On sequential maxima of exponential sample means, with an application to ruin probability

Dimitris Cheliotis and Nickos Papadatos

National and Kapodistrian University of Athens Department of Mathematics Panepistemiopolis GR-157 84 Athens Greece

e-mail: dcheliotis@math.uoa.gr, npapadat@math.uoa.gr

Abstract: We obtain the distribution of the maximal average in a sequence of independent identically distributed exponential random variables. Surprisingly enough, it turns out that the inverse distribution admits a simple closed form. An application to ruin probability in a risk-theoretic model is also given.

MSC 2010 subject classifications: Primary 60E05; secondary 60F05. **Keywords and phrases:** exponential distribution, maximal average, Lambert W function, ruin probability.

1. Introduction

Consider a sequence $(X_i)_{i\geq 1}$ of independent identically distributed (i.i.d.) random variables, each having exponential distribution with mean 1. For each $i \in \mathbb{N}^+$ define the sample mean of the first i variables as $\overline{X}_i := (X_1 + X_2 + \cdots + X_i)/i$. The supremum of this sequence

$$Z_{\infty} := \sup\{\bar{X}_i : i \in \mathbb{N}^+\}$$

is finite because the sequence converges to 1 with probability 1.

In this note we compute the distribution function, F_{∞} , of Z_{∞} . In fact, what has nice form is the inverse of this distribution function. Our main result is the following.

Theorem 1. (a) Z_{∞} has distribution function

$$F_{\infty}(x) = 1 - \sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} x^{k-1} e^{-kx}$$

for x > 0, and density which is continuous on $\mathbb{R} \setminus \{1\}$, positive on $(1, \infty)$, and zero on $(-\infty, 1)$.

(b) The restriction of F_{∞} on $(1,\infty)$ is one to one and onto (0,1) with inverse

$$F_{\infty}^{-1}(u) = \frac{-\log(1-u)}{u} \quad \text{for all } u \in (0,1).$$
(1)

Remark 1. (a) For F_{∞} we have the alternative expression

$$F_{\infty}(x) = 1 + \frac{1}{x}W_0(-xe^{-x})$$

where W_0 is the principal branch of the Lambert W function, that is, the inverse function of $x \mapsto xe^x, x \ge 1$; see [2]. Indeed, the power series $\sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} y^k$ has interval of convergence [-1/e, 1/e] and equals $-W_0(-y)$.

(b) Clearly, the results of the theorem extend immediately to the case that the X_i 's are i.i.d. and $X_1 = aY + b$ with $a > 0, b \in \mathbb{R}$ and $Y \sim Exp(1)$. However, we were not able to find an explicit formula for the distribution of Z_{∞} for any other distribution of the X_i 's.

(c) Although it is intuitively clear that $F_{\infty}(x) > 0$ for x > 1, it is not entirely obvious how to verify it by direct calculations. However, this fact is evident from Theorem 1.

(d) Formula (1) enables the explicit calculation of the percentiles of F_{∞} . Therefore, the result is useful for the following kind of problems: Suppose that a quality control machine calculates subsequent averages, and alarms if some average \bar{X}_n is greater than c, where c is a predetermined constant such that the probability of false alarm is small, say α . For $\alpha \in (0, 1)$, the upper percentage point of F_{∞} (that is, the point c_{α} with $F_{\infty}(c_{\alpha}) = 1 - \alpha$) is given by $c_{\alpha} = \frac{-\log \alpha}{1-\alpha}$, and thus the proper value of c is $c = c_{\alpha}$.

If in the definition of Z_{∞} we discard the first n-1 values of X_i , we obtain the random variable

$$M_n := \sup\{X_i : i \ge n\}$$

for which, however, (for $n \ge 2$) the distribution function is quite complicated even for the exponential case. For instance, the distribution of M_2 is given by (we omit the details)

$$F_{M_2}(x) = F_{\infty}(x) + e^{-2x} \frac{F_{\infty}(x)}{1 - F_{\infty}(x)}, \quad x \ge 0.$$

What we can compute is the asymptotic distribution of $\sqrt{n}(M_n - 1)$ as $n \to \infty$. This distribution is the same for a large class of distributions of the X_i 's, as the following theorem shows.

Theorem 2. Assume that the $(X_i)_{i\geq 1}$ are *i.i.d.* with mean 0, variance 1, and there is p > 2 with $\mathbb{E}|X_1|^p < \infty$. Let $M_n := \sup\{\bar{X}_i : i \geq n\}$ for all $n \in \mathbb{N}^+$. Then,

$$\sqrt{n}M_n \Rightarrow |Z|$$

where $Z \sim N(0,1)$ is a standard normal random variable.

