# On sequential maxima of exponential sample means, with an application to ruin probability 

Dimitris Cheliotis and Nickos Papadatos<br>National and Kapodistrian University of Athens<br>Department of Mathematics<br>Panepistemiopolis<br>GR-157 84 Athens<br>Greece<br>e-mail: dcheliotis@math.uoa.gr, npapadat@math.uoa.gr


#### Abstract

We obtain the distribution of the maximal average in a sequence of independent identically distributed exponential random variables. Surprisingly enough, it turns out that the inverse distribution admits a simple closed form. An application to ruin probability in a risk-theoretic model is also given.

MSC 2010 subject classifications: Primary 60E05; secondary 60F05. Keywords and phrases: exponential distribution, maximal average, Lambert $W$ function, ruin probability.


## 1. Introduction

Consider a sequence $\left(X_{i}\right)_{i \geq 1}$ of independent identically distributed (i.i.d.) random variables, each having exponential distribution with mean 1 . For each $i \in$ $\mathbb{N}^{+}$define the sample mean of the first $i$ variables as $\bar{X}_{i}:=\left(X_{1}+X_{2}+\cdots+X_{i}\right) / i$. The supremum of this sequence

$$
Z_{\infty}:=\sup \left\{\bar{X}_{i}: i \in \mathbb{N}^{+}\right\}
$$

is finite because the sequence converges to 1 with probability 1 .
In this note we compute the distribution function, $F_{\infty}$, of $Z_{\infty}$. In fact, what has nice form is the inverse of this distribution function. Our main result is the following.
Theorem 1. (a) $Z_{\infty}$ has distribution function

$$
F_{\infty}(x)=1-\sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} x^{k-1} e^{-k x}
$$

for $x>0$, and density which is continuous on $\mathbb{R} \backslash\{1\}$, positive on $(1, \infty)$, and zero on $(-\infty, 1)$.
(b) The restriction of $F_{\infty}$ on $(1, \infty)$ is one to one and onto $(0,1)$ with inverse

$$
\begin{equation*}
F_{\infty}^{-1}(u)=\frac{-\log (1-u)}{u} \quad \text { for all } u \in(0,1) \tag{1}
\end{equation*}
$$

Remark 1. (a) For $F_{\infty}$ we have the alternative expression

$$
F_{\infty}(x)=1+\frac{1}{x} W_{0}\left(-x e^{-x}\right)
$$

where $W_{0}$ is the principal branch of the Lambert $W$ function, that is, the inverse function of $x \mapsto x e^{x}, x \geq 1$; see [2]. Indeed, the power series $\sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} y^{k}$ has interval of convergence $[-1 / e, 1 / e]$ and equals $-W_{0}(-y)$.
(b) Clearly, the results of the theorem extend immediately to the case that the $X_{i}$ 's are i.i.d. and $X_{1}=a Y+b$ with $a>0, b \in \mathbb{R}$ and $Y \sim \operatorname{Exp}(1)$. However, we were not able to find an explicit formula for the distribution of $Z_{\infty}$ for any other distribution of the $X_{i}$ 's.
(c) Although it is intuitively clear that $F_{\infty}(x)>0$ for $x>1$, it is not entirely obvious how to verify it by direct calculations. However, this fact is evident from Theorem 1.
(d) Formula (1) enables the explicit calculation of the percentiles of $F_{\infty}$. Therefore, the result is useful for the following kind of problems: Suppose that a quality control machine calculates subsequent averages, and alarms if some average $\bar{X}_{n}$ is greater than $c$, where $c$ is a predetermined constant such that the probability of false alarm is small, say $\alpha$. For $\alpha \in(0,1)$, the upper percentage point of $F_{\infty}$ (that is, the point $c_{\alpha}$ with $\left.F_{\infty}\left(c_{\alpha}\right)=1-\alpha\right)$ is given by $c_{\alpha}=\frac{-\log \alpha}{1-\alpha}$, and thus the proper value of $c$ is $c=c_{\alpha}$.

