exponentially
tight. (See the inequality (2.2.33) and the discussion there.)

The proof of Theorem 6.1.3 is based on the following key lemmas.

Lemma 6.1.7 Let part (a) of Assumption 6.1.2 hold true. Then, the se-
quence {μn} satisfies the weak LDP in X with a convex rate function I(·).
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Lemma 6.1.8 Let Assumption 6.1.2 hold true. Then, for every open, con-
vex subset A ⊂ X ,

lim
n→∞

1
n

log μn(A) = − inf
x∈A

I(x) ,

where I(·) is the convex rate function of Lemma 6.1.7.

We first complete the proof of the theorem assuming the preceding lemmas
established, and then devote most of the section to prove them, relying
heavily on sub-additivity methods.

Proof of Theorem 6.1.3: As stated in Lemma 6.1.7, {μn} satisfies the
weak LDP with a convex rate function I(·). Therefore, given Lemma 6.1.8,
the proof of the theorem amounts to checking that all the conditions of
Theorem 4.5.14 hold here, and hence I(·) = Λ∗(·). By the independence of
X1, X2, . . . , Xn, it follows that for each λ ∈ X ∗ and every t ∈ IR, n ∈ ZZ+,

1
n

log E
[
en〈tλ,Ŝn〉

]
= log E

[
et〈λ,X1〉

]
= Λλ(t) .

Consequently, the limiting logarithmic moment generating function is just
the function Λ(·) given in (6.1.1). Moreover, for every λ ∈ X ∗, the function
Λλ(·) is the logarithmic moment generating function of the real valued ran-
dom variable 〈λ,X1〉. Hence, by Fatou’s lemma, it is lower semicontinuous.

It remains only to establish the inequality

inf
{x:(〈λ,x〉−a)>0}

I(x) ≤ inf
z>a

Λ∗
λ(z) , ∀a ∈ IR , ∀λ ∈ X ∗ . (6.1.9)

To this end, first consider λ = 0. Then Λ∗
λ(z) = 0 for z = 0, and Λ∗

λ(z) = ∞
otherwise. Since X is an open, convex set with μn(X ) = 1 for all n, it follows
from Lemma 6.1.8 that infx∈X I(x) = 0. Hence, the preceding inequality
holds for λ = 0 and every a ∈ IR. Now fix λ ∈ X ∗, λ 
= 0, and a ∈ IR.
Observe that the open half-space Ha

�
={x : (〈λ, x〉 − a) > 0} is convex, and

therefore, by Lemma 6.1.8,

− inf
{x:(〈λ,x〉−a)>0}

I(x) = lim
n→∞

1
n

log μn(Ha)

≥ sup
δ>0

lim sup
n→∞

1
n

log μn(Ha+δ) ,

where the inequality follows from the inclusions Ha+δ ⊂ Ha for all δ > 0.
Let Y�

�
=〈λ,X�〉, and

Ẑn
�
=

1
n

n∑

�=1

Y� = 〈λ, Ŝn〉 .
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Note that Ŝn ∈ Hy iff Ẑn ∈ [y,∞). By Cramér’s theorem (Theorem 2.2.3),
the empirical means Ẑn of the i.i.d. real valued random variables Y� satisfy
the LDP with rate function Λ∗

λ(·), and by Corollary 2.2.19,

sup
δ>0

lim sup
n→∞

1
n

log μn(Ha+δ) = sup
δ>0

{
− inf

z≥a+δ
Λ∗

λ(z)
}

= − inf
z>a

Λ∗
λ(z) .

Consequently, the inequality (6.1.9) holds, and with all the assumptions of
Theorem 4.5.14 verified, the proof is complete.

The proof of Lemma 6.1.7 is based on sub-additivity, which is defined
as follows:

Definition 6.1.10 A function f : ZZ+ → [0,∞] is called sub-additive if
f(n + m) ≤ f(n) + f(m) for all n, m ∈ ZZ+.

Lemma 6.1.11 (Sub-additivity) If f : ZZ+ → [0,∞] is a sub-additive
function such that f(n) < ∞ for all n ≥ N and some N < ∞, then

lim
n→∞

f(n)
n

= inf
n≥N

f(n)
n

< ∞ .

Proof: Fix m ≥ N and let Mm
�
= max{f(r) : m ≤ r ≤ 2m}. By as-

sumption, Mm < ∞. For each n ≥ m ≥ N , let s = �n/m� ≥ 1 and
r = n−m(s− 1) ∈ {m, . . . , 2m}. Since f is sub-additive,

f(n)
n

≤ (s− 1)f(m)
n

+
f(r)
n

≤ (s− 1)f(m)
n

+
Mm

n
.

Clearly, (s− 1)/n → 1/m as n →∞, and therefore,

lim sup
n→∞

f(n)
n

≤ f(m)
m

.

With this inequality holding for every m ≥ N , the proof is completed by
considering the infimum over m ≥ N .

The following observation is key to the application of sub-additivity.

Lemma 6.1.12 Let part (a) of Assumption 6.1.2 hold true. Then, for every
convex A ∈ BX , the function f(n)�=− log μn(A) is sub-additive.

Proof: Without loss of generality, it may be assumed that A ⊂ E . Now,

Ŝm+n =
m

m + n
Ŝm +

n

m + n
Ŝm

m+n .
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Therefore, Ŝm+n is a convex combination (with deterministic coefficients)
of the independent random variables Ŝm and Ŝm

m+n. Thus, by the convexity
of A,

{ω : Ŝm
m+n(ω) ∈ A} ∩ {ω : Ŝm(ω) ∈ A} ⊂ {ω : Ŝm+n(ω) ∈ A} .

Since, evidently,

μn+m({ω : Ŝm
m+n(ω) ∈ A}) = μn({ω : Ŝn(ω) ∈ A}) ,

it follows that
μn(A)μm(A) ≤ μn+m(A) , (6.1.13)

or alternatively, f(n) = − log μn(A) is sub-additive.

The last tool needed for the proof of Lemma 6.1.7 is the following lemma.

Lemma 6.1.14 Let part (a) of Assumption 6.1.2 hold true. If A ⊂ E is
(relatively) open and μm(A) > 0 for some m, then there exists an N < ∞
such that μn(A) > 0 for all n ≥ N .

Proof: Let A ⊂ E be a fixed open set and suppose that μm(A) > 0 for some
m < ∞. Since E is a Polish space, by Prohorov’s theorem (Theorem D.9),
any finite family of probability measures on E is tight. In particular, there
exists a compact K ⊂ E , such that μr(K) > 0, r = 1, . . . , m.

Suppose that every p ∈ A possesses a neighborhood Bp such that
μm(Bp) = 0. Because E has a countable base, there exists a countable
union of the sets Bp that covers A. This countable union of sets of μm

measure zero is also of μm measure zero, contradicting the assumption that
μm(A) > 0. Consequently, there exists a point p0 ∈ A such that every
neighborhood of p0 is of positive μm measure.

Consider the function f(a, p, q) = (1 − a)p + aq : [0, 1] × E × E → E .
(The range of f is in E , since E is convex.) Because E is equipped with the
topology induced by the real topological vector space X , f is a continuous
map with respect to the product topology on [0, 1] × E × E . Moreover, for
any q ∈ E , f(0, p0, q) = p0 ∈ A, and therefore, there exist εq > 0, and two
neighborhoods (in E), Wq of q and Uq of p0, such that

(1− ε)Uq + εWq ⊂ A, ∀ 0 ≤ ε ≤ εq .

The compact set K may be covered by a finite number of these Wq. Let
ε∗ > 0 be the minimum of the corresponding εq values, and let U denote the
finite intersection of the corresponding Uq. Clearly, U is a neighborhood of
p0, and by the preceding inequality,

(1− ε)U + εK ⊂ A, ∀ 0 ≤ ε ≤ ε∗ .
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Since E is convex and X is locally convex, U contains a convex neighborhood,
denoted V , of p0, and by the preceding set inclusion,

μn(A) ≥ μn( (1− ε)V + εK ) (6.1.15)

for n = 1, 2, . . . and for every 0 ≤ ε ≤ ε∗. Let N = m&1/ε∗' + 1 < ∞ and
represent each n ≥ N as n = ms + r with 1 ≤ r ≤ m. Since

Ŝn = (1− r

n
)Ŝms +

r

n
Ŝms

n ,

and by the choice of N , (6.1.15) holds for ε = r/n ≤ ε∗, it follows that

μn(A) ≥ μn({Ŝms ∈ V, Ŝms
n ∈ K})

= μn({Ŝms ∈ V })μn({Ŝms
n ∈ K})

≥ μms(V )μr(K) ,

where the independence of Ŝms and Ŝms
n has been used. Recall that K is

such that for r = 1, 2, . . . , m, μr(K) > 0, while V is a convex neighborhood
of p0. Hence, μm(V ) > 0, and by (6.1.13), μms(V ) ≥ μm(V )s > 0. Thus,
μn(A) > 0 for all n ≥ N .

Proof of Lemma 6.1.7: Fix an open, convex subset A ⊂ X . Since
μn(A) = μn(A ∩ E) for all n, either μn(A) = 0 for all n, in which case
LA = − limn→∞

1
n log μn(A) = ∞, or else the limit

LA = − lim
n→∞

1
n

log μn(A)

exists by Lemmas 6.1.11, 6.1.12, and 6.1.14.

Let Co denote the collection of all open, convex subsets of X . Define

I(x)
�
= sup{LA : x ∈ A, A ∈ Co} .

Applying Theorem 4.1.11 for the base Co of the topology of X , it follows
that μn satisfies the weak LDP with this rate function. To prove that I(·)
is convex, we shall apply Lemma 4.1.21. To this end, fix A1, A2 ∈ Co and
let A�

=(A1 + A2)/2. Then since (Ŝn + Ŝn
2n)/2 = Ŝ2n , it follows that

μn(A1)μn(A2) = μ2n({ω : Ŝn ∈ A1} ∩ {ω : Ŝn
2n ∈ A2}) ≤ μ2n(A) .

Thus, by taking n-limits, the convexity condition (4.1.22) is verified, namely,

lim sup
n→∞

1
n

log μn(A) ≥ lim sup
n→∞

1
2n

log μ2n(A) ≥ −1
2
(LA1 + LA2) .

With (4.1.22) established, Lemma 4.1.21 yields the convexity of I and the
proof is complete.
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Proof of Lemma 6.1.8: In the proof of Lemma 6.1.7, it is shown that
for any open, convex subset A ∈ Co, the limit LA = − limn→∞

1
n log μn(A)

exists, and by the large deviations lower bound LA ≤ infx∈A I(x). Conse-
quently, it suffices to show that for every A ∈ Co and all δ > 0,

inf
x∈A

I(x) ≤ LA + 2δ .

Fix A ∈ Co and δ > 0. Without loss of generality it may be assumed
LA < ∞. Then there exists an N ∈ ZZ+ such that

− 1
N

log μN (A ∩ E) = − 1
N

log μN (A) ≤ LA + δ < ∞ .

The relatively open set A∩E can be made into a Polish space in the topology
induced by E . Hence, by Theorem D.7, there exists a compact set C ⊂ A∩E
such that

− 1
N

log μN (C) ≤ − 1
N

log μN (A) + δ ≤ LA + 2δ .

Since A is an open subset of the locally convex (regular) space X , for every
x ∈ A there exists a convex neighborhood Bx such that Bx ⊂ A. The
compact set C may thus be covered by a finite number of such neighborhoods
{Bi}, i = 1, . . . , k. By Assumption 6.1.2, co(C) is compact. Since Bi are
convex, the set

C̃
�
=

k⋃

i=1

(Bi ∩ co(C)) = co(C) ∩ (
k⋃

i=1

Bi) ,

is a finite union of compact convex sets that contains C. Hence, K�
=co(C̃)

contains C and is a closed subset of both A and co(C). Consequently, K is
a convex and compact set which satisfies

− 1
N

log μN (K) ≤ − 1
N

log μN (C) ≤ LA + 2δ .

Since K is convex, the function g(n) = − log μn(K) is sub-additive. Thus,

− lim sup
n→∞

1
n

log μn(K) ≤ lim inf
n→∞

[

− 1
nN

log μnN (K)
]

≤ − 1
N

log μN (K) ≤ LA + 2δ .

The weak LDP upper bound applied to the compact set K ⊂ A yields

inf
x∈A

I(x) ≤ inf
x∈K

I(x) ≤ − lim sup
n→∞

1
n

log μn(K) ,

and the proof is completed by combining the preceding two inequalities.
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Exercise 6.1.16 (a) Prove that (6.1.4) holds for any finite union of open
convex sets.
(b) Construct a probability measure μ ∈ M1(IRd) and K ⊂ IRd compact and
convex such that

lim sup
n→∞

1
n

log μn(K) > lim inf
n→∞

1
n

log μn(K) .

Exercise 6.1.17 A function f : ZZ+ → [0,∞] is Δ sub-additive if, for all n
large enough, f(n) < ∞, and moreover, there exists a function k : ZZ+ → [0,∞]
such that k(n)/n → 0, and for all n, m ∈ ZZ+,

f(n + m) ≤ f(n) + f(m) + k(n ∧m) .

Prove that limn→∞ f(n)/n exists for Δ sub-additive functions.

Exercise 6.1.18 Prove that Lemma 6.1.7 holds when Xi are dependent ran-
dom variables in E that satisfy the following (very strong) mixing property: for
any n, m ∈ ZZ+ and any A, B ∈ BE ,

P(Ŝm ∈ A, Ŝm
m+n ∈ B) ≥ k(m, n)P(Ŝm ∈ A)P(Ŝn ∈ B) ,

where | log k(m, n)|/(m ∧ n) −→
(m∧n)→∞

0 and is independent of A and of B.

Hint: See Exercise 6.1.17.

Exercise 6.1.19 Let (w1
t , w2

t , . . . , wn
t , . . .) be i.i.d. random variables taking

values in C0([0, 1]), each distributed according to the Wiener measure (i.e., wi
·

are independent standard Brownian motions). Note that the measure μn on
C0([0, 1]) defined by Ŝn = (w1

t +w2
t + · · ·+wn

t )/n is the same as the measure
of
√

εw1
t for ε = 1/n. This observation is used here to derive Schilder’s theorem

as a consequence of Theorem 6.1.3.
(a) Prove that μn are exponentially tight.
Hint: Use the compact sets

Kα = {φ ∈ C0([0, 1]) : sup
0≤s<t≤1

|φ(t)− φ(s)|
|t− s|1/4

≤ α} ,

and apply Borell’s inequality (5.2.15).
(b) Check that

Iw(φ) =
{

1
2

∫ 1

0
φ̇2(t) dt , φ ∈ H1

∞ , otherwise

is a convex, good rate function on C([0, 1]), and moreover, for every bounded
Borel measure ν on [0, 1],

sup
φ∈C([0,1])

{∫ 1

0

φ(t)ν(dt)− Iw(φ)
}

=
1
2

∫ 1

0

|ν((s, 1])|2ds
�
=Λ(ν) .
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(c) Verify that

Λ(ν) =
1
2

∫ 1

0

∫ 1

0

(t ∧ s) ν(dt)ν(ds)

is the limiting logarithmic moment generating function associated with {μn},
and apply the duality lemma (Lemma 4.5.8) to conclude that Iw(·) = Λ∗(·).
(Recall that, by Riesz’s representation theorem, the topological dual of C([0, 1])
is the space of all bounded Borel measures on [0, 1]).
(d) Complete the proof of Schilder’s theorem (Theorem 5.2.3).

6.2 Sanov’s Theorem

This section is about the large deviations of the empirical law of a sequence
of i.i.d. random variables; namely, let Σ be a Polish space and let Y1, . . . , Yn

be a sequence of independent, Σ-valued random variables, identically dis-
tributed according to μ ∈ M1(Σ), where M1(Σ) denotes the space of (Borel)
probability measures on Σ. With δy denoting the probability measure de-
generate at y ∈ Σ, the empirical law of Y1, . . . , Yn is

LY
n

�
=

1
n

n∑

i=1

δYi ∈ M1(Σ) . (6.2.1)

Sanov’s theorem about the large deviations of LY
n is proved in Theorem

2.1.10 for a finite set Σ. Here, the general case is considered. The derivation
follows two different approaches: first, the LDP with respect to the weak
topology is deduced, based on Cramér’s theorem (Theorem 6.1.3), and then,
independently, the LDP is derived by using the projective limit approach of
Section 4.6. The latter yields the LDP with respect to a somewhat stronger
topology (the τ -topology). A third derivation based on the direct change of
measure argument of Section 4.5.3 is outlined in Exercise 6.2.20.

To set up the framework for applying the results of Section 6.1, let Xi =
δYi and observe that X1, . . . , Xn are i.i.d. random variables taking values
in the real vector space M(Σ) of finite (signed) measures on Σ. Moreover,
the empirical mean of X1, . . . , Xn is LY

n and belongs to M1(Σ), which is a
convex subset of M(Σ). Hence, our program is to equip X = M(Σ) with an
appropriate topology and M1(Σ) = E with the relative topology induced by
X , so that all the assumptions of Cramér’s theorem (Theorem 6.1.3) hold
and a weak LDP for LY

n (in E) follows. A full LDP is then deduced by
proving that the laws of LY

n are exponentially tight in E , and an explicit
formula for the rate function in terms of relative entropy is derived by an
auxiliary argument.
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To this end, let Cb(Σ) denote the collection of bounded continuous
functions φ : Σ → IR, equipped with the supremum norm, i.e., ‖φ‖ =
supx∈Σ |φ(x)|. Equip M(Σ) with the weak topology generated by the sets
{Uφ,x,δ , φ ∈ Cb(Σ), x ∈ IR, δ > 0}, where

Uφ,x,δ
�
={ν ∈ M(Σ) : |〈φ, ν〉 − x| < δ} , (6.2.2)

and throughout, 〈φ, ν〉�=
∫
Σ

φdν for any φ ∈ Cb(Σ) and any ν ∈ M(Σ). The
Borel σ-field generated by the weak topology is denoted Bw.

Since the collection of linear functionals {ν �→ 〈φ, ν〉 : φ ∈ Cb(Σ)} is
separating in M(Σ), by Theorem B.8 this topology makes M(Σ) into a
locally convex, Hausdorff topological vector space, whose topological dual is
the preceding collection, hereafter identified with Cb(Σ). Moreover, M1(Σ)
is a closed subset of M(Σ), and M1(Σ) is a Polish space when endowed
with the relative topology and the Lévy metric. (See Appendix D for some
properties of M1(Σ) and for the definition of the Lévy metric.) Note that
the topology thus induced on M1(Σ) corresponds to the weak convergence
of probability measures, and that the Lévy metric satisfies the convexity
condition (6.1.5).

The preceding discussion leads to the following immediate corollary of
Theorem 6.1.3.

Corollary 6.2.3 The empirical measures LY
n satisfy a weak LDP in M1(Σ)

(equipped with the weak topology and B = Bw) with the convex rate function

Λ∗(ν) = sup
φ∈Cb(Σ)

{〈φ, ν〉 − Λ(φ)}, ν ∈ M1(Σ) , (6.2.4)

where for φ ∈ Cb(Σ),

Λ(φ)
�
= log E[e〈φ,δY1 〉] = log E[eφ(Y1)] = log

∫

Σ

eφdμ . (6.2.5)

The strengthening of the preceding corollary to a full LDP with a good rate
function Λ∗(·) is accomplished by

Lemma 6.2.6 The laws of LY
n of (6.2.1) are exponentially tight.

Proof: Note that, by Theorem D.7, μ ∈ M1(Σ) is tight, and in particular,
there exist compact sets Γ� ⊂ Σ, � = 1, 2, . . . such that

μ(Γc
�) ≤ e−2�2(e� − 1) . (6.2.7)

The set of measures

K� =
{

ν : ν(Γ�) ≥ 1− 1
�

}
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is closed, since, for any sequence {νn} that converges weakly in M1(Σ),
lim infn→∞ νn(Γ�) ≤ ν(Γ�) by the Portmanteau theorem (Theorem D.10).
For L = 1, 2, . . . define

KL
�
=

∞⋂

�=L

K� .

Since ν(Γ�) ≥ 1 − 1
� for every � ≥ L, and every ν ∈ KL, by Prohorov’s

theorem (Theorem D.9), each KL is a compact subset of M1(Σ). Now, by
Chebycheff’s bound,

P(LY
n /∈ K�) = P

(

LY
n (Γc

�) >
1
�

)

≤ E

[

e
2n�2

(
LY

n (Γc
�)− 1

�

)]

= e−2n�E
[
exp

(
2�2

n∑

i=1

1Yi∈Γc
�

)]

= e−2n�E
[
exp(2�21Y1∈Γc

�
)
]n

= e−2n�
(
μ(Γ�) + e2�2μ(Γc

�)
)n

≤ e−n� ,

where the last inequality is based on (6.2.7). Hence, using the union of
events bound,

P(LY
n /∈ KL) ≤

∞∑

�=L

P(LY
n /∈ K�) ≤

∞∑

�=L

e−n� ≤ 2e−nL ,

implying that

lim sup
n→∞

1
n

log P(LY
n ∈ Kc

L) ≤ −L .

Thus, the laws of LY
n are exponentially tight.

Define the relative entropy of the probability measure ν with respect to
μ ∈ M1(Σ) as

H(ν|μ)
�
=
{ ∫

Σ
f log fdμ if f�

=
dν
dμ exists

∞ otherwise ,
(6.2.8)

where dν/dμ stands for the Radon-Nikodym derivative of ν with respect to
μ when it exists.

Remark: The function H(ν|μ) is also referred to as Kullback-Leibler dis-
tance or divergence in the literature. It is worth noting that although
H(ν|μ) is called a distance, it is not a metric, for H(ν|μ) 
= H(μ|ν). More-
over, even the symmetric sum (H(ν|μ) + H(μ|ν))/2 does not satisfy the
triangle inequality.
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In view of Sanov’s theorem (Theorem 2.1.10) for finite Σ, H(·|μ) is
expected to be the rate function for the LDP associated with LY

n . This
amounts to proving that Λ∗(·) = H(·|μ). Since this identification of Λ∗ is
also instrumental for establishing the LDP for LY

n under stronger topologies
on M1(Σ), it will be postponed until Lemma 6.2.13, where a more general
setup is considered.

In the rest of this section, the LDP is established in a stronger topology
on M1(Σ) than the preceding one, namely, in the τ -topology. The latter is
the topology generated by the collection

Wφ,x,δ
�
={ν ∈ M1(Σ) : |〈φ, ν〉 − x| < δ} , (6.2.9)

where x ∈ IR, δ > 0 and φ ∈ B(Σ) – the vector space of all bounded, Borel
measurable functions on Σ. Indeed, the collection {Uφ,x,δ} is a subset of
the collection {Wφ,x,δ}, and hence the τ -topology is finer (stronger) than
the weak topology. Unfortunately, M1(Σ) equipped with the τ -topology
is neither metrizable nor separable, and thus the results of Section 6.1 do
not apply directly. Moreover, the map δy : Σ → M1(Σ) need not be a
measurable map from BΣ to the Borel σ-field induced by the τ -topology.
Similarly, n−1Σn

i=1δyi need not be a measurable map from (BΣ)n to the
latter σ-field. Thus, a somewhat smaller σ-field will be used.

Definition: For any φ ∈ B(Σ), let pφ : M1(Σ) → IR be defined by
pφ(ν) = 〈φ, ν〉 =

∫
Σ

φdν. The cylinder σ-field on M1(Σ), denoted Bcy,
is the smallest σ-field that makes all {pφ} measurable.

It is obvious that LY
n is measurable with respect to Bcy. Moreover, since

the weak topology makes M1(Σ) into a Polish space, Bw is the cylinder
σ-field generated by Cb(Σ), and as such it equals Bcy. (For details, see
Exercise 6.2.18.)

We next present a derivation of the LDP based on a projective limit
approach, which may also be viewed as an alternative to the proof of Sanov’s
theorem for the weak topology via Cramér’s theorem.

Theorem 6.2.10 (Sanov) Let B = Bcy. The empirical measures LY
n sat-

isfy the LDP (1.2.4) in M1(Σ) equipped with the τ -topology (and hence, also
in the weak topology) with the good, convex rate function H(·|μ).

A few definitions and preliminary lemmas are presented first, culminating
with the proof of this theorem. Let X denote the algebraic dual of B(Σ)
equipped with the B(Σ)-topology. Observe that X satisfies Assumption
4.6.7. Moreover, identifying probability measures with points in X via the
map 〈φ, ν〉 =

∫
Σ

φdν, it follows that the τ -topology is the relative topology
induced on M1(Σ) by X . However, M1(Σ) is neither an open nor a closed
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subset of X . The definition (6.2.5) of Λ(φ) extends to φ ∈ B(Σ) in the
obvious way, namely, Λ(φ) = log

∫
Σ

eφdμ for all φ ∈ B(Σ). Define now
Λ∗ : X → [0,∞] via

Λ∗(ω) = sup
φ∈B(Σ)

{〈φ, ω〉 − Λ(φ)}, ω ∈ X , (6.2.11)

where 〈φ, ω〉 is the value of the linear functional ω : B(Σ) → IR at the point
φ. Note that the preceding definition, motivated by the definition used in
Section 4.6, may in principle yield a function that is different from the one
defined in (6.2.4). This is not the case (c.f. Lemma 6.2.13), and thus, with
a slight abuse of notation, Λ∗ denotes both functions.

Lemma 6.2.12 Extend H(·|μ) to X by setting H(·|μ) = ∞ outside M1(Σ).
Then H(·|μ) is a convex, good rate function on X , and for all α < ∞, H(·|μ)
is strictly convex on the compact, convex sets {ν : H(ν|μ) ≤ α}.

The proof of this lemma is deferred to the end of the section. The following
identification of the rate function Λ∗(·) is a consequence of Lemma 6.2.12
and the duality lemma (Lemma 4.5.8).

Lemma 6.2.13 The identity H(·|μ) = Λ∗(·) holds over X . Moreover, the
definitions (6.2.11) and (6.2.4) yield the same function over M1(Σ).

Proof: Observe that X is, by Theorem B.8, a locally convex Hausdorff
topological vector space whose (topological) dual X ∗ is B(Σ). By combining
Lemma 6.2.12 with the duality lemma (Lemma 4.5.8) (for f = H(·|μ)), the
identity H(·|μ) = Λ∗(·) is obtained if for all φ ∈ B(Σ),

Λ(φ) = sup
ω∈X

{〈φ, ω〉 −H(ω|μ)} . (6.2.14)

Note that H(ω|μ) < ∞ only for ω ∈ M1(Σ) with density f with respect to
μ, in which case H(ω|μ) =

∫
Σ

f log fdμ. Therefore, (6.2.14) is just

log
∫

Σ

eφdμ = sup
f∈L1(μ), f≥0 μ−a.e. ,

∫
Σ

fdμ=1

{∫

Σ

φfdμ−
∫

Σ

f log fdμ

}

.

(6.2.15)
Choosing f = eφ/

∫
Σ

eφdμ, it can easily be checked that the left side in
(6.2.15) can not exceed the right side. On the other hand, for any f ≥ 0
such that

∫
Σ

fdμ = 1, by Jensen’s inequality,

log
∫

Σ

eφdμ ≥ log
∫

Σ

1{f>0}
eφ

f
fdμ ≥

∫

Σ

1{f>0} log(eφ/f)fdμ ,
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and the proof of (6.2.15) is complete.

Fix ν ∈ M1(Σ), φ ∈ B(Σ) and recall that there exist φn ∈ Cb(Σ) such
that φn → φ both in L1(μ) and in L1(ν). A uniformly bounded sequence
of such approximations results by truncating each φn to the bounded range
of φ. Consequently, there exists a sequence {φn} ⊂ Cb(Σ) such that

lim
n→∞

[∫

Σ

φndν − log
∫

Σ

eφndμ

]

=
∫

Σ

φdν − log
∫

Σ

eφdμ .

Since ν ∈ M1(Σ) and φ ∈ B(Σ) are arbitrary, the definitions (6.2.4) and
(6.2.11) coincide over M1(Σ).

An important consequence of Lemma 6.2.13 is the “obvious fact” that
DΛ∗ ⊂ M1(Σ) (i.e., Λ∗(ω) = ∞ for ω ∈ M1(Σ)c), allowing for the applica-
tion of the projective limit approach.

Proof of Theorem 6.2.10: The proof is based on applying part (a) of
Corollary 4.6.11 for the sequence of random variables {LY

n }, taking values
in the topological vector space X (with ε replaced here by 1/n). Indeed,
X satisfies Assumption 4.6.8 for W = B(Σ) and B = Bcy, and Λ(·) of
(4.6.12) is given here by Λ(φ) = log

∫
Σ

eφdμ. Note that this function is
finite everywhere (in B(Σ)). Moreover, for every φ, ψ ∈ B(Σ), the function
Λ(φ + tψ) : IR → IR is differentiable at t = 0 with

d

dt
Λ(φ + tψ)

∣
∣
∣
t=0

=

∫
Σ

ψeφdμ
∫
Σ

eφdμ

(c.f. the statement and proof of part (c) of Lemma 2.2.5). Thus, Λ(·)
is Gateaux differentiable. Consequently, all the conditions of part (a) of
Corollary 4.6.11 are satisfied, and hence the sequence {LY

n } satisfies the
LDP in X with the convex, good rate function Λ∗(·) of (6.2.11). In view of
Lemma 6.2.13, this rate function is actually H(·|μ), and moreover, DΛ∗ ⊂
M1(Σ). Therefore, by Lemma 4.1.5, the same LDP holds in M1(Σ) when
equipped with the topology induced by X . As mentioned before, this is the
τ -topology, and the proof of the theorem is complete.

The next lemma implies Lemma 6.2.12 as a special case.

Lemma 6.2.16 Suppose γ is a convex, good rate function on IR such that
γ(x)/|x| → ∞ for |x| → ∞. Then,

Iγ(ν)
�
=
{ ∫

Σ
γ(f)dμ if f�

=
dν
dμ exists

∞ otherwise ,

is a convex, good rate function on M(Σ) equipped with the B(Σ)-topology.
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Proof: Since γ(·) ≥ 0, also Iγ(·) ≥ 0. Fix an α < ∞ and consider the set

ΨI(α)
�
={f ∈ L1(μ) :

∫

Σ

γ(f)dμ ≤ α} .

Assume fn ∈ ΨI(α) and fn → f in L1(μ). Passing to a subsequence along
which fn → f μ-a.e, by Fatou’s lemma and lower semicontinuity of γ, also

α ≥ lim inf
n→∞

∫

Σ

γ(fn)dμ ≥
∫

Σ

(lim inf
n→∞

γ(fn))dμ ≥
∫

Σ

γ(f)dμ .

Consequently, the convex set ΨI(α) is closed in L1(μ), and hence also
weakly closed in L1(μ) (see Theorem B.9). Since ΨI(α) is a uniformly
integrable, bounded subset of L1(μ), by Theorem C.7, it is weakly se-
quentially compact in L1(μ), and by the Eberlein–Šmulian theorem (The-
orem B.12), also weakly compact in L1(μ). The mapping ν �→ dν/dμ is
a homeomorphism between the level set {ν : Iγ(ν) ≤ α}, equipped with
the B(Σ)-topology, and ΨI(α), equipped with the weak topology of L1(μ).
Therefore, all level sets of Iγ(·), being the image of ΨI(α) under this home-
omorphism, are compact. Fix ν1 
= ν2 such that Iγ(νj) ≤ α. Then, there
exist fj ∈ L1(μ), distinct μ-a.e., such that for all t ∈ [0, 1],

Iγ(tν1 + (1− t)ν2) =
∫

Σ

γ(tf1 + (1− t)f2)dμ ,

and by the convexity of γ(·)

Iγ(tν1 + (1− t)ν2) ≤ tIγ(ν1) + (1− t)Iγ(ν2) .

Hence, Iγ(·) is a convex function, since all its level sets are convex.

Proof of Lemma 6.2.12: Consider the good rate function γ(x) = x log x−
x + 1 when x ≥ 0, and γ(x) = ∞ otherwise. Since

{ω : H(ω|μ) ≤ α} = {ν ∈ M(Σ) : Iγ(ν) ≤ α}
⋂

M1(Σ) ,

all level sets of H(·|μ) are convex, compact subsets of M(Σ) ⊂ X . To
complete the proof of Lemma 6.2.12 note that the strict convexity of γ(x)
on [0,∞) implies the strict convexity of H(·|μ) on its level sets.

Exercise 6.2.17 Prove that H(ν|μ) ≥ 1
2 ‖ ν − μ ‖2var, where

‖ m ‖var
�
= sup

u∈B(Σ),||u||≤1

〈u,m〉
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denotes the variational norm of m ∈ M(Σ).
Hint: (a) Applying Jensen’s inequality to the convex function x log x, show
that for every ν, μ ∈ M1(Σ) and every measurable A ⊂ Σ,

H(ν|μ) ≥ ν(A) log
ν(A)
μ(A)

+ (1− ν(A)) log
1− ν(A)
1− μ(A)

≥ 2(ν(A)− μ(A))2 .

(b) Show that whenever dν/dμ = f exists, ‖ ν − μ ‖var= 2(ν(A)− μ(A)) for
A = {x : f(x) ≥ 1}.
Exercise 6.2.18 [From [BolS89], Lemma 2.1.]
Prove that on Polish spaces, Bw = Bcy.

Exercise 6.2.19 In this exercise, the non-asymptotic upper bound of part
(b) of Exercise 4.5.5 is specialized to the setup of Sanov’s theorem in the weak
topology. This is done based on the computation of the metric entropy of
M1(Σ) with respect to the Lévy metric. (See Theorem D.8.) Throughout this
exercise, Σ is a compact metric space, whose metric entropy is denoted by
m(Σ, δ), i.e., m(Σ, δ) is the minimal number of balls of radius δ that cover Σ.
(a) Use a net in Σ of size m(Σ, δ) corresponding to the centers of the balls
in such a cover. Show that any probability measure in M1(Σ) may be ap-
proximated to within δ in the Lévy metric by a weighted sum of atoms lo-
cated on this net, with weights that are integer multiples of 1/K(δ), where
K(δ) = &m(Σ, δ)/δ'. Check that the number of such combinations with
weights in the simplex (i.e., are nonnegative and sum to one) is

(
K(δ) + m(Σ, δ)− 1

K(δ)

)

,

and show that

m(M1(Σ), δ) ≤
(

4
δ

)m(Σ,δ)

,

where m(M1(Σ), δ) denotes the minimal number of balls of radius δ (in the
Lévy metric) that cover M1(Σ).
Remark: This bound is quite tight. (For details, see [ZK95].)
(b) Check that for every n ∈ ZZ+ and every measurable A ⊂ M1(Σ), part (b)
of Exercise 4.5.5 specializes to the upper bound

P(LY
n ∈ A) ≤ inf

δ>0

{
m(M1(Σ), δ) exp

(
−n inf

ν∈Aδ
H(ν|μ)

) }
,

where Aδ is the closed δ-blowup of A with respect to the Lévy metric.