It is easy to see that under the assumptions of Theorem 2, by the law of the iterated logarithm, it holds

$$\limsup_{n \to \infty} \frac{\sqrt{n}}{\sqrt{2\log\log n}} M_n = 1.$$

2. Proofs

Proof of Theorem 1. (a) For each $n \in \mathbb{N}^+$ consider the random variable

$$Z_n := \max\left\{\bar{X}_1, \bar{X}_2, \dots, \bar{X}_n\right\}$$

and call F_n its distribution function. The sequence $(Z_n)_{n\geq 1}$ is increasing and $Z_{\infty} = \lim_{n \to \infty} Z_n, F_{\infty}(x) = \lim_{n \to \infty} F_n(x)$. We will compute F_n recursively. For $n \in \mathbb{N}^+$ and $x \geq 0$ we have

$$F_{n+1}(x) = \Pr[X_1 \le x, X_1 + X_2 \le 2x, \dots, X_1 + X_2 + \dots + X_{n+1} \le (n+1)x]$$

= $\int_0^x \int_0^{2x-y_1} \dots \int_0^{(n+1)x-(y_1+y_2+\dots+y_n)} e^{-(y_1+y_2+\dots+y_{n+1})} d\mathbf{y}_{n+1}$
= $\int_0^x \int_0^{2x-y_1} \dots \int_0^{nx-(y_1+y_2+\dots+y_{n-1})} \left\{ e^{-(y_1+y_2+\dots+y_n)} - e^{-(n+1)x} \right\} d\mathbf{y}_n$
= $F_n(x) - e^{-(n+1)x} \operatorname{Vol}(K_n(x))$

where $d\mathbf{y}_k = dy_k \cdots dy_2 dy_1$ and

$$K_n(x) := \{ (y_1, y_2, \dots, y_n) \in \mathbb{R}^n_+ : 0 \le y_1 + \dots + y_i \le ix, i = 1, 2, \dots, n \}.$$

Note that $F_1(x) = 1 - e^{-x}$ and introduce the convention $\operatorname{Vol}(K_0(x)) = 1$. It follows that $F_n(x) = 1 - \sum_{k=1}^n \operatorname{Vol}(K_{k-1}(x))e^{-kx}$ and from Lemma 1, below, we get the explicit form

$$F_n(x) = 1 - \sum_{k=1}^n \frac{k^{k-1}}{k!} x^{k-1} e^{-kx}$$
, for all $x \ge 0, n \in \mathbb{N}^+$.

This implies the first formula for F_{∞} . By the law of large numbers, we get that $F_{\infty}(x) = 0$ for all $x \in (-\infty, 1)$, and thus, the derivative of F_{∞} in $\mathbb{R} \setminus \{1\}$ is

$$f_{\infty}(x) := \mathbf{1}_{x>1} \sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} \left(k - \frac{k-1}{x}\right) x^{k-1} e^{-kx}.$$

(b) First we rewrite F_{∞} in a more convenient form. The fact that $F_{\infty}(x) = 0$ for $x \in [0, 1)$ implies the remarkable identity (see Fig. 1)

$$\sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} x^{k-1} e^{-kx} = 1 \quad \text{for all } x \in [0,1).$$
(2)

Our aim is to compute the value of the series in the left hand side also for $x \ge 1$. The series converges uniformly for $x \in [0, \infty)$ because

$$\sup_{x \ge 0} \frac{k^{k-1}}{k!} x^{k-1} e^{-kx} = \frac{(k-1)^{k-1}}{k!} e^{-(k-1)} \sim \frac{1}{k^{3/2} \sqrt{2\pi}},$$

which is summable in k. Thus, by continuity, (2) holds also for x = 1. Now we rewrite (2) in the form

$$\sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} (xe^{-x})^k = x \text{ for all } x \in [0,1].$$
(3)

FIG 1. The series (2) in the interval $0 \le x \le 4$.

The power series $h(y) := \sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} y^k$ is strictly increasing in $[0, e^{-1}]$ and thus (3) says that h is the inverse function of the restriction, g_r , on [0,1] of the function $g: [0,\infty) \to [0, e^{-1}]$ with $g(x) = xe^{-x}$. The function g is continuous, strictly increasing in [0,1], and strictly decreasing in $[1,\infty)$ with g(0) = 0, g(1) = $e^{-1}, g(\infty) = 0$. Thus, for each $x \in [1,\infty)$, there exists a unique $t = t(x) \in (0,1]$ such that $g_r(t) = xe^{-x}$, i.e., $te^{-t} = xe^{-x}$; hence, we define

$$t(x) := g_r^{-1}(xe^{-x}) = h(xe^{-x}), \quad x \ge 0.$$
(4)

Since t(x) = x for $x \in [0, 1]$, we have

$$F_{\infty}(x) = \begin{cases} 0, & \text{if } x \le 1, \\ 1 - \frac{t(x)}{x}, & \text{if } x \ge 1. \end{cases}$$
(5)

Now for any fixed $u \in (0, 1)$, the relation $F_{\infty}(x) = u$ gives x - t(x) = xu so that t(x) = (1 - u)x. Consequently,

$$e^{xu} = \frac{e^{-t(x)}}{e^{-x}} = \frac{x}{t(x)} = \frac{1}{1-u}$$

Thus, $x = -\log(1-u)/u$ and the proof is complete.