If in the definition of $Z_{\infty}$ we discard the first $n-1$ values of $\bar{X}_{i}$, we obtain the random variable

$$
M_{n}:=\sup \left\{\bar{X}_{i}: i \geq n\right\}
$$

for which, however, (for $n \geq 2$ ) the distribution function is quite complicated even for the exponential case. For instance, the distribution of $M_{2}$ is given by (we omit the details)

$$
F_{M_{2}}(x)=F_{\infty}(x)+e^{-2 x} \frac{F_{\infty}(x)}{1-F_{\infty}(x)}, \quad x \geq 0
$$

What we can compute is the asymptotic distribution of $\sqrt{n}\left(M_{n}-1\right)$ as $n \rightarrow \infty$. This distribution is the same for a large class of distributions of the $X_{i}$ 's, as the following theorem shows.

Theorem 2. Assume that the $\left(X_{i}\right)_{i \geq 1}$ are i.i.d. with mean 0, variance 1, and there is $p>2$ with $\mathbb{E}\left|X_{1}\right|^{p}<\infty$. Let $M_{n}:=\sup \left\{\bar{X}_{i}: i \geq n\right\}$ for all $n \in \mathbb{N}^{+}$. Then,

$$
\sqrt{n} M_{n} \Rightarrow|Z|
$$

where $Z \sim N(0,1)$ is a standard normal random variable.
It is easy to see that under the assumptions of Theorem 2, by the law of the iterated logarithm, it holds

$$
\limsup _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{2 \log \log n}} M_{n}=1
$$

## 2. Proofs

Proof of Theorem 1. (a) For each $n \in \mathbb{N}^{+}$consider the random variable

$$
Z_{n}:=\max \left\{\bar{X}_{1}, \bar{X}_{2}, \ldots, \bar{X}_{n}\right\}
$$

and call $F_{n}$ its distribution function. The sequence $\left(Z_{n}\right)_{n \geq 1}$ is increasing and $Z_{\infty}=\lim _{n \rightarrow \infty} Z_{n}, F_{\infty}(x)=\lim _{n \rightarrow \infty} F_{n}(x)$. We will compute $F_{n}$ recursively.

For $n \in \mathbb{N}^{+}$and $x \geq 0$ we have

$$
\begin{aligned}
F_{n+1}(x) & =\operatorname{Pr}\left[X_{1} \leq x, X_{1}+X_{2} \leq 2 x, \ldots, X_{1}+X_{2}+\cdots+X_{n+1} \leq(n+1) x\right] \\
& =\int_{0}^{x} \int_{0}^{2 x-y_{1}} \cdots \int_{0}^{(n+1) x-\left(y_{1}+y_{2}+\cdots+y_{n}\right)} e^{-\left(y_{1}+y_{2}+\cdots+y_{n+1}\right)} d \mathbf{y}_{n+1} \\
& =\int_{0}^{x} \int_{0}^{2 x-y_{1}} \cdots \int_{0}^{n x-\left(y_{1}+y_{2}+\cdots+y_{n-1}\right)}\left\{e^{-\left(y_{1}+y_{2}+\cdots+y_{n}\right)}-e^{-(n+1) x}\right\} d \mathbf{y}_{n} \\
& =F_{n}(x)-e^{-(n+1) x} \operatorname{Vol}\left(K_{n}(x)\right)
\end{aligned}
$$

where $d \mathbf{y}_{k}=d y_{k} \cdots d y_{2} d y_{1}$ and

$$
K_{n}(x):=\left\{\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}_{+}^{n}: 0 \leq y_{1}+\cdots+y_{i} \leq i x, \quad i=1,2, \ldots, n\right\} .
$$

Note that $F_{1}(x)=1-e^{-x}$ and introduce the convention $\operatorname{Vol}\left(K_{0}(x)\right)=1$. It follows that $F_{n}(x)=1-\sum_{k=1}^{n} \operatorname{Vol}\left(K_{k-1}(x)\right) e^{-k x}$ and from Lemma 1, below, we get the explicit form

$$
F_{n}(x)=1-\sum_{k=1}^{n} \frac{k^{k-1}}{k!} x^{k-1} e^{-k x}, \text { for all } x \geq 0, n \in \mathbb{N}^{+}
$$