Exercise 6.2.20 In this exercise, an alternative derivation of Sanov’s theorem
in the weak topology is provided based on Baldi’s theorem (Theorem 4.5.20).
(a) Suppose that ν is such that f = dν/dμ exists, f ∈ Cb(Σ), and f is
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bounded away from zero. Use Lemma 6.2.13 to prove that ν is an exposed
point of the function Λ∗(·) of (6.2.4), with λ = log f ∈ Cb(Σ) being the
exposing hyperplane.
Hint: Observe that H(ν̃|μ)− 〈λ, ν̃〉 =

∫
Σ

g log(g/f)dμ ≥ 0 if H(ν̃|μ) < ∞,
where g = dν̃/dμ.
(b) Show that the continuous, bounded away from zero and infinity μ-densities
are dense in {f ∈ L1(μ) : f ≥ 0 μ − a.e.,

∫
Σ

fdμ = 1,
∫
Σ

f log fdμ ≤ α}
for any α < ∞. Conclude that (4.5.22) holds for any open set G ⊂ M1(Σ).
Complete the proof of Sanov’s theorem by applying Lemma 6.2.6 and Theorem
4.5.20.

Exercise 6.2.21 In this exercise, the compact sets KL constructed in the
proof of Lemma 6.2.6 are used to prove a version of Cramér’s theorem in
separable Banach spaces. Let X1, X2, . . . , Xn be a sequence of i.i.d. random
variables taking values in a separable Banach space X , with each Xi distributed
according to μ ∈ M1(X ). Let μn denote the law of Ŝn = 1

n

∑n
i=1 Xi. Since

X is a Polish space, by Theorem 6.1.3, {μn}, as soon as it is exponentially
tight, satisfies in X the LDP with the good rate function Λ∗(·). Assume that
for all α < ∞,

g(α)
�
= log

∫

X
eα‖x‖μ(dx) < ∞ ,

where ‖ · ‖ denotes the norm of X . Let Qn denote the law of LX
n =

n−1
∑n

i=1 δXi , and define

ΓL = {ν :
∫

X
g∗(‖ x ‖)ν(dx) ≤ L}, L ∈ [0,∞) ,

where g∗(·) is the Fenchel–Legendre transform of g(·).
(a) Recall that by (5.1.16),

∫
X eδg∗(‖x‖)μ(dx) ≤ 2/(1− δ) for all δ < 1. Using

this and Chebycheff’s inequality, conclude that, for all δ < 1,

Qn(Γc
L) ≤

(
2

1− δ

)n

e−nδL . (6.2.22)

(b) Define the mean of ν, denoted m(ν), as the unique element m(ν) ∈ X
such that, for all λ ∈ X ∗,

〈λ, m(ν)〉 =
∫

X
〈λ, x〉 ν(dx) .

Show that m(ν) exists for every ν ∈ M1(X ) such that
∫
X ‖ x ‖ dν < ∞.

Hint: Let {A(n)
i }∞i=1 be partitions of X by sets of diameter at most 1/n,

such that the nth partition is a refinement of the (n − 1)st partition. Show

that mn =
∑∞

i=1 x
(n)
i ν(A(n)

i ) is a well-defined Cauchy sequence as long as
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x
(n)
i ∈ A

(n)
i , and let m(ν) be the limit of one such sequence.

(c) Prove that m(ν) is continuous with respect to the weak topology on the
closed set ΓL.
Hint: That ΓL is closed follows from Theorem D.12. Let νn ∈ ΓL converge
to ν ∈ ΓL. Let hr : IR → [0, 1] be a continuous function such that hr(z) = 1
for all z ≤ r and hr(z) = 0 for all z ≥ r + 1. Then

‖ m(νn)−m(ν) ‖= sup
λ∈X∗,‖λ‖X∗≤1

{〈λ,m(νn)〉 − 〈λ,m(ν)〉}

≤
[∫

‖x‖≥r

‖ x ‖ νn(dx) +
∫

‖x‖≥r

‖ x ‖ ν(dx)
]

+ sup
‖λ‖X∗≤1

{∫

X
〈λ, x〉hr(‖ x ‖)νn(dx)−

∫

X
〈λ, x〉hr(‖ x ‖)ν(dx)

}
.

(6.2.23)

Use Theorem D.11 to conclude that, for each r fixed, the second term in
(6.2.23) converges to 0 as n → ∞. Show that the first term in (6.2.23) may
be made arbitrarily small by an appropriate choice of r, since by Lemma 2.2.20,
limr→∞(g∗(r)/r) = ∞.
(d) Let KL be the compact subsets of M1(X ) constructed in Lemma 6.2.6.
Define the following subsets of X ,

CL
�
={m(ν) : ν ∈ KL

⋂
Γ2L} .

Using (c), show that CL is a compact subset of X . Complete the proof of the
exponential tightness using (6.2.22).

Exercise 6.2.24 [From [EicG98].]
This exercise demonstrates that exponential tightness (or in fact, tightness)
might not hold in the context of Sanov’s theorem for the τ -topology. Through-
out, Σ denotes a Polish space.
(a) Suppose K ⊂ M1(Σ) is compact in the τ -topology (hence, compact also
in the weak topology). Show that K is τ -sequentially compact.
(b) Prove that for all ε > 0, there exist δ > 0 and a probability measure
νε ∈ M1(Σ) such that for any Γ ∈ BΣ,

νε(Γ) < δ =⇒ μ(Γ) < ε, ∀μ ∈ K .

Hint: Assume otherwise, and for some ε > 0 construct a sequence of sets
Γ� ∈ BΣ and probability measures μ� ∈ K such that μj(Γ�) < 2−�, j =
1, . . . , �, and μ�+1(Γ�) > ε. Let ν�

=
∑∞

�=1 2−�μ� so that each μ� is absolutely
continuous with respect to ν, and check that ν(Γn) → 0 as n → ∞. Pass to
a subsequence μ�i , i = 1, 2, . . ., that converges in the τ -topology, and recall
the Vitali-Hahn-Saks theorem [DunS58, Theorem III.7.2]: ν(Γn) →n→∞ 0
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implies that supi μ�i(Γn) → 0 as n → ∞, a contradiction to the fact that
μn+1(Γn) > ε for all n.
(c) Let Atm(ν) denote the set of atoms of a measure ν. Prove that the set
AK

�
= ∪ν∈K Atm(ν) is at most countable.

Hint: Show that any ν ∈ K is absolutely continuous with respect to the
probability measure

∑∞
k=1 2−kν1/k.

(d) Let Y1, . . . , Yn be a sequence of independent random variables identically
distributed according to a probability measure μ that possesses no atoms. Show
that for any K ⊂ M1(Σ) compact in the τ -topolgy, and n = 1, 2, . . .,

P (LY
n ∈ K) ≤ P ({Y1, . . . , Yn} ⊆ AK) = 0 .

Exercise 6.2.25 [From [Scd98].]
The purpose of this exercise is to show that for any measurable φ : Σ → IR+

and any α ∈ (0,∞), the mapping

ν �→ pφ(ν) =
∫

Σ

φdν

is continuous on {ν : H(ν|μ) ≤ α} equipped with the topology induced by the
τ -topology (in short, is τ -continuous), if and only if

∫
Σ

exp(λφ)dμ < ∞ for all
λ ∈ IR+.
(a) Show that pφ(·) is τ -continuous on compact K ⊂ M1(Σ) if and only if
supν∈K pφ−φn(ν) → 0 as n →∞, where φn = φ ∧ n.
Hint: A uniform limit of τ -continuous functions on K compact is continuous.
(b) Show that for ψ : Σ → IR+ measurable, ν, μ ∈ M1(Σ) and λ > 0

λ−1 log
∫

Σ

eλψdμ + λ−1H(ν|μ) ≥
∫

Σ

ψdν . (6.2.26)

Fix α < ∞ and assume that
∫
Σ

exp(λφ)dμ < ∞ for all λ ∈ IR+. Show that
pφ is then τ -continuous on {ν : H(ν|μ) ≤ α}.
Hint: Apply (6.2.26) for ψ = φ− φn. Take n →∞ followed by λ →∞.
(c) Hereafter, let ψ = φm − φn for m ≥ n. Note that gm(λ)�=Λ(λψ) :
IR+ → IR+ is a convex, non-decreasing, C∞ function, such that gm(λ) →
g∞(λ)�=Λ(λ(φ − φn)) for m → ∞. For νm

λ ∈ M1(Σ) such that dνm
λ /dμ =

exp(λψ − Λ(λψ)), check that H(νm
λ |μ) = λg′m(λ) − gm(λ) is a continuous,

non-decreasing function on IR+, with H(νm
0 |μ) = 0.

(d) Suppose
∫
Σ

exp(λφ)dμ is finite for λ < λ∗ and infinite for λ > λ∗, some
λ∗ = λ∗(φ) ∈ (0,∞). Show that H(νm

λm
|μ) = α for some m = m(n) ≥ n and

λm = λm(n) ≤ 2λ∗.
Hint: λg′m(λ) ≥ 2(gm(λ)−gm(λ/2)) implies that H(νm

λ |μ) →∞ for m →∞
and λ ∈ (λ∗, 2λ∗).
(e) Since

∫
Σ

ψdνm
λ = Λ′(λψ) ≥ λ−1H(νm

λ |μ), for m ≥ n and λm ≤ 2λ∗ as in
part (d),

∫

Σ

(φ− φn)dνm
λm

≥
∫

Σ

ψdνm
λm

≥ λ−1
m α ≥ C−1α > 0.
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Conclude by part (a) that, then, pφ(ν) is not τ -continuous on the level set
{ν : H(ν|μ) ≤ α}.
(f) In case λ∗(φ) = 0, construct φ̂ ≤ φ for which λ∗(φ̂) > 0. By part (e),
pφ̂(·) is not τ -continuous on {ν : H(ν|μ) ≤ α}. Use part (a) to conclude that

pφ(·) cannot be τ -continuous on this set.

Exercise 6.2.27 In this exercise, Sanov’s theorem provides the LDP for U -
statistics and V -statistics.
(a) For Σ Polish and k ≥ 2 integer, show that the function μ �→ μk : M1(Σ) →
M1(Σk) is continuous when both spaces are equipped with the weak topology.
Hint: See Lemma 7.3.12.
(b) Let Y1, . . . , Yn be a sequence of i.i.d. Σ-valued random variables of law
μ ∈ M1(Σ). Fix k ≥ 2 and let n(k) = n!/(n − k)!. Show that Vn = (LY

n )k

and
Un = n−1

(k)

∑

1≤i1 �=···�=ik≤n

δYi1 ,...,Yik

satisfy the LDP in M1(Σk) equipped with the weak topology, with the good
rate function Ik(ν) = H(ν1|μ) for ν = νk

1 and Ik(ν) = ∞ otherwise.
Hint: Show that {Vn} and {Un} are exponentially equivalent.
(c) Show that the U -statistics n−1

(k)

∑
1≤i1 �=···�=ik≤n h(Yi1 , . . . , Yik

), and the V -

statistics n−k
∑

1≤i1,...,ik≤n h(Yi1 , . . . , Yik
), satisfy the LDP in IR when h ∈

Cb(Σk), with the good rate function I(x) = inf{H(ν|μ) :
∫

hdνk = x}.
Remark: Note that ν �→ νk is not continuous with respect to the τ -topology
(see Exercise 7.3.18). Using either projective limits or generalized exponential
approximations, [SeW97] and [EicS97] extend the results of parts (b) and (c) to
the τ -topology and even to unbounded h satisfying certain exponential moment
conditions.

Exercise 6.2.28 Let Iγ(·) be as in Lemma 6.2.16 with infx γ(x) < ∞. For
Σ = Σ1 × Σ2 the product of two Polish spaces, this exercise provides a dual
characterization of the existence of ν ∈ M(Σ) of specified marginals νi such
that Iγ(ν) < ∞.
(a) Check that for any φ ∈ Cb(Σ),

∫

γ∗(φ)dμ = sup
ν∈M(Σ)

(
∫

Σ

φdν − Iγ(ν) ) .

Hint: γ∗(φ) ∈ Cb(Σ).
(b) Let X = M(Σ1)×M(Σ2) equipped with the product of the corresponding
Cb-topologies, and p : M(Σ) → X denote the projection operator. Show that
I ′γ(ν1, ν2) = inf{Iγ(ν) : ν ∈ p−1(ν1, ν2)} is a convex, good rate function on
the space X .
Hint: Use Lemma 6.2.16 and part (a) of Theorem 4.2.1.



272 6. The LDP for Abstract Empirical Measures

(c) Let Y = {φ(y1, y2) = φ1(y1) + φ2(y2) : φi ∈ Cb(Σi), i = 1, 2}. Note
that the Y topology of X coincides with the original one, hence Y = X ∗ by
Theorem B.8, and that Y is a subset of Cb(Σ). Show that for every φ ∈ Y ,

∫

Σ

γ∗(φ)dμ = sup
(ν1,ν2)∈X

(
∫

Σ1

φ1dν1 +
∫

Σ2

φ2dν2 − I ′γ(ν1, ν2)
)

,

and conclude by the duality lemma (Lemma 4.5.8) that for any νi ∈ M(Σi),
i = 1, 2

I ′γ(ν1, ν2) = sup
φ∈X∗

(
∫

Σ1

φ1dν1 +
∫

Σ2

φ2dν2 −
∫

Σ

γ∗(φ)dμ
)

.

6.3 LDP for the Empirical Measure—The
Uniform Markov Case

This section presents a quick derivation, based on sub-additivity, of the LDP
for a class of Markov chains that satisfy some strong uniformity conditions.
The identification of the rate function is postponed to Section 6.5. The
reader interested in the LDP for the class of Markov chains discussed here
may skip directly to Theorem 6.5.4 after having read this section.

The results derived here are in the setup of discrete time Markov chains.
The extension to continuous time is technically more involved but follows
the same ideas, and the reader is referred to [DeuS89b] for the details.
Alternatively the continuous time case can be handled by adapting the
approach of Exercise 4.2.28.

Let Σ be a Polish space, and let M1(Σ) denote the space of Borel proba-
bility measures on Σ equipped with the Lévy metric, making it into a Polish
space with convergence compatible with the weak convergence. M(Σ) is the
space of (signed) finite measures equipped with the weak convergence, which
makes it into a locally convex Hausdorff topological vector space. Let π(σ, ·)
be a transition probability measure, i.e., for all σ ∈ Σ, π(σ, ·) ∈ M1(Σ). For
any n ≥ 1, define the measure Pn,σ ∈ M1(Σn) as the measure which assigns
to any Borel measurable set Γ ⊂ Σn the value

Pn,σ(Γ) =
∫

Γ

n−1∏

i=1

π(xi, dxi+1)π(σ, dx1) .

Remark: As in Section 6.1, let Ω = ΣZZ+ be the space of semi-infinite
sequences with values in Σ, equipped with the product topology, and denote
by Yn the coordinates in the sequence, i.e., Yn(ω0, ω1, . . . , ωn, . . .) = ωn. Ω
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is a Polish space and its Borel σ-field is precisely (BΣ)ZZ+ . Let Fn denote the
σ-field generated by {Ym, 0 ≤ m ≤ n}. A measure Pσ on Ω can be uniquely
constructed by the relations Pσ(Y0 = σ) = 1, Pσ(Yn+1 ∈ Γ|Fn) = π(Yn, Γ),
a.s. Pσ for every Γ ∈ BΣ and every n ∈ ZZ+. It follows that the restriction
of Pσ to the first n + 1 coordinates of Ω is precisely Pn,σ.

Define the (random) probability measure

LY
n

�
=

1
n

n∑

i=1

δYi ∈ M1(Σ) ,

and denote by μn,σ the probability distribution of the M1(Σ)-valued random
variable LY

n . We derive the LDP for μn,σ, which, obviously, may also lead
by contraction to the LDP for the empirical mean.

In analogy with Section 6.1, define

LY,m
n =

1
n−m

n∑

i=m+1

δYi .

The following is the first step towards the application of sub-additivity.

Lemma 6.3.1 Let A ∈ BM(Σ) be convex. Define

μ̃n(A)
�
= inf

σ∈Σ
μn,σ(A) .

Then μ̃n(A) is super multiplicative, i.e.,

μ̃n+m(A) ≥ μ̃n(A)μ̃m(A) .

Proof: Note that

μn+m,σ(A) = Pσ(LY
n+m ∈ A) ≥ Pσ(LY

n ∈ A , LY,n
n+m ∈ A)

=
∫

Σn

1{LY
n ∈A}μm,Yn(A) dPn,σ ≥ μn,σ(A) inf

σ̃∈Σ
μm,σ̃(A)

≥ μ̃n(A)μ̃m(A) , (6.3.2)

where the first inequality follows from convexity.

Another ingredient needed for the applicability of the sub-additivity lemma
(Lemma 6.1.11) is the requirement that if μ̃m(A) > 0 for some finite m,
then μ̃n(A) > 0 for all n large enough. Unlike the i.i.d. case, this can not be
proven directly for all open sets (or even for all open, convex sets), and some
smoothing procedure is called for. In order to carry through this program,
consider the sets

Uf,x,δ = {ν ∈ M(Σ) : |〈f, ν〉 − x| < δ} ,
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where f ∈ Cb(Σ), x ∈ IR, and δ > 0. Finite intersections of these sets
are convex and by definition they form a base for the topology of weak
convergence on M(Σ). Let Θ denote this base. With a slight abuse of
notations, denote by Aδ an arbitrary set from Θ, i.e., Aδ = ∩N

i=1Ufi,xi,δi ,
and by Aδ/2 the set ∩N

i=1Ufi,xi,δi/2. The reason for the introduction of these
notations lies in the following lemma.

Lemma 6.3.3 For any Aδ ∈ Θ, either

μ̃n(Aδ/2) = 0 , ∀n ∈ ZZ+ ,

or
μ̃n(Aδ) > 0, ∀n ≥ n0(Aδ) .

Proof: Let Aδ = ∩N
i=1Ufi,xi,δi . Assume that μ̃m(Aδ/2) > 0 for some m.

For any n ≥ m, let qn = [n/m], rn = n− qnm. Then

μn,σ(Aδ) ≥ Pσ(LY,rn
n ∈ Aδ/2 and

|〈fi, L
Y
n 〉 − 〈fi, L

Y,rn
n 〉| < δi

2
, i = 1, . . . , N) .

However,

〈fi, L
Y
n 〉 − 〈fi, L

Y,rn
n 〉 =

1
n

n∑

k=1

fi(Yk)− 1
qnm

n∑

k=rn+1

fi(Yk)

=
1
n

rn∑

k=1

fi(Yk) +
qnm− n

nqnm

n∑

k=rn+1

fi(Yk) .

Therefore,

|〈fi, L
Y
n 〉 − 〈fi, L

Y,rn
n 〉| ≤ 2

rn

n
||fi|| ≤ 2

m

n
||fi|| ,

and thus, for n > 4m
N

max
i=1

{||fi||/δi},

μn,σ(Aδ) ≥ Pσ(LY,rn
n ∈ Aδ/2) ≥ μ̃qnm(Aδ/2) ≥

[
μ̃m(Aδ/2)

]qn
> 0 ,

where the last inequality is due to Lemma 6.3.1. The arbitrariness of σ
completes the proof.

Define

Θ′�={Aδ ∈ Θ: μ̃m(Aδ/2) > 0 for some m, or μ̃n(Aδ) = 0 , ∀n ∈ ZZ+} .
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Note that Θ′ is a base for the topology of weak convergence because Aδ /∈ Θ′

implies that Aδ/2 ∈ Θ′. By Lemmas 6.3.1 and 6.3.3, and the sub-additivity
lemma (Lemma 6.1.11), it follows that for all A = Aδ ∈ Θ′, the limit

LA
�
=− lim

n→∞

1
n

log μ̃n(A) (6.3.4)

exists (with ∞ as a possible value).

Unfortunately, the results obtained so far are only partial because they
involve taking infimum over the initial conditions. The following uniformity
hypothesis is introduced in order to progress to large deviations statements.
Assumption (U) There exist integers 0 < � ≤ N and a constant M ≥ 1
such that ∀σ, τ ∈ Σ,

π�(σ, ·) ≤ M

N

N∑

m=1

πm(τ, ·) ,

where πm(τ, ·) is the m-step transition probability for initial condition τ ,

πm+1(τ, ·) =
∫

Σ

πm(ξ, ·)π(τ, dξ).

Remark: This assumption clearly holds true for every finite state irre-
ducible Markov chain.

The reason for the introduction of Assumption (U) lies in the following
lemma.

Lemma 6.3.5 Assume (U). For any Aδ ∈ Θ, there exists an n0(Aδ) such
that for all n > n0(Aδ),

sup
σ∈Σ

μn,σ(Aδ/2) ≤ Mμ̃n(Aδ) . (6.3.6)

Proof: Let � be as in (U), and n = qn� + rn where 0 ≤ rn ≤ �− 1. Then
with Aδ = ∩N ′

i=1Ufi,xi,δi ,

μn,σ(Aδ/2) = Pσ

( 1
n

n∑

k=1

δYk
∈ Aδ/2

)
(6.3.7)

≤ Pσ

( 1
(qn − 1)�

qn�∑

k=�+1

δYk
∈ A3δ/4

)

+
N ′
∑

i=1

Pσ

(
|〈fi,

1
n

�∑

k=1

δYk
+

1
n

n∑

k=qn�+1

δYk
+
( 1

n
− 1

(qn − 1)�

) qn�∑

k=�+1

δYk
〉| ≥ δi

4

)
.
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For n large enough, the last term in the preceding inequality equals zero.
Consequently, for such n,

μn,σ(Aδ/2) ≤ Pσ

( 1
(qn − 1)�

qn�∑

k=�+1

δYk
∈ A3δ/4

)

=
∫

Σ

π�(σ, dξ)Pξ

( 1
(qn − 1)�

(qn−1)�∑

k=1

δYk
∈ A3δ/4

)
.

Therefore, by Assumption (U), for all τ ∈ Σ,

μn,σ(Aδ/2)

≤ M

N

N∑

m=1

∫

Σ

πm(τ, dξ)Pξ

( 1
(qn − 1)�

(qn−1)�∑

k=1

δYk
∈ A3δ/4

)

=
M

N

N∑

m=1

Pτ

( 1
(qn − 1)�

m+(qn−1)�∑

k=m+1

δYk
∈ A3δ/4

)

≤ M

N

N∑

m=1

Pτ

( 1
n

n∑

k=1

δYk
∈ Aδ

)
= MPτ

( 1
n

n∑

k=1

δYk
∈ Aδ

)
,

where the last inequality holds for all n large enough by the same argument
as in (6.3.7).

In order to pursue a program similar to the one laid out in Section 6.1, let

I(ν)
�
= sup

{A∈Θ′:ν∈A}
LA .

Since Θ′ form a base of the topology, (6.3.4) and (6.3.6) may be used to
apply Lemma 4.1.15 and conclude that, for all σ ∈ Σ, the measures μn,σ

satisfy the weak LDP in M(Σ) with the (same) rate function I(·) defined
before. Moreover, I(·) is convex as follows by extending (6.3.2) to

μ2n,σ

(
A1 + A2

2

)

≥ μ̃n(A1)μ̃n(A2)

and then following an argument similar to the proof of Lemma 4.1.21.

Theorem 6.3.8 Assume (U). Then the following limits exist:

Λ(f) = lim
n→∞

1
n

log Eσ

(
exp(

n∑

i=1

f(Yi))
)

, (6.3.9)
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where f ∈ Cb(Σ). Moreover, {μn,σ} satisfies a full LDP in M1(Σ) with the
good, convex rate function

I(ν) = Λ∗(ν) = sup
f∈Cb(Σ)

{〈f, ν〉 − Λ(f)} , (6.3.10)

where Λ∗(·) does not depend on the initial point σ ∈ Σ.

Remark: Actually, {μn,σ} satisfies the LDP uniformly in σ. For details,
see Exercise 6.3.13.

Proof: Note that, since f is bounded,

lim sup
n→∞

1
n

log Eσ

(
exp(

n∑

i=1

f(Yi))
)
≤ ||f || < ∞ .

The reader will prove the exponential tightness of {μn,σ} for each σ ∈ Σ
in Exercise 6.3.12. Due to the preceding considerations and the exponen-
tial tightness of μn,σ, an application of Theorem 4.5.10 establishes both
the existence of the limits (6.3.9) and the validity of (6.3.10). Moreover,
since I does not depend on σ, the limit (6.3.9) also does not depend of σ.
The transformation of the LDP from M(Σ) to its closed subset M1(Σ) is
standard by now.

Exercise 6.3.11 Let g ∈ B(IR) with |g| ≤ 1. Let ν ∈ M1(IR), and assume
that ν possesses a density f with respect to Lebesgue measure, such that

sup
|y|≤2, x∈IR

{
f(x + y)

f(x)

}

< ∞ .

Let {vn}∞n=1 be i.i.d. real-valued random variables, each distributed according
to ν. Prove that the Markov chain

Yn+1 = g(Yn) + vn

satisfies Assumption (U), with N = � = 1.

Exercise 6.3.12 Assume (U). Let μ(·) = 1
N

∑N
m=1 πm(τ, ·), where N is the

same as in Assumption (U), and τ ∈ Σ is arbitrary.
(a) Show that for all f ∈ B(Σ), all n ∈ ZZ+, and every σ ∈ Σ,

Eσ

[

exp(
n∑

i=1

f(Yi))

]

≤
�∏

k=1

Eσ

[
e�f(Yk)

]1/�
[

M

∫

Σ

e�fdμ

]�n/��−1

,

where � and M are as in Assumption (U).
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Remark: In particular, note that for every p ∈ M1(Σ),

lim sup
n→∞

1
n

log Ep

(
exp(

n∑

i=1

f(Yi))
)
≤ 1

�
log

∫

Σ

e�fdμ +
1
�

log M ,

and that μ may also be replaced by any q such that
∫
Σ

q(dσ)π(σ, ·) = q(·).
(b) Prove the exponential tightness of {μn,σ} by a construction similar to that
of Lemma 6.2.6.

Exercise 6.3.13 Assume (U).
(a) Show that for every closed set F ⊂ M1(Σ),

lim sup
n→∞

1
n

log sup
σ∈Σ

μn,σ(F ) ≤ − inf
ν∈F

Λ∗(ν) ,

and for every open set G ⊂ M1(Σ),

lim inf
n→∞

1
n

log inf
σ∈Σ

μn,σ(G) ≥ − inf
ν∈G

Λ∗(ν) .

Hint: Paraphrasing the proof of Lemma 6.3.5, show that for every closed set
F , every δ > 0, and every n large enough,

sup
σ∈Σ

μn,σ(F ) ≤ Mμ̃n(F δ) ,

where F δ are the closed blowups of F with respect to the Lévy metric. Then
deduce the upper bound by applying Theorem 6.3.8 and Lemma 4.1.6.
(b) Let p ∈ M1(Σ), and let μn,p denote the measure induced by LY

n when the
initial state of the Markov chain is distributed according to p. Prove that the
full LDP holds for μn,p. Prove also that

Λ(f) = lim
n→∞

1
n

log Ep

(
exp(

n∑

i=1

f(Yi))
)

.

6.4 Mixing Conditions and LDP

The goal of this section is to establish the LDP for stationary processes
satisfying a certain mixing condition. Bryc’s theorem (Theorem 4.4.10) is
applied in Section 6.4.1 to establish the LDP of the empirical mean for
a class of stationary processes taking values in a convex compact subset
of IRd. This result is combined in Section 6.4.2 with the projective limit
approach to yield the LDP for the empirical measures of a class of stationary
processes taking values in Polish spaces.
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6.4.1 LDP for the Empirical Mean in IRd

Let X1, . . . , Xn, . . . be a stationary process taking values in a convex, com-
pact set K ⊂ IRd. (Note that such a K may be found as soon as the support
of the law of X1 is bounded.) Let

Ŝm
n =

1
n−m

n∑

i=m+1

Xi ,

with Ŝn = Ŝ0
n and μn denoting the law of Ŝn. The following mixing as-

sumption prevails throughout this section.

Assumption 6.4.1 For any continuous f : K → [0, 1], there exist β(�) ≥
1, γ(�) ≥ 0 and δ > 0 such that

lim
�→∞

γ(�) = 0 , lim sup
�→∞

(β(�)− 1)�(log �)1+δ < ∞ , (6.4.2)

and when � and n + m are large enough,

E[f(Ŝn)nf(Ŝn+�
n+m+�)

m] ≥ E[f(Ŝn)n]E[f(Ŝm)m]

−γ(�)
{

E[f(Ŝn)n]E[f(Ŝm)m]
}1/β(�)

(6.4.3)

The main result of this section is the following.

Theorem 6.4.4 Let Assumption 6.4.1 hold. Then {μn} satisfies the LDP
in IRd with the good convex rate function Λ∗(·), which is the Fenchel–
Legendre transform of

Λ(λ) = lim
n→∞

1
n

log E[en〈λ,Ŝn〉] . (6.4.5)

In particular, the limit (6.4.5) exists.

Remark: Assumption 6.4.1, and hence Theorem 6.4.4, hold when X1, . . . ,
Xn, . . . is a bounded, ψ-mixing process. (See [Bra86] for the definition.)
Other strong mixing conditions that suffice for Theorem 6.4.4 to hold are
provided in [BryD96].

Proof: Note that Ŝn ∈ K for all n ∈ ZZ+, and hence the sequence {μn} is
exponentially tight. Consequently, when combined with Lemma 4.4.8 and
Theorem 4.4.10, the following lemma, whose proof is deferred, implies that
μn satisfies the LDP in IRd with a good rate function I(·).
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Lemma 6.4.6 Let Assumption 6.4.1 hold. For any concave, continuous,
bounded above function g : IRd → IR, the following limit exists

Λg
�
= lim

n→∞

1
n

log E[eng(Ŝn)] .

The following lemma, whose proof is deferred, is needed in order to prove
that the rate function I(·) is convex.

Lemma 6.4.7 Let assumption 6.4.1 hold. Suppose δ > 0 and x1, x2 are
such that for i = 1, 2,

lim inf
n→∞

1
n

log μn(Bxi,δ/2) > −∞ .

Then for all n large enough,

μ2n(B(x1+x2)/2,δ) ≥
1
2

μn(Bx1,δ/2)μn(Bx2,δ/2) . (6.4.8)

Since the collection {By,δ} of all balls is a base for the topology of IRd, it
follows by Theorem 4.1.18 that, for all x ∈ IRd,

− I(x) = inf
δ>0,y∈Bx,δ

lim inf
n→∞

1
n

log μn(By,δ) (6.4.9)

= inf
δ>0,y∈Bx,δ

lim sup
n→∞

1
n

log μn(By,δ) .

Fix x1, x2 such that I(x1) < ∞ and I(x2) < ∞. Then due to (6.4.9),
Lemma 6.4.7 holds for x1, x2 and all δ > 0. Note that y ∈ B(x1+x2)/2,δ

implies the inclusion B(x1+x2)/2,δ′ ⊂ By,δ for all δ′ > 0 small enough. Hence,
by (6.4.8) and (6.4.9),

−I((x1 + x2)/2) = inf
δ>0

lim sup
n→∞

1
n

log μn(B(x1+x2)/2,δ)

≥ inf
δ>0

lim inf
n→∞

1
2n

log μ2n(B(x1+x2)/2,δ)

≥ 1
2

inf
δ>0

lim inf
n→∞

1
n

log μn(Bx1,δ/2)

+
1
2

inf
δ>0

lim inf
n→∞

1
n

log μn(Bx2,δ/2) ≥ −I(x1) + I(x2)
2

.

Thus, for all x1, x2 ∈ IRd,

I((x1 + x2)/2) ≤ 1
2

I(x1) +
1
2

I(x2) .
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By iterations, this inequality extends to all convex combinations αx1 +(1−
α)x2 with α = k/2m for some integers k,m. The convexity of the function
I(·) then follows by its lower semicontinuity.

Since Ŝn ∈ K for all n ∈ ZZ+, it follows that for all λ ∈ IRd,

lim sup
n→∞

1
n

log E(en〈λ,Ŝn〉) < ∞ ,

and the proof of the theorem is completed by applying Theorem 4.5.10.

We shall now prove Lemmas 6.4.6 and 6.4.7.

Proof of Lemma 6.4.6: Fix g : IRd → IR bounded above, continuous, and
concave. Then g(·) is Lipschitz continuous when restricted to the compact
set K, i.e., |g(x) − g(y)| ≤ G|x − y| for all x, y ∈ K. Without loss of
generality, assume that −∞ < −B ≤ g(x) ≤ 0 for all x ∈ K. Denoting
C = supx∈K |x|, note that

∣
∣
∣
∣Ŝn+m −

(
n

n + m
Ŝn +

m

n + m
Ŝn+�

n+m+�

) ∣
∣
∣
∣

=
1

n + m

∣
∣
∣
∣

n+�∑

i=n+1

Xi −
n+m+�∑

i=n+m+1

Xi

∣
∣
∣
∣ ≤

2�C

n + m
.

Hence,
∣
∣
∣
∣g(Ŝn+m)− g(

n

n + m
Ŝn +

m

n + m
Ŝn+�

n+m+�)
∣
∣
∣
∣ ≤

2�CG

n + m
,

and by the concavity of g(·),

(n + m)g(Ŝn+m) ≥ ng(Ŝn) + mg(Ŝn+�
n+m+�)− 2�CG .

Define h(n)�=− log E[eng(Ŝn)]. Then

h(n + m) ≤ 2�CG− log E
[
eng(Ŝn)emg(Ŝn+�

n+m+�
)
]

.

Applying Assumption 6.4.1 for the continuous function f(·) = eg(·), whose
range is [0, 1], it follows that for all � large enough and all integers n, m such
that n + m is large enough,

E
[
eng(Ŝn)emg(Ŝn+�

n+m+�
)
]

E[eng(Ŝn)]E[emg(Ŝm)]
≥ 1− γ(�)

{
E[eng(Ŝn)]E[emg(Ŝm)]

}( 1
β(�)−1)

≥ 1− γ(�)eB(n+m)(β(�)−1)/β(�) .
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Hence,

h(n + m) ≤ h(n) + h(m) + 2�CG− log{[1− γ(�)eB(n+m)(β(�)−1)/β(�)] ∨ 0} .

Choosing � = [(n + m){log(n + m)−(1+δ)}] with δ > 0 corresponding to As-
sumption 6.4.1 for f(·), it follows that (n+m)(β(�)−1)/β(�) are uniformly,
in n + m, bounded above, and hence,

γ(�)eB(n+m)(β(�)−1)/β(�) → 0.

From the preceding considerations, for all n + m large enough,

h(n + m) ≤ h(n) + h(m) + (2CG + 1)(n + m){log(n + m)}−(1+δ) ,

and the proof of the lemma is completed by the following approximate sub-
additivity lemma.

Lemma 6.4.10 (Approximate sub-additivity) Assume f : ZZ+ → IR
is such that for all n, m ≥ 1,

f(n + m) ≤ f(n) + f(m) + ε(n + m) , (6.4.11)

where for some δ > 0,

lim sup
n→∞

[
ε(n)
n

(log n)1+δ

]

< ∞ . (6.4.12)

Then f̄ = limn→∞ [f(n)/n] exists.