This implies the first formula for $F_{\infty}$. By the law of large numbers, we get that $F_{\infty}(x)=0$ for all $x \in(-\infty, 1)$, and thus, the derivative of $F_{\infty}$ in $\mathbb{R} \backslash\{1\}$ is

$$
f_{\infty}(x):=\mathbf{1}_{x>1} \sum_{k=1}^{\infty} \frac{k^{k-1}}{k!}\left(k-\frac{k-1}{x}\right) x^{k-1} e^{-k x} .
$$

(b) First we rewrite $F_{\infty}$ in a more convenient form. The fact that $F_{\infty}(x)=0$ for $x \in[0,1)$ implies the remarkable identity (see Fig. 1)

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} x^{k-1} e^{-k x}=1 \quad \text { for all } x \in[0,1) \tag{2}
\end{equation*}
$$

Our aim is to compute the value of the series in the left hand side also for $x \geq 1$. The series converges uniformly for $x \in[0, \infty)$ because

$$
\sup _{x \geq 0} \frac{k^{k-1}}{k!} x^{k-1} e^{-k x}=\frac{(k-1)^{k-1}}{k!} e^{-(k-1)} \sim \frac{1}{k^{3 / 2} \sqrt{2 \pi}}
$$

which is summable in $k$. Thus, by continuity, (2) holds also for $x=1$. Now we rewrite (2) in the form

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{k^{k-1}}{k!}\left(x e^{-x}\right)^{k}=x \text { for all } x \in[0,1] \tag{3}
\end{equation*}
$$



FIG 1. The series (2) in the interval $0 \leq x \leq 4$.

The power series $h(y):=\sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} y^{k}$ is strictly increasing in $\left[0, e^{-1}\right]$ and thus (3) says that $h$ is the inverse function of the restriction, $g_{r}$, on $[0,1]$ of the function $g:[0, \infty) \rightarrow\left[0, e^{-1}\right]$ with $g(x)=x e^{-x}$. The function $g$ is continuous, strictly increasing in $[0,1]$, and strictly decreasing in $[1, \infty)$ with $g(0)=0, g(1)=$ $e^{-1}, g(\infty)=0$. Thus, for each $x \in[1, \infty)$, there exists a unique $t=t(x) \in(0,1]$ such that $g_{r}(t)=x e^{-x}$, i.e., $t e^{-t}=x e^{-x}$; hence, we define

$$
\begin{equation*}
t(x):=g_{r}^{-1}\left(x e^{-x}\right)=h\left(x e^{-x}\right), \quad x \geq 0 \tag{4}
\end{equation*}
$$

Since $t(x)=x$ for $x \in[0,1]$, we have

$$
F_{\infty}(x)= \begin{cases}0, & \text { if } \quad x \leq 1  \tag{5}\\ 1-\frac{t(x)}{x}, & \text { if } \quad x \geq 1\end{cases}
$$

Now for any fixed $u \in(0,1)$, the relation $F_{\infty}(x)=u$ gives $x-t(x)=x u$ so that $t(x)=(1-u) x$. Consequently,

$$
e^{x u}=\frac{e^{-t(x)}}{e^{-x}}=\frac{x}{t(x)}=\frac{1}{1-u}
$$

Thus, $x=-\log (1-u) / u$ and the proof is complete.
Remark 2. From the well-known relation $\mathbb{E} Z_{n}^{\alpha}=\alpha \int_{0}^{\infty} x^{\alpha-1}\left(1-F_{n}(x)\right) d x$ for $\alpha>0$, we obtain a simple expression for the moments:

$$
\mathbb{E} Z_{n}^{\alpha}=\alpha \sum_{k=1}^{n} \frac{\Gamma(\alpha+k-1)}{k^{\alpha} k!}
$$

In particular,

$$
\mathbb{E} Z_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}, \quad \mathbb{E} Z_{n}^{2}=2 \sum_{k=1}^{n} \frac{1}{k^{2}}, \quad \mathbb{E} Z_{n}^{3}=3 \sum_{k=1}^{n} \frac{1}{k^{2}}+3 \sum_{k=1}^{n} \frac{1}{k^{3}}
$$

Since $Z_{n} \nearrow Z_{\infty}$ with probability one, the above relations combined with the monotone convergence theorem give the moments of $Z_{\infty}$ and in particular that it has mean $\frac{\pi^{2}}{6}$ and variance $\frac{\pi^{2}}{6}\left(2-\frac{\pi^{2}}{6}\right)$.

The next lemma is a special case of Theorem 1 in [5] (see relation (7) in that paper), however, to keep the exposition self-contained, we provide a proof.

Lemma 1. For $x \geq 0, x+t \geq 0$, and $n \in \mathbb{N}^{+}$, define
$K_{n}(x, t):=\left\{\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}_{+}^{n}: y_{1}+\cdots+y_{i} \leq i x+t\right.$ for all $\left.i=1,2, \ldots, n\right\}$.
Then,

$$
\begin{equation*}
V_{n}(x, t):=\operatorname{Vol}\left(K_{n}(x, t)\right)=\frac{1}{n!}(x+t)((n+1) x+t)^{n-1}, \quad n=1,2, \ldots \tag{6}
\end{equation*}
$$

and, in particular, setting $t=0, \operatorname{Vol}\left(K_{n}(x)\right)=\frac{1}{n!}(n+1)^{n-1} x^{n}$.
Proof. Clearly $V_{1}(x, t)=x+t$ and for $n \geq 1$

$$
\begin{align*}
V_{n+1}(x, t) & =\int_{0}^{x+t} \int_{0}^{2 x+t-y_{1}} \cdots \int_{0}^{(n+1) x+t-\left(y_{1}+y_{2}+\cdots+y_{n}\right)} d \mathbf{y}_{n+1} \\
& =\int_{0}^{x+t} \int_{0}^{x+\left(x+t-y_{1}\right)} \cdots \int_{0}^{n x+\left(x+t-y_{1}\right)-\left(y_{2}+\cdots+y_{n}\right)} d \mathbf{y}_{n+1}  \tag{7}\\
& =\int_{0}^{x+t} V_{n}\left(x, x+t-y_{1}\right) d y_{1}
\end{align*}
$$

The claim follows by induction on $n$.
It is consistent with the recursion (7) for $V_{n}$ and (6) to define $V_{0}(x, t):=1$ so that (6) holds for all $n \in \mathbb{N}^{+} \cup\{0\}$. This agrees with the convention $\operatorname{Vol}\left(K_{0}(x)\right)=$ 1 we made in the proof of Theorem 1(a).

Proof of Theorem 2. By Theorem 2.2.4 in [3] we may assume that we can place $\left(X_{i}\right)_{i \geq 1}$ in the same probability space with a standard Brownian motion $\left(W_{s}\right)_{s \geq 0}$, so that, with probability 1 , we have $\left|n \bar{X}_{n}-W_{n}\right| / n^{1 / p}(\log n)^{1 / 2} \rightarrow 0$ as $n \rightarrow \infty$. This implies that

$$
\lim _{n \rightarrow \infty} \sqrt{n}\left(M_{n}-\sup _{k \in \mathbb{N}, k \geq n} \frac{W_{k}}{k}\right)=0
$$

with probability 1. On the other hand, with probability one, we have for all large $n$ the bound $\sup _{s \in[n, n+1]}\left|W_{s}-W_{n}\right| \leq 2 \sqrt{\log n}$, thus

$$
\lim _{n \rightarrow \infty} \sqrt{n}\left(\sup _{k \in \mathbb{N}, k \geq n} \frac{W_{k}}{k}-\sup _{s \geq n} \frac{W_{s}}{s}\right)=0
$$

Finally, by scaling and time inversion, we conclude that

$$
\sqrt{n} \sup _{s \geq n} \frac{W_{s}}{s} \stackrel{d}{=} \sup _{s \geq 1} \frac{W_{s}}{s} \stackrel{d}{=} \sup _{s \in[0,1]} W_{s} \stackrel{d}{=}\left|W_{1}\right|
$$

and the proof is complete.