Remark: With a somewhat more involved proof, Hammersley in [Ham62]
relaxes (6.4.12) for ε(n) non-decreasing to

∞∑

r=1

ε(r)
r(r + 1)

< ∞ ,

showing it then to be also necessary for the existence of f̄ < ∞. Explicit
upper bounds on f̄ − f(m)/m for every m ≥ 1 are also provided there.

Proof of Lemma 6.4.10: Fix s ∈ ZZ+, s ≥ 2. Observe that for all m ≥ 1,
1 ≤ r ≤ (s− 1),

f(ms + r) ≤ f(ms) + f(r) + ε(ms + r) .

Hence,

f(ms + r)
ms + r

≤ f(ms)
ms

(1− r

ms + r
) +

f(r)
ms + r

+
ε(ms + r)
ms + r

,
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i.e.,

sup
0≤r≤(s−1)

f(ms + r)
ms + r

≤ 1
ms

s−1
max
r=0

[f(r) ∨ 0]

+ max{f(ms)
ms

,
f(ms)

ms
(1− 1

m
)}

+
s−1
max
r=0

ε(ms + r)
ms + r

.

Consequently,

lim sup
n→∞

f(n)
n

= lim sup
m→∞

sup
0≤r≤(s−1)

f(ms + r)
ms + r

≤ lim sup
m→∞

f(ms)
ms

+ lim sup
n→∞

ε(n)
n

.

Since the second term in the right-hand side is zero, it follows that for all
2 ≤ s < ∞,

lim sup
n→∞

f(n)
n

≤ lim sup
m→∞

f(ms)
ms

�
= γs .

Recall that by (6.4.12) there exists s0, C < ∞ such that for all s ≥ s0 and
all m ∈ ZZ+,

ε(ms)
ms

≤ C[log2(ms)]−(1+δ) .

Fix s ≥ s0, and define

ps(k)
�
= sup

1≤m≤2k

{f(ms)
ms

}
, k = 0, 1, . . .

Observe that γs ≤ limk→∞ ps(k), while for all k ≥ 1,

ps(k) ≤ ps(k − 1) + sup
2k−1≤m≤2k

{ε(ms)
ms

}
.

Consequently,

ps(k)− ps(k − 1) ≤ sup
2k−1≤m≤2k

C[log2(ms)]−(1+δ)

≤ C[log2 s + (k − 1)]−(1+δ) ,

yielding the inequality

ps(k) ≤ ps(0) +
k∑

i=1

C[log2 s + (i− 1)]−(1+δ) ≤ ps(0) + C
∞∑

j=[log2 s]

j−(1+δ) .
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Since ps(0) = f(s)/s, it follows that for all s ≥ s0,

γs ≤ lim
k→∞

ps(k) ≤ f(s)
s

+ C

∞∑

j=[log2 s]

j−(1+δ) .

Therefore,

lim sup
n→∞

f(n)
n

≤ lim inf
s→∞

γs

≤ lim inf
s→∞

f(s)
s

+ C lim sup
s→∞

∞∑

j=[log2 s]

j−(1+δ)

= lim inf
n→∞

f(n)
n

.

Proof of Lemma 6.4.7: Observe that by our assumption there exists
M < ∞ such that for all n large enough,

μn(Bx1,δ/2)μn(Bx2,δ/2) ≥ e−Mn .

Thus, the proof is a repeat of the proof of Lemma 6.4.6. Specifically, for
any integer �,

μ2n(B(x1+x2)/2,δ) = P
(∣
∣
∣
∣Ŝ2n −

x1 + x2

2

∣
∣
∣
∣ < δ

)

≥ P

(∣
∣
∣
∣
∣

Ŝn − x1

2
+

Ŝn+�
2n+� − x2

2

∣
∣
∣
∣
∣
< δ − C�

n

)

≥ P
(

|Ŝn − x1| < δ − C�

n
, |Ŝn+�

2n+� − x2| < δ − C�

n

)

.

In particular, for � = δn/2C, one has by Assumption 6.4.1 that for all n
large enough,

μ2n(B(x1+x2)/2,δ) ≥ P
(

|Ŝn − x1| <
δ

2
, |Ŝn+�

2n+� − x2| <
δ

2

)

≥ μn(Bx1, δ
2
)μn(Bx2, δ

2
)
(
1− γ(�)[μn(Bx1, δ

2
)μn(Bx2, δ

2
)](

1
β(�)−1)

)
.

Note that there exists C < ∞ such that for n large enough, Mn(β(�) −
1)/β(�) ≤ C, implying

γ(�)
(
μn(Bx1, δ

2
)μn(Bx2, δ

2
)
)( 1−β(�)

β(�) ) ≤ γ(�)eMn(β(�)−1)/β(�) ≤ γ(�)eC ≤ 1
2

,

where the last inequality follows by (6.4.2). Hence, (6.4.8) follows and the
proof is complete.
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Exercise 6.4.13 [Suggested by Y. Peres] Let f(n) = n sin(log(2 + log n)).
Verify that there exists a C < ∞ such that f(n) satisfies (6.4.11) for ε(n) =
Cn/log n. Hence, the rate condition (6.4.12) is almost optimal.
Hint: Note that |d sin(log(2 + x))/dx| ≤ 1/(2 + x) and thus by the mean
value theorem,

f(n + m)− f(n)− f(m)
n + m

≤ 2 + log(n + m)
(n + m)

gn+m(n)− 1

where

gx(n) =
n

2 + log n
+

x− n

2 + log(x− n)
, n = 1, 2, . . . , x− 1 .

Check that for fixed x, the maximum of gx(n) is obtained at n = x/2.

6.4.2 Empirical Measure LDP for Mixing Processes

The previous results coupled with Corollary 4.6.11 allow one to deduce
the LDP for quite a general class of processes. Let Σ be a Polish space,
and B(Σ) the space of all bounded, measurable real-valued functions on
Σ, equipped with the supremum norm. As in Section 6.2, define M1(Σ) ⊂
M(Σ) ⊂ B(Σ)′.

Let Ω = ΣZZ+ , let P be a stationary and ergodic measure on Ω, and
let Y1, . . . , Yn, . . . denote its realization. Throughout, Pn denotes the nth
marginal of P , i.e., the measure on Σn whose realization is Y1, . . . , Yn. As
in Section 6.2, LY

n = 1
n

∑n
i=1 δYi ∈ M1(Σ), and μn denotes the probability

measure induced on (B(Σ)′,Bcy) by LY
n .

Theorem 6.4.14 (a) Let {gj}d
j=1 ∈ B(Σ). Define the IRd-valued station-

ary process X1, . . . , Xn, . . . by Xi = (g1(Yi), . . . , gd(Yi)). Suppose that, for
any d and {gj}d

j=1, the process {Xi} satisfies Assumption 6.4.1. Then {μn}
satisfies the LDP in the space B(Σ)′ equipped with the B(Σ)-topology and
the σ-field Bcy. This LDP is governed by the good rate function

Λ∗(ω)
�
= sup

f∈B(Σ)

{〈f, ω〉 − Λ(f)} , (6.4.15)

where for all f ∈ B(Σ),

Λ(f) = lim
n→∞

1
n

log EP

[
e
∑n

i=1
f(Yi)

]
.

In particular, the preceding limit exists.
(b) Assume further that, for some constants γ, M > 0 and all f ∈ B(Σ),

Λ(f) ≤ 1
γ

log
∫

Σ

eγf(x)P1(dx) + log M . (6.4.16)
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Then the LDP in part (a) can be restricted to M1(Σ) equipped with the
τ -topology.

Proof: The proof relies on part (b) of Corollary 4.6.11. Indeed, the triplet
(B(Σ)′,Bcy, μn) satisfies Assumption 4.6.8 with W = B(Σ). Moreover, by
Theorem 6.4.4, for any g1, . . . , gd ∈ B(Σ), the vectors (〈g1, L

Y
n 〉, 〈g2, L

Y
n 〉,

. . ., 〈gd, L
Y
n 〉) satisfy the LDP in a compact subset of IRd with a good con-

vex rate function. Therefore, Corollary 4.6.11 applies and yields both the
existence of Λ(f) and part (a) of the theorem.
To see part (b) of the theorem, note that by (6.4.16),

Λ∗(ω) ≥ sup
f∈B(Σ)

{
〈f, ω〉 − 1

γ
log EP

[
eγf(Y1)

] }
− log M

=
1
γ

sup
f∈B(Σ)

{〈f, ω〉 − log EP [ef(Y1)]} − log M

=
1
γ

H(ω|P1)− log M ,

where the last equality is due to Lemma 6.2.13. Hence, DΛ∗ ⊂ M1(Σ) (since
H(ω|P1) = ∞ for ω /∈ M1(Σ)), and the proof is completed by Lemma 4.1.5.

In the rest of this section, we present the conditions required both for
the LDP and for the restriction to M1(Σ) in a slightly more transparent
way that is reminiscent of mixing conditions. To this end, for any given
integers r ≥ k ≥ 2, � ≥ 1, a family of functions {fi}k

i=1 ∈ B(Σr) is called
�-separated if there exist k disjoint intervals {ai, ai + 1, . . . , bi} with ai ≤
bi ∈ {1, . . . , r} such that fi(σ1, . . . , σr) is actually a bounded measurable
function of {σai , . . . , σbi} and for all i 
= j either ai − bj ≥ � or aj − bi ≥ �.

Assumption (H-1) There exist �, α < ∞ such that, for all k, r < ∞,
and any �-separated functions fi ∈ B(Σr),

EP (|f1(Y1, . . . , Yr) · · · fk(Y1, . . . , Yr)|) ≤
k∏

i=1

EP (|fi(Y1, . . . , Yr)|α)1/α .

(6.4.17)

Assumption (H-2) There exist a constant �0 and functions β(�) ≥ 1,
γ(�) ≥ 0 such that, for all � > �0, all r < ∞, and any two �-separated
functions f, g ∈ B(Σr),

|EP (f(Y1, . . . , Yr))EP (g(Y1, . . . , Yr))−EP (f(Y1, . . . , Yr)g(Y1, . . . , Yr))|

≤ γ(�)EP

(
|f(Y1, . . . , Yr)|β(�)

)1/β(�)

EP

(
|g(Y1, . . . , Yr)|β(�)

)1/β(�)

,
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and lim�→∞ γ(�) = 0, lim sup�→∞(β(�)−1)�(log �)1+δ < ∞ for some δ > 0.

Remarks:
(a) Conditions of the type (H-1) and (H-2) are referred to as hypermixing
conditions. Hypermixing is tied to analytical properties of the semigroup in
Markov processes. For details, consult the excellent exposition in [DeuS89b].
Note, however, that in (H-2) of the latter, a less stringent condition is put
on β(�), whereas in (H-1) there, α(�) converges to one.
(b) The particular case of β(�) = 1 in Assumption (H-2) corresponds to
ψ-mixing [Bra86], with γ(�) = ψ(�).

Lemma 6.4.18 Let Y1, . . . , Yn, . . . be the stationary process defined before.
(a) Assume that (H-1) holds and Λ(f) exists for all f ∈ B(Σ). Then the
inequality (6.4.16) holds true.
(b) Assume that (H-2) holds. Then Assumption 6.4.1 holds true for the
process X1, . . . , Xn, . . . which appears in the statement of Theorem 6.4.14.

Remark: Consequently, when both (H-1) and (H-2) hold, LY
n satisfies the

LDP in M1(Σ) with the good rate function Λ∗(·) of (6.4.15).

Proof: (a) Since Λ(f) exists, it is enough to consider limits along the se-
quence n = m�. By Jensen’s inequality,

EP

[

e
∑m�

i=1
f(Yi)

]

= EP

[

e
�−1

∑�

k=1
�
∑m−1

j=0
f(Yk+j�)

]

≤ 1
�

�∑

k=1

EP

[

e
�
∑m−1

j=0
f(Yk+j�)

]

.

Note that the various functions in the exponent of the last expression are
�-separated. Therefore,

EP

[

e
∑m�

i=1
f(Yi)

]

≤ 1
�

�∑

k=1

m−1∏

j=0

EP

[
eα�f(Yk+j�)

]1/α

= EP

[
eα�f(Y1)

]m/α

,

where Assumption (H-1) was used in the inequality and the stationarity of
P in the equality. Hence,

1
m�

log EP

[
e
∑m�

i=1
f(Yi)

]
≤ 1

�α
log EP [eα�f(Y1)] ,

and (6.4.16) follows with γ = �α and M = 1.
(b) Fix d and {gj}d

j=1 ∈ B(Σ), and let Xi = (g1(Yi), . . . , gd(Yi)). Let
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K ⊂ IRd be the convex, compact hypercube Πd
i=1[−‖gi‖, ‖gi‖]. Fix an

arbitrary continuous function f : K → [0, 1], any two integers n, m, and
any � > �0. Let r = n + m + �, and define

f1(Y1, . . . , Yr) = f(
1
n

n∑

i=1

Xi)n

f2(Y1, . . . , Yr) = f(
1
m

n+m+�∑

i=n+1+�

Xi)m .

Clearly, f1, f2 : Σr → [0, 1] are �-separated, and therefore, by the stationar-
ity of P , Assumption (H-2) implies that (6.4.3) holds.

Exercise 6.4.19 Let |α| < 1, x0 ∼ Normal(0, 1/(1 − α2)), and ξn be a
sequence of i.i.d. standard Normal random variables. Check that the process

xn+1 = αxn + ξn ,

satisfies Assumptions (H-1) and (H-2) but not Assumption (U).

Hint: Let || · ||p denote the Lp(P1) norm. For any f ∈ B(Σ), let π�f(x)�=∫
Σ

π�(x, dy)f(y). Using Hölder’s inequality and the explicit form of the tran-
sition probability measure, show that there exist positive constants β, γ such
that for all � large enough,

||π�f ||q(�) ≤ ||f ||2, ||π�(f − f̄)||2 ≤ e−γ�||f ||2, ||π�f ||2 ≤ ||f ||p(�),

where f̄ = EP1f , p(�) = 1 + e−β�, and q(�) = 1 + eβ�. (These estimates are
known as hypercontractive estimates.)

Now let f, g be nonnegative functions of one variable. Using the preceding
estimates and the Markov property, check that for � large,

EP (f(x1)g(x�+1)) = EP1(fπ�g) = EP1(π
�(fπ�g)) ≤ ||π�(fπ�g)||2

≤ ||fπ�g||p(�) ≤ ||f ||4||π�g||2
≤ ||f ||4||g||2 ≤ ||f ||4||g||4.

Prove Assumption (H-1) by repeating the preceding steps in the general sit-
uation. To see Assumption (H-2), let f, g be as before (but not necessarily
nonnegative), and paraphrasing the preceding arguments, show that

|EP [g(x1)(f(x3�+1)− f̄)]| ≤ ||g||p(�)||π3�(f − f̄)||q(�)
≤ ||g||p(�)||π2�(f − f̄)||2
≤ e−γ�||g||p(�)||π�f ||2
≤ e−γ�||g||p(�)||f ||p(�) .

Extend these considerations to the general situation.
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6.5 LDP for Empirical Measures of Markov
Chains

Sections 6.3 and 6.4 enable LDPs to be obtained for the empirical measures
associated with various Markov processes. The expression for the rate func-
tion involves, under both the uniform (U) and the hypermixing (H-1), (H-
2) conditions, taking Fenchel–Legendre transforms, although over different
spaces and with somewhat different logarithmic moment generating func-
tions. Motivated by the results of Section 3.1, alternative, more tractable
expressions for this rate function are derived here.

Note that, as in the finite state setup, life may become simpler if the pair
empirical measure is dealt with. With this in mind, the rate functions for the
LDP of the empirical measure LY

n , and for the LDP of the k-tuple empirical
measure are treated separately. Since LY

n measures what fraction of the
total “time” interval (1, 2, . . . , n) the process actually spends in a particular
Borel set, and since the continuous time analog of LY

n clearly involves exactly
the notion of time spent at a Borel set, the empirical measure LY

n is often
referred to as occupation time. In order to distinguish LY

n from its k-tuple
counterpart, this name is retained in this section.

6.5.1 LDP for Occupation Times

Throughout this section, let π(x, dy) be a transition probability measure
(also called Markov or transition kernel) on the Polish space Σ. Consider
the measure P ∈ M1(ΣZZ+) generated by π(·, ·) from the initial measure
P1 ∈ M1(Σ); that is, let the marginals Pn ∈ M1(Σn) be such that for any
n ≥ 1 and any Γ ∈ BΣn ,

P ({σ ∈ ΣZZ+ : (σ1, . . . , σn) ∈ Γ}) =
∫

Γ

P1(dx1)
n−1∏

i=1

π(xi, dxi+1)

=
∫

Γ

Pn(dx1, . . . , dxn) .

To motivate the derivation, recall that if P satisfies the hypermixing
conditions (H-1) and (H-2) of Section 6.4.2, then, by Theorem 6.4.14 and
Lemma 6.4.18, the random variables LY

n satisfy the LDP in the τ -topology
of M1(Σ), with the good rate function being the Fenchel–Legendre trans-
form (with respect to B(Σ)) of

Λ(f) = lim sup
n→∞

1
n

log EP

[
e
∑n

i=1
f(Yi)

]
.
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In this section, a program for the explicit identification of this rate func-
tion and related ones is embarked on. It turns out that this identification
procedure does not depend upon the existence of the LDP. A similar iden-
tification for the (different) rate function of the LDP derived in Section 6.3
under the uniformity assumption (U) is also presented, and although it is
not directly dependent upon the existence of an LDP, it does depend on
structural properties of the Markov chains involved. (See Theorem 6.5.4.)

Throughout this section, let πf : B(Σ) → B(Σ) denote the linear, non-
negative operator

(πfu)(σ) = ef(σ)

∫

Σ

u(τ)π(σ, dτ) ,

where f ∈ B(Σ), and let πu�
=π0u =

∫
Σ

u(τ)π(·, dτ). Note that

EP

[
e
∑n

i=1
f(Yi)

]
= EP

[(
ef(Yn)

∫

Σ

π(Yn, dτ)
)
e
∑n−1

i=1
f(Yi)

]

= EP

[
(πf1)(Yn)e

∑n−1

i=1
f(Yi)

]
= EP

[
{(πf )21}(Yn−1)e

∑n−2

i=1
f(Yi)

]

= EP [{(πf )n1}(Y1)] = 〈(πf )n1, P1〉 ,

and hence, the logarithmic moment generating function associated with
π(·, ·) and P1 is

Λ(f)
�
= lim sup

n→∞

1
n

log(〈(πf )n1, P1〉) . (6.5.1)

Definition μ ∈ M1(Σ) is an invariant measure for π(·, ·) if

μπ(·)�=
∫

Σ

μ(dσ)π(σ, ·) = μ(·) .

If P1 is an invariant measure for π(·, ·), then P is a stationary measure.

The existence of an invariant measure makes the computation of the
Fenchel–Legendre transform particularly transparent. Namely,

Theorem 6.5.2 Let P1 be an invariant measure for π(·, ·). Then for all
ν ∈ M1(Σ),

sup
f∈B(Σ)

{〈ν, f〉 − Λ(f)}

=

{
sup

u∈B(Σ),u≥1

{−
∫
Σ

log
(

πu
u

)
dν} , dν

dP1
exists

∞ , otherwise .
(6.5.3)
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Remark: That one has to consider the two separate cases in (6.5.3) above
is demonstrated by the following example. Let π(x,A) = 1A(x) for every
Borel set A. It is easy to check that any measure P1 is invariant, and that
LY

n satisfies the LDP with the rate function

I(ν) =
{

0 , dν/dP1 exists
∞ , otherwise .

Proof: (a) Suppose that dν/dP1 does not exist, i.e., there exists a set
A ∈ BΣ such that P1(A) = 0 while ν(A) > 0. For any α > 0, the function
α1A belongs to B(Σ), and by the union of events bound and the stationarity
of P , it follows that for all n,

EP

[
eα
∑n

i=1
1A(Yi)

]
≤ 1 + nP1(A)eαn = 1 .

Therefore, Λ(α1A) ≤ 0, implying that

sup
f∈B(Σ)

{〈ν, f〉 − Λ(f)} ≥ sup
α>0

{α〈1A, ν〉 − Λ(α1A)}

≥ sup
α>0

{αν(A)} = ∞ .

(b) Suppose now that dν/dP1 exists. For each u ∈ B(Σ) with u ≥ 1, let
f = log(u/πu) and observe that f ∈ B(Σ) as πu ≥ π1 = 1. Since πfu = u
and πf1 = u/πu ≤ u, it follows that (πf )n1 ≤ u. Hence,

Λ(f) ≤ lim sup
n→∞

1
n

log〈u, P1〉 ≤ lim sup
n→∞

1
n

log ||u|| = 0.

Therefore,

〈f, ν〉 = −
∫

Σ

log
(πu

u

)
dν ≤ 〈f, ν〉 − Λ(f) ,

implying that

sup
u∈B(Σ),u≥1

{

−
∫

Σ

log
(πu

u

)
dν

}

≤ sup
f∈B(Σ)

{〈f, ν〉 − Λ(f)}.

To establish the opposite inequality, fix f ∈ B(Σ), Λ(f) < α < ∞, and
let un

�
=
∑n

m=0 e−mα(πf )m1. Note that un ∈ B(Σ) and un ≥ 1 for all n.
Moreover,

e−απfun =
n+1∑

m=1

e−mα(πf )m1 = un+1 − 1 = un + vn − 1,
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where vn
�
=un+1 − un = e−(n+1)α(πf )n+11. Therefore,

− log
(

πun

un

)

= f − α− log
(

un + vn − 1
un

)

≥ f − α− log
(

1 +
vn

un

)

.

Observe that

vn = e−απfvn−1 ≤ e||f ||−αvn−1 ≤ e||f ||−αun.

Thus, with un ≥ 1,

log
(

1 +
vn

un

)

≤ vn

un
≤ e(||f ||−α) ∧ vn ,

implying that for all δ > 0,
∫

Σ

log
(

1 +
vn

un

)

dν ≤ δ + e(||f ||−α)ν({vn ≥ δ}).

Since α > Λ(f), it follows that 〈vn, P1〉 → 0 as n → ∞. Consequently, for
any δ > 0 fixed, by Chebycheff’s inequality, P1({vn ≥ δ}) → 0 as n → ∞,
and since dν/dP1 exists, also ν({vn ≥ δ}) → 0 as n →∞. Hence,

sup
u∈B(Σ),u≥1

{

−
∫

Σ

log
(πu

u

)
dν

}

≥ lim sup
n→∞

{

−
∫

Σ

log
(

πun

un

)

dν

}

≥
[

〈f, ν〉 − α− lim inf
n→∞

∫

Σ

log
(

1 +
vn

un

)

dν

]

≥ 〈f, ν〉 − α− δ .

Considering first δ ↘ 0, then α ↘ Λ(f), and finally taking the supremum
over f ∈ B(Σ), the proof is complete.

Having treated the rate function corresponding to the hypermixing as-
sumptions (H-1) and (H-2), attention is next turned to the setup of Section
6.3. It has already been observed that under the uniformity assumption
(U), LY

n satisfies the LDP, in the weak topology of M1(Σ), regardless of the
initial measure P1, with the good rate function

IU (ν)
�
= sup

f∈Cb(Σ)

{

〈f, ν〉 − lim
n→∞

1
n

log Eσ

[
e
∑n

i=1
f(Yi)

]}

,

which is independent of σ. It is our goal now to provide an alternative
expression for IU (·).

Theorem 6.5.4 Assume that (U) of Section 6.3 holds.
Then, for all ν ∈ M1(Σ),

IU (ν) = sup
u∈Cb(Σ),u≥1

{

−
∫

Σ

log
(πu

u

)
dν

}

. (6.5.5)
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Proof: Recall that Assumption (U) implies that for any μ ∈ M1(Σ) and
any σ ∈ Σ,

lim
n→∞

1
n

log Eσ

[
e
∑n

i=1
f(Yi)

]
= lim

n→∞

1
n

log
∫

Σ

Eξ

[
e
∑n

i=1
f(Yi)

]
μ(dξ) .

(See Exercise 6.3.13.) Thus, repeating the computation leading to (6.5.1),
it follows that for any ν ∈ M1(Σ),

IU (ν) = sup
f∈Cb(Σ)

{

〈f, ν〉 − lim sup
n→∞

1
n

log〈(πf )n1, ν〉
}

.

Assuming that π is Feller continuous, i.e., that πf ∈ Cb(Σ) if f ∈ Cb(Σ),
the theorem is proved by a repeat of part (b) of the proof of Theorem
6.5.2, with Cb(Σ) replacing B(Σ) and ν replacing P1 throughout the proof.
Indeed, πf : Cb(Σ) → Cb(Σ) by the Feller continuity of π, and moreover,
with P1 replaced by ν, obviously 〈vn, ν〉 → 0 for all ν ∈ M1(Σ). Following
[DeuS89b], the assumption that π is Feller continuous is removed in Exercise
6.5.7 by an approximation argument.

Remark: Note that (6.5.5) is not exactly the same as the expression (3.1.7)
of Theorem 3.1.6. Indeed, in the finite state space discussed there, it was
more convenient to consider the operator uπ, where by Exercise 3.1.11, the
resulting two expressions are identical. At least under condition (U), when
Σ is not finite, the analog of (3.1.7) is the expression

IU (ν) = sup
μ∈M1(Σ),log( dμπ

dμ )∈B(Σ)

{

−
∫

Σ

log
(

dμπ

dμ

)

dν

}

, (6.5.6)

where μπ(·) =
∫
Σ

μ(dx)π(x, ·). For details, see Exercise 6.5.9.

Exercise 6.5.7 (a) Check that for every ν ∈ M1(Σ) and every transition
probability measure π(·, ·),

sup
u∈Cb(Σ),u≥1

{

−
∫

Σ

log
(πu

u

)
dν

}

= sup
u∈B(Σ),u≥1

{

−
∫

Σ

log
(πu

u

)
dν

}

.

Hint: Show that if 1 ≤ un → u boundedly and pointwise, then

−
∫

Σ

log
(

πun

un

)

dν → −
∫

Σ

log
(πu

u

)
dν .

Recall that by the monotone class theorem, if H ⊂ {u : u ∈ B(Σ), u ≥ 1}
contains {u : u ∈ Cb(Σ), u ≥ 1} and is closed under bounded pointwise
convergence, then H = {u : u ∈ B(Σ), u ≥ 1}.
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(b) Assume that Assumption (U) of Section 6.3 holds, and let {fn} be a
uniformly bounded sequence in B(Σ) such that fn → f pointwise. Show that
lim supn→∞ Λ(fn) ≤ Λ(f).
Hint: Use part (a) of Exercise 6.3.12, and the convexity of Λ(·).
(c) Conclude that Theorem 6.5.4 holds under Assumption (U) even when π is
not Feller continuous.

Exercise 6.5.8 (a) Using Jensen’s inequality and Lemma 6.2.13, prove that
for any ν ∈ M1(Σ) and any transition probability measure π(·, ·),

Jπ(ν)
�
= sup

u∈Cb(Σ),u≥1

{

−
∫

Σ

log
(πu

u

)
dν

}

≥ H(ν|νπ) .

(b) Recall that, under Assumption (U), Jπ(ν) = IU (ν) is the good rate function
controlling the LDP of {LY

n }. Prove that there then exists at least one invariant
measure for π(·, ·).
(c) Conclude that when Assumption (U) holds, the invariant measure is unique.

Hint: Invariant measures for π are also invariant measures for Π�
=1/N

∑N
i=1 πi.

Hence, it suffices to consider the latter Markov kernel, which by Assumption
(U) satisfies infx∈Σ Π(x, ·) ≥ (1/M)ν(·) for some ν ∈ M1(Σ), and some
M ≥ 1. Therefore,

Π̃((b, σ), {b′} × Γ) =
b′

M
ν(Γ) + 1{b′=−1}Π(σ, Γ)

is a Markov kernel on {−1, 1} × Σ (equipped with the product σ-field). Let
P̃(b,σ) be the Markov chain with transition Π̃ and initial state (b, σ), with
{(bn, Xn)} denoting its realization. Check that for every σ ∈ Σ and Γ ∈ BΣ,

Πn(σ, Γ) = Π̃n((b, σ), {−1, 1} × Γ)
= qn(Γ) + P̃(b,σ)(Xn ∈ Γ, b1 = b2 = · · · = bn = −1) ,

where qn(Γ) is independent of σ. Conclude that for any σ, σ′ ∈ Σ, and any
Γ ∈ BΣ,

|Πn(σ, Γ)−Πn(σ′, Γ)| ≤ 2(1− 1/M)n .

Exercise 6.5.9 In this exercise, you will prove that (6.5.6) holds whenever
Assumption (U) holds true.
(a) Prove that for any μ ∈ M1(Σ),

IU (ν) = sup
f∈B(Σ)

{

〈ν, f〉 − lim sup
n→∞

1
n

log〈μπ̃n
f , 1〉

}

,

where

μπ̃f (dτ) = ef(τ)

∫

Σ

π(σ, dτ)μ(dσ).
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(b) Let μ be given with f̄
�
= log(dμ/dμπ) ∈ B(Σ). Show that μπ̃f̄ = μ, and

thus, for every ν ∈ M1(Σ),

IU (ν) ≥ 〈ν, f̄〉 − 0 = −
∫

Σ

log
(

dμπ

dμ

)

ν(dσ).

(c) Fix v ∈ B(Σ) such that v(·) ≥ 1, note that φ�
=πv ≥ 1, and define the

transition kernel

π̂(σ, dτ) = π(σ, dτ)
v(τ)
φ(σ)

.

Prove that π̂ is a transition kernel that satisfies Assumption (U). Applying
Exercise 6.5.8, conclude that it possesses an invariant measure, denoted ρ(·).
Define μ(dσ) = ρ(dσ)/cφ(σ), with c =

∫
Σ

ρ(dσ)/φ(σ). Prove that

log
(

dμπ

dμ

)

= log
(πv

v

)
∈ B(Σ) ,

and apply part (a) of Exercise 6.5.7 to conclude that (6.5.6) holds.

6.5.2 LDP for the k-Empirical Measures

The LDP obtained for the occupation time of Markov chains may easily be
extended to the empirical measure of k-tuples, i.e.,

LY
n,k

�
=

1
n

n∑

i=1

δ(Yi,Yi+1,...,Yi+k−1) ∈ M1(Σk) ,

where throughout this section k ≥ 2. This extension is motivated by the fact
that at least when |Σ| < ∞, the resulting LDP has an explicit, simple rate
function as shown in Section 3.1.3. The corresponding results are derived
here for any Polish state space Σ.

The starting point for the derivation of the LDP for LY
n,k lies in the

observation that if the sequence {Yn} is a Markov chain with state space
Σ and transition kernel π(x, dy), then the sequence {(Yn, . . . , Yn+k−1)} is
a Markov chain with state space Σk and transition kernel

πk(x, dy) = π(xk, dyk)
k−1∏

i=1

δxi+1(yi) ,

where y = (y1, . . . , yk), x = (x1, . . . , xk) ∈ Σk. Moreover, it is not hard
to check that if π satisfies Assumption (U) of Section 6.3 (or π satisfies
Assumptions (H-1) and (H-2) of Section 6.4 with some π-invariant measure
P1), so does πk (now with the πk-invariant measure Pk(dx)�=P1(dx1)π(x1,
dx2) · · · π(xk−1, dxk)). Hence, the following corollary summarizes the re-
sults of Sections 6.3, 6.4.2, and 6.5.1 when applied to LY

n,k.
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Corollary 6.5.10 (a) Assume π satisfies Assumption (U) of Section 6.3.
Then LY

n,k satisfies (in the weak topology of M1(Σk)) the LDP with the good
rate function

IU
k (ν)

�
= sup

u∈B(Σk),u≥1

{

−
∫

Σk

log
(πku

u

)
dν

}

.

(b) Assume that (H-1) and (H-2) hold for P that is generated by π and the
π-invariant measure P1. Then LY

n,k satisfies (in the τ -topology of M1(Σk))
the LDP with the good rate function

Ik(ν)
�
=
{

IU
k (ν) , dν

dPk
exists

∞ , otherwise .

To further identify IU
k (·) and Ik(·), the following definitions and nota-

tions are introduced.

Definition 6.5.11 A measure ν ∈ M1(Σk) is called shift invariant if, for
any Γ ∈ BΣk−1 ,

ν({σ ∈ Σk : (σ1, . . . , σk−1) ∈ Γ}) = ν({σ ∈ Σk : (σ2, . . . , σk) ∈ Γ}) .

Next, for any μ ∈ M1(Σk−1), define the probability measure μ ⊗k π ∈
M1(Σk) by

μ⊗k π(Γ) =
∫

Σk−1
μ(dx)

∫

Σ

π(xk−1, dy)1{(x,y)∈Γ} , ∀Γ ∈ BΣk .

Theorem 6.5.12 For any transition kernel π, and any k ≥ 2,

IU
k (ν) =

{
H(ν|νk−1 ⊗k π) , ν shift invariant
∞ , otherwise ,

where νk−1 denotes the marginal of ν on the first (k − 1) coordinates.

Remark: The preceding identification is independent of the existence of
the LDP. Moreover, it obviously implies that

Ik(ν) =
{

H(ν|νk−1 ⊗k π) , ν shift invariant, dν
dPk

exists
∞ , otherwise

Proof: Assume first that ν is not shift invariant. A ψ ∈ B(Σk−1) may be
found such that ψ ≥ 0 and

∫

Σk

ψ(x1, . . . , xk−1)ν(dx)−
∫

Σk

ψ(x2, . . . , xk)ν(dx) ≥ 1 .
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For any α > 0, define uα ∈ B(Σk) by

uα(x) = eαψ(x1,...,xk−1) ≥ 1 .

Therefore, (πkuα)(x) = eαψ(x2,...,xk), and

−
∫

Σk

log
(

πkuα

uα

)

dν

= α

{∫

Σk

ψ(x1, . . . , xk−1)ν(dx)−
∫

Σk

ψ(x2, . . . , xk)ν(dx)
}

≥ α .

Considering α →∞, it follows that IU
k (ν) = ∞. Next, note that for ν shift

invariant, by Lemma 6.2.13,

H(ν|νk−1 ⊗k π)

= sup
φ∈B(Σk)

{

〈φ, ν〉 − log
∫

Σk−1
ν(dx1, . . . , dxk−1, Σ)

∫

Σ

eφ(x1,...,xk−1,y)π(xk−1, dy)
}

= sup
φ∈B(Σk)

{

〈φ, ν〉 − log
∫

Σk−1
ν(Σ, dx2, . . . , dxk)

∫

Σ

eφ(x2,...,xk,y)π(xk, dy)
}

.

(6.5.13)

Fix φ ∈ B(Σk) and let u ∈ B(Σk) be defined by u(x) = ceφ(x), where c > 0
is chosen such that u ≥ 1. Then

− log
(πku

u

)
= φ(x)− log

∫

Σ

eφ(x2,...,xk,y)π(xk, dy).