## 3. An application to ruin probability

Following the same steps as in the proof of Theorem 1(b), one can evaluate the distribution function, $F_{n ; \lambda}$, of the random variable

$$
Z_{n ; \lambda}:=\max \left\{\frac{X_{1}}{1+\lambda}, \frac{X_{1}+X_{2}}{2+\lambda}, \ldots, \frac{X_{1}+X_{2}+\cdots+X_{n}}{n+\lambda}\right\}
$$

for all $\lambda>-1$ and $n \in \mathbb{N}^{+}$. Indeed, using (6) and induction on $n$ it is easily verified that for all $x \geq 0$ we have

$$
F_{n ; \lambda}(x)=1-(1+\lambda) e^{-\lambda x} \sum_{k=1}^{n} \frac{k(k+\lambda)^{k-2}}{k!} x^{k-1} e^{-k x}
$$

Thus, the distribution function of $Z_{\infty, \lambda}:=\lim _{n \rightarrow \infty} Z_{n ; \lambda}$ equals

$$
\begin{align*}
F_{\infty ; \lambda}(x) & =1-(1+\lambda) e^{-\lambda x} \sum_{k=1}^{\infty} \frac{k(k+\lambda)^{k-2}}{k!} x^{k-1} e^{-k x}  \tag{8}\\
& =1-\frac{t(x)}{x} e^{\lambda(t(x)-x)} \tag{9}
\end{align*}
$$

where the function $t$ is defined by (4). To justify the equality (9), we use the same arguments that lead from (2) to (5). Similarly as in Theorem 1(b), we find that $F_{\infty ; \lambda}$ is zero in $(-\infty, 1]$, strictly increasing in $[1, \infty)$ with range $[0,1)$, and its distribution inverse is given by

$$
\begin{equation*}
F_{\infty ; \lambda}^{-1}(u)=\frac{-\log (1-u)}{1-(1-u)^{\frac{1}{1+\lambda}}} \times \frac{1}{\lambda+1}, \quad 0<u<1 \tag{10}
\end{equation*}
$$

Remark 3. By the law of large numbers, the series in the right hand side of (8) equals to one for all $x \in[0,1]$. Therefore, setting $x=\alpha, 1+\lambda=\theta$ and $k \rightarrow k+1$, the function

$$
p(k ; \alpha, \theta)=\theta e^{-\alpha(\theta+k)} \frac{\alpha^{k}(k+\theta)^{k-1}}{k!}
$$

defines a probability mass function supported on $\mathbb{N}^{+} \cup\{0\}$, known (after a suitable re-parametrization) as generalized Poisson distribution with parameter $(\alpha, \theta) \in[0,1] \times(0, \infty)$; see [1] and references therein.

Consider now the following risk model. Assume that the aggregate claim at time $n$ is described by $S_{n}:=X_{1}+\cdots+X_{n}$, where the $\left(X_{i}\right)_{i \geq 1}$ are i.i.d. with $\mathbb{E} X_{1}=1$, the premium rate (per time unit) is $c=1+\theta>0$ ( $\theta$ is the safety loading of the insurance), and the initial capital is $u>-(1+\theta)$, where negative initial capital is allowed for technical reasons. The risk process is defined by

$$
U_{n}=u+c n-S_{n}, \quad n \in \mathbb{N}^{+}
$$

Clearly, the ruin probability

$$
\begin{equation*}
\psi(u):=\operatorname{Pr}\left(U_{n}<0 \text { for some } n \in \mathbb{N}^{+}\right) \tag{11}
\end{equation*}
$$

is of fundamental importance. Our explicit formulae are useful in computing the minimum initial capital needed to ensure that $\psi(u)$ is small. The particular problem (for general claims) has been studied in [4], under the name discretetime surplus-process model. It is well-known that $\psi(u)=1$ when $c \leq 1$, no matter how large $u$ is, because $\mathbb{E} X_{i}=1$. Hence, the problem is meaningful only for $c>1$, i.e., $\theta>0$.