Thus, by Jensen’s inequality,

−
∫

Σk

log
(πku

u

)
dν

= 〈φ, ν〉 −
∫

Σk−1
ν(Σ, dx2, . . . , dxk) log

∫

Σ

eφ(x2,...,xk,y)π(xk, dy)

≥ 〈φ, ν〉 − log
∫

Σk

eφ(x2,...,xk,y)ν(Σ, dx2, . . . , dxk)π(xk, dy),

and it follows from (6.5.13) that IU
k (ν) ≥ H(ν|νk−1 ⊗k π).

To see the reverse inequality, let νx(·) denote the regular conditional
probability distribution of xk given the σ-field generated by the restriction
of Σk to the first (k− 1) coordinates. (Such a conditional probability exists
because Σk is Polish; c.f. Appendix D.) Assume with no loss of generality
that H(ν|νk−1 ⊗k π) < ∞. Then

ν({x ∈ Σk−1 :
dνx

dπ(xk−1, ·)
exists }) = 1,
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and

H(ν|νk−1 ⊗k π)

=
∫

Σk−1
ν(dx1, . . . , dxk−1, Σ)

∫

Σ

dνx log
dνx

dπ(xk−1, ·)

=
∫

Σk−1
ν(dx1, . . . , dxk−1, Σ) sup

φ∈B(Σk)

{∫

Σ

φ(x1, . . . , xk)νx(dxk)

− log
∫

Σ

eφ(x1,...,xk−1,y)π(xk−1, dy)
}

≥ sup
φ∈B(Σk)

{∫

Σk

φ(x)ν(dx)−
∫

Σk−1
ν(dx1, . . . , dxk−1, Σ)

log
∫

Σ

eφ(x1,...,xk−1,y)π(xk−1, dy)
}

= sup
φ∈B(Σk)

{∫

Σk

φdν −
∫

Σk−1
ν(Σ, dx2, . . . , dxk)

log
∫

Σ

eφ(x2,...,xk,y)π(xk, dy)
}

= sup
φ∈B(Σk)

{∫

Σk

φdν −
∫

Σk

log(πkeφ)dν

}

= sup
φ∈B(Σk)

{

−
∫

Σk

log
(

πkeφ

eφ

)

dν

}

= IU
k (ν) .

6.5.3 Process Level LDP for Markov Chains

The LDP derived in Section 6.5.2 enables the deviant behavior of empirical
means of fixed length sequences to be dealt with as the number of terms
n in the empirical sum grows. Often, however, some information is needed
on the behavior of sequences whose length is not bounded with n. It then
becomes useful to consider sequences of infinite length. Formally, one could
form the empirical measure

LY
n,∞

�
=

1
n

n∑

i=1

δT iY ,

where Y = (Y1, Y2, . . .) and T iY = (Yi+1, Yi+2, . . .), and inquire about the
LDP of the random variable LY

n,∞ in the space of probability measures on
ΣZZ+ . Since such measures may be identified with probability measures on
processes, this LDP is referred to as process level LDP.
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A natural point of view is to consider the infinite sequences Y as limits
of finite sequences, and to use a projective limit approach. Therefore, the
discussion on the process level LDP begins with some topological prelimi-
naries and an exact definition of the probability spaces involved. Since the
projective limit approach necessarily involves weak topology, only the weak
topologies of M1(Σ) and M1(ΣZZ+) will be considered.

As in the beginning of this section, let Σ be a Polish space, equipped
with the metric d and the Borel σ-field BΣ associated with it, and let Σk

denote its kth-fold product, whose topology is compatible with the metric
dk(σ, σ′) =

∑k
i=1 d(σi, σ

′
i). The sequence of spaces Σk with the obvious

projections pm,k : Σm → Σk, defined by pm,k(σ1, . . . , σm) = (σ1, . . . , σk)
for k ≤ m, form a projective system with projective limit that is denoted
ΣZZ+ , and canonical projections pk : ΣZZ+ → Σk. Since Σk are separa-
ble spaces and ΣZZ+ is countably generated, it follows that ΣZZ+ is separa-
ble, and the Borel σ-field on ΣZZ+ is the product of the appropriate Borel
σ-fields. Finally, the projective topology on ΣZZ+ is compatible with the
metric

d∞(σ, σ′) =
∞∑

k=1

1
2k

[
dk(pkσ, pkσ′)

1 + dk(pkσ, pkσ′)

]

,

which makes ΣZZ+ into a Polish space. Consider now the spaces M1(Σk),
equipped with the weak topology and the projections pm,k : M1(Σm) →
M1(Σk), k ≤ m, such that pm,kν is the marginal of ν ∈ M1(Σm) with re-
spect to its first k coordinates. The projective limit of this projective system
is merely M1(ΣZZ+) as stated in the following lemma.

Lemma 6.5.14 The projective limit of (M1(Σk), pm,k) is homeomorphic to
the space M1(ΣZZ+) when the latter is equipped with the weak topology.

Proof: By Kolmogorov’s extension theorem, for any sequence νn ∈ M1(Σn)
such that pm,kνm = νk for all k ≤ m, there exists a ν ∈ M1(ΣZZ+) such that
νn = pnν, i.e., {νn} are the marginals of ν. The converse being trivial, it
follows that the space M1(ΣZZ+) may be identified with the projective limit
of (M1(Σk), pm,k), denoted X . It remains only to prove that the bijection
ν �→ {pnν} between M1(ΣZZ+) and X is a homeomorphism. To this end,
recall that by the Portmanteau theorem, the topologies of M1(ΣZZ+) and X
are, respectively, generated by the sets

Uf,x,δ =
{

ν ∈ M1(ΣZZ+) : |
∫

ΣZZ+
fdν − x| < δ

}

,

f ∈ Cu(ΣZZ+), x ∈ IR, δ > 0 ,
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and

Ûf̂ ,x,δ,k =
{

ν ∈ X : |
∫

Σk

f̂dpkν − x| < δ

}

,

k ∈ ZZ+, f̂ ∈ Cu(Σk), x ∈ IR, δ > 0 ,

where Cu(ΣZZ+) (Cu(Σn)) denotes the space of bounded, real valued, uni-
formly continuous functions on ΣZZ+ (Σn, respectively). It is easy to check
that each Ûf̂ ,x,δ,k ⊂ X is mapped to Uf,x,δ, where f ∈ Cu(ΣZZ+) is the
natural extension of f̂ , i.e., f(σ) = f̂(σ1, . . . , σk). Consequently, the map
ν �→ {pnν} is continuous. To show that its inverse is continuous, fix
Uf,x,δ ⊂ M1(ΣZZ+) and ν ∈ Uf,x,δ. Let δ̂ = (δ − |

∫
ΣZZ+ fdν − x|)/3 > 0.

Observe that d∞(σ, σ′) ≤ 2−k whenever σ1 = σ′
1, . . . , σk = σ′

k. Hence, by
the uniform continuity of f ,

lim
k→∞

sup
σ,σ′∈ΣZZ+ : (σ1,...,σk)=(σ′

1,...,σ′
k
)

|f(σ)− f(σ′)| = 0 ,

and for k < ∞ large enough, supσ∈ΣZZ+ |f(σ)− f̂(σ1, . . . , σk)| ≤ δ̂, where

f̂(σ1, . . . , σk) = f(σ1, . . . , σk, σ∗, σ∗, . . .)

for some arbitrary σ∗ ∈ Σ. Clearly, f̂ ∈ Cu(Σk). Moreover, for x̂ =
∫
Σk f̂dpkν, the image of Uf,x,δ contains the neighborhood Ûf̂ ,x̂,δ̂,k of {pkν}

in X . Hence, the image of each Uf,x,δ is open, and the bijection ν �→ {pkν}
possesses a continuous inverse.

Returning to the empirical process, observe that for each k, pk(LY
n,∞)

= LY
n,k. The following is therefore an immediate consequence of Lemma

6.5.14, the Dawson–Gärtner theorem (Theorem 4.6.1), and the results of
Section 6.5.2.

Corollary 6.5.15 Assume that (U) of section 6.3 holds. Then the sequence
{LY

n,∞} satisfies the LDP in M1(ΣZZ+) (equipped with the weak topology)
with the good rate function

I∞(ν) =
{

supk≥2 H(pkν|pk−1ν ⊗k π) , ν shift invariant
∞ , otherwise

where ν ∈ M1(ΣZZ+) is called shift invariant if, for all k ∈ ZZ+, pkν is shift
invariant in M1(Σk).

Our goal now is to derive an explicit expression for I∞(·). For i = 0, 1, let
ZZi = ZZ ∩ (−∞, i] and let ΣZZi be constructed similarly to ΣZZ+ via pro-
jective limits. For any μ ∈ M1(ΣZZ+) shift invariant, consider the measures
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μ∗
i ∈ M1(ΣZZi) such that for every k ≥ 1 and every BΣk measurable set Γ,

μ∗
i ( {(. . . , σi+1−k, . . . , σi) : (σi+1−k, . . . , σi) ∈ Γ} ) = pkμ(Γ) .

Such a measure exists and is unique by the consistency condition satisfied
by μ and Kolmogorov’s extension theorem. Next, for any μ∗

0 ∈ M1(ΣZZ0),
define the Markov extension of it, denoted μ∗

0⊗π ∈ M1(ΣZZ1), such that for
any φ ∈ B(Σk+1), k ≥ 1,

∫

ΣZZ1

φ(σ−(k−1), . . . , σ0, σ1)dμ∗
0 ⊗ π

=
∫

ΣZZ0

∫

Σ

φ(σ−(k−1), . . . , σ0, τ)π(σ0, dτ)dμ∗
0 .

In these notations, for any shift invariant ν ∈ M1(ΣZZ+),

H(pkν|pk−1ν ⊗k π) = H(p̄kν∗
1 |p̄k(ν∗

0 ⊗ π)) ,

where for any μ ∈ M1(ΣZZ1), and any Γ ∈ BΣk ,

p̄kμ(Γ) = μ( {(σk−2, . . . , σ0, σ1) ∈ Γ }) .

The characterization of I∞(·) is a direct consequence of the following lemma.

Lemma 6.5.16 (Pinsker) Let Σ be Polish and ν, μ ∈ M1(ΣZZ1). Then

H(p̄kν|p̄kμ) ↗ H(ν|μ) as k →∞.

Proof of Lemma 6.5.16: Recall that

H(p̄kν|p̄kμ) = sup
φ∈Cb(Σk)

{∫

Σk

φdp̄kν − log
(∫

Σk

eφdp̄kμ

)}

,

whereas

H(ν|μ) = sup
φ∈Cb(ΣZZ1 )

{∫

ΣZZ1

φdν − log
(∫

ΣZZ1

eφdμ

)}

.

It clearly follows that H(p̄kν|p̄kμ) ≤ H(p̄k+1ν|p̄k+1μ) ≤ H(ν|μ). On the
other hand, by the same construction used in the proof of Lemma 6.5.14, it
is clear that any function φ ∈ Cu(ΣZZ1) must satisfy

lim
k→∞

sup
σ,σ′∈ΣZZ1 : (σ−(k−1),...,σ1)=(σ′

−(k−1),...,σ
′
1)

|φ(σ)− φ(σ′)| = 0.

The lemma follows by considering, for each φ ∈ Cb(ΣZZ1), an approximating
(almost everywhere ν, μ) sequence in Cu(ΣZZ1), and then approximating
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each φ ∈ Cu(ΣZZ1) by the sequence φ(. . . , σ∗, σ−(k−2), . . . , σ1), where σ∗ is
arbitrary in Σ.

Combining Corollary 6.5.15, Lemma 6.5.16 and the preceding discussion,
the following identification of I∞(·) is obtained.

Corollary 6.5.17

I∞(ν) =
{

H(ν∗
1 |ν∗

0 ⊗ π) , ν shift invariant
∞ , otherwise .

Exercise 6.5.18 Check that the metric defined on ΣZZ+ is indeed compatible
with the projective topology.

Exercise 6.5.19 Assume that (U) of Section 6.3 holds. Deduce the occupa-
tion times and the kth order LDP from the process level LDP of this section.

Exercise 6.5.20 Deduce the process level LDP (in the weak topology) for
Markov processes satisfying Assumptions (H-1) and (H-2).

6.6 A Weak Convergence Approach to Large
Deviations

The variational characterization of the relative entropy functional is key to
an alternative approach for establishing the LDP in Polish spaces. This
approach, developed by Dupuis and Ellis, is particularly useful in obtaining
the LDP for the occupation measure of Markov chains with discontinu-
ous statistics, and is summarized in the monograph [DuE97]. It is based
on transforming large deviations questions to questions about weak con-
vergence of associated controlled processes. Here, we present the essential
idea in a particularly simple setup, namely that of Sanov’s theorem (Corol-
lary 6.2.3).

The key ingredient in the approach of Dupuis and Ellis is the following
observation, based on the duality representation of the relative entropy.

Theorem 6.6.1 (Dupuis-Ellis) Suppose I(·) is a good rate function on
a Polish space X such that for a family of probability measures {μ̃ε} on X
and any f ∈ Cb(X ),

Λf
�
= sup

x∈X
{f(x)− I(x)} = lim

ε→0
sup

ν̃∈M1(X )

{〈f, ν̃〉 − εH(ν̃|μ̃ε)} . (6.6.2)

Then, {μ̃ε} satisfies the LDP in X with good rate function I(·).
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Proof: The duality in Lemma 6.2.13 (see in particular (6.2.14)) implies that
for all f ∈ Cb(X ),

log
∫

X
ef(x)/εμ̃ε(dx) = sup

ν̃∈M1(X )

{ε−1〈f, ν̃〉 −H(ν̃|μ̃ε)} .

Coupled with (6.6.2) this implies that

Λf = lim
ε→0

ε log
∫

X
ef(x)/εμ̃ε(dx) = sup

x∈X
{f(x)− I(x)} .

The conclusion of the theorem follows from Theorem 4.4.13.

We turn to the following important application of Theorem 6.6.1. Let
Σ be a Polish space and X = M1(Σ) equipped with the topology of weak
convergence and the corresponding Borel σ-field. To fix notations related
to the decomposition of measures on Σn, for given i ∈ {1, . . . , n} and ν(n) ∈
M1(Σn), let ν

(n)
[1,i] ∈ M1(Σi) denote the restriction of ν(n) to the first i

coordinates, such that ν
(n)
[1,i](Γ) = ν(n)(Γ×Σn−i), for all Γ ∈ BΣi . For i ≥ 2,

writing Σi = Σi−1×Σ, let ν
(n),y
i ∈ M1(Σ) denote the r.c.p.d. of ν

(n)
[1,i] given

the projection πi−1 : Σi → Σi−1 on the first (i−1) coordinates of y, so that
for any Γi−1 ∈ BΣi−1 and Γ ∈ BΣ,

ν
(n)
[1,i](Γi−1 × Γ) =

∫

Γi−1

ν
(n),y
i (Γ)ν(n)

[1,i−1](dy)

(see Definition D.2 and Theorem D.3 for the existence of such r.c.p.d.). To
simplify notations, we also use ν

(n),y
i to denote ν

(n)
[1,i] in case i = 1. For any

n ∈ ZZ+, let μ(n) ∈ M1(Σn) denote the law of the Σn-valued random variable
Y = (Y1, . . . , Yn), with μ̃n ∈ M1(X ) denoting the law of LY

n induced on X
via the measurable map y → Ly

n.
The following lemma provides an alternative representation of the right-
side of (6.6.2). It is essential for proving the convergence in (6.6.2), and for
identifying the limit as Λf .

Lemma 6.6.3 For any f ∈ Cb(X ) and μ(n) ∈ M1(Σn),

Λf,n
�
= sup

ν̃∈M1(X )

{〈f, ν̃〉 − 1
n

H(ν̃|μ̃n)}

= sup
ν(n)∈M1(Σn)

{
∫

Σn

f(Ly
n)ν(n)(dy)− 1

n
H(ν(n)|μ(n))} (6.6.4)

= sup
ν(n)∈M1(Σn)

∫

Σn

[f(Ly
n)− 1

n

n∑

i=1

H(ν(n),y
i (·)|μ(n),y

i (·))]ν(n)(dy) .
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Proof: Fix f ∈ Cb(X ), n ∈ ZZ+ and μ(n) ∈ M1(Σn). For computing Λf,n

it suffices to consider ν̃ = ν̃n such that ρn = dν̃n/dμ̃n exists. Fixing such
ν̃n ∈ M1(X ), since μ̃n({Ly

n : y ∈ Σn}) = 1, also ν̃n({Ly
n : y ∈ Σn}) = 1.

Consequently, ν̃n can be represented as a law on X induced by some ν(n) ∈
M1(Σn) via the continuous mapping y �→ Ly

n. Hence, by Lemma 6.2.13,

H(ν̃n|μ̃n) = sup
g∈Cb(X )

{〈g, ν̃n〉 − log
∫

X
eg(x)μ̃n(dx)}

= sup
g∈Cb(X )

{
∫

Σn

g(Ly
n)ν(n)(dy)− log

∫

Σn

eg(L
y
n)μ(n)(dy)}

≤ sup
h∈Cb(Σn)

{
∫

Σn

h(y)ν(n)(dy)− log
∫

Σn

eh(y)μ(n)(dy)}

= H(ν(n)|μ(n)) ,

with equality when ν(n) is such that dν(n)/dμ(n) = ρn ◦ (Ly
n)−1. Since

〈f, ν̃n〉 =
∫
Σn f(Ly

n)ν(n)(dy) and ρn is an arbitrary μ̃n-probability density,

Λf,n = sup
ν(n)∈M1(Σn)

{
∫

Σn

f(Ly
n)ν(n)(dy)− 1

n
H(ν(n)|μ(n))} . (6.6.5)

Applying Theorem D.13 sequentially for πi−1 : Σi−1 × Σ → Σi−1, i =
n, n− 1, . . . , 2, we have the identity

H(ν(n)|μ(n)) =
n∑

i=1

∫

Σn

H(ν(n),y
i (·)|μ(n),y

i (·))ν(n)(dy) . (6.6.6)

Combining (6.6.5) and (6.6.6) completes the proof of the lemma.

We demonstrate this approach by providing yet another proof of Sanov’s
theorem (with respect to the weak topology, that is, Corollary 6.2.3). This
proof is particularly simple because of the ease in which convexity can be
used in demonstrating the upper bound. See the historical notes at the end
of this chapter for references to more challenging applications.

Proof of Corollary 6.2.3 (Weak convergence method): The fact that
H(·|μ) is a good rate function is a consequence of Lemma 6.2.12. Fixing
f ∈ Cb(X ), by Theorem 6.6.1, with ε = 1/n, suffices for showing the LDP
to prove the convergence of Λf,n of (6.6.4) to Λf of (6.6.2). With μ(n) = μn

a product measure, it follows that μ
(n),y
i = μ for 1 ≤ i ≤ n. Choose in the

third line of (6.6.4) a product measure ν(n) = νn such that ν
(n),y
i = ν for

1 ≤ i ≤ n, to get the lower bound

Λf,n ≥
∫

Σn

f(Ly
n)νn(dy)−H(ν|μ) .



6.6 A Weak Convergence Approach to Large Deviations 305

Let b = 1 + supx∈X |f(x)| < ∞. Fix η ∈ (0, b) and consider the open set
Gη = {x : f(x) > f(ν)− η} ⊂ X , which contains a neighborhood of ν from
the base of the topology of X , that is, a set ∩m

i=1Uφi,〈φi,ν〉,δ as in (6.2.2)
for some m ∈ ZZ+, δ > 0 and φi ∈ Cb(Σ). If Y1, . . . , Yn is a sequence of
independent, Σ-valued random variables, identically distributed according
to ν ∈ M1(Σ), then for any φ ∈ Cb(Σ) fixed, 〈φ,LY

n 〉 → 〈φ, ν〉 in probability
by the law of large numbers. In particular,
∫

Σn

f(Ly
n)νn(dy) ≥ f(ν)− η − 2bν̃n(Gc

η)

≥ f(ν)− η − 2b

m∑

i=1

νn({y : |〈φi, L
y
n〉 − 〈φi, ν〉| > δ})

−→
n→∞

f(ν)− η .

Therefore, considering η → 0 and ν ∈ M1(Σ) arbitrary,

lim inf
n→∞

Λf,n ≥ sup
ν∈M1(Σ)

{f(ν)−H(ν|μ)} = Λf . (6.6.7)

We turn to the proof of the complementary upper bound. By the convexity
of H(·|μ), for any ν(n) ∈ M1(Σn),

1
n

n∑

i=1

H(ν(n),y
i |μ) ≥ H(νy

n |μ) ,

where νy
n = n−1

∑n
i=1 ν

(n),y
i is a random probability measure on Σ. Thus,

by Lemma 6.6.3 there exist ν(n) ∈ M1(Σn) such that

Λ̄f
�
= lim sup

n→∞
Λf,n ≤ lim sup

n→∞

∫

Σn

[f(Ly
n)−H(νy

n |μ)]ν(n)(dy) . (6.6.8)

For proving that Λ̄f ≤ Λf , we may and will assume that Λ̄f > −∞. Con-
sider the random variables (νY

n , LY
n ) ∈ X 2 corresponding to sampling in-

dependently at each n, according to the law ν(n) on Σn, a sample Y =
(Y1, . . . , Yn). This construction allows for embedding the whole sequence
{(νY

n , LY
n )} in one probability space (Ω,F , P ), where P ∈ M1

(
(X 2)ZZ+

)

is the law of the sequence {(νY
n , LY

n )}. Applying Fatou’s lemma for the
nonnegative functions H(νy

n |μ)− f(Ly
n) + b, by (6.6.8), it follows that

Λ̄f ≤ lim sup
n→∞

∫ (
f(LY

n )−H(νY
n |μ)

)
dP

≤
∫

lim sup
n→∞

(
f(LY

n )−H(νY
n |μ)

)
dP . (6.6.9)
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Let Fi,n = {Γ × Σn−i : Γ ∈ BΣi} for 1 ≤ i ≤ n and F0,n = {∅,Σn}. Fix
φ ∈ Cb(Σ) and n ∈ ZZ+. Note that 〈φ,LY

n 〉 − 〈φ, νY
n 〉 = n−1Sn, where for

the filtration Fk,n,

Sk
�
=

k∑

i=1

(
φ(Yi)− E(φ(Yi)|Fi−1,n)

)
, k = 1, . . . , n , S0 = 0 ,

is a discrete time martingale of bounded differences, null at 0. By (2.4.10),
for some c > 0 and any δ > 0, n ∈ ZZ+,

P (|〈φ,LY
n 〉 − 〈φ, νY

n 〉| > δ) ≤ 2e−cnδ2
,

so applying the Borel-Cantelli lemma, it follows that

〈φ,LY
n 〉 − 〈φ, νY

n 〉 → 0, P − almost surely.

With M1(Σ) possessing a countable convergence determining class {φi},
it follows that P -almost surely, the (random) set of limit points of the
sequence {LY

n } is the same as that of the sequence {νY
n }. Since Λ̄f > −∞

and f(·) is bounded, P -almost surely H(νY
n |μ) is a bounded sequence and

then with H(·|μ) a good rate function, every subsequence of {νY
n } has at

least one limit point in M1(Σ). Therefore, by the continuity of f(·) and
lower semi-continuity of H(·|μ), P -almost surely,

lim sup
n→∞

{f(LY
n )−H(νY

n |μ)} ≤ sup
ν∈M1(Σ)

{f(ν)−H(ν|μ)} = Λf .

Consequently, Λ̄f ≤ Λf by (6.6.9). The LDP then follows by (6.6.7) and
Theorem 6.6.1.

6.7 Historical Notes and References

The approach taken in this chapter is a combination of two powerful
ideas: sub-additivity methods and the projective limit approach. The sub-
additivity approach for proving the existence of the limits appearing in
the various definitions of logarithmic moment generating functions may be
traced back to Ruelle and to Lanford [Rue65, Rue67, Lan73]. In the con-
text of large deviations, they were applied by Bahadur and Zabell [BaZ79],
who used it to derive both the sharp form of Cramér’s theorem discussed
in Section 6.1 and the weak form of Sanov’s theorem in Corollary 6.2.3.
In the same article, they also derive the LDP for the empirical mean of
Banach valued i.i.d. random variables described in Exercise 6.2.21. The
latter was also considered in [DV76, Bol84, deA85b] and in [Bol86, Bol87a],
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where Laplace’s method is used and the case of degeneracy is resolved. As-
sumption 6.1.2 borrows from both [BaZ79] and [DeuS89b]. In view of the
example in [Wei76, page 323], some restriction of the form of part (b) of
Assumption 6.1.2 is necessary in order to prove Lemma 6.1.8. (Note that
this contradicts the claim in the appendix of [BaZ79]. This correction of
the latter does not, however, affect other results there and, moreover, it
is hard to imagine an interesting situation in which this restriction is not
satisfied.) Exercise 6.1.19 follows the exposition in [DeuS89b]. The moder-
ate deviations version of Cramér’s theorem, namely the infinite dimensional
extension of Theorem 3.7.1, is considered in [BoM78, deA92, Led92].

Long before the “general” theory of large deviations was developed,
Sanov proved a version of Sanov’s theorem for real valued random variables
[San57]. His work was extended in various ways by Sethuraman, Hoeffd-
ing, Hoadley, and finally by Donsker and Varadhan [Set64, Hoe65, Hoa67,
DV76], all in the weak topology. A derivation based entirely on the pro-
jective limit approach may be found in [DaG87], where the Daniell–Stone
theorem is applied for identifying the rate function in the weak topology.
The formulation and proof of Sanov’s theorem in the τ -topology is due to
Groeneboom, Oosterhoff, and Ruymgaart [GOR79], who use a version of
what would later become the projective limit approach. These authors also
consider the application of the results to various statistical problems. Re-
lated refinements may be found in [Gro80, GrS81]. For a different approach
to the strong form of Sanov’s theorem, see [DeuS89b]. See also [DiZ92] for
the exchangeable case. Combining either the approximate or inverse con-
traction principles of Section 4.2 with concentration inequalities that are
based upon those of Section 2.4, it is possible to prove Sanov’s theorem
for topologies stronger than the τ -topology. For example, certain nonlinear
and possibly unbounded functionals are part of the topology considered by
[SeW97, EicS97], whereas in the topologies of [Wu94, DeZa97] convergence
is uniform over certain classes of linear functionals.

Asymptotic expansions in the general setting of Cramér’s theorem and
Sanov’s theorem are considered in [EinK96] and [Din92], respectively. These
infinite dimensional extensions of Theorem 3.7.4 apply to open convex sets,
relying upon the concept of dominating points first introduced in [Ney83].

As should be clear from an inspection of the proof of Theorem 6.2.10,
which was based on projective limits, the assumption that Σ is Polish played
no role whatsoever, and this proof could be made to work as soon as Σ is
a Hausdorff space. In this case, however, the measurability of LY

n with re-
spect to either Bw or Bcy has to be dealt with because Σ is not necessarily
separable. Examples of such a discussion may be found in [GOR79], Propo-
sition 3.1, and in [Cs84], Remark 2.1. With some adaptations one may even
dispense of the Hausdorff assumption, thus proving Sanov’s theorem for Σ
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an arbitrary measurable space. See [deA94b] for such a result.

Although Sanov’s theorem came to be fully appreciated only in the
1970s, relative entropy was introduced into statistics by Kullback and Leib-
ler in the early 1950s [KL51], and came to play an important role in what
became information theory. For an account of the use of relative entropy in
this context, see [Ga68, Ber71].

The fundamental reference for the empirical measure LDP for Markov
chains satisfying certain regularity conditions is Donsker and Varadhan
[DV75a, DV75b, DV76], who used a direct change of measure argument
to derive the LDP, both in discrete and in continuous time. As can be
seen from the bibliography, the applications of their result have been far-
reaching, explored first by them and then by a variety of other authors. An-
other early reference on the same subject is Gärtner [Gär77]. A completely
different approach was proposed by Ney and Nummelin [NN87a, NN87b],
who evaluate the LDP for additive functionals of Markov chains, and hence
need to consider mainly real valued random variables, even for Markov
chains taking values in abstract spaces. They also are able to obtain a
local LDP for quite general irreducible Markov chains. Extensions and
refinements of these results to (abstract valued) additive functionals are
presented in [deA88], again under a quite general irreducibility assumption.
See also [deA90, Jai90] for a refinement of this approach and [DiN95] for
its application to the LDP for empirical measures. These latter extensions,
while providing sharper results, make use of a technically more involved
machinery. The LDP might hold for a Markov chain with a good rate func-
tion other than that of Donsker and Varadhan, possibly even non-convex.
Such examples are provided in Section 3.1.1, borrowing from [Din93] (where
the issue of identification of the rate function is studied in much general-
ity). An example of such a behavior for an ergodic Markov chain on [0, 1]
is provided in [DuZ96]. Note in this context that [BryS93] constructs a
bounded additive functional of a Markov chain which satisfies mixing con-
ditions, converges exponentially fast to its expectation, but does not satisfy
the LDP. Such a construction is provided in [BryD96], with the additional
twist of the LDP now holding for any atomic initial measure of the chain
but not for its stationary measure. See also [BxJV91, BryD96] for Markov
chains such that every bounded additive functional satisfies the LDP while
the empirical measure does not satisfy the LDP.

Stroock [St84] was the first to consider the uniform case (U) with � =
N = 1. The general uniform case was derived by Ellis [Ell88]. (See also
[ElW89].) Another type of uniformity was considered by [INN85], based
on the additive functional approach. While the uniformity assumptions
are quite restrictive (in particular (U) implies Doëblin recurrence), they
result in a stronger uniform LDP statement while allowing for a transparent
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derivation, avoiding the heavier machinery necessary for handling general
irreducible chains. Uniformity assumptions also result with finer results for
additive functionals, such as dominating points in [INN85] and asymptotic
expansions in [Jen91].

The possibilities of working in the τ -topology and dispensing with the
Feller continuity were observed by Bolthausen [Bol87b].

For the moderate deviations of empirical measures of Markov chains see
[Wu95, deA97b].

Our derivation in Section 6.3 of the LDP in the weak topology for the
uniform case and the identification of the rate function presented in Section
6.5, are based on Chapter 4.1 of [DeuS89b]. Our notion of convergence in
the discussion of the nonuniform case is different than that of [DeuS89b]
and the particular form of (6.5.3) seems to be new.

Building upon the approximate subadditive theorem of [Ham62], the τ -
topology result of Section 6.4 is a combination of ideas borrowed from the
projective limit approach of Dawson and Gärtner, Bryc’s inverse Varadhan
lemma (which may be thought of as a way to generate an approximate iden-
tity on open convex sets using convex functions) and the mixing hypotheses
of [CK88]. See also [BryD96] for the same result under weaker assumptions
and its relation with strong mixing conditions.

Relations between hypermixing assumptions and hypercontractivity
have been studied by Stroock [St84]. (See also [DeuS89b] for an updated
account.) In particular, for Markov processes, there are intimate links
between the hypermixing assumptions (H-1) and (H-2) and Logarithmic
Sobolev inequalities. Exercise 6.4.19 is based on the continuous time
Orenstein–Uhlenbeck example discussed in [DeuS89b].

Many of the preceding references also treat the continuous time case.
For a description of the changes required in transforming the discrete time
results to continuous time ones, see [DeuS89b]. It is hardly surprising that
in the continuous time situation, it is often easier to compute the resulting
rate function. In this context, see the evaluation of the rate function in the
symmetric case described in [DeuS89b], and the explicit results of Pinsky
[Pin85a, Pin85b]. See also [KuT84, BrM91, BolDT95, BolDT96] for related
asymptotic expansions in the context of Laplace’s method.

The first to consider the LDP for the empirical process were Donsker
and Varadhan [DV83]. As pointed out, in the uniform case, the kth-fold
empirical measure computation and its projective extension to the process
level LDP may be found in [ElW89] and in the book by Deuschel and
Stroock [DeuS89b]. Lemma 6.5.16 is due to Pinsker [Pi64].

Section 6.6 is motivated by the weak convergence approach of [DuE97].



310 6. The LDP for Abstract Empirical Measures

Large deviations for empirical measures and processes have been consid-
ered in a variety of situations. A partial list follows.

The case of stationary processes satisfying appropriate mixing condi-
tions is handled by [Num90] (using the additive functional approach), by
[Sch89, BryS93] for exponential convergence of tail probabilities of the em-
pirical mean, and by [Ore85, Oll87, OP88] at the process level. For an
excellent survey of mixing conditions, see [Bra86]. As pointed out by Orey
[Ore85], the empirical process LDP is related to the Shannon–McMillan
theorem of information theory. For some extensions of the latter and
early large deviations statements, see [Moy61, Föl73, Barr85]. See also
[EKW94, Kif95, Kif96] for other types of ergodic averages.

The LDP for Gaussian empirical processes was considered by Donsker
and Varadhan [DV85], who provide an explicit evaluation of the result-
ing rate function in terms of the spectral density of the process. See also
[BryD95, BxJ96] for similar results in continuous time and for Gaussian
processes with bounded spectral density for which the LDP does not hold.
For a critical LDP for the “Gaussian free field” see [BolD93].

Process level LDPs for random fields and applications to random fields
occurring from Gibbs conditioning are discussed in [DeuSZ91, Bry92]. The
Gibbs random field case has also been considered by [FO88, Oll88, Com89,
Sep93], whereas the LDP for the ZZd-indexed Gaussian field is discussed in
[SZ92]. See also the historical notes of Chapter 7 for some applications to
statistical mechanics.

An abstract framework for LDP statements in dynamical systems is
described in [Tak82] and [Kif92]. LDP statements for branching processes
are described in [Big77, Big79].

Several estimates on the time to relaxation to equilibrium of a Markov
chain are closely related to large deviations estimates. See [LaS88, HoKS89,
JS89, DiaS91, JS93, DiaSa93, Mic95] and the accounts [Sal97, Mart98] for
further details.

The analysis of simulated annealing is related to both the Freidlin–
Wentzell theory and the relaxation properties of Markov chains. For more
on this subject, see [Haj88, HoS88, Cat92, Mic92] and the references therein.



Chapter 7

Applications of Empirical
Measures LDP

In this chapter, we revisit three applications considered in Chapters 2 and
3 in the finite alphabet setup. Equipped with Sanov’s theorem and the
projective limit approach, the general case (Σ Polish) is treated here.

7.1 Universal Hypothesis Testing

7.1.1 A General Statement of Test Optimality

Suppose a random variable Z that assumes values in a topological space Y
is observed. Based on this observation, a choice may be made between the
null hypothesis H0 (where Z was drawn according to a Borel probability
measure μ0) and the alternative hypothesis H1 (where Z was drawn accord-
ing to another Borel probability measure, denoted μ1). Whenever the laws
μ0 and μ1 are known a priori, and dμ1/dμ0 exists, it may be proved that
the likelihood ratio test is optimal in the Neyman–Pearson sense. To state
precisely what this statement means, define a test as a Borel measurable
map S : Y → {0, 1} with the interpretation that when Z = z is observed,
then H0 is accepted (H1 rejected) if S(z) = 0, while H1 is accepted (H0

rejected) if S(z) = 1. Associated with each test are the error probabilities
of first and second kind,

α(S)
�
= μ0({S(z) = 1}) ,

β(S)
�
= μ1({S(z) = 0}) .