Theorem 3. Assume that the i.i.d. individual claims $\left(X_{i}\right)_{i \geq 1}$ are exponential random variables with mean 1 , fix $\alpha \in(0,1)$ and $\theta>0$, and set $c=1+\theta$. Then, (a) the ruin probability (11) is given by

$$
\psi(u)= \begin{cases}\frac{t(c)}{c} \exp \left(-u\left(1-\frac{t(c)}{c}\right)\right), & \text { if } u>-c  \tag{12}\\ 1 & \text { if } u \leq-c\end{cases}
$$

where the function $t$ is given by (4);
(b) the minimum initial capital $u=u(\alpha, \theta)$ needed to ensure that $\psi(u) \leq \alpha$ is given by the unique root of the equation

$$
\begin{equation*}
(1+\theta+u)\left(1-\alpha^{\frac{1+\theta}{1+\theta+u}}\right)=-\log \alpha, \quad u>-(1+\theta) \tag{13}
\end{equation*}
$$

Proof. (a) For $u>-c$, we can use (9) to get

$$
\psi(u)=1-F_{\infty ; u / c}(c)=\frac{t(c)}{c} e^{(u / c)(t(c)-c)}
$$

which is (12). Then, the definition of $t$ shows that $\lim _{u \rightarrow-c^{+}} \psi(u)=\frac{t(c) e^{-t(c)}}{c e^{-c}}=$ 1 , and the monotonicity of $\psi$ implies that $\psi(u)=1$ for $u \leq-c$.
(b) By the formula of part (a), the function $\psi$ is strictly decreasing in the interval $(-c, \infty)$ and maps that interval to $(0,1)$. Therefore, there is a unique $u=u(\alpha, \theta)>-c$ such that $\psi(u)=\alpha$. Let $\lambda:=u / c$, which is greater than -1 . Then, using (10), we see that

$$
\psi(u)=\alpha \Leftrightarrow F_{\infty ; \lambda}(c)=1-\alpha \Leftrightarrow c=F_{\infty ; \lambda}^{-1}(1-\alpha)=\frac{-\log \alpha}{(1+\lambda)\left(1-\alpha^{\frac{1}{1+\lambda}}\right)} .
$$

We substitute $c=1+\theta, \lambda=u /(1+\theta)$, and the above equivalences show that $u$ is the unique solution of

$$
\left(1+\frac{u}{1+\theta}\right)\left(1-\alpha^{\frac{1+\theta}{1+\theta+u}}\right)=\frac{-\log \alpha}{1+\theta} .
$$

The exact values of $u$ in (13) are in perfect agreement with the numerical approximations given in the last line of Table 1 in [4]. Notice that the initial capital $u$ can be negative sometimes, e.g., $u(.5, .5) \simeq-.3107$.

## References

[1] Charalambides, Ch.A. Abel series distributions with applications to fluctuations of sample functions of stochastic processes. Communications in Statistics - Theory $\mathfrak{G}$ Methods, 19(1), (1990), 317-335.
[2] Corless, R.M, Gonnet G.H., Hare, D.E.G., Jeffrey D.J., and Knuth D.E. On the Lambert $W$ function. Advances in Computational Mathematics, 5(1), (1996), 329-359.
[3] Csörgő, Miklos, and Révész, Pál. Strong approximations in probability and statistics. Academic Press, 1981.
[4] Sattayatham, P., Sangaroon, K., and Klongdee, W. Ruin probability-based initial capital of the discrete-time surplus process. Variance, Advancing the Science of Risk, 7(1), (2013), 74-81.
[5] Stanley, Richard P., and Pitman, Jim. A polytope related to empirical distributions, plane trees, parking functions, and the associahedron. Discrete \& Computational Geometry, 27(4), (2002), 603-634.