A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications,
Stochastic Modelling and Applied Probability 38,
DOI 10.1007/978-3-642-03311-7 7,
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β(S) may always be minimized by choosing S(·) ≡ 1 at the expense of
α(S) = 1. The Neyman-Pearson criterion for optimality involves looking
for a test S that minimizes β(S) subject to the constraint α(S) ≤ γ. Now
define the likelihood ratio test with threshold η by

S̃(z) =
{

0 if dμ1
dμ0

(z) ≤ η

1 otherwise.

Exact optimality for the likelihood ratio test is given in the following clas-
sical lemma. (For proofs, see [CT91] and [Leh59].)

Lemma 7.1.1 (Neyman–Pearson) For any 0 ≤ γ ≤ 1, there exists a
η(γ, μ0, μ1) such that α(S̃) ≤ γ, and any other test S that satisfies α(S) ≤ γ
must satisfy β(S) ≥ β(S̃).

The major deficiency of the likelihood ratio test lies in the fact that
it requires perfect knowledge of the measures μ0 and μ1, both in forming
the likelihood ratio and in computing the threshold η. Thus, it is not
applicable in situations where the alternative hypotheses consist of a family
of probability measures. To overcome this difficulty, other tests will be
proposed. However, the notion of optimality needs to be modified to allow
for asymptotic analysis. This is done in the same spirit of Definition 3.5.1.

In order to relate the optimality of tests to asymptotic computations,
the following assumption is now made.

Assumption 7.1.2 A sequence of random variables Zn with values in a
metric space (Y , d) is observed. Under the null hypothesis (H0), the Borel
law of Zn is μ0,n, where {μ0,n} satisfies the LDP in Y with the good rate
function I(·), which is known a priori.

A test is now defined as a sequence of Borel measurable maps Sn : Y →
{0, 1}. To any test {Sn}, associate the error probabilities of first and second
kind:

αn(Sn)
�
= μ0,n({Sn(Zn) = 1}) ,

βn(Sn)
�
= μ1,n({Sn(Zn) = 0}) ,

where μ1,n is the (unknown) Borel law of Zn under the alternative hypoth-
esis (H1). Note that it is implicitly assumed here that Zn is a sufficient
statistics given {Zk}n

k=1, and hence it suffices to consider tests of the form
Sn(Zn). For stating the optimality criterion and presenting an optimal
test, let (Sn

0 ,Sn
1 ) denote the partitions induced on Y by the test {Sn} (i.e.,

z ∈ Sn
0 iff Sn(z) = 0). Since in the general framework discussed here,
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pointwise bounds on error probabilities are not available, smooth versions
of the maps Sn are considered. Specifically, for each δ > 0, let Sn,δ denote
the δ-smoothing of the map Sn defined via

Sn,δ
1

�
={y ∈ Y : d(y,Sn

1 ) < δ} , Sn,δ
0

�
=Y \ Sn,δ

1 ,

i.e., the original partition is smoothed by using for Sn,δ
1 the open δ-blowup

of the set Sn
1 . Define the δ-smoothed rate function

Jδ(z)
�
= inf

x∈B̃z,2δ

I(x) ,

where the closed sets B̃z,2δ are defined by

B̃z,2δ
�
={y ∈ Y : d(z, y) ≤ 2δ}.

Note that the goodness of I(·) implies the lower semicontinuity of Jδ(·).
The following theorem is the main result of this section, suggesting

asymptotically optimal tests based on Jδ(·).

Theorem 7.1.3 Let Assumption 7.1.2 hold. For any δ > 0 and any η ≥ 0,
let S∗

δ denote the test

S∗
δ (z) =

{
0 if Jδ(z) < η
1 otherwise ,

with S∗,δ denoting the δ-smoothing of S∗
δ . Then

lim sup
n→∞

1
n

log αn(S∗,δ) ≤ −η, (7.1.4)

and any other test Sn that satisfies

lim sup
n→∞

1
n

log αn(Sn,4δ) ≤ −η (7.1.5)

must satisfy

lim inf
n→∞

(
βn(Sn,δ)
βn(S∗,δ)

)

≥ 1. (7.1.6)

Remarks:
(a) Note the factor 4δ appearing in (7.1.5). Although the number 4 is
quite arbitrary (and is tied to the exact definition of Jδ(·)), some margin is
needed in the definition of optimality to allow for the rough nature of the
large deviations bounds.
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(b) The test S∗
δ consists of maps that are independent of n and depend on

μ0,n solely via the rate function I(·). This test is universally asymptotically
optimal, in the sense that (7.1.6) holds with no assumptions on the Borel
law μ1,n of Zn under the alternative hypothesis (H1).

Proof: The proof is based on the following lemmas:

Lemma 7.1.7 For all δ > 0,

cδ�= inf
z∈S∗,δ

1

I(z) ≥ η.

Lemma 7.1.8 For any test satisfying (7.1.5), and all n > n0(δ),

S∗,δ
0 ⊆ Sn,δ

0 . (7.1.9)

To prove (7.1.4), deduce from the large deviations upper bound and Lemma
7.1.7 that

lim sup
n→∞

1
n

log αn(S∗,δ) = lim sup
n→∞

1
n

log μ0,n(S∗,δ
1 )

≤ − inf
z∈S∗,δ

1

I(z) ≤ −η.

To conclude the proof of the theorem, note that, by Lemma 7.1.8, βn(Sn,δ) ≥
βn(S∗,δ) for any test satisfying (7.1.5), any n large enough, and any sequence
of probability measures μ1,n.

Proof of Lemma 7.1.7: Without loss of generality, assume that cδ < ∞,
and hence (with I(·) a good rate function), there exists a z0 ∈ S∗,δ

1 such
that I(z0) = cδ. By the definition of S∗,δ, there exists a y ∈ Y such that
z0 ∈ B̃y,2δ and Jδ(y) ≥ η. It follows that

cδ = I(z0) ≥ inf
x∈B̃y,2δ

I(x) = Jδ(y) ≥ η.

Proof of Lemma 7.1.8: Assume that {Sn} is a test for which (7.1.9) does
not hold. Then for some infinite subsequence {nm}, there exist zm ∈ S∗,δ

0

such that zm ∈ Snm,δ
1 . Therefore, Jδ(zm) < η, and hence there exist

ym ∈ B̃zm,2δ with I(ym) < η. Since I(·) is a good rate function, it follows
that ym has a limit point y∗. Hence, along some infinite subsequence {nm′},

By∗,δ/2 ⊆ Bzm′ ,3δ ⊆ Snm′ ,4δ
1 .
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Therefore, by the large deviations lower bound,

lim sup
n→∞

1
n

log αn(Sn,4δ) ≥ lim inf
m′→∞

1
nm′

log μ0,nm′ (S
nm′ ,4δ
1 )

≥ lim inf
n→∞

1
n

log μ0,n(By∗,δ/2) ≥ −I(ym0) > −η ,

where m0 is large enough for ym0 ∈ By∗,δ/2. In conclusion, any test {Sn}
for which (7.1.9) fails can not satisfy (7.1.5).

Another frequently occurring situation is when only partial informa-
tion about the sequence of probability measures μ0,n is given a priori.
One possible way to model this situation is by a composite null hypoth-
esis H0

�
= ∪θ∈Θ Hθ, as described in the following assumption.

Assumption 7.1.10 A sequence of random variables Zn with values in a
metric space (Y , d) is observed. Under the null hypothesis (H0), the law of
Zn is μθ,n for some θ ∈ Θ that is independent of n. For each θ ∈ Θ, the
sequence {μθ,n} satisfies the LDP in Y with the good rate function Iθ(·),
and these functions are known a priori.

The natural candidate for optimal test now is again S∗
δ , but with

Jδ(z)
�
=inf

θ∈Θ
inf

x∈B̃z,2δ

Iθ(x).

Indeed, the optimality of S∗
δ is revealed in the following theorem.

Theorem 7.1.11 Let Assumption 7.1.10 hold.
(a) For all θ ∈ Θ,

lim sup
n→∞

1
n

log μθ,n(S∗,δ
1 ) ≤ −η. (7.1.12)

(b) Let {Sn} be an alternative test such that for all θ ∈ Θ,

lim sup
n→∞

1
n

log μθ,n(Sn,4δ
1 ) ≤ −η. (7.1.13)

Assume that either:

The set {z : inf
θ∈Θ

Iθ(z) < η} is pre-compact (7.1.14)

or
Sn ≡ S is independent of n. (7.1.15)

Then for any sequence {μ1,n},

lim inf
n→∞

(
μ1,n(Sn,δ

0 )

μ1,n(S∗,δ
0 )

)

≥ 1. (7.1.16)
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Remark: If neither (7.1.14) nor (7.1.15) holds, a somewhat weaker state-
ment may still be proved for exponentially tight {μ1,n}. For details, c.f.
Exercise 7.1.17.

Proof: (a) By a repeat of the proof of Lemma 7.1.7, it is concluded that
for all δ > 0 and all θ ∈ Θ,

cδ
θ
�
= inf

z∈S∗,δ
1

Iθ(z) ≥ η.

Therefore, (7.1.12) follows by the large deviations upper bound.
(b) Suppose that the set inclusion (7.1.9) fails. Then by a repeat of the
proof of Lemma 7.1.8, there exist nm →∞, zm ∈ Snm,δ

1 with ym ∈ B̃zm,2δ,
and θm ∈ Θ with Iθm(ym) < η. Hence, if (7.1.14) holds, then the sequence
ym possesses a limit point y∗ and (7.1.13) fails for θ = θm0 such that
ym0 ∈ By∗,δ/2.

Alternatively, if Sn ≡ S and (7.1.9) fails, then there exists a z∗ ∈ Sδ
1

such that Jδ(z∗) < η. Therefore, there exist a y∗ ∈ B̃z∗,2δ and a θ∗ ∈ Θ
such that Iθ∗(y∗) < η. Since

By∗,δ/2 ⊆ Bz∗,3δ ⊆ S4δ
1 ,

it follows from this inclusion and the large deviations lower bound that

lim sup
n→∞

1
n

log μθ∗,n(S4δ
1 ) ≥ lim inf

n→∞

1
n

log μθ∗,n(By∗,δ/2)

≥ −Iθ∗(y∗) > −η ,

contradicting (7.1.13). Consequently, when either (7.1.14) or (7.1.15) holds,
then (7.1.9) holds for any test that satisfies (7.1.13). Since (7.1.16) is an
immediate consequence of (7.1.9), the proof is complete.

Exercise 7.1.17 (a) Prove that for any test satisfying (7.1.13) and any com-
pact set K ⊂ Y ,

S∗,δ
0 ∩K ⊆ Sn,δ

0 , ∀n > n0(δ) . (7.1.18)

(b) Use part (a) to show that even if both (7.1.14) and (7.1.15) fail, still

lim inf
n→∞

1
n

log μ1,n(Sn,δ
0 ) ≥ lim inf

n→∞

1
n

log μ1,n(S∗,δ
0 )

for any test {Sn} that satisfies (7.1.13), and any exponentially tight {μ1,n}.
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7.1.2 Independent and Identically Distributed
Observations

The results of Theorems 7.1.3 and 7.1.11 are easily specialized to the par-
ticular case of i.i.d. observations. Specifically, let Y1, Y2, . . . , Yn be an ob-
served sequence of Σ-valued random variables, where Σ is a Polish space.
Under both hypotheses, these variables are i.i.d., with μj denoting the
probability measure of Y1 under Hj , j = 0, 1. By a proof similar to
the one used in Lemma 3.5.3, for each integer n, the random variable
Zn = LY

n = n−1
∑n

i=1 δYi , which takes values in Y = M1(Σ), is a suffi-
cient statistics in the sense of Lemma 3.5.3. Thus, it is enough to consider
tests of the form Sn(Zn). The space M1(Σ) is a metric space when equipped
with the weak topology, and by Sanov’s theorem (Theorem 6.2.10), {Zn}
satisfies under H0 the LDP with the good rate function I(·) = H(·|μ0).
Hence, Assumption 7.1.2 holds, and consequently so does Theorem 7.1.3.
When μ0 is known only to belong to the set A�

={μθ}θ∈Θ, then Theorem
7.1.11 holds. Moreover:

Theorem 7.1.19 If A is a compact subset of M1(Σ), then (7.1.14) holds,
and the test S∗ is optimal.

Remark: When Σ is a compact space, so is M1(Σ) (when equipped with
the weak topology; see Theorem D.8), and (7.1.14) trivially holds.

Proof: Assume that the set of measures A is compact. Then by Prohorov’s
theorem (Theorem D.9), for each δ > 0 there exists a compact set Kδ ⊆
Σ such that μ(Kc

δ ) < δ for all μ ∈ A. Fix η < ∞ and define B�
={ν :

infμ∈A H(ν|μ) < η}. Fix ν ∈ B and let μ ∈ A be such that H(ν|μ) < η.
Then by Jensen’s inequality,

η >

∫

Kδ

dν log
dν

dμ
+
∫

Kc
δ

dν log
dν

dμ

≥ ν(Kδ) log
ν(Kδ)
μ(Kδ)

+ ν(Kc
δ ) log

ν(Kc
δ )

μ(Kc
δ)
≥ − log 2 + ν(Kc

δ ) log
1
δ

,

where the last inequality follows from the bound

inf
p∈[0,1]

{ p log p + (1− p) log(1− p) } ≥ − log 2 .

Therefore, ν(Kc
δ ) ≤ (η+log 2)/ log(1/δ) for all ν ∈ B and all δ > 0, implying

that B is tight. Hence, again by Prohorov’s theorem (Theorem D.9), B is
pre-compact and this is precisely the condition (7.1.14).

Exercise 7.1.20 Prove that the empirical measure LY
n is a sufficient statistics

in the sense of Section 3.5.
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7.2 Sampling Without Replacement

Consider the following setup, which is an extension of the one discussed
in Section 2.1.3. Let Σ be a Polish space. Out of an initial deterministic
pool of m items y�

=(y1, . . . , ym) ∈ Σm, an n-tuple Y�
=(yi1 , yi2 , . . . , yin) is

sampled without replacement, namely, i1 
= i2 
= · · · 
= in and each choice
of i1 
= i2 
= · · · 
= in ∈ {1, . . . , m} is equally likely (and independent of the
sequence y).

Suppose now that, as m → ∞, the deterministic empirical measures
Ly

m = m−1
∑m

i=1 δyi converge weakly to some μ ∈ M1(Σ). Let Y be a
random vector obtained by the sampling without replacement of n out of
m elements as described before. Such a situation occurs when one surveys
a small part of a large population and wishes to make statistical inference
based on this sample. The next theorem provides the LDP for the (random)
empirical measure LY

n associated with the vector Y, where n/m(n) → β ∈
(0, 1) as n →∞.

Theorem 7.2.1 The sequence LY
n satisfies the LDP in M1(Σ) equipped

with the weak topology, with the convex good rate function

I(ν|β, μ) =

⎧
⎪⎨

⎪⎩

H(ν|μ) + 1−β
β H

(
μ−βν
1−β

∣
∣
∣μ
)

if μ−βν
1−β ∈ M1(Σ)

∞ otherwise .

(7.2.2)

Remark: Consider the probability space (Ω1 × Ω2,B × BZZ+
Σ , P1 × P2),

with Ω2 = ΣZZ+ , P2 stationary and ergodic with marginal μ on Σ, and
(Ω1,B, P1) representing the randomness involved in the sub-sampling. Let
ω2 = (y1, y2, . . . , ym, . . .) be a realization of an infinite sequence under the
measure P2. Since Σ is Polish, by the ergodic theorem the empirical mea-
sures Ly

m converge to μ weakly for (P2) almost every ω2. Hence, Theorem
7.2.1 applies for almost every ω2, yielding the same LDP for LY

n under the
law P1 for almost every ω2. Note that for P2 a product measure (corre-
sponding to an i.i.d. sequence), the LDP for LY

n under the law P1 × P2

is given by Sanov’s theorem (Theorem 6.2.10) and admits a different rate
function!

The first step in the proof of Theorem 7.2.1 is to derive the LDP for
a sequence of empirical measures of deterministic positions and random
weights which is much simpler to handle. As shown in the sequel, this LDP
also provides an alternative proof for Theorem 5.1.2.

Theorem 7.2.3 Let Xi be real-valued i.i.d. random variables with ΛX(λ) =
log E[eλX1 ] finite everywhere and yi ∈ Σ non-random such that Ly

m → μ
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weakly in M1(Σ). Then, for n = n(m) such that n/m → β ∈ (0,∞), the
sequence L′

n = n−1
∑m

i=1 Xiδyi satisfies the LDP in M(Σ) equipped with the
Cb(Σ)-topology, with the convex good rate function

IX(ν) =

⎧
⎨

⎩

∫
Σ

1
β Λ∗

X(βf)dμ if f = dν
dμ exists

∞ otherwise .

(7.2.4)

Remark: In case Xi are non-negative, L′
n ∈ M+(Σ), the subset of M(Σ)

consisting of all positive finite Borel measures on Σ. Thus, the LDP of
Theorem 7.2.3 holds in M+(Σ) equipped with the induced topology, by
part (b) of Lemma 4.1.5.

Proof: Note that Λ∗
X(·) is a convex good rate function and by Lemma

2.2.20, Λ∗
X(x)/|x| → ∞ as |x| → ∞. Hence, by Lemma 6.2.16, IX(·) is

a convex, good rate function on M(Σ) equipped with the B(Σ)-topology.
The same applies for the weaker Cb(Σ)-topology, by considering the identity
map on M(Σ).

By part (c) of Lemma 2.2.5, ΛX(·) is differentiable. Hence, for φ ∈ Cb(Σ)
we have that ΛX(φ(·)) ∈ Cb(Σ) and

log E[exp(n
∫

Σ

φdL′
n)] = log E[exp(

m∑

i=1

Xiφ(yi))] =
m∑

i=1

ΛX(φ(yi)) .

Therefore,

Λ(φ)
�
= lim

n→∞

1
n

log E[exp(n
∫

Σ

φdL′
n)] =

1
β

∫

Σ

ΛX(φ)dμ .

Thus, for any fixed collection φ1, . . . , φk ∈ Cb(Σ), the function g(λ) =
Λ(
∑k

i=1 λiφi) is finite. Moreover, applying dominated convergence (The-
orem C.10) to justify the change of order of differentiation and integration,
g(·) is differentiable in λ = (λ1, . . . , λk) throughout IRk. By part (a) of
Corollary 4.6.11, the sequence L′

n then satisfies the LDP in X , the alge-
braic dual of Cb(Σ) equipped with the Cb(Σ)-topology, with the good rate
function

Λ∗(ϑ) = sup
φ∈Cb(Σ)

{〈φ, ϑ〉 − Λ(φ)} , ϑ ∈ X

Identifying M(Σ) as a subset of X , set IX(·) = ∞ outside M(Σ). Ob-
serve that for every φ ∈ Cb(Σ) and ν ∈ M(Σ) such that f = dν

dμ exists,

∫

Σ

φdν − IX(ν)− Λ(φ) =
1
β

∫

[φβf − Λ∗
X(βf)− ΛX(φ)]dμ ≤ 0 . (7.2.5)



320 7. Applications of Empirical Measures LDP

Since, by (2.2.10), the choice f̃ = 1
β Λ′

X(φ) ∈ B(Σ) results with equality in
(7.2.5), it follows that

Λ(φ) = sup
ν∈M(Σ)

{
∫

Σ

φdν − IX(ν)} = sup
ϑ∈X

{〈φ, ϑ〉 − IX(ϑ)} ,

implying by the duality lemma (Lemma 4.5.8) that IX(·) = Λ∗(·). In par-
ticular, L′

n thus satisfies the LDP in M(Σ) (see part (b) of Lemma 4.1.5)
with the convex good rate function IX(·).

Proof of Theorem 7.2.1: Fix β ∈ (0, 1). By part (b) of Exercise 2.2.23,
for Xi i.i.d. Bernoulli(β) random variables

1
β

Λ∗
X(βf) =

{
f log f + 1−β

β gβ(f) log gβ(f) 0 ≤ f ≤ 1
β

∞ otherwise

where gβ(x) = (1 − βx)/(1 − β). For this form of Λ∗
X(·) and for every

ν ∈ M1(Σ), IX(ν) of (7.2.4) equals to I(ν|β, μ) of (7.2.2). Hence, I(·|β, μ)
is a convex good rate function. Use (y1, y2, . . .) to generate the sequence
L′

n as in Theorem 7.2.3. Let Vn denote the number of i-s such that Xi = 1,
i.e., Vn = nL′

n(Σ). The key to the proof is the following coupling. If Vn > n
choose (by sampling without replacement) a random subset {i1, . . . , iVn−n}
among those indices with Xi = 1 and set Xi to zero on this subset. Similarly,
if Vn < n choose a random subset {i1, . . . , in−Vn} among those indices with
Xi = 0 and set Xi to one on this subset. Re-evaluate L′

n using the modified
Xi values and denote the resulting (random) probability measure by Zn.
Note that Zn has the same law as LY

n which is also the law of L′
n conditioned

on the event {Vn = n}. Since Vn is a Binomial(m, β) random variable, and
n/m → β ∈ (0, 1) it follows that

lim inf
n→∞

1
n

log P (Vn = n) = lim inf
n→∞

1
n

log
[(

m
n

)
βn(1− β)m−n

]
= 0 .

(7.2.6)

Fix a closed set F ⊂ M1(Σ). Since P (LY
n ∈ F ) = P (Zn ∈ F ) ≤ P (L′

n ∈
F )/P (Vn = n), it follows that {LY

n } satisfies the large deviations upper
bound (1.2.12) in M1(Σ) with the good rate function I(·|β, μ). Recall that
the Lipschitz bounded metric dLU (·, ·) is compatible with the weak topology
on M1(Σ) (see Theorem D.8). Note that for any ν ∈ M1(Σ),

dLU (Zn, L′
n) = n−1|Vn − n| = |L′

n(Σ)− 1| ≤ dLU (L′
n, ν) .

Therefore, by the triangle inequality for dLU (·, ·),

P (dLU (L′
n, ν) < 2δ) = P (dLU (Zn, L′

n) < 2δ, dLU (L′
n, ν) < 2δ)

≤ P (dLU (Zn, ν) < 4δ) = P (dLU (LY
n , ν) < 4δ) .
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Fix a neighborhood G of ν in M1(Σ) and δ ∈ (0, 1) small enough so that
{ν̃ ∈ M1(Σ) : dLU (ν̃, ν) < 4δ} ⊂ G. Fix φ1 = 1, φ2, . . . , φk : Σ → [−1, 1]
continuous and 0 < ε < δ such that for any ν̃ ∈ M1(Σ)

k
max
i=2

|
∫

Σ

φidν̃ −
∫

Σ

φidν| < 2ε implies dLU (ν̃, ν) < δ .

For any ν̂ ∈ M+(Σ),

dLU (ν̂, ν) ≤ dLU (ν̂/ν̂(Σ), ν) + |ν̂(Σ)− 1| .

Hence, for any ν̂ ∈ M+(Σ),

k
max
i=1

|
∫

Σ

φidν̂ −
∫

Σ

φidν| < ε implies dLU (ν̂, ν) < 2δ ,

and one concludes that {ν̂ ∈ M+(Σ) : dLU (ν̂, ν) < 2δ} contains a neighbor-
hood of ν in M+(Σ). Therefore, by the LDP of Theorem 7.2.3,

lim inf
n→∞

1
n

log P (LY
n ∈ G) ≥ lim inf

n→∞

1
n

log P (dLU (L′
n, ν) < 2δ) ≥ −IX(ν) .

Since ν ∈ M1(Σ) and its neighborhood G are arbitrary, this completes the
proof of the large deviations lower bound (1.2.8).

As an application of Theorem 7.2.3, we provide an alternative proof of
Theorem 5.1.2 in case Xi are real-valued i.i.d. random variables. A similar
approach applies to IRd-valued Xi and in the setting of Theorem 5.3.1.

Proof of Theorem 5.1.2 (d = 1): Let yi = y
(m)
i = (i − 1)/n, i =

1, . . . ,m(n) = n + 1. Clearly, Ly
m converge weakly to Lebesgue measure on

Σ = [0, 1]. By Theorem 7.2.3, L′
n = n−1

∑n
i=0 Xiδi/n then satisfies the LDP

in M([0, 1]) equipped with the C([0, 1])-topology. Let D([0, 1]) denote the
space of functions continuous from the right and having left limits, equipped
with the supremum norm topology, and let f : M([0, 1]) → D([0, 1]) be such
that f(ν)(t) = ν([0, t]). Then, the convex good rate function IX(·) of (7.2.4)
equals I(f(·)) for I(·) of (5.1.3) and f(L′

n) = Zn(·) of (5.1.1). Since f(·) is
not a continuous mapping, we apply the approximate contraction principle
(Theorem 4.2.23) for the continuous maps fk : M([0, 1]) → D([0, 1]) such

that fk(ν)(t) = f(ν)(t) +
∫ t+k−1

t+
(1− k(s− t))dν(s). To this end, note that

sup
t∈[0,1]

|fk(L′
n)(t)−f(L′

n)(t)| ≤ sup
t∈[0,1)

|L′
n|((t, t+k−1]) ≤ 1

n

n−1
max
j=0

j+�n/k�∑

i=j+1

|Xi| .

By Cramér’s theorem for the random variables

Ŝn = n−1
n∑

i=1

|Xi| ,
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we thus have that for δ > 0 and k large,

lim sup
n→∞

1
n

log P ( sup
t∈[0,1]

|fk(L′
n)(t)− f(L′

n)(t)| > 2δ)

≤ 1
k

lim sup
r→∞

1
r

log P (Ŝr ≥ kδ) ≤ −k−1Λ∗
|X|(kδ)

(see (2.2.12)). Since k−1Λ∗
|X|(δk) → ∞ as k → ∞, it follows that fk(L′

n)
are exponentially good approximations of f(L′

n) in D([0, 1]). If IX(ν) ≤ α,
then ν is absolutely continuous with respect to Lebesgue’s measure, and
φ = f(ν) ∈ AC. With M(c)�= inf |x|≥c Λ∗

X(x)/|x|, for such ν and all t ∈ [0, 1],

∫ t+k−1

t

|φ̇|1|φ̇|≥cds ≤ 1
M(c)

∫ t+k−1

t

Λ∗
X(φ̇(s))ds ≤ α

M(c)
,

implying that

sup
t∈[0,1]

|fk(ν)(t)− f(ν)(t)| ≤ sup
t∈[0,1]

∫ t+k−1

t

|φ̇(s)|ds ≤ c

k
+

α

M(c)
.

Considering k → ∞ followed by c → ∞ we verify condition (4.2.24) and
conclude by applying Theorem 4.2.23.

Exercise 7.2.7 Deduce from Theorem 7.2.1 that for every φ ∈ Cb(Σ),

Λβ(φ) = lim
n→∞

1
n

log E[exp(
n∑

i=1

φ(Y m
i ))] = sup

ν∈M1(Σ)

{
∫

Σ

φdν − I(ν|β, μ) }

and show that

Λβ(φ) =
1
β

∫

Σ

[φ + log(β + λe−φ)]dμ +
1− β

β
log((1− β)/λ) ,

where λ > 0 is the unique solution of
∫
Σ
(β + λe−φ)−1dμ = 1.

Hint: Try first dν/dμ = (β + λe−φ)−1. To see the other direction, let
gu(z)�=− z log(uz)− 1−βz

β log 1−βz
1−β for u�

=λe−φ/(1− β) and check that

sup
ν∈M1(Σ)

{
∫

Σ

φdν − I(ν|β, μ) } ≤ sup
f∈B(Σ), 1

β ≥f≥0

∫

Σ

gu(f)dμ + log(λ/(1− β)) ,

whereas gu(z) is maximal at z = 1/(β + u(1− β)).

Exercise 7.2.8 In this exercise you derive the LDP for sampling with replace-
ment from the deterministic sequence (y1, . . . , ym).
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(a) Suppose Xi are i.i.d. Poisson(β) for some β ∈ (0,∞). Check that
(7.2.6) holds for Vn = nL′

n(Σ) a Poisson(mβ) random variable, and that
IX(·) = H(·|μ) on M1(Σ).
Hint: Use part (a) of Exercise 2.2.23.
(b) View {Xi}m

i=1 as the number of balls in m distinct urns. If Vn > n, remove
Vn−n balls, with each ball equally likely to be removed. If Vn < n, add n−Vn

new balls independently, with each urn equally likely to receive each added ball.
Check that the re-evaluated value of L′

n, denoted Zn, has the same law as LY
n

in case of sampling with replacement of n values out of (y1, . . . , ym), and that
dLU (Zn, L′

n) = n−1|Vn − n|.
(c) Conclude that if Ly

m → μ weakly and n/m → β ∈ (0,∞) then in case of
sampling with replacement LY

n satisfies the LDP in M1(Σ) (equipped with the
weak topology), with the good rate function H(·|μ) of Sanov’s theorem.

Remark: LY
n corresponds to the bootstrapped empirical measure.

7.3 The Gibbs Conditioning Principle

In this section, the problem dealt with in Section 3.3 is considered in much
greater generality. The motivation for the analysis lies in the following sit-
uation: Let Σ be a Polish space and Y1, Y2, . . . , Yn a sequence of Σ-valued
i.i.d. random variables, each distributed according to the law μ ∈ M1(Σ).
Let LY

n ∈ M1(Σ) denote the empirical measure associated with these vari-
ables. Given a functional Φ : M1(Σ) → IR (the energy functional), we are
interested in computing the law of Y1 under the constraint Φ(LY

n ) ∈ D,
where D is some measurable set in IR and {Φ(LY

n ) ∈ D} is of positive prob-
ability. This situation occurs naturally in statistical mechanics, where Yi

denote some attribute of independent particles (e.g., their velocity), Φ is
some constraint on the ensemble of particles (e.g., an average energy per
particle constraint), and one is interested in making predictions on indi-
vidual particles based on the existence of the constraint. The distribution
of Y1 under the energy conditioning alluded to before is then called the
micro-canonical distribution of the system.

As in Section 3.3, note that for every measurable set A ⊂ M1(Σ) such
that {LY

n ∈ A} is of positive probability, and every bounded measurable
function f : Σ → IR, due to the exchangeability of the Yi-s,

E(f(Y1)|LY
n ∈ A) = E(f(Yi)|LY

n ∈ A)

= E(
1
n

n∑

i=1

f(Yi)|LY
n ∈ A)

= E(〈f, LY
n 〉|LY

n ∈ A). (7.3.1)
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Thus, for A�
={ν : Φ(ν) ∈ D}, computing the conditional law of Y1 under the

conditioning {Φ(LY
n ) ∈ D} = {LY

n ∈ A} is equivalent to the computation
of the conditional expectation of LY

n under the same constraint. It is this
last problem that is treated in the rest of this section, in a slightly more
general framework.

Throughout this section, M1(Σ) is equipped with the τ -topology and
the cylinder σ-field Bcy. (For the definitions see Section 6.2.) For any
μ ∈ M1(Σ), let μn ∈ M1(Σn) denote the induced product measure on Σn

and let Qn be the measure induced by μn in (M1(Σ),Bcy) through LY
n .

Let Aδ ∈ Bcy, δ > 0 be nested measurable sets, i.e., Aδ ⊆ Aδ′ if δ < δ′.
Let Fδ be nested closed sets such that Aδ ⊆ Fδ. Define F0 = ∩δ>0Fδ and
A0 =∩δ>0Aδ (so that A0⊆F0). The following assumption prevails in this
section.
Assumption (A-1) There exists a ν∗ ∈ A0 (not necessarily unique)
satisfying

H(ν∗|μ) = inf
ν∈F0

H(ν|μ)
�
=IF < ∞ ,

and for all δ > 0,
lim

n→∞
νn
∗ ({LY

n ∈ Aδ}) = 1 . (7.3.2)

Think of the following situation as representative: Aδ = {ν : |Φ(ν)| ≤
δ}, where Φ : M1(Σ) → [−∞,∞] is only lower semicontinuous, and thus
Aδ is neither open nor closed. (For example, the energy functional Φ(ν) =∫
Σ
(‖ x ‖2 −1)ν(dx) when Σ is a separable Banach space.) The nested,

closed sets Fδ are then chosen as Fδ = {ν : Φ(ν) ≤ δ} with F0 = {ν :
Φ(ν) ≤ 0}, while A0 = {ν : Φ(ν) = 0}. We are then interested in the
conditional distribution of Y1 under a constraint of the form Φ(LY

n ) = 0
(for example, a specified average energy).

Theorem 7.3.3 Assume (A-1). Then M�
={ν ∈ F0 : H(ν|μ) = IF } is a

non-empty, compact set. Further, for any Γ ∈ Bcy with M⊂ Γo,

lim sup
δ→0

lim sup
n→∞

1
n

log μn(LY
n /∈ Γ| LY

n ∈ Aδ) < 0 .

Proof: Note that A0 ⊆ F0, so ν∗ ∈ M by Assumption (A-1). Moreover,
IF < ∞ implies that M being the intersection of the closed set F0 and
the compact set {ν : H(ν|μ) ≤ IF } (see Lemma 6.2.12), is a compact set.
Clearly,

lim sup
δ→0

lim sup
n→∞

1
n

log μn(LY
n /∈ Γ|LY

n ∈ Aδ)

≤ lim
δ→0

lim sup
n→∞

1
n

log Qn(Γc ∩Aδ)− lim
δ→0

lim inf
n→∞

1
n

log Qn(Aδ).
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Let G�
=Γo. Then, since Γc ∩Aδ ⊂ Gc ∩ Fδ, with Gc ∩ Fδ being a closed set,

the upper bound of Sanov’s theorem (Theorem 6.2.10) yields

lim
δ→0

lim sup
n→∞

1
n

log Qn(Γc ∩Aδ)

≤ lim
δ→0

{

− inf
ν∈Gc∩Fδ

H(ν|μ)
}

= − inf
ν∈Gc∩F0

H(ν|μ) < −IF ,

where the preceding equality follows by applying Lemma 4.1.6 to the nested,
closed sets Gc ∩ Fδ, and the strict inequality follows from the closedness of
Gc∩F0 and the definition ofM. The proof is now completed by the following
lemma.

Lemma 7.3.4 Assume (A-1). Then, for all δ > 0,

lim inf
n→∞

1
n

log Qn(Aδ) ≥ −IF .

Proof of Lemma 7.3.4: Since Aδ in general may contain no neighborhood
of points from M, the lower bound of Sanov’s theorem cannot be used
directly. Instead, a direct computation of the lower bound via the change
of measure argument will be used in conjunction with (7.3.2).

Let ν∗ be as in Assumption (A-1). Since H(ν∗|μ) < ∞, the Radon–Nikodym
derivative f = dν∗/dμ exists. Fix δ > 0 and define the sets

Γn
�
=

{

y ∈ Σn : fn(y)
�
=

n∏

i=1

f(yi) > 0, Ly
n ∈ Aδ

}

.

It follows by (7.3.2) that νn
∗ (Γn) −→

n→∞
1. Hence,

lim inf
n→∞

1
n

log Qn(Aδ) ≥ lim inf
n→∞

1
n

log
∫

Γn

1
fn(y)

νn
∗ (dy)

= lim inf
n→∞

1
n

log
(

1
νn
∗ (Γn)

∫

Γn

1
fn(y)

νn
∗ (dy)

)

.

Therefore, by Jensen’s inequality,

lim inf
n→∞

1
n

log Qn(Aδ) ≥ − lim sup
n→∞

1
nνn

∗ (Γn)

∫

Γn

log(fn(y))νn
∗ (dy)

= −H(ν∗|μ) + lim inf
n→∞

1
n

∫

(Γn)c

log(fn(y))νn
∗ (dy) .

Note that
∫

(Γn)c

log(fn(y))νn
∗ (dy) =

∫

(Γn)c

fn(y) log(fn(y))μn(dy) ≥ C,
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where C = infx≥0{x log x} > −∞. Since H(ν∗|μ) = IF , the proof is com-
plete.

The following corollary shows that if ν∗ of (A-1) is unique, then μn
Yk|Aδ

,
the law of Yk = (Y1, . . . , Yk) conditional upon the event {LY

n ∈ Aδ}, is
approximately a product measure.

Corollary 7.3.5 If M = {ν∗} then μn
Yk|Aδ

→ (ν∗)k weakly in M1(Σk) for
n →∞ followed by δ → 0.

Proof: Assume M = {ν∗} and fix φj ∈ Cb(Σ), j = 1, . . . , k. By the
invariance of μn

Yn|Aδ
with respect to permutations of {Y1, . . . , Yn},

〈
k∏

j=1

φj , μ
n
Yk|Aδ

〉 =
(n− k)!

n!

∑

i1 �=···�=ik

∫

Σn

k∏

j=1

φj(yij )μ
n
Yn|Aδ

(dy) .

Since,

E(
k∏

j=1

〈φj , L
Y
n 〉 |LY

n ∈ Aδ) =
1
nk

∑

i1,...,ik

∫

Σn

k∏

j=1

φj(yij )μ
n
Yn|Aδ

(dy) ,

and φj are bounded functions, it follows that

|〈
k∏

j=1

φj , μ
n
Yk|Aδ

〉 −E(
k∏

j=1

〈φj , L
Y
n 〉 |LY

n ∈ Aδ)| ≤ C(1− n!
nk(n− k)!

) −→
n→∞

0 .

For M = {ν∗}, Theorem 7.3.3 implies that for any η > 0,

μn(|〈φj , L
Y
n 〉 − 〈φj , ν∗〉| > η |LY

n ∈ Aδ) → 0

as n →∞ followed by δ → 0. Since 〈φj , L
Y
n 〉 are bounded,

E(
k∏

j=1

〈φj , L
Y
n 〉 |LY

n ∈ Aδ) → 〈
k∏

j=1

φj , (ν∗)k〉 ,

so that

lim sup
δ→0

lim sup
n→∞

〈
k∏

j=1

φj , μ
n
Yk|Aδ

− (ν∗)k〉 = 0 .

Recall that Cb(Σ)k is convergence determining for M1(Σk), hence it follows
that μn

Yk|Aδ
→ (ν∗)k weakly in M1(Σk).

Having stated a general conditioning result, it is worthwhile checking
Assumption (A-1) and the resulting set of measures M for some particular
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choices of the functional Φ. Two options are considered in detail in the
following sections; non-interacting particles, in which case n−1

∑n
i=1 U(Yi)

is specified, and interacting particles, in which case n−2
∑n

i,j=1 U(Yi, Yj) is
specified. We return to refinements of Corollary 7.3.5 in Section 7.3.3.

7.3.1 The Non-Interacting Case

Let U : Σ → [0,∞) be a Borel measurable function. Define the functional
Φ : M1(Σ) → [−1,∞] by

Φ(ν) = 〈U, ν〉 − 1 ,

and consider the constraint

{LY
n ∈ Aδ}

�
={|Φ(LY

n )| ≤ δ} = {| 1
n

n∑

i=1

U(Yi)− 1| ≤ δ}.

By formally solving the optimization problem

inf
{ν: 〈U,ν〉=1}

H(ν|μ),

one is led to conjecture that ν∗ of Assumption (A-1) should be a Gibbs
measure, namely, one of the measures γβ , where

dγβ

dμ
=

e−βU(x)

Zβ
,

and Zβ , the partition function, is the normalizing constant

Zβ =
∫

Σ

e−βU(x)μ(dx).

Throughout this section, β ∈ (β∞,∞), where β∞
�
= inf{β : Zβ < ∞}.

The following lemma (whose proof is deferred to the end of this section)
is key to the verification of this conjecture.

Lemma 7.3.6 Assume that μ({x : U(x) > 1}) > 0, μ({x : U(x) < 1}) > 0,
and either β∞ = −∞ or

lim
β↘β∞

〈U, γβ〉 > 1 . (7.3.7)

Then there exists a unique β∗ ∈ (β∞,∞) such that 〈U, γβ∗〉 = 1.

The main result of this section is the following.
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Theorem 7.3.8 Let U ,μ and β∗ be as in the preceding lemma. If either U
is bounded or β∗ ≥ 0, then Theorem 7.3.3 applies, with M consisting of a
unique Gibbs measure γβ∗ .

In particular, Theorem 7.3.8 states that the conditional law of Y1 converges,
as n →∞, to the Gibbs measure γβ∗ .

Proof: Note that by the monotone convergence theorem, 〈U, ·〉 = supn〈U ∧
n, ·〉. Since U ∧ n ∈ B(Σ), it follows that Φ(·) = 〈U, ·〉 − 1 is a τ -lower
semicontinuous functional. Hence, Fδ

�
={ν : 〈U, ν〉 ≤ 1 + δ}, δ > 0, are

nested closed sets, whereas F0 = {ν : 〈U, ν〉 ≤ 1} is a convex, closed set.
By the preceding lemma, γβ∗ ∈ F0, and by a direct computation,

H(γβ∗ |μ) = −β∗〈U, γβ∗〉 − log Zβ∗ < ∞ ,

implying that IF < ∞. Since H(·|μ) is strictly convex within its IF level
set, it follows that M contains precisely one probability measure, denoted
ν0. A direct computation, using the equivalence of μ and γβ∗ , yields that

−H(ν0|γβ∗) ≥ −H(ν0|γβ∗) + [H(ν0|μ)−H(γβ∗ |μ)]
= β∗(〈U, γβ∗〉 − 〈U, ν0〉) = β∗(1− 〈U, ν0〉),

where the preceding inequality is implied by ν0 ∈ M and γβ∗ ∈ F0. For
β∗ ≥ 0, it follows that H(ν0|γβ∗) ≤ 0, since 〈U, ν0〉 ≤ 1. Hence, ν0 = γβ∗ ,
and consequently, M = {γβ∗}. Now, Assumption (A-1) holds for ν∗ =
γβ∗ ∈ A0 as the limit (7.3.2) follows by the weak law of large numbers.
Consequently, Theorem 7.3.3 holds. When U is bounded, then Aδ are
closed sets. Therefore, in this case, Fδ = Aδ can be chosen to start with,
yielding 〈U, ν0〉 = 1. Consequently, when U is bounded, ν0 = γβ∗ = ν∗
even for β∗ < 0.

Proof of Lemma 7.3.6: Recall that by Exercise 2.2.24, log Zβ is a C∞

function in (β∞,∞). By dominated convergence,

〈U, γβ〉 = − d

dβ
log Zβ

and is finite for all β > β∞, as follows from the proof of (2.2.9). By a
similar argument,

d

dβ
〈U, γβ〉 = −

∫

Σ

(U − 〈U, γβ〉)2dγβ < 0 ,

where the strict inequality follows, since by our assumptions, U cannot be
constant μ a.e. Hence, 〈U, γβ〉 is strictly decreasing and continuous as a
function of β ∈ (β∞,∞). Thus, it suffices to show that

lim
β→∞

〈U, γβ〉 < 1, (7.3.9)
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and that when β∞ = −∞,

lim
β→−∞

〈U, γβ〉 > 1. (7.3.10)

To see (7.3.9), note that by assumption, there exists a 0 < u0 < 1 such that
μ({x : U(x) < u0}) > 0. Now, for β > 0,

∫

Σ

e−βU(x)μ(dx) ≥ e−βu0μ({x : U(x) ∈ [0, u0)})

and
∫

Σ

(U(x)− u0)e−βU(x)μ(dx)

≤ e−βu0

∫

Σ

(U(x)− u0)1{U(x)>u0}e
−β(U(x)−u0)μ(dx)

≤ e−βu0

β
sup
y≥0

{ye−y} .

Hence, for some C < ∞,

〈U, γβ〉 = u0 +

∫
Σ
(U(x)− u0)e−βU(x)μ(dx)

∫
Σ

e−βU(x)μ(dx)
≤ u0 +

C

β
,

and (7.3.9) follows by considering the limit β →∞.

To see (7.3.10) when β∞ = −∞, choose u2 > u1 > 1 such that μ({x :
U(x) ∈ [u2,∞)}) > 0. Note that for all β ≤ 0,

∫

Σ

1{x: U(x)∈[0,u1)}e
−βU(x)μ(dx) ≤ e−βu1

and
∫

Σ

1{x: U(x)∈[u1,∞)}e
−βU(x)μ(dx) ≥ e−βu2μ({x : U(x) ∈ [u2,∞}).

Hence, for all β ≤ 0,

1
γβ({x : U(x) ∈ [u1,∞)}) = 1 +

∫
Σ

1{x: U(x)∈[0,u1)}e
−βU(x)μ(dx)

∫
Σ

1{x: U(x)∈[u1,∞)}e−βU(x)μ(dx)

≤ 1 +
eβ(u2−u1)

μ({x : U(x) ∈ [u2,∞}) ,

implying that

lim inf
β→−∞

〈U, γβ〉 ≥ u1 lim inf
β→−∞

γβ({x : U(x) ∈ [u1,∞)}) ≥ u1,

and consequently (7.3.10) holds.
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Exercise 7.3.11 Let Σ = [0,∞) and μ(dx) = C e−x

x3+1dx, where C < ∞ is a
normalization constant. Let U(x) = εx with ε > 0.
(a) Check that for all ε > 0, both μ({x : U(x) > 1}) > 0 and μ({x : U(x) <
1}) > 0, and that β∞ = −1/ε.
(b) Show that for ε > 0 small enough, (7.3.7) fails to hold.
(c) Verify that for ε > 0 small enough, there is no Gibbs measure in A0.

7.3.2 The Interacting Case

The previous section deals with the case where there is no interaction
present, i.e., when the “particles” Y1, . . . , Yn do not affect each other. The
case where interaction is present is interesting from a physical point of
view. To build a model of such a situation, let M > 1 be given, let
U : Σ2 → [0, M ] be a continuous, symmetric, bounded function, and define
Φ(ν) = 〈Uν, ν〉 − 1 and Aδ = {ν : |Φ(ν)| ≤ δ} for δ ≥ 0. Throughout, Uν
denotes the bounded, continuous function

Uν(x) =
∫

Σ

U(x, y)ν(dy) .

The restriction that U be bounded is made here for the sake of simplicity,
as it leads to Φ(·) being a continuous functional, implying that the sets Aδ

are closed.

Lemma 7.3.12 The functional ν �→ 〈Uν, ν〉 is continuous with respect to
the τ -topology on M1(Σ).

Proof: Clearly, it suffices to prove the continuity of the functional ν �→
〈Uν, ν〉 with respect to the weak topology on M1(Σ). For U(x, y) =
f(x)g(y) with f, g ∈ Cb(Σ), the continuity of ν �→ 〈Uν, ν〉 is trivial. With
Σ Polish, the collection {f(x)g(y)}f,g∈Cb(Σ) is convergence determining for
the weak topology on M1(Σ2) and hence the continuity of ν �→ 〈Uν, ν〉
holds for all U ∈ Cb(Σ2).

Remark: For measurable U(x, y), the map ν �→ 〈Uν, ν〉 is sequentially
continuous with respect to the τ -topology. However, the continuity of U(·, ·)
is essential for the above lemma to hold true (see Exercise 7.3.18 for an
example of A ∈ B[0,1]2 for which the map ν �→ ν × ν(A) is discontinuous
with respect to the τ -topology on M1([0, 1])).

As in the non-interacting case, a formal computation reveals that The-
orem 7.3.3, if applicable, would lead to M consisting of Gibbs measures γβ

such that
dγβ

dμ
=

e−βUγβ(x)

Zβ
, (7.3.13)
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where Zβ , the partition function, would be the normalizing constant

Zβ =
∫

Σ

e−βUγβ(x)μ(dx).

It is the goal of this section to check that, under the following three assump-
tions, this is indeed the case.
Assumption (A-2) For any νi such that H(νi|μ) < ∞, i = 1, 2,

〈Uν1, ν2〉 ≤
1
2
(〈Uν1, ν1〉+ 〈Uν2, ν2〉) .

Assumption (A-3)
∫
Σ2 U(x, y)μ(dx)μ(dy) ≥ 1.

Assumption (A-4) There exists a probability measure ν with H(ν|μ) <
∞ and 〈Uν, ν〉 < 1.

Note that, unlike the non-interacting case, here even the existence of
Gibbs measures needs to be proved. For that purpose, it is natural to
define the following Hamiltonian:

Hβ(ν) = H(ν|μ) +
β

2
〈Uν, ν〉 ,

where β ∈ [0,∞). The following lemma (whose proof is deferred to the end
of this section) summarizes the key properties of the Gibbs measures that
are related to Hβ(·).

Lemma 7.3.14 Assume (A-2). Then:
(a) For each β ≥ 0, there exists a unique minimizer of Hβ(·), denoted γβ,
such that (7.3.13) holds.
(b) The function g(β)�=〈Uγβ , γβ〉 is continuous on [0,∞).
(c) Assume (A-2), (A-3), and (A-4), and define

β∗�= inf{β ≥ 0 : g(β) ≤ 1} . (7.3.15)

Then β∗ < ∞ and g(β∗) = 1.

Equipped with Lemma 7.3.14, the characterization of M and the proof of
Theorem 7.3.3 is an easy matter.

Theorem 7.3.16 Assume (A-2)–(A-4). Then Theorem 7.3.3 applies, with
M consisting of a unique Gibbs measure γβ∗ , where β∗ is as defined in
(7.3.15).

Proof: Since Φ(·) is a continuous functional (see Lemma 7.3.12), Fδ = Aδ

may be taken here, yielding F0 = A0 = {ν : 〈Uν, ν〉 = 1}. Recall that μ
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and γβ∗ are equivalent with a globally bounded Radon–Nikodym derivative.
(See (7.3.13).) Since γβ∗ ∈ F0, IF < ∞, and M is non-empty. Moreover,
as in the proof of Theorem 7.3.8, observe that by a direct computation,
whenever ν ∈ F0 and H(ν|μ) < ∞,

H(ν|μ)−H(ν|γβ∗)−H(γβ∗ |μ) = β∗ (〈Uγβ∗ , γβ∗〉 − 〈Uγβ∗ , ν〉)

≥ β∗

2
(〈Uγβ∗ , γβ∗〉 − 〈Uν, ν〉) = 0,

where the inequality follows by Assumption (A-2). Thus, for all ν ∈M,

−H(ν|γβ∗) ≥ −H(ν|γβ∗) + H(ν|μ)−H(γβ∗ |μ) ≥ 0,

which is clearly possible only if ν = γβ∗ . Therefore, M = {γβ∗}. Finally,
note that Assumption (A-1) holds for ν∗ = γβ∗ , and consequently, Theorem
7.3.3 holds as well. Indeed, here,

{LY
n ∈ Aδ} ≡

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

1
n2

n∑

i,j=1

(U(Yi, Yj)−Eν2
∗
[U(X,Y )])

∣
∣
∣
∣
∣
∣
≤ δ

⎫
⎬

⎭
.

Therefore, by Chebycheff’s inequality,

νn
∗ ({LY

n 
∈ Aδ})

≤ 1
n4δ2

n∑

i,j,k,�=1

Eνn
∗ (U(Yi, Yj)−Eν2

∗
[U(X,Y )])(U(Yk, Y�)− Eν2

∗
[U(X,Y )])

≤ 6M2

nδ2
,

and (7.3.2) follows by considering n →∞.

Proof of Lemma 7.3.14: (a) Fix β ≥ 0. Note that H(ν|μ) ≤ Hβ(ν)
for all ν ∈ M1(Σ). Further, H(·|μ) is a good rate function, and hence by
Lemma 7.3.12, so is Hβ(·). Since U is bounded, Hβ(μ) < ∞, and therefore,
there exists a ν̃ such that

Hβ(ν̃) = inf
ν∈M1(Σ)

Hβ(ν) < ∞.

Assumption (A-2) and the convexity of H(·|μ) imply that if Hβ(νi) < ∞
for i = 1, 2, then

Hβ

(
ν1 + ν2

2

)

≤ 1
2
Hβ(ν1) +

1
2
Hβ(ν2).

The preceding inequality extends by iterations to cover k
2n ν1 + (1 − k

2n )ν2

for all integers k, n with 1 ≤ k ≤ 2n, and the convexity of Hβ(·) within
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its level sets follows as a consequence of its lower semicontinuity. Further,
H(·|μ) is strictly convex within its level sets (see Lemma 6.2.12), and hence
so is Hβ(·). Therefore, let γβ denote the unique minimizer of Hβ(·). Let
f = dγβ/dμ. First check that μ({x : f(x) = 0}) = 0. Assume otherwise,
let z = μ({x : f(x) = 0}) > 0, and define the probability measure

ν(dx) =
1{x:f(x)=0}

z
μ(dx) .

Note that νt = tν +(1− t)γβ is a probability measure for all t ∈ [0, 1]. Since
the supports of ν and γβ are disjoint, by a direct computation,

0≤ 1
t
[Hβ(νt)−Hβ(γβ)]

=Hβ(ν)−Hβ(γβ) +log t+
1− t

t
log(1− t)− β

2
(1− t)〈U(γβ − ν), γβ − ν〉.

Since H(ν|μ) = − log z < ∞, Hβ(ν) < ∞, and the preceding inequality
results with a contradiction when considering the limit t ↘ 0. It remains,
therefore, to check that (7.3.13) holds. To this end, fix φ ∈ B(Σ), φ 
= 0
and δ = 2/||φ|| > 0. For all t ∈ (−δ, δ), define νt ∈ M1(Σ) via

dνt

dγβ
= 1 + t(φ− 〈φ, γβ〉).

Since Hβ(νt) is differentiable in t and possesses a minimum at t = 0, it
follows that dHβ(νt)/dt = 0 at t = 0. Hence,

0 =
∫

Σ

(φ− 〈φ, γβ〉)(log f + βUγβ)dγβ (7.3.17)

=
∫

Σ

φf (log f + βUγβ −H(γβ |μ)− β〈Uγβ , γβ〉) dμ.

Since φ is arbitrary, f > 0 μ-a.e., and H(γβ |μ) and β〈Uγβ , γβ〉 are finite
constants, (7.3.13) follows.
(b) Suppose that βn → β ∈ [0,∞). Then βn is a bounded sequence, and
hence, {γβn}∞n=1 are contained in some compact level set of H(·|μ). Conse-
quently, this sequence of measures has at least one limit point, denoted ν.
Passing to a convergent subsequence, it follows by Lemma 7.3.12 and the
characterization of γβn that

Hβ(ν) ≤ lim inf
n→∞

Hβn(γβn) ≤ lim inf
n→∞

Hβn(γβ) = Hβ(γβ).

Hence, by part (a) of the lemma, the sequence {γβn} converges to γβ . The
continuity of g(β) now follows by Lemma 7.3.12.
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(c) Let ν be as in Assumption (A-4), i.e., 〈Uν, ν〉 < 1 and H(ν|μ) < ∞.
Observe that by part (a) of the lemma and the nonnegativity of H(·|μ),

g(β) ≤ 2
β

Hβ(γβ) ≤ 2
β

H(ν|μ) + 〈Uν, ν〉, ∀β > 0.

Thus,
lim sup

β→∞
g(β) ≤ 〈Uν, ν〉 < 1 .

Clearly, γ0 = μ and g(0) ≥ 1 by Assumption (A-3). Hence, by part (b) of
the lemma, β∗ < ∞ and g(β∗) = 1.

Remark: Note that (7.3.17) implies in particular that

log Zβ = −H(γβ |μ)− β〈Uγβ , γβ〉 .

Exercise 7.3.18 [Suggested by Y. Peres] In this exercise, you show that
Lemma 7.3.12 cannot be extended to general bounded measurable functions
U(·, ·).
(a) Let m be Lesbegue measure on [0, 1]. Check that for any Bi, i = 1, . . . , N ,
disjoint subsets of [0, 1] of positive Lesbegue measure, there exist yi ∈ Bi such
that yi − yj is rational for all i, j ∈ {1, . . . , N}.
Hint: Let f(x1, . . . , xN−1) =

∫ 1

0
1BN

(z)
∏N−1

i=1 1Bi(z − xi)dz. Check that
f(·) is continuous on [−1, 1]N−1, and that

f(x1, . . . , xN−1) = m(
N−1⋂

i=1

(xi + Bi)
⋂

BN ) ,

while
∫ 1

−1

· · ·
∫ 1

−1

f(x1, . . . , xN−1)dx1 · · · dxN−1 =
N∏

i=1

m(Bi) > 0 .

(b) Consider the measurable set A = {(x, y) : x, y ∈ [0, 1], x− y is rational}.
Show that for every finite measurable partition B1, . . . , BN of [0, 1], there is a
measure ν with ν(Bi) = m(Bi) but ν × ν(A) = 1.

Hint: Let ν =
∑N

i=1 m(Bi)δyi , with {yi} as in part (a).
(c) Conclude that at ν = m, the map ν �→ 〈1Aν, ν〉 is discontinuous with
respect to the τ -topology of M1([0, 1]).
Exercise 7.3.19 Assume (A-2). Check that when U is unbounded, but
〈Uμ, μ〉 < ∞, the existence of a unique minimizer of Hβ(·) asserted in part
(a) of Lemma 7.3.14 still holds true, that Lemma 7.3.12 (and hence part (b)
of Lemma 7.3.14) is replaced by a lower semicontinuity statement, and that
the minimizer of Hβ(·) satisfies

dγβ

dμ
= 1{x: Uγβ(x)<∞} exp(H(γβ |μ) + β〈Uγβ , γβ〉 − βUγβ(x)).
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Exercise 7.3.20 Prove that if U is unbounded, Theorem 7.3.16 still holds
true, provided that β∗ defined in (7.3.15) is nonzero, that 〈Uγβ , γβ〉 is contin-
uous at β = β∗, and that

∫
Σ

U(x, x)γβ∗(dx) < ∞.

7.3.3 Refinements of the Gibbs Conditioning Principle

We return in this section to the general setup discussed in Theorem 7.3.3.
Our goal is to explore the structure of the conditional law μn

Yk|Aδ
when

k = k(n) →n→∞ ∞. The motivation is clear: we wish to consider the effect
of Gibbs conditioning on subsets of the system whose size increases with
the size of the system.

The following simplifying assumption prevails in this section.
Assumption (A-5) Fδ = Aδ ≡ A ∈ Bcy is a closed, convex set of proba-
bility measures on a compact metric space (Σ, d) such that

IF
�
= inf

ν∈A
H(ν|μ) = inf

ν∈Ao
H(ν|μ) < ∞ .

With H(·|μ) strictly convex on the compact convex sets {ν : H(ν|μ) ≤ α}
(see Lemma 6.2.12), there exists a unique ν∗ ∈ A such that H(ν∗|μ) = IF .
The main result of this section is the following refinement of Corollary 7.3.5.

Theorem 7.3.21 Assume (A-5), and further that

μn(LY
n ∈ A)enIF ≥ gn > 0 . (7.3.22)

Then, for any k = k(n),

H
(
μn
Yk|A

∣
∣
∣(ν∗)k

)
≤ 1
� n

k(n)�
log(1/gn) . (7.3.23)

Remarks:
(a) By Exercise 6.2.17 and (7.3.23), if n−1k(n) log(1/gn) → 0 then

∥
∥
∥μn

Yk(n)|A − (ν∗)k(n)
∥
∥
∥

var
−→n→∞ 0 . (7.3.24)

(b) By Sanov’s theorem (Theorem 6.2.10) and Assumption (A-5),

lim
n→∞

1
n

log μn(LY
n ∈ A) = −IF ,

implying that (7.3.22) always holds for some gn such that n−1 log gn →
0. Hence, (7.3.24) holds for any fixed k ∈ ZZ+, already an improvement
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over Corollary 7.3.5. More can be said about gn for certain choices of the
conditioning set A. Corollary 7.3.34 provides one such example.

Key to the proof of Theorem 7.3.21 are the properties of the relative
entropy H(·|·) shown in the following two lemmas.

Lemma 7.3.25 For X a Polish space, any P ∈ M1(Xm), m ∈ ZZ+ and
any Q ∈ M1(X ),

H(P |Qm) = H(P |P1 × · · · × Pm) +
m∑

i=1

H(Pi|Q) , (7.3.26)

where Pi ∈ M1(X ) denotes the i-th marginal of P .

Proof: Suppose Pi(B) > Q(B) = 0 for some B ⊂ X and i = 1, . . . , m.
Then, P (B̃) > Qm(B̃) = 0 for B̃ = X i−1 × B × Xm−i in which case
both sides of (7.3.26) are infinite. Thus, we may and shall assume that
fi = dPi/dQ exist for every i = 1, . . . , m. Since P ({y :

∏m
i=1 fi(yi) = 0}) ≤

∑m
i=1 Pi({yi : fi(yi) = 0}) = 0, if P (B̃) > P1 × · · · × Pm(B̃) = 0 for some

B̃ ⊂ Xm then also Qm(B̃) = 0 and again both sides of (7.3.26) are infinite.
Thus, we may and shall assume also that g = dP/d(P1 × · · · × Pm) exists,
in which case dP/dQm(y) = g(y)

∏m
i=1 fi(yi), implying that

H(P |Qm) =
∫

Xm

log gdP +
m∑

i=1

∫

X
log fidPi ,

and (7.3.26) follows.

Lemma 7.3.27 (Csiszàr) Suppose that H(ν0|μ) = infν∈A H(ν|μ) for a
convex set A ⊂ M1(Σ) and some ν0 ∈ A. Then, for any ν ∈ A,

H(ν|μ) ≥ H(ν|ν0) + H(ν0|μ) . (7.3.28)

Proof: Fix ν�
=ν1 ∈ A and let να = αν + (1 − α)ν0 ∈ A for α ∈ [0, 1).

There is nothing to prove unless H(ν0|μ) ≤ H(ν|μ) < ∞, in which case
fα = dνα/dμ exists for every α ∈ [0, 1] and fα = αf1 + (1 − α)f0. Since
φ(α)�=fα log fα is convex, it follows that h(α)�=φ(1)−φ(0)−α−1(φ(α)−φ(0))
is non-negative and monotone non-decreasing on (0, 1] with

lim
α↘0

h(α) = φ(1)− φ(0)− φ′(0+) = f1 log(f1/f0) + f0 − f1 . (7.3.29)

Since H(να|μ) ≥ H(ν0|μ), it follows that

H(ν|μ)−H(ν0|μ) ≥ H(ν|μ)−H(ν0|μ)− 1
α

(H(να|μ)−H(ν0|μ)) =
∫

Σ

h(α)dμ .
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Considering α → 0, by the monotone convergence theorem (Theorem C.11)
and (7.3.29), it follows that

H(ν|μ)−H(ν0|μ) ≥
∫

Σ

( lim
α↘0

h(α))dμ =
∫

Σ

f1 log(f1/f0)dμ . (7.3.30)

In particular, μ({y : f1(y) > 0, f0(y) = 0}) = 0, implying that dν/dν0 =
f1/f0 exists ν0 almost surely. Hence, H(ν|ν0) =

∫
Σ

f1 log(f1/f0)dμ, with
(7.3.30) implying (7.3.28).

Proof of Theorem 7.3.21: First note that,

H
(
μn
Yn|A

∣
∣
∣μn

)
= − log μn(LY

n ∈ A) < ∞ .

Since all marginals of P = μn
Yn|A ∈ M1(Xn) on X = Σ are identical,

applying Lemma 7.3.25 for P , once with Q = μ ∈ M1(Σ) and once with
Q = ν∗ ∈ M1(Σ), it follows that

− log μn(LY
n ∈ A) = H

(
μn
Yn|A

∣
∣
∣μn

)
(7.3.31)

= H
(
μn
Yn|A

∣
∣
∣(ν∗)n

)
+ n

(
H
(
μn
Y1|A

∣
∣μ
)
−H

(
μn
Y1|A

∣
∣ν∗
))

.

Recall that M(Σ), equipped with the B(Σ)-topology, is a locally convex,
Hausdorff topological vector space, whose topological dual is B(Σ) (see
Theorem B.8). Therefore, with A a closed, convex subset of this space,
if μn

Y1|A /∈ A, by the Hahn-Banach theorem (Theorem B.6), there exist
f ∈ B(Σ) and γ ∈ IR, such that

E(f(Y1)|LY
n ∈ A) = 〈f, μn

Y1|A〉 < γ ≤ inf
ν∈A

〈f, ν〉 ≤ E(〈f, LY
n 〉|LY

n ∈ A) ,

in contradiction with (7.3.1). Hence, μn
Y1|A ∈ A, and by Lemma 7.3.27,

H
(
μn
Y1|A

∣
∣
∣μ
)
−H

(
μn
Y1|A

∣
∣
∣ν∗

)
≥ H(ν∗|μ) . (7.3.32)

Combining (7.3.31) and (7.3.32) leads to the bound

− log
(
μn(LY

n ∈ A)enIF
)
≥ H

(
μn
Yn|A

∣
∣
∣(ν∗)n

)
. (7.3.33)

Apply Lemma 7.3.25 for X = Σk, Q = (ν∗)k and P = μn
Yn|A ∈ M1(Xm),

where n = km for some m ∈ ZZ+. Since Pi = μn
Yk|A for i = 1, . . . ,m, it

follows that

H
(
μn
Yn|A

∣
∣
∣(ν∗)n

)
= H

(
μn
Yn|A

∣
∣
∣(μn

Yk|A)m
)

+ mH
(
μn
Yk|A

∣
∣
∣(ν∗)k

)
.
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Consequently, for any 1 ≤ k(n) ≤ n

H
(
μn
Yn|A

∣
∣
∣(ν∗)n

)
≥
⌊

n

k(n)

⌋

H
(
μn
Yk|A

∣
∣
∣(ν∗)k

)
,

which by (7.3.22) and (7.3.33) completes the proof of Theorem 7.3.21.

The following is a concrete application of Theorem 7.3.21. See the his-
torical notes for other applications and extensions.

Corollary 7.3.34 Let A = {ν ∈ M1[0, 1] : 〈U, ν〉 ≤ 1} for a bounded
non-negative Borel function U(·), such that μ ◦ U−1 is a non-lattice law,
∫ 1

0
U(x)dμ(x) > 1 and μ({x : U(x) < 1}) > 0. Then (A-5) holds with

ν∗ = γβ∗ of Theorem 7.3.8 and for n−1k(n) log n →n→∞ 0,

H
(
μn
Yk(n)|A

∣
∣
∣(ν∗)k(n)

)
−→

n→∞
0 . (7.3.35)

Proof: It is shown in the course of proving Theorem 7.3.8 that ν∗ = γβ∗ is
such that 〈U, ν∗〉 = 1 and

H(ν∗|μ) = inf
ν∈A

H(ν|μ) < ∞ .

Note that 〈U, γβ∗〉 = Λ′(−β∗) = 1 for Λ(λ) = log
∫ 1

0
eλU(x)μ(dx). Moreover,

Λ(·) is differentiable on IR, and with β∗ finite, it follows that Λ′(−β∗) = 1
is in the interior of {Λ′(λ) : λ ∈ IR}, so that Λ∗(·), the Fenchel–Legendre
transform of Λ(·), is continuous at 1 (see Exercise 2.2.24). Therefore,

inf
x∈[0,1]

Λ∗(x) = inf
x∈[0,1)

Λ∗(x) ,

which by comparing Cramér’s theorem (Theorem 2.2.3) for Ŝn = 〈U,LY
n 〉,

with Sanov’s theorem (Theorem 6.2.10), and using the the contraction prin-
ciple (Theorem 4.2.1) for ν �→ 〈U, ν〉 implies that (A-5) holds. Moreover,
by Theorem 3.7.4, for some constant C > 0,

lim
n→∞

μn(LY
n ∈ A)

√
n enIF = C .

Hence, Theorem 7.3.21 applies with gn = C√
n
, implying (7.3.35).

7.4 Historical Notes and References

Applications of the LDP to statistics and statistical mechanics abound, and
it is impossible to provide an extensive bibliography of such applications
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here. We have chosen to provide in this chapter some applications that
seem both representative and interesting. We limit ourselves to bringing
some of the related references, running the risk of being inaccurate and
unjust towards authors whose work we do not cite.

The results on universal hypothesis testing are based on the results in
[ZG91]. For references to the finite dimensional case, see the historical
notes of Chapter 3. Some recent extensions and an application to Gaussian
processes, based on the results of [DV85] and [DeuSZ91], may be found in
[SZ92].

Section 7.2 follows [DeZ96a], which also contains the corresponding mod-
erate deviations results. The approach taken here leads to stronger results
than those in the first edition of this book, where projective limits were
used. For Theorem 7.2.3 and some of its applications in statistics and in
statistical physics, see also [GG97] and [ElGP93], respectively.

The Gibbs conditioning question is one of the motivations of Ruelle’s and
Lanford’s studies, which as seen earlier were influential in the development
of the large deviations “theory.” Most of the analysis here is taken from
[StZ91], where more general functions U are considered. Note however
that in [StZ91], Lemma 7.3.12 is incorrectly used for measurable functions,
and that this difficulty may be circumvented by considering the LDP for
the product empirical measure LY

n × LY
n , as done for example in [EicS97].

Corollary 7.3.5 is adapted from Proposition 2.2 of [Szn91]. The analysis
of Section 7.3.3 is a simplified version of [DeZ96b], which in turn is based
on [Cs84], with Lemma 7.3.27 taken from [Cs75]. For related work, see
[Bol90]. See also [Scr93] for the discrete parameter Markov chain case. For
a discussion of the multidimensional (field) situation, see [DeuSZ91], and for
similar results in the context of mean field models, see [BeZ98]. It should
be mentioned that one may treat the same question from a CLT and not
LDP point of view, as is done in [DT77].

Large deviations techniques have been used extensively in recent years
in connection with statistical mechanics and interacting particles systems.
For an introduction to the LDP for classical statistical mechanics and spin
models, see [Ell85], whereas for a sample of more recent publications, see
[KuT84, Dur85, CS87, DV87, Leo87, BCG88, DuS88, LS88, Ore88, Deu89,
DV89, BeB90, CD90, KO90, Pap90, StZg92, BeG95, SchS95] and references
therein. A particularly interesting application of large deviations techniques
is in the construction of refined large deviations at the surface level; see, for
a sample of results, [Sch87, Pfi91, DKS92, Io95, Pis96].
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Good references for the material in the appendices are [Roc70] for Appendix
A, [DunS58] for Appendices B and C, [Par67] for Appendix D, and [KS88]
for Appendix E.

A Convex Analysis Considerations in IRd

This appendix completes the convexity analysis preliminaries needed in the
proof of the Gärtner–Ellis theorem in Section 2.3, culminating with the
proof of the two lemmas on which the proof of Lemma 2.3.12 is based.

First, we recall properties of the relative interior of a set and some
continuity results concerning convex functions. Let C ⊂ IRd be a non-
empty, convex set. Then ri C is non-empty, and

x ∈ C, y ∈ riC ⇒ (1− α)x + αy ∈ riC, ∀α ∈ (0, 1] . (A.1)

Let f : IRd → (−∞,∞] be a convex function and denote its domain by Df .
Then f is continuous in riDf , i.e., for every sequence xn → x with xn, x ∈
riDf , f(xn) → f(x). Moreover, f is Lipschitz continuous on compact
subsets of riDf . Finally, let x, y ∈ Df ; then

lim
α↘0

f((1− α)x + αy) ≤ f(x) .

Lemma A.2 If f : IRd → [0,∞] is a convex, lower semicontinuous func-
tion, with infλ∈IRd f(λ) = 0 and 0 ∈ riDf∗ , then f(η) = 0 for some η ∈ IRd.

Proof: Note that f∗(0) = − infλ∈IRd f(λ) = 0. Define the function

g(y)
�
= inf

δ>0

f∗(δy)
δ

= lim
δ↘0

f∗(δy)
δ

, (A.3)

where the convexity of f∗ results with a monotonicity in δ, which in turn
implies the preceding equality (and that the preceding limit exists). The
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function g(·) is the pointwise limit of convex functions and hence is convex.
Further, g(αy) = αg(y) for all α ≥ 0 and, in particular, g(0) = 0. As
0 ∈ riDf∗ , either f∗(δy) = ∞ for all δ > 0, in which case g(y) = ∞, or
f∗(−εy) < ∞ for some ε > 0. In the latter case, by the convexity of f∗,

f∗(δy)
δ

+
f∗(−εy)

ε
≥ 0 , ∀δ > 0 .

Thus, considering the limit δ ↘ 0, it follows that g(y) > −∞ for every
y ∈ IRd. Moreover, since 0 ∈ riDf∗ , by (A.3), also 0 ∈ riDg. Hence, since
g(y) = |y|g(y/|y|), it follows from (A.1) that riDg = Dg. Consequently, by
the continuity of g on riDg, lim infy→0 g(y) ≥ 0. In particular, the convex set
E�

={(y, ξ) : ξ ≥ g(y)} ⊆ IRd × IR is non-empty (for example, (0, 0) ∈ E), and
(0,−1) 
∈ E . Therefore, there exists a hyperplane in IRd × IR that strictly
separates the point (0,−1) and the set E . (This is a particular instance
of the Hahn–Banach theorem (Theorem B.6).) Specifically, there exist a
λ ∈ IRd and a ρ ∈ IR such that, for all (y, ξ) ∈ E ,

〈λ, 0〉+ ρ = ρ > 〈λ, y〉 − ξρ . (A.4)

Considering y = 0, it is clear that ρ > 0. With η = λ/ρ and choosing
ξ = g(y), the inequality (A.4) implies that 1 > [〈η, y〉− g(y)] for all y ∈ IRd.
Since g(αy) = αg(y) for all α > 0, y ∈ IRd, it follows by considering α →∞,
while y is fixed, that g(y) ≥ 〈η, y〉 for all y ∈ IRd. Consequently, by (A.3),
also f∗(y) ≥ 〈η, y〉 for all y ∈ IRd. Since f is a convex, lower semicontinuous
function such that f(·) > −∞ everywhere,

f(η) = sup
y∈IRd

{〈η, y〉 − f∗(y)} .

(See the duality lemma (Lemma 4.5.8) or [Roc70], Theorem 12.2, for a
proof.) Thus, necessarily f(η) = 0.

Lemma A.5 [Suggested by A. Ioffe] Let f be an essentially smooth,
convex function. If f(0) = 0 and f∗(x) = 0 for some x ∈ IRd, then 0 ∈ Do

f .

Proof: Since f(0) = 0, it follows by convexity of f that

f(tλ) ≤ tf(λ) , ∀t ∈ [0, 1], ∀λ ∈ IRd .

Moreover, since f∗(x) = 0,

f(tλ) ≥ 〈tλ, x〉 ≥ −t|λ||x| .

Because f is essentially smooth, Do
f contains a closed ball, e.g., Bz,r, r > 0,

in which f is differentiable. Hence,

M = sup
λ∈Bz,r

{f(λ) ∨ |λ||x|} < ∞ .
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Note that tλ ∈ Btz,tr iff λ ∈ Bz,r, and so by the preceding inequalities, for
any t ∈ (0, 1],

sup
θ∈Btz,tr

|f(θ)| ≤ tM .

For any θ ∈ Btz,tr, θ 
= tz, by the convexity of f ,

f(θ)− f(tz) ≤ |θ − tz|
tr

(f(y)− f(tz)) ≤ 2tM

tr
|θ − tz| ,

where y = tz + tr
|θ−tz| (θ − tz) ∈ Btz,tr.

By a similar convexity argument, also f(tz)− f(θ) ≤ 2tM
tr |θ − tz|. Thus,

|f(θ)− f(tz)| ≤ 2M

r
|θ − tz| ∀θ ∈ Btz,tr .

Observe that tz ∈ Do
f because of the convexity of Df . Hence, by assump-

tion, ∇f(tz) exists, and by the preceding inequality, |∇f(tz)| ≤ 2M/r.
Since f is steep, it follows by considering t → 0, in which case tz → 0, that
0 ∈ Do

f .

B Topological Preliminaries

B.1 Generalities

A family τ of subsets of a set X is a topology if ∅ ∈ τ , if X ∈ τ , if any
union of sets of τ belongs to τ , and if any finite intersection of elements
of τ belongs to τ . A topological space is denoted (X , τ), and this notation
is abbreviated to X if the topology is obvious from the context. Sets that
belong to τ are called open sets. Complements of open sets are closed sets.
An open set containing a point x ∈ X is a neighborhood of x. Likewise, an
open set containing a subset A ⊂ X is a neighborhood of A. The interior
of a subset A ⊂ X , denoted Ao, is the union of the open subsets of A. The
closure of A, denoted Ā, is the intersection of all closed sets containing A. A
point p is called an accumulation point of a set A ⊂ X if every neighborhood
of p contains at least one point in A. The closure of A is the union of its
accumulation points.

A base for the topology τ is a collection of sets A ⊂ τ such that any set
from τ is the union of sets in A. If τ1 and τ2 are two topologies on X , τ1 is
called stronger (or finer) than τ2, and τ2 is called weaker (or coarser) than
τ1 if τ2 ⊂ τ1.

A topological space is Hausdorff if single points are closed and every
two distinct points x, y ∈ X have disjoint neighborhoods. It is regular if,
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in addition, any closed set F ⊂ X and any point x /∈ F possess disjoint
neighborhoods. It is normal if, in addition, any two disjoint closed sets
F1, F2 possess disjoint neighborhoods.

If (X , τ1) and (Y , τ2) are topological spaces, a function f : X → Y is
a bijection if it is one-to-one and onto. It is continuous if f−1(A) ∈ τ1

for any A ∈ τ2. This implies also that the inverse image of a closed set is
closed. Continuity is preserved under compositions, i.e., if f : X → Y and
g : Y → Z are continuous, then g ◦ f : X → Z is continuous. If both f and
f−1 are continuous, then f is a homeomorphism, and spaces X ,Y are called
homeomorphic if there exists a homeomorphism f : X → Y .

A function f : X → IR is lower semicontinuous (upper semicontinuous)
if its level sets {x ∈ X : f(x) ≤ α} (respectively, {x ∈ X : f(x) ≥ α} )
are closed sets. Clearly, every continuous function is lower (upper) semicon-
tinuous and the pointwise supremum of a family of lower semicontinuous
functions is lower semicontinuous.

Theorem B.1 A lower (upper) semicontinuous function f achieves its
minimum (respectively, maximum) over any compact set K.

A Hausdorff topological space is completely regular if for any closed set
F ⊂ X and any point x /∈ F , there exists a continuous function f : X →
[0, 1] such that f(x) = 1 and f(y) = 0 for all y ∈ F .

A cover of a set A ⊂ X is a collection of open sets whose union contains
A. A set is compact if every cover of it has a finite subset that is also a cover.
A continuous image of a compact set is compact. A continuous bijection
between compact spaces is a homeomorphism. Every compact subset of a
Hausdorff topological space is closed. A set is pre-compact if its closure is
compact.

Let (X , τ) be a topological space, and let A ⊂ X . The relative (or
induced) topology on A is the collection of sets A

⋂
τ . The Hausdorff, nor-

mality, and regularity properties are preserved under the relative topology.
Furthermore, the compactness is preserved, i.e., B ⊂ A is compact in the
relative topology iff it is compact in the original topology τ . Note, however,
that the “closedness” property is not preserved.

A nonnegative real function d : X ×X → IR is called a metric if d(x, y) =
0 ⇔ x = y, d(x, y) = d(y, x), and d(x, y) ≤ d(x, z) + d(z, y). The last
property is referred to as the triangle inequality. The set Bx,δ = {y :
d(x, y) < δ} is called the ball of center x and radius δ. The metric topology
of X is the weakest topology which contains all balls. The set X equipped
with the metric topology is a metric space (X , d). A topological space whose
topology is the same as some metric topology is called metrizable. Every
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metrizable space is normal. Every regular space that possesses a countable
base is metrizable.

A sequence xn ∈ X converges to x ∈ X (denoted xn → x) if every
neighborhood of x contains all but a finite number of elements of the se-
quence {xn}. If X ,Y are metric spaces, then f : X → Y is continuous iff
f(xn) → f(x) for any convergent sequence xn → x. A subset A ⊂ X of
a topological space is sequentially compact if every sequence of points in A
has a subsequence converging to a point in X .

Theorem B.2 A subset of a metric space is compact iff it is closed and
sequentially compact.

A set A ⊂ X is dense if its closure is X . A topological space is separable
if it contains a countable dense set. Any topological space that possesses a
countable base is separable, whereas any separable metric space possesses
a countable base.

Even if a space is not metric, the notion of convergence on a sequence
may be extended to convergence on filters such that compactness, “closed-
ness,” etc. may be checked by convergence. Filters are not used in this
book. The interested reader is referred to [DunS58] or [Bou87] for details.

Let J be an arbitrary set. Let X be the Cartesian product of topological
spaces Xj , i.e., X =

∏
j Xj . The product topology on X is the topology

generated by the base
∏

j Uj , where Uj are open and equal to Xj except
for a finite number of values of j. This topology is the weakest one which
makes all projections pj : X → Xj continuous. The Hausdorff property is
preserved under products, and any countable product of metric spaces (with
metric dn(·, ·)) is metrizable, with the metric on X given by

d(x, y) =
∞∑

n=1

1
2n

dn(pnx, pny)
1 + dn(pnx, pny)

.

Theorem B.3 (Tychonoff) A product of compact spaces is compact.

Let (J,≤) be a partially ordered right-filtering set, i.e., for every i, j ∈ J ,
there exists a k ∈ J with i ≤ k and j ≤ k. The projective system of
Hausdorff topological spaces Yj consists of these spaces and for each i ≤ j,
a continuous map pij : Yj → Yi, satisfying the consistency conditions
pik = pij ◦ pjk if i ≤ j ≤ k, where pii is the identity map on Yi. The
projective limit X of the system (Yj , pij), denoted X = lim←−Yj , is the subset
of the topological product space Y = Πj∈JYj , consisting of the elements
x = (yj)j∈J , which, for all i ≤ j, satisfy the consistency conditions yi =
pij(yj). The topology on X is the topology induced by the product topology
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on Y . The canonical projections pj : X → Yj are the restrictions of the
coordinate projections from Y to Yj , and are continuous. X is a closed
subset of Y and is Hausdorff. The collection {p−1

j (Uj) : Uj ⊂ Yj is open}
is a base for the topology on X .

The notion of projective limits is inherited by closed sets. Thus, a
closed set F ⊆ X is the projective limit of Fj ⊆ Yj (denoted: F = lim←−Fj),
if pij(Fj) ⊆ Fi for all i ≤ j and F =

⋂

j∈J

p−1
j (Fj).

Theorem B.4 A projective limit of non-empty compact sets is non-empty.

B.2 Topological Vector Spaces and Weak Topologies

A vector space over the reals is a set X that is closed under the operations of
addition and multiplication by scalars, i.e., if x, y ∈ X , then x + y ∈ X and
αx ∈ X for all α ∈ IR. All vector spaces in this book are over the reals. A
topological vector space is a vector space equipped with a Hausdorff topology
that makes the vector space operations continuous. The convex hull of a
set A, denoted co(A), is the intersection of all convex sets containing A.
The closure of co(A) is denoted co(A). co({x1, . . . , xN}) is compact, and,
if Ki are compact, convex sets, then the set co(∪N

i=1Ki) is closed. A locally
convex topological vector space is a vector space that possesses a convex
base for its topology.

Theorem B.5 Every (Hausdorff) topological vector space is regular.

A linear functional on the vector space X is a function f : X → IR that
satisfies f(αx + βy) = αf(x) + βf(y) for any scalars α, β ∈ IR and any
x, y ∈ X . The algebraic dual of X , denoted X ′, is the collection of all linear
functionals on X . The topological dual of X , denoted X ∗, is the collection of
all continuous linear functionals on the topological vector space X . Both the
algebraic dual and the topological dual are vector spaces. Note that whereas
the algebraic dual may be defined for any vector space, the topological dual
may be defined only for a topological vector space. The product of two
topological vector spaces is a topological vector space, and is locally convex
if each of the coordinate spaces is locally convex. The topological dual of
the product space is the product of the topological duals of the coordinate
spaces. A set H ⊂ X ′ is called separating if for any point x ∈ X , x 
= 0, one
may find an h ∈ H such that h(x) 
= 0. It follows from its definition that
X ′ is separating.

Theorem B.6 (Hahn–Banach) Suppose A and B are two disjoint, non-
empty, closed, convex sets in the locally convex topological vector space X .
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If A is compact, then there exists an f ∈ X ∗ and scalars α, β ∈ IR such
that, for all x ∈ A, y ∈ B,

f(x) < α < β < f(y) . (B.7)

It follows in particular that if X is locally convex, then X ∗ is separating.
Now let H be a separating family of linear functionals on X . The H-topology
of X is the weakest (coarsest) one that makes all elements of H continuous.
Two particular cases are of interest:
(a) If H = X ∗, then the X ∗-topology on X obtained in this way is called the
weak topology of X . It is always weaker (coarser) than the original topology
on X .
(b) Let X be a topological vector space (not necessarily locally convex).
Every x ∈ X defines a linear functionals fx on X ∗ by the formula fx(x∗) =
x∗(x). The set of all such functionals is separating in X ∗. The X -topology
of X ∗ obtained in this way is referred to as the weak∗ topology of X ∗.

Theorem B.8 Suppose X is a vector space and Y ⊂ X ′ is a separating
vector space. Then the Y-topology makes X into a locally convex topological
vector space with X ∗ = Y.

It follows in particular that there may be different topological vector spaces
with the same topological dual. Such examples arise when the original
topology on X is strictly finer than the weak topology.

Theorem B.9 Let X be a locally convex topological vector space. A convex
subset of X is weakly closed iff it is originally closed.

Theorem B.10 (Banach–Alaoglu) Let V be a neighborhood of 0 in the
topological vector space X . Let K = {x∗ ∈ X ∗ : |x∗(x)| ≤ 1 , ∀x ∈ V }.
Then K is weak∗ compact.

B.3 Banach and Polish Spaces

A norm || · || on a vector space X is a metric d(x, y) = ||x − y|| that
satisfies the scaling property ||α(x − y)|| = α||x − y|| for all α > 0. The
metric topology then yields a topological vector space structure on X , which
is referred to as a normed space. The standard norm on the topological
dual of a normed space X is ||x∗||X∗ = sup||x||≤1 |x∗(x)|, and then ||x|| =
sup||x∗||X∗≤1 x∗(x), for all x ∈ X .

A Cauchy sequence in a metric space X is a sequence xn ∈ X such
that for every ε > 0, there exists an N(ε) such that d(xn, xm) < ε for any
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Hausdorff
⇑

Regular
⇑

Loc. Compact ⇒ Completely Regular ⇐ Hausdorff
⇑ ⇑ Top. Vector Space
⇑ Normal ⇑
⇑ ⇑ ⇑
⇑ Metric Locally Convex
⇑ ⇑ Top. Vector Space
⇑ Complete ⇑
⇑ Metric ⇐ Banach
⇑ ⇑ ⇑
⇑ Polish ⇐ Separable Banach
⇑ ⇑

Compact ⇐ Compact Metric

Figure B.1: Dependencies between topological spaces.

n > N(ε) and m > N(ε). If every Cauchy sequence in X converges to a
point in X , the metric in X is called complete. Note that completeness is
not preserved under homeomorphism. A complete separable metric space is
called a Polish space. In particular, a compact metric space is Polish, and
an open subset of a Polish space (equipped with the induced topology) is
homeomorphic to a Polish space.

A complete normed space is called a Banach space. The natural topology
on a Banach space is the topology defined by its norm.

A set B in a topological vector space X is bounded if, given any neigh-
borhood V of the origin in X , there exists an ε > 0 such that {αx : x ∈
B, |α| ≤ ε} ⊂ V . In particular, a set B in a normed space is bounded iff
supx∈B ||x|| < ∞. A set B in a metric space X is totally bounded if, for
every δ > 0, it is possible to cover B by a finite number of balls of radius
δ centered in B. A totally bounded subset of a complete metric space is
pre-compact.

Unlike in the Euclidean setup, balls need not be convex in a metric space.
However, in normed spaces, all balls are convex. Actually, the following
partial converse holds.

Theorem B.11 A topological vector space is normable, i.e., a norm may
be defined on it that is compatible with its topology, iff its origin has a convex
bounded neighborhood.
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Weak topologies may be defined on Banach spaces and their topological
duals. A striking property of the weak topology of Banach spaces is the
fact that compactness, apart from closure, may be checked using sequences.

Theorem B.12 (Eberlein–Šmulian) Let X be a Banach space. In the
weak topology of X , a set is sequentially compact iff it is pre-compact.

B.4 Mazur’s Theorem

In this section, the statement and proof of Mazur’s theorem as used in
Section 6.1 are provided. Since this particular variant of Mazur’s theorem
is not readily available in standard textbooks, a complete proof is presented.

Theorem B.13 (Mazur) Let X be a Hausdorff topological vector space,
and let E, be a closed, convex subset of X such that (E , d) is a complete
metric space, whose metric topology is compatible with the topology induced
by X . Further assume that for all α ∈ [0, 1], x1, x2, y1, y2 ∈ E,

d(αx1 + (1− α)x2, αy1 + (1− α)y2) ≤ max{d(x1, y1), d(x2, y2)} . (B.14)

Then the closed convex hull of every compact subset of E is compact.

Remark: The proof is adapted from Theorem V.2.6 in [DunS58], where
X = E is a Banach space. A related proof may be found in [DeuS89b],
Lemma 3.1.1.

Proof: Fix a compact K ⊂ E and δ > 0. By compactness, K ⊂ ∪N
i=1Bxi,δ

for some xi ∈ K and finite N . By (B.14), balls in E are convex. Hence, if
y ∈ co(∪N

i=1Bxi,δ), then y =
∑N

i=1 aiyi, for some ai ≥ 0 with
∑N

i=1 ai = 1
and yi ∈ Bxi,δ. Thus, again by (B.14),

d(
N∑

i=1

aiyi,

N∑

i=1

aixi) ≤
N

max
i=1

d(yi, xi) < δ.

Consequently,

co(K) ⊂ co(
N⋃

i=1

Bxi,δ) ⊂ (co({x1, . . . , xN}))δ
.

By the compactness of co({x1, . . . , xN}) in E , the set (co({x1, . . . , xN}))δ

can be covered by a finite number of balls of radius 2δ. Thus, by the
arbitrariness of δ > 0, it follows that co(K) is a totally bounded subset of
E . By the completeness of E , co(K) is pre-compact, and co(K) = co(K) is
compact, since E is a closed subset of X .
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C Integration and Function Spaces

C.1 Additive Set Functions

Let B be a family of sets. A set function μ on B is a function that assigns an
extended real value (possibly ∞ or −∞, but not both) to each set b ∈ B. A
positive set function is a set function that assigns only nonnegative values to
sets b ∈ B. Similarly, a finite set function assigns only finite values to sets,
and a bounded set function has a bounded range. Hereafter, unless specifi-
cally mentioned otherwise, all set functions are either positive or bounded.
A set function is additive if B contains ∅, if μ(∅) = 0, and if for any finite
family of disjoint sets b1, . . . , bn ∈ B, μ(

⋃n
i=1 bi) =

∑n
i=1 μ(bi) whenever⋃n

i=1 bi ∈ B. It is countably additive if the union in the preceding definition
may be taken over a countable number of disjoint sets bi.

Associated with the notion of an additive set function is the notion of
field; namely, let X be some space, then a family of subsets B of X is a
field if ∅ ∈ B, if the complement of any element of B (with respect to X )
belongs to B and if the union of two elements of B belongs to B. The
total variation of a set function μ with respect to the field B is defined
as v(μ) = sup

∑n
i=1 |μ(bi)|, where the supremum is taken over all finite

collections of disjoint elements of B. For any simple function of the form
f(x) =

∑n
i=1 ai1bi(x), where bi are disjoint elements of B and ai are ar-

bitrary constants, one may define the integral of f with respect to the set
function μ as

∫
fdμ =

∑n
i=1 aiμ(bi). Every additive set function defines an

integral over the class of real valued functions H that are obtained by mono-
tone limits of simple functions. This integral is a linear functional on H.

A σ-field is a field that is closed under countable unions. A σ-additive
set function μ is a countably additive set function on a σ-field B. σ-additive
set functions are also called measures, and the triplet (X ,B, μ) is called a
measure space, with the sets in B called measurable sets. As before, integrals
with respect to μ are defined for monotone limits of simple functions, i.e.,
for measurable functions. A measure is bounded iff it is finite. For any
measure space (X ,B, μ) there exists B ∈ B such that both μ(· ∩ B) and
−μ(· ∩ Bc) are positive measures. The measure μ+(·) = μ(· ∩ B) is then
called the positive part of μ(·). A measure ν is absolutely continuous with
respect to a positive measure μ if both are defined on the same σ-field B
and ν(A) = 0 for every A ∈ B such that μ(A) = 0. Two measures that are
mutually absolutely continuous are called equivalent.

For every given space X and family of subsets B ⊂ X , there exist
a smallest field (and a smallest σ-field) that contain B, also called the
field (respectively, σ-field) generated by B. If B is taken as the set of all
closed subsets of the topological Hausdorff space X , the resulting σ-field is
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the Borel σ-field of X , denoted BX . Functions that are measurable with re-
spect to the Borel σ-field are called Borel functions, and form a convenient
family of functions suitable for integration. An alternative characterization
of Borel functions is as functions f such that f−1(A) belongs to the Borel
σ-field for any Borel measurable subset A of IR. Similarly, a map f : X → Y
between the measure spaces (X ,B, μ) and (Y ,B′

, ν) is a measurable map if
f−1(A) ∈ B for every A ∈ B′

. All lower (upper) semicontinuous functions
are Borel measurable. The space of all bounded, real valued, Borel functions
on a topological space X is denoted B(X ). This space, when equipped with
the supremum norm ||f || = supx∈X |f(x)|, is a Banach space.

Theorem C.1 (Hahn) Every countably additive, positive (bounded) set
function on a field B possesses a unique extension to a σ-additive, positive
(respectively, bounded), set function on the smallest σ-field containing B.

Another useful characterization of countably additive set functions is the
following.

Theorem C.2 Let μ be an additive set function that is defined on the Borel
σ-field of the Hausdorff topological space X . If, for any sequence of sets En

that decrease to the empty set, μ(En) → 0, then μ is countably additive.

Let μ be an additive set function defined on some field B of subsets of a
Hausdorff topological space X . μ is regular if for each b ∈ B and each ε > 0,
there is a set A ∈ B with Ā ⊂ b and a set C ∈ B with b ⊂ Co such that
|μ(D)| < ε for each D ⊂ C\A, D ∈ B.

Theorem C.3 Let X be a Hausdorff topological space. Then B(X )∗ may
be represented by the space of all bounded additive set functions on the Borel
σ-field of X .

The space of bounded continuous functions on a Hausdorff topological space
is denoted Cb(X ).

Theorem C.4 Let X be a normal topological space. Then Cb(X )∗ may be
represented by the space of all regular, bounded additive set functions on the
field generated by the closed subsets of X .

Theorem C.5 Every bounded measure on the Borel σ-field of a metric
space is regular.

A bounded regular measure μ on the Borel σ-field of X is uniquely deter-
mined by the values it assigns to the closed subsets of X , and when X is
metrizable, it is also uniquely determined by the integrals {

∫
fdμ}f∈Cb(X ).
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C.2 Integration and Spaces of Functions

Let μ be a positive measure on the Borel σ-field of X . A Borel function is
μ integrable if

∫
X |f |dμ < ∞. The space of functions whose pth power is

integrable is denoted Lp(X , μ), or simply Lp(X ), Lp(μ), or even Lp if no
confusion as to the space X or the measure μ arises. To be precise, Lp is the
space of equivalence classes of functions whose pth power is μ integrable,
where the equivalence is with respect to the relation

∫
X |f − g|pdμ = 0. It

is a fact that two functions f, g are in the same equivalence class, regardless
of p, if they differ on a set of zero μ measure. We denote this fact by
f = g (a.e.) (almost everywhere) or, when μ is a probability measure, by
f = g (a.s.) (almost surely).

Theorem C.6 Lp, 1 ≤ p < ∞ are Banach spaces when equipped with the
norm ||f ||p = (

∫
X |f

p|dμ)1/p. Moreover, (Lp)∗ = Lq, where 1 < p < ∞ and
q is the conjugate of p, i.e., 1/p + 1/q = 1.

If X is metrizable, then Cb(X ) is a dense subset of Lp(X , μ) for every finite
measure μ, and for all 1 ≤ p < ∞. Similarly, if X is Polish and μ is finite,
then Cu(X ), the space of uniformly continuous bounded functions on X , is
dense in Lp(X , μ) for 1 ≤ p < ∞.

The space L∞(X , μ) denotes the space of equivalence classes in B(X ),
where two functions are equivalent if they are equal a.e (μ). L∞, when
equipped with the essential supremum norm, is a Banach space.

A set K ⊂ L1(μ) is uniformly integrable if, for any ε > 0, one may find
a constant c such that

∫
X 1{|f |>c}|f |dμ < ε for all f ∈ K.

Theorem C.7 Let μ be a finite measure. Then L∗
1(μ) = L∞(μ). Moreover,

L1(μ) is weakly complete, and a subset K of L1(μ) is weakly sequentially
compact if it is bounded and uniformly integrable.

A compactness criterion in Cb(X ) can be established if X is compact. A set
K ⊂ Cb(X ) is equicontinuous if, for all ε > 0 and all x ∈ X , there exists a
neighborhood Nε(x) of x such that

sup
f∈K

sup
y∈Nε(x)

|f(x)− f(y)| < ε.

Theorem C.8 (Arzelà–Ascoli) Assume X is compact. Then K ⊂ Cb(X )
is pre-compact iff it is bounded and equicontinuous.

Finally, the following theorems are elementary.
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Theorem C.9 (Radon–Nikodym) Let μ be a finite measure. The fol-
lowing statements are equivalent:
(1) ν is absolutely continuous with respect to μ.
(2) There is a unique h ∈ L1(μ) such that ν(E) =

∫
E

hdμ for every mea-
surable set E.
(3) To every ε > 0, there corresponds a δ > 0 such that |ν(E)| < ε as soon
as μ(E) < δ.
The function h that occurs in (2) is called the Radon–Nikodym derivative
of ν with respect to μ, and is denoted dν/dμ.

Theorem C.10 (Lebesgue’s dominated convergence) Let {fn} be a
sequence in Lp(μ), 1 ≤ p < ∞. Assume that fn converges a.e. (μ) to
a function f . Suppose that for some g ∈ Lp(μ), |fn| ≤ |g| a.e.. Then
f ∈ Lp(μ) and {fn} converges to f in Lp.

Theorem C.11 (Monotone convergence theorem) Let {fn} be a se-
quence of nonnegative, monotonically increasing (in n) Borel functions,
which converges a.e. to some function f . Then, regardless of the finite-
ness of both sides of the equality,

lim
n→∞

∫

X
fndμ =

∫

X
fdμ.

Theorem C.12 (Fatou) Let {fn} be a sequence of nonnegative Borel func-
tions. Then

∫

X
(lim inf

n→∞
fn)dμ ≤ lim inf

n→∞

∫

X
fndμ.

A sequence of sets Ei ⊂ IRd shrinks nicely to x if there exists α > 0 such
that each Ei lies in a ball Bx,ri , ri → 0 and m(Ei) ≥ αm(Bx,ri), where m

denotes Lebesgue’s measure on IRd, i.e., the countably additive extension
of volume to the Borel σ-field.

Theorem C.13 (Lebesgue) Let f ∈ L1(IRd, m). Then for almost all x,

lim
i→∞

1
m(Ei)

∫

Ei

|f(y)− f(x)|m(dy) = 0

for every sequence {Ei} that shrinks nicely to x.
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D Probability Measures on Polish Spaces

D.1 Generalities

The following indicates why Polish spaces are convenient when handling
measurability issues. Throughout, unless explicitly stated otherwise, Polish
spaces are equipped with their Borel σ-fields.

Theorem D.1 (Kuratowski) Let Σ1, Σ2 be Polish spaces, and let f :
Σ1 → Σ2 be a measurable, one-to-one map. Let E1 ⊂ Σ1 be a Borel set.
Then f(E1) is a Borel set in Σ2.

A probability measure on the Borel σ-field BΣ of a Hausdorff topological
space Σ is a countably additive, positive set function μ with μ(Σ) = 1. The
space of (Borel) probability measures on Σ is denoted M1(Σ). A probability
measure is regular if it is regular as an additive set function. When Σ
is separable, the structure of M1(Σ) becomes simpler, and conditioning
becomes easier to handle; namely, let Σ, Σ1 be two separable Hausdorff
spaces, and let μ be a probability measure on (Σ,BΣ). Let π : Σ → Σ1

be measurable, and let ν = μ ◦ π−1 be the measure on BΣ1 defined by
ν(E1) = μ(π−1(E1)).

Definition D.2 A regular conditional probability distribution given π (re-
ferred to as r.c.p.d.) is a mapping σ1 ∈ Σ1 �→ μσ1 ∈ M1(Σ) such that:
(1) There exists a set N ∈ BΣ1 with ν(N) = 0, and for each σ1 ∈ Σ1\N ,

μσ1({σ : π(σ) 
= σ1}) = 0 .

(2) For any set E ∈ BΣ, the map σ1 �→ μσ1(E) is BΣ1 measurable and

μ(E) =
∫

Σ1

μσ1(E)ν(dσ1) .

It is property (2) that allows for the decomposition of measures. In Polish
spaces, the existence of an r.c.p.d. follows from:

Theorem D.3 Let Σ, Σ1 be Polish spaces, μ ∈ M1(Σ), and π : Σ → Σ1 a
measurable map. Then there exists an r.c.p.d. μσ1 . Moreover, it is unique
in the sense that any other r.c.p.d. μσ1 satisfies

ν({σ1 : μσ1 
= μσ1}) = 0 .

Another useful property of separable spaces is their behavior under prod-
ucts.
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Theorem D.4 Let N be either finite or N = ∞.
(a)

∏N
i=1 BΣi ⊂ B∏N

i=1
Σi

.

(b) If Σi are separable, then
∏N

i=1 BΣi = B∏N

i=1
Σi

.

Additional properties of r.c.p.d. when products of Polish spaces are involved
are collected in Appendix D.3 below.

We now turn our attention to the particular case where Σ is metric (and,
whenever needed, Polish).

Theorem D.5 Let Σ be a metric space. Then any μ ∈ M1(Σ) is regular.

Theorem D.6 Let Σ be Polish, and let μ ∈ M1(Σ). Then there exists a
unique closed set Cμ such that μ(Cμ) = 1 and, if D is any other closed set
with μ(D) = 1, then Cμ ⊆ D. Finally,

Cμ = {σ ∈ Σ : σ ∈ Uo ⇒ μ(Uo) > 0 } .

The set Cμ of Theorem D.6 is called the support of μ.

A probability measure μ on the metric space Σ is tight if for each η > 0,
there exists a compact set Kη ⊂ Σ such that μ(Kc

η) < η. A family of
probability measures {μα} on the metric space Σ is called a tight family if
the set Kη may be chosen independently of α.

Theorem D.7 Each probability measure on a Polish space Σ is tight.

D.2 Weak Topology

Whenever Σ is Polish, a topology may be defined on M1(Σ) that possesses
nice properties; namely, define the weak topology on M1(Σ) as the topology
generated by the sets

Uφ,x,δ = {ν ∈ M1(Σ) : |
∫

Σ

φdν − x| < δ} ,

where φ ∈ Cb(Σ), δ > 0 and x ∈ IR.

Hereafter, M1(Σ) always denotes M1(Σ) equipped with the weak topol-
ogy. The following are some basic properties of this topological space.

Theorem D.8 Let Σ be Polish.
(1) M1(Σ) is Polish.
(2) A metric compatible with the weak topology is the Lévy metric:

d(μ, ν) = inf{δ : μ(F ) ≤ ν(F δ) + δ ∀F ⊂ Σ closed} .
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(3) M1(Σ) is compact iff Σ is compact.

(4) Let E ⊂ Σ be a dense countable subset of Σ. The set of all probability
measures whose supports are finite subsets of E is dense in M1(Σ).

(5) Another metric compatible with the weak topology is the Lipschitz bound-
ed metric:

dLU (μ, ν) = sup
f∈FLU

|
∫

Σ

fdν −
∫

Σ

fdμ| ,

where FLU is the class of Lipschitz continuous functions f : Σ → IR,
with Lipschitz constant at most 1 and uniform bound 1.

M1(Σ) possesses a useful criterion for compactness.

Theorem D.9 (Prohorov) Let Σ be Polish, and let Γ ⊂ M1(Σ). Then Γ
is compact iff Γ is tight.

Since M1(Σ) is Polish, convergence may be decided by sequences. The
following lists some useful properties of converging sequences in M1(Σ).

Theorem D.10 (Portmanteau theorem) Let Σ be Polish. The follow-
ing statements are equivalent:
(1) μn → μ as n →∞.

(2) ∀g bounded and uniformly continuous, lim
n→∞

∫

Σ

g dμn =
∫

Σ

g dμ.

(3) ∀F ⊂ Σ closed, lim sup
n→∞

μn(F ) ≤ μ(F ).

(4) ∀G ⊂ Σ open, lim inf
n→∞

μn(G) ≥ μ(G).

(5) ∀A ∈ BΣ, which is a continuity set, i.e., such that μ(A\Ao) = 0,
limn→∞ μn(A) = μ(A).

A collection of functions G ⊂ B(Σ) is called convergence determining for
M1(Σ) if

lim
n→∞

∫

Σ

gdμn =
∫

Σ

gdμ , ∀g ∈ G ⇒ μn −→n→∞ μ .

For Σ Polish, there exists a countable convergence determining collection of
functions for M1(Σ) and the collection {f(x)g(y)}f,g∈Cb(Σ) is convergence
determining for M1(Σ2).

Theorem D.11 Let Σ be Polish. If K is a set of continuous, uniformly
bounded functions on Σ that are equicontinuous on compact subsets of Σ,
then μn → μ implies that

lim sup
n→∞

sup
φ∈K

{
|
∫

Σ

φdμn −
∫

Σ

φdμ|
}

= 0.



D. Probability Measures on Polish Spaces 357

The following theorem is the analog of Fatou’s lemma for measures. It is
proved from Fatou’s lemma either directly or by using the Skorohod repre-
sentation theorem.

Theorem D.12 Let Σ be Polish. Let f : Σ → [0,∞] be a lower semicon-
tinuous function, and assume μn → μ. Then

lim inf
n→∞

∫

Σ

fdμn ≥
∫

Σ

fdμ.

D.3 Product Space and
Relative Entropy Decompositions

A particularly important situation requiring measure decompositions is as
follows. Let Σ = Σ1 × Σ2 where Σi are Polish spaces equipped with their
Borel σ-field. Throughout, we let σ = (σ1, σ2) denote a generic point in Σ,
and use π : Σ �→ Σ1 with π(σ) = σ1. Then, π is measurable by Theorem D.4.
With μ ∈ M1(Σ), by Theorem D.3, the r.c.p.d. of μ given π denoted μσ1(·)
exists, with μ1 = μ◦π−1 ∈ M1(Σ1). Because μσ1({x ∈ Σ : π(x) 
= σ1}) = 0,
one has for any A ∈ BΣ,

μσ1(A) = μσ1({σ2 : (σ1, σ2) ∈ A}) ,

and hence μσ1(·) can be considered also as a measure on Σ2. Further, for
any g : Σ → IR,

∫

Σ

g(σ)μ(dσ) =
∫

Σ1

∫

Σ

g(σ)μσ1(dσ)μ1(dσ1) .

The relative entropy of ν ∈ M1(Σ) with respect to μ ∈ M1(Σ) is

H(ν|μ)
�
=
{ ∫

Σ
f log fdμ if f�

=
dν
dμ exists

∞ otherwise .

The following decomposition of the relative entropy functional in the par-
ticular case Σ = Σ1 × Σ2 discussed above is used extensively in Sections
2.4.2 and 6.6. Its proof is reproduced here for completeness.

Theorem D.13 With Σ = Σ1 × Σ2 and Σi Polish, let μ1, ν1 denote the
restrictions of μ, ν ∈ M1(Σ) to Σ1, with μσ1(·) and νσ1(·) the r.c.p.d. cor-
responding to the projection map π : Σ → Σ1. Then, the map

σ1 �→ H
(
νσ1(·)|μσ1(·)

)
: Σ1 → [0,∞] (D.14)
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is measurable, and

H(ν|μ) = H(ν1|μ1) +
∫

Σ

H
(
νσ1(·)|μσ1(·)

)
ν1(dσ1) . (D.15)

Proof: The function H(·|·) : M1(Σ)×M1(Σ) → [0,∞] is lower semicontin-
uous since

H(ν|μ) = sup
φ∈Cb(Σ)

{
∫

Σ

φdν − log
∫

Σ

eφdμ}

(see for example, Lemma 6.2.13). With M1(Σ) Polish, Definition D.2 implies
that σ1 �→ νσ1(·) and σ1 �→ μσ1(·) are both measurable maps from Σ1 to
M1(Σ). The measurability of the map in (D.14) follows.

Suppose that the right side of (D.15) is finite. Then g�
=dν1/dμ1 exists

and f(σ)�=dνσ1/dμσ1 (σ) exists for any σ1 ∈ Σ̃1 and some Borel set Σ̃1 such
that ν1(Σ̃1) = 1. If Γ ⊂ Σ is such that μ(Γ) = 0, then by Definition D.2,
μσ1(Γ) = 0 for all σ1 /∈ B, some B ⊂ Σ1 with μ1(B) = 0. Since dν1/dμ1

exists, also ν1(B) = 0, and for any σ1 ∈ Σ̃1 ∩Bc, νσ1(Γ) = 0, leading to

ν(Γ) =
∫

Σ

νσ1(Γ)ν1(dσ1) =
∫

Σ̃1∩Bc

νσ1(Γ)ν1(dσ1) = 0 ,

that is, ρ�
=dν/dμ exists. In particular, if dν/dμ does not exist, then both

sides of (D.15) are infinite. Hence, we may and will assume that ρ�
=dν/dμ

exists, implying that g�
=dν1/dμ1 exists too.

Fix Ai ∈ BΣi , i = 1, 2 and A�
=A1 ×A2. Then,

ν(A)=ν(A1 ×A2) =
∫

Σ1

νσ1(A1 ×A2)ν1(dσ1)

=
∫

Σ1

1{σ1∈A1}ν
σ1(Σ1 ×A2)ν1(dσ1) =

∫

A1

νσ1(Σ1 ×A2)g(σ1)μ1(dσ1) .

On the other hand,

ν(A) =
∫

A

ρ(σ)μ(dσ) =
∫

A1

(∫

Σ1×A2

ρ(σ)μσ1(dσ)
)

μ1(dσ1) .

Thus, for each such A2, there exists a μ1-null set ΓA2 such that, for all
σ1 
∈ ΓA2 ,

νσ1(Σ1 ×A2)g(σ1) =
∫

Σ1×A2

ρ(σ)μσ1(dσ) . (D.16)

Let Γ ⊂ Σ1 be such that μ1(Γ) = 0 and, for any A2 in the countable base
of Σ2, and all σ1 
∈ Γ, (D.16) holds. Since (D.16) is preserved under both
countable unions and monotone limits of A2 it thus holds for any Borel
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set A2 and all σ1 
∈ Γ. Enlarging Γ if necessary, still with μ1(Γ) = 0, one
concludes that, for all σ1 
∈ Γ, for any A1 ∈ BΣ1 , and all A2 ∈ BΣ2 ,

νσ1(A1 ×A2)g(σ1)=1σ1∈A1ν
σ1(Σ1 ×A2)g(σ1)

=1σ1∈A1

∫

Σ1×A2

ρ(σ)μσ1(dσ) =
∫

A1×A2

ρ(σ)μσ1(dσ) .

Letting Γ̃ = Γ ∪ {g = 0}, by Theorem D.4 suffices to consider such product
sets in order to conclude that for σ1 
∈ Γ̃, f(σ)�=dνσ1/dμσ1 (σ) exists and
satisfies f(σ) = ρ(σ)/g(σ1). Hence, using the fact that ν1(Γ̃) = 0,

H(ν|μ) =
∫

Σ

log
(
ρ(σ)

)
ν(dσ) =

∫

Σ∩{σ:σ1 �∈Γ̃}
log ρ(σ)ν(dσ)

=
∫

Σ∩{σ:σ1 �∈Γ̃}

(
log g(σ1) + log f(σ)

)
ν(dσ)

=
∫

Σ∩{σ:σ1 �∈Γ̃}
log g(σ1)ν(dσ) +

∫

Σ

log f(σ)ν(dσ)

=
∫

Σ1

log g(σ1)ν1(dσ1) +
∫

Σ1

ν1(dσ1)
∫

Σ

log f(σ)νσ1(dσ)

= H(ν1|μ1) +
∫

Σ1

H
(
νσ1(·)|μσ1(·)

)
ν1(dσ1) .

E Stochastic Analysis

It is assumed that the reader has a working knowledge of Itô’s theory of
stochastic integration, and therefore an account of it is not presented here.
In particular, we will be using the facts that a stochastic integral of the
form Mt =

∫ t

0
σsdws, where {wt, t ≥ 0} is a Brownian motion and σs

is square integrable, is a continuous martingale with increasing process
〈M〉t =

∫ t

0
σ2

sds. An excellent modern account of the theory and the main
reference for the results quoted here is [KS88].

Let {Ft, 0 ≤ t ≤ ∞} be an increasing family of σ-fields.

Theorem E.1 (Doob’s optional sampling) Let Mt be an Ft continuo-
us martingale, and let τ be a bounded stopping time. Then E(Mτ ) =
E(M0).
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Theorem E.2 (Time change for martingales) Let Mt be an Ft con-
tinuous martingale. Let 〈M〉t denote the increasing process associated with
Mt. For each 0 ≤ s < 〈M〉∞, define

τ(s) = inf{t ≥ 0 : 〈M〉t > s} ,

and let τ(s) = ∞ for s ≥ 〈M〉∞. Define ws
�
=Mτ(s),Gs = Fτ(s). Then {ws}

is a G adapted Brownian motion (up to 〈M〉∞), and a.s.

Mt = w〈M〉t
; 0 ≤ t < ∞ .

Theorem E.3 (Burkholder–Davis–Gundy maximal inequality)
Let Mt be an Ft continuous martingale, with increasing process 〈M〉t. Then,
for every m > 0, there exist universal constants km,Km> 0 such that, for
every stopping time τ ,

km E (〈M〉mτ ) ≤ E
[ (

sup
0≤t≤τ

|Mt|
)2m

]
≤ KmE (〈M〉mτ ) .

Let wt be a one-dimensional Brownian motion.

Theorem E.4 (Désiré André) For any b ≥ 0,

P ( sup
0≤t≤1

wt ≥ b) = 2P (w1 ≥ b) .

Theorem E.5 (Itô) Let x· be a semi-martingale admitting the decomposi-
tion xt =

∫ t

0
bsds+

∫ t

0
σsdws, with b., σ. adapted square integrable processes.

Let f(·) be a C2 function (i.e., possesses continuous derivatives up to second
order). Then

f(xt) = f(x0) +
∫ t

0

f ′(xs)bsds +
∫ t

0

f ′(xs)σsdws +
1
2

∫ t

0

f ′′(xs)σ2
sds .

A fundamental tool in the analysis of deterministic and stochastic dif-
ferential equations is the following.

Lemma E.6 (Gronwall) Let g(t) ≥ 0 be a nonnegative, continuous func-
tion satisfying

g(t) ≤ α(t) + β

∫ t

0

g(s) ds ,

where 0 ≤ t ≤ T , α ∈ L1([0, T ]) and β ≥ 0. Then

g(t) ≤ α(t) + β

∫ t

0

α(s)eβ(t−s) ds , 0 ≤ t ≤ T.
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The following existence result is the basis for our treatment of diffusion
processes in Section 5.6. Let wt be a d-dimensional Brownian motion of law
P , adapted to the filtration Ft, which is augmented with its P null sets as
usual and thus satisfies the “standard conditions.” Let f(t, x) : [0,∞) ×
IRd → IRd and σ(t, x) : [0,∞) × IRd → IRd×d be jointly measurable, and
satisfy the uniform Lipschitz type growth condition

|f(t, x)− f(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y|

and
|f(t, x)|2 + |σ(t, x)|2 ≤ K(1 + |x|2)

for some K > 0. where | · | denotes both the Euclidean norm in IRd and the
matrix norm.

Theorem E.7 (Strong existence) The stochastic differential equation

dXt = f(t,Xt) dt + σ(t, Xt) dwt, X0 = x0 (E.8)

possesses a unique strong solution, i.e., there exists a unique Ft adapted
stochastic process Xt such that

P

(

sup
0≤t<∞

∣
∣
∣
∣Xt − x0 −

∫ t

0

f(s,Xs) ds−
∫ t

0

σ(s,Xs) dws

∣
∣
∣
∣ > 0

)

= 0 .

This solution is a strong Markov process.

Remark: This solution is referred to as the strong solution of (E.8). There
is another concept of solutions to (E.8), called weak solutions, which involve
only the construction of the probability law associated with (E.8) and avoid
the path picture of the strong solutions. Weak solutions are not used in this
book.
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Basel, Switzerland, 1984.

[BlD94] V. M. Blinovskii and R. L. Dobrushin. Process level large deviations
for a class of piecewise homogeneous random walks. In M. I. Freidlin,
editor, The Dynkin Festschrift, Progress in Probability, volume 34,
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bilités. In Actualités Scientifiques et Industrielles, number 736 in Col-
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General Conventions

a.s., a.e. almost surely, almost everywhere
μn product measure
Σn(Xn),Bn product topological spaces and product σ-fields
μ ◦ f−1 composition of measure and a measurable map
ν, μ, ν′ probability measures
∅ the empty set
∧,∨ (pointwise) minimum, maximum
Prob→ convergence in probability
1A(·), 1a(·) indicator on A and on {a}
A, Ao, Ac closure, interior and complement of A
A\B set difference
⊂ contained in (not necessarily properly)
d(·, ·), d(x, A) metric and distance from point x to a set A
(Y, d) metric space
F, G, K closed, open, compact sets
f ′, f ′′,∇f first and second derivatives, gradient of f
f(A) image of A under f
f−1 inverse image of f
f ◦ g composition of functions
I(·) generic rate function
log(·) logarithm, natural base
N(0,I) zero mean, identity covariance standard multivariate normal
O order of
P (·), E(·) probability and expectation, respectively

IR, IRd real line, d-dimensional Euclidean space, (d positive integer)
[t] integer part of t
Trace trace of a matrix
v′ transpose of the vector (matrix) v
{x} set consisting of the point x
ZZ+ positive integers

〈·, ·〉 scalar product in IRd; duality between X and X ′

〈f, μ〉 integral of f with respect to μ

Ck functions with continuous derivatives up to order k
C∞ infinitely differentiable functions
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Glossary

αn, 91, 312

β∗, 327, 331

β∞, 327

βn, 91, 312

Γδ, 130

Γε,δ, 133

γ, γn, 92

γβ , 327, 330

γk, 194

Δε, Δε
j , 189

δXi , 3, 260

Θ, 274, 315

Θ′, 274

θcr, θ
x
cr, θ

y
cr, 239

θm, 228

θt, 238

Λ(·), 19, 26, 43, 149, 252, 261, 290

Λ(·), 149

Λ∗(·), 26, 149, 261

Λλ, Λ∗
λ, 154, 155

Λ∗
ε , 151

Λμε , 148

Λ0(·), Λ∗
0(·), 92

Λf , 142

Λn(λ), 43

μ, 12, 26, 252

μπ, 290

μ ⊗k π, 296

μZZ+ , 14, 253

{με}, 5

μ̃ε, 131

με, σ, 121

με, m, 131

μθ,n, 315

μφ, 190

μ0,n, μ1,n, 312

μ∗
0, μ∗

1, 301

{μn}, 6, 176, 252

μ̃n, 49, 177, 190, 273

μ∗
n, 87

μn,σ, 273

{νε}, 128, 185

νk−1, 296

ν∗, 324

ν∗
0 ⊗ π, 301

ωo, 194

Π = {π(i, j)}, 72

Πλ, 74

π(σ, ·), 272

π(2) = π(2)(k × 
, i × j), 78

πm(τ, ·), 275

πf , 290

πk(·, ·), 295

ρ, 101

ρ(J), 105

ρ(Πλ), 74

ρCn , 101

ρmax, 101

ρn, 103

ρQ, 102

ρ
(J)
Q , 106

Σ, 11, 260

Σμ, 12

σ(·), σ(·, ·), 213, 361
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σt, 217

σρ, 226

τ, τ̂ , 240

τ ε, 221

τε, 201

τ1, 217

τk, 242

τm, 228

τ̂k, 244

Φ(·), 323

Φ(x), φ(x), 111

ΨI(α), 4

φ∗
t , 202

Ω, 101, 253

A, 120, 343

AC, 176

AC0, 190

ACT , 184

|A|, 11

(A + B)/2, 123

Aδ, 119

Aδ,o, 168

Aδ, 274, 324

an, 7

B, 4, 116, 350

Bω, 261

Bε, 130

Bcy, 263

BX , 4, 351

B = {b(i, j)}, 72

B(Σ), 165, 263

B(X ), 351

Bρ, 223

Bx,δ, 9, 38, 344

B̃z,2δ, 313

b(·), 213

bt, 217

Co, 257

Cn, 103

C, 109

co(A), 87, 346

Cη, 208

Cb(X ), 141, 351

Cn, 101

C([0, 1]), 176

C0([0, 1]), 177

C0([0, 1]d), 190

Cu(X ), 352

DΛ, 26, 43

DΛ∗ , 26

Df , 341

DI , 4

D1, D2, 239

dα(·, ·), 61

dk(·, ·), d∞(·, ·), 299

dLU (·, ·), 320 ,356

dV (·, ·), ‖ · ‖var, 12, 266
dν
dμ

, 353

E , 155, 252

E∗, 155

Eπ
σ , 72

Eσ, 277

EP , 285

Ex, 221

F , 44

Fn, 273

Fδ, F0, 119, 324

‖ f ‖, 176

‖ f ‖α, 188

f∗, 149

fε, 133

fm, 133

G, 144

G+, 147

G, ∂G, 220, 221

g(·), 243

H(ν), 13

H(ν|μ), 13, 262

Hβ(·), 331

H0, H1, 90, 91, 311

H1([0, T ]), H1, 185, 187

Hx
1 , 214
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‖ · ‖H1 , 185

I(·), 4

Iθ(·), 315

I ′(·), 126

I(ν|β, μ), 21, 318

Iδ(x), 6

IU (·), 292

IΓ, 5

IA, 83

IF , 324

I∞(ν), 300

I0, 196

Ik(·), IU
k (·), 296

Ik, 82, 194

Im(·) 131, 134

It, 202

Iw(·), 196

Ix(·), 214

IX (·), 180, 191

Iy,t(·), Iy(·), It(·), 223

(J,≤), 162, 345

Jδ(·), 313, 315

JB , JΠ, 77

J , 76

Jn, 110

Kα, 8, 193

KL, 262

LA, 120, 121

Ln, 12, 82

Lipα, 188

Lε, 222

L∞([0, 1]), L∞([0, 1]d), 176, 190

L1(·), 190

Lp, L∞, 352

L0‖1, L1‖0, 91

Ly
ε , Ly

ε,m, 135

Ly
m, 21, 318

Ly
n, 12

L
y,(2)
n , 79

LY
n , 260

LY
n,k, 295

LY,m
n , 273

LY
n,∞, 298

lim←−, 162, 345

M, 87, 324

M(λ), 26

M(Σ), 260

M1(Σ), 12, 260, 354

m(·), 190, 353

m(A, δ), 151

N(t), N̂(t), 188

N0, 243

P, 101

PJ , 106

P, Pn, 285

Pε, 130

Pε, m, 131

Pμ, 14

P π
σ , 72

Pσ, 273

Pn,σ, 272

Px, 221

pλ1,λ2,...,λd , pV , 164

pj , 162, 345

pk, pm,k, 299

Q, 189

Q(X ), 169

QX , QY , 102

Qk, 194

q1(·), q2(·), 79

qf (·|·), 79

qb(·|·), 80

R1(D), 102

RJ(D), R(D), 106

RCn , 102

Rm, 83

r.c.p.d., 354

ri C, 47, 341

S, 91, 311

S∗, 98

Sn, 91, 312

Sn,δ, Sn,δ
0 , Sn,δ

1 , S∗
δ , 313
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Sn
1 , Sn

0 , 97, 312

Sρ, 223

Ŝn, 2, 26, 252

Ŝm
n , 252

s(t), 243

Tε, 201

Tn(ν), 13

Tr, 83

t, 203

U , 327

Uν, 330

Uφ,x,δ, 261, 355

Uf,x,δ, Ûf̂ ,x,δ,k, 299, 300

ut, 239

u � 0, 76

V , 223

V (x, t), 202

V (y, z, t), V (y, z), 223

VA, 202

V (t), 194

Vt,x,δ, 178

vk, 242

vt, 239

W, 164

W ′, 164

Wφ,x,δ, 263

weak∗, 153, 160, 347

wε(t), 185

ŵε(t), 185

wt, 42

wk, 244

X , 4, 115, 116, 148, 252, 343

X̃ , 180

X ′, 346

Xε,y
t , 216

Xi, 2, 18, 252

|x|, 26

x, 26

x0, x1, 91

x∗(x), 347

X ∗, 148, 346

‖ · ‖, ‖ · ‖X∗ , 347

(X , τ1), (X , τ2), 129

xε,m
t , 214

xε
t , 213

Y, 130

(Yj , pij), 162, 345

Y ε
t , 201, 208

Yε(t), 183, 245

Yi, 12, 18, 260

Ŷ ε
s , 203

yt, 239

ZZ0, ZZ1, 300

Zε, Z̃ε, 130

Zε(·), 245

Ẑε(·), 245

Zε,m, 131

Zn(t), 176, 189

Z̃n(t), 190

Zβ , 327, 331

Zn, 43, 312

Zk, 244

zm, 228

zt, 240

ẑt, 241



Index

Absolutely continuous functions, 176,
184, 190, 202

Absolutely continuous measures, 350

Additive functional of Markov chain,
see Markov, additive functional

Additive set function, 189, 350

Affine regularization, 153

Algebraic dual, 164–168, 263, 346

Alphabet, 11, 72, 87, 99

Approximate derivative, 189

Arzelà–Ascoli, theorem, 182, 352

Asymptotic expansion, 114, 307, 309

Azencott, 173, 249

B(Σ)-topology, 263

Bahadur, 110, 174, 306

Baldi’s theorem, 157, 267

Ball, 344

Banach space, 69, 148, 160, 248, 253,
268, 324, 348

Bandwidth, 242

Base of topology, 120–126, 274–276,
280, 343

Bayes, 92, 93

Berry–Esséen expansion, 111, 112

Bessel process, 241

Bijection, 127, 344

Bin packing, 59, 67

Birkhoff’s ergodic theorem, 103

Bootstrap, 323

Borel–Cantelli lemma, 71, 84

Borel probability measures, 10, 137, 162,
168, 175, 252, 272, 311

Borel σ-field, 5, 116, 190, 261, 299, 350–
351, 354

Bounded variation, 189

Branching process, 310

Brønsted–Rockafellar, theorem, 161

Brownian motion, 43, 175, 185–188,
194, 208, 211, 212–242, 249, 360

Brownian sheet, 188–193, 192

Bryc’s theorem, 141–148, 278

Cauchy sequence, 268, 348

Central Limit Theorem (CLT), 34, 111

Change of measure, 33, 53, 248, 260,
308, 325

Change point, 175

Characteristic boundary, 224–225, 250

Chebycheff’s bound
see Inequalities, Chebycheff

Chernoff’s bound, 93

Closed set, 343

Code, 101–108

Coding gain, 102

Compact set, 7, 8, 37, 88, 144, 150, 344,
345

Complete space, 348

Concave function, 42, 143, 151

Concentration inequalities, 55, 60, 69,
307

Contraction principle, 20, 126, 163,
173, 179, 212
approximate, 133–134, 173
inverse, 127, 174

Controllability, 224

Controlled process, 302
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Convergence, 345

Convergence determining, 330, 356

Convex analysis, 45, 157, 174, 341–343

Convex hull, 87, 252, 346

Countably additive, 190, 350

Coupling, 61, 64

Covariance, 109, 192

Cover, 344

Cramér’s theorem, 2, 18–20, 26–42, 44,
68, 71, 83, 108, 248, 251–260, 306

Cumulant generating function, 26

CUSUM, 250

Dawson–Gärtner, theorem, 162, 180,
300

Decision test
see Test

δ-rate function, 6

δ-smoothed rate function, 313

Désiré André
see Reflection principle

Diffusion process, 212–213

Digital communication, 45, 53, 193, 250

Distortion, 101, 102, 106

Divergence, 262

DMPSK, 193–200, 250

DNA sequences, 83, 175

Doëblin recurrence, 308

Domain, 4

Dominated convergence, 353

Donsker, 9, 173

Doob, 218, 359

Duality lemma, 152–157, 264, 342

Dupuis–Ellis, 302

Dynamical systems, 175, 225, 310

Eberlein–Šmulian, theorem, 266, 349

Effective domain, 4

Ellis, 9, 339
see Dupuis–Ellis, Gärtner–Ellis

Elliptic, 238

Empirical,
measure, 3, 12, 21, 79, 96, 260–339
mean, 26, 83, 253

Energy, 89, 323

Ensemble, 105, 323

Entropy, 13, 107

Epigraph, 157

Equilibrium point, 221

Equicontinuous, 193, 352, 356

Equivalent measures, 91, 350

Ergodic, 76, 102, 103, 106, 285

Error probability, 53, 71, 91, 97, 195,
311–313

Essentially smooth, 44, 47, 52, 166, 342

Euler–Lagrange, 200

Exact asymptotics, 108, 110
of Bahadur and Rao, 110, 114

Exchangeable, 89, 100, 323

Exit from a domain, 220–238, 249–250

Exponentially equivalent, 130, 175, 177,
190

Exponentially good approximations,
131, 133, 135–136, 200, 214

Exponentially tight, 8, 38, 49, 120, 128,
140, 144, 154, 157, 167, 173, 253, 260–
261, 269, 277, 316

Exposed point, 44, 50, 157

Exposing hyperplane, 44, 50, 157

Fatou’s lemma, 35, 51, 180, 191, 254,
353

Feller continuous, 293–294, 309

Fenchel–Legendre transform, 26, 41, 51,
115, 152–157, 176, 179, 189, 237, 252,
268, 279, 289–290

Field, 190, 310, 350

Freidlin, 3, 9, 212–220, 247

Gateaux differentiable, 160, 167, 265

Gaussian process, 53, 188, 192, 310, 339

Gärtner–Ellis, theorem, 43, 44–55, 71,
109, 141, 148, 157–161, 179, 251, 341

Generator, 135
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Gibbs, 3, 71, 87–90, 310, 323–338
field, 114, 310
measure, 327, 330, 331
parameter, 89

Girsanov, 248

Green’s function, 222, 238

Gronwall’s lemma, 213, 216, 218, 233,
235, 246, 360

Hahn’s theorem, 351

Hahn–Banach theorem, 156, 167, 342,
347

Hamilton–Jacobi, 237

Hamiltonian, 331

Hammersley, 282

Hoeffding, 56, 69, 96, 98

Hölder continuous, 188

Homeomorphism, 344

Hypercontractive, 288, 309

Hypermixing
see Mixing

Hypothesis testing, 71, 90–100, 311–
317, 339

I continuity set, 5

Inequalities,
Azuma, 69
Bennett, 56, 59, 69
Borell, 188, 193, 259
Burkholder–Davis–Gundy, 235, 360
Cauchy–Schwartz, 197, 215
Chebycheff, 30, 33, 37, 42, 44, 48,
150, 151, 159, 182, 187, 218, 230, 262,
268, 292, 332
Csiszár, 336
Fernique, 248
Hoeffding, 56, 69
Hölder, 28, 37, 288
Isoperimetric, 248
Jensen, 13, 19, 28, 40, 93, 108, 202,
264, 267, 287, 294, 325
Logarithmic Sobolev, 309
Talagrand, 60,62, 69

Initial

conditions, 216, 275, 277
measure, 292

Integral, 350

Interacting particles, 327, 330, 339

Interior, 343

Invariant measure, 290, 295

Inverse contraction principle,
see Contraction principle, inverse

Ioffe, 342

Irreducible, 72, 74, 77, 79, 86, 275

Itô, 218, 360

Kofman, 53

Kolmogorov’s extension, 299, 301

Kullback–Leibler distance, 262, 308

Lanford, 306, 339

Langevin’s equation, 238

Laplace’s method, 137, 174, 307

Large Deviation Principle (LDP), 5–9
behavior under transformations, 118,
126–137
existence, 120
for Banach space, 268, 306
for continuous time Markov processes,
135, 272
for diffusion processes, 212–220
for empirical mean, 2, 44, 174
for empirical measure, 3, 16, 76, 81,
261–263, 308
for empirical process, 298–302, 300
for i.i.d. empirical sum, 2, 18, 27,
36, 252
for Markov chains, 2, 72-82, 74,
272–278
for Markov occupation time, 289–295
for multivariate random walk, 188,
189–193
for projective limits, 161–168
for random walk, 176–184
for sampling without replacement, 23,
318
for topological vector spaces, 148–161
uniqueness, 117
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Large exceedances, 200–212, 250

Lattice law, 110

Law of large numbers, 20, 39, 45, 49,
94, 251

Lebesgue measure, 190, 192, 277

Lebesgue’s theorem, 180, 353

Level sets, 37, 139 , 163

Lévy metric, 261, 267, 272, 355

Lévy process, 221, 225

Likelihood ratio, 91, 96, 200, 311–312

Lipschitz bounded metric, 320, 356

Lipschitz continuous function, 184,
212–214, 220, 235, 240, 242, 281, 341

Logarithmic moment generating func-
tion, 26, 40, 43, 83, 103, 110, 149,
252, 254, 290, 306

Log-likelihood ratio, 91

Longest increasing subsequence, 64, 69

Lower bound, 6, 7, 39, 45, 99, 142

Lower semicontinuous, 4, 42, 117, 138,
344

Markov,
additive functional, 73, 110, 308
chain, 71, 74, 86, 173, 277, 294, 308
kernel, 294, 295
process, continuous time, 135, 175
semigroup, 9, 287
see LDP for Markov chain

Martingale, 218, 235, 359
difference, 57, 60, 69, 306

Maximal length segments, 83

Mazur’s theorem, 253, 349

Mean, of a Banach space valued vari-
able, 268

Measurable function, 350

Measure space, 350

Metric entropy, 151, 267

Metric space, 4, 9, 116

Micro-canonical, 323

Min–Max theorem, 42, 151, 206, 211

Mixing, 259, 278–288, 309, 310
hypermixing, 286, 288, 289, 292, 309

ψ-mixing, 279, 287

Moderate deviations, 108, 109, 110

Mogulskii, 3, 176, 190, 204

Monotone convergence, 353

Monotone class theorem, 293

Moving average, 55, 69

Multi-index, 189

Mutual information, 102

Neighborhood, 343

Neyman–Pearson, 91–96, 113, 311–312

Noise, 194, 225

Non-coherent detection, 45, 53

Norm, 347

Occupation time, 289–295, 302

Open set, 343

Partition function, 327, 331

Partially ordered set, 162, 345

Peres, 285, 334

Perron–Frobenius, 72, 77

Phase Lock Loop, 237, 250

Pinsker, 301

Pointwise convergence, 162, 177, 180,
191, 293, 342

Poisson process, 51, 187, 221

Polygonal approximation and interpo-
lation, 177, 190, 209, 245

Polish space
see Topological, Polish space

Portmanteau theorem, 262, 299, 356

Pre-compact set, 120, 151, 188, 315,
344, 352

Pre-exponent, 71

Probability of error,
see Error probability,

Process level LDP, 298–302

Product measure, 71, 90, 106, 108, 129,
252, 324

Product topology, 253, 256, 345

Prohorov’s criterion, 124, 262, 356
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Projective limit, 161–168, 174, 180,
191, 260, 265, 299, 309, 345

Projective topology, 162–168, 180, 299,
302, 339, 345–346

Pulse, 242–243

Quadrature noise, 53

Quadrature signal, 53, 194

Quasi-potential, 202, 223, 238

Queueing, 225, 250

Radar, 238, 243

Radon–Nikodym, 62, 107, 187, 190,
262, 325, 332, 353

Random variables,
Bernoulli, 35, 88
Exponential, 35, 45, 113, 184
Geometric, 113
Normal, 2, 35, 40, 45, 52, 108, 185,
208, 211, 242, 244, 288
Poisson, 35, 51, 188

Random walk, 83, 176–184
multivariate, 188-193

Range gate, 243–244

Rao, 110

Rate distortion, 101–108, 102, 106

Rate function, 4, 7
good, 4, 34, 37, 118, 133, 160, 162,
253, 261–266, 279, 292, 296
convex, 27, 37, 123, 149 , 167, 253,
261–266, 279

Refinements of LDP, 250
see Exact asymptotics

Regular conditional probability distri-
bution (r.c.p.d.), 61, 297, 354

Regular measure, 351, 355

D. André’s reflection principle, 187, 360

Relative entropy, 13, 61, 76, 79, 95,
260, 262, 308, 357

Relative interior, 47, 341

Relative topology, 344

Right filtering set, 162, 345

Rockafellar’s lemma, 47, 52

Ruelle, 306, 339

Sample path, 173

Sampling without replacement, 20–25,
89, 100, 318–323

Sanov’s theorem, 12, 16, 18, 36, 41,
76–78, 88, 98, 251, 260–272, 306, 307,
317, 325

k-scan process, 81

Schilder’s theorem, 185, 187, 196, 213,
215, 248, 259

Separating

-separated, 286
space, set, 346
well-separating, 143

Sequentially compact, 266, 345

Set function, 169, 350
Additive, Countably additive, 350

Shannon’s theorem, 71, 103

Shift invariant, 79, 296, 300

Shrinks nicely, 191, 353

σ-field, 5, 190, 252, 350
Borel, see Borel σ-field
cylinder, 263, 324

Signal, 53, 194

Signal-to-Noise Ratio, 53

Source coding, 71, 106

Spectral radius, 71, 78, 81

Stationary, 76, 278, 285, 290

Statistical mechanics
see Gibbs

Steep, 44, 51, 253, 343

Stein’s lemma, 94

Stirling’s approximation, 14, 22, 68

Stochastic matrix, 72

Stochastic differential equation, 212–213

Strassen, 249

Strictly convex, 35

Strong solutions, 361

Strong topology, 343
see τ -topology

Sub-additivity, 36, 108, 174, 251,
255–256, 259, 272–278, 282, 306
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Subdifferential, 47

Sufficient statistics, 96, 317

Super multiplicative, 273

Sup-measure, 169
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285, 351
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Total variation, 350
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Tychonoff’s theorem, 163, 345
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275–278, 289, 290, 292, 308

Uniformly integrable, 266, 352
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Varadhan, 9, 137–141, 142, 147, 153,
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Viterbi, 237
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306, 309

Weak LDP, 7, 120–126, 154, 168,
252–254, 258, 261
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W-topology, 164, 347
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