Remark 2. From the well-known relation $\mathbb{E} Z_n^{\alpha} = \alpha \int_0^{\infty} x^{\alpha-1} (1 - F_n(x)) dx$ for $\alpha > 0$, we obtain a simple expression for the moments:

$$\mathbb{E}Z_n^{\alpha} = \alpha \sum_{k=1}^n \frac{\Gamma(\alpha + k - 1)}{k^{\alpha}k!}.$$

In particular,

$$\mathbb{E} Z_n = \sum_{k=1}^n \frac{1}{k^2}, \quad \mathbb{E} Z_n^2 = 2 \sum_{k=1}^n \frac{1}{k^2}, \quad \mathbb{E} Z_n^3 = 3 \sum_{k=1}^n \frac{1}{k^2} + 3 \sum_{k=1}^n \frac{1}{k^3}.$$

Since $Z_n \nearrow Z_\infty$ with probability one, the above relations combined with the monotone convergence theorem give the moments of Z_∞ and in particular that it has mean $\frac{\pi^2}{6}$ and variance $\frac{\pi^2}{6}(2-\frac{\pi^2}{6})$.

The next lemma is a special case of Theorem 1 in [5] (see relation (7) in that paper), however, to keep the exposition self-contained, we provide a proof.

Lemma 1. For $x \ge 0$, $x + t \ge 0$, and $n \in \mathbb{N}^+$, define

 $K_n(x,t) := \{ (y_1, y_2, \dots, y_n) \in \mathbb{R}^n_+ : y_1 + \dots + y_i \le ix + t \text{ for all } i = 1, 2, \dots, n \}.$ Then,

$$V_n(x,t) := \operatorname{Vol}(K_n(x,t)) = \frac{1}{n!}(x+t)((n+1)x+t)^{n-1}, \quad n = 1, 2, \dots,$$
(6)

and, in particular, setting t = 0, $\operatorname{Vol}(K_n(x)) = \frac{1}{n!}(n+1)^{n-1}x^n$.

Proof. Clearly $V_1(x,t) = x + t$ and for $n \ge 1$

$$V_{n+1}(x,t) = \int_0^{x+t} \int_0^{2x+t-y_1} \cdots \int_0^{(n+1)x+t-(y_1+y_2+\dots+y_n)} d\mathbf{y}_{n+1}$$

= $\int_0^{x+t} \int_0^{x+(x+t-y_1)} \cdots \int_0^{nx+(x+t-y_1)-(y_2+\dots+y_n)} d\mathbf{y}_{n+1}$ (7)
= $\int_0^{x+t} V_n(x,x+t-y_1) dy_1.$

The claim follows by induction on n.

It is consistent with the recursion (7) for V_n and (6) to define $V_0(x,t) := 1$ so that (6) holds for all $n \in \mathbb{N}^+ \cup \{0\}$. This agrees with the convention $\operatorname{Vol}(K_0(x)) = 1$ we made in the proof of Theorem 1(a).

Proof of Theorem 2. By Theorem 2.2.4 in [3] we may assume that we can place $(X_i)_{i\geq 1}$ in the same probability space with a standard Brownian motion $(W_s)_{s\geq 0}$, so that, with probability 1, we have $|n\bar{X}_n - W_n|/n^{1/p}(\log n)^{1/2} \to 0$ as $n \to \infty$. This implies that

$$\lim_{n \to \infty} \sqrt{n} \left(M_n - \sup_{k \in \mathbb{N}, k \ge n} \frac{W_k}{k} \right) = 0$$

with probability 1. On the other hand, with probability one, we have for all large n the bound $\sup_{s \in [n, n+1]} |W_s - W_n| \le 2\sqrt{\log n}$, thus

$$\lim_{n \to \infty} \sqrt{n} \left(\sup_{k \in \mathbb{N}, k \ge n} \frac{W_k}{k} - \sup_{s \ge n} \frac{W_s}{s} \right) = 0.$$

Finally, by scaling and time inversion, we conclude that

$$\sqrt{n} \sup_{s \ge n} \frac{W_s}{s} \stackrel{d}{=} \sup_{s \ge 1} \frac{W_s}{s} \stackrel{d}{=} \sup_{s \in [0,1]} W_s \stackrel{d}{=} |W_1|,$$

and the proof is complete.

3. An application to ruin probability

Following the same steps as in the proof of Theorem 1(b), one can evaluate the distribution function, $F_{n;\lambda}$, of the random variable

$$Z_{n;\lambda} := \max\left\{\frac{X_1}{1+\lambda}, \frac{X_1+X_2}{2+\lambda}, \dots, \frac{X_1+X_2+\dots+X_n}{n+\lambda}\right\}$$

for all $\lambda > -1$ and $n \in \mathbb{N}^+$. Indeed, using (6) and induction on n it is easily verified that for all $x \ge 0$ we have

$$F_{n;\lambda}(x) = 1 - (1+\lambda)e^{-\lambda x} \sum_{k=1}^{n} \frac{k(k+\lambda)^{k-2}}{k!} x^{k-1} e^{-kx}.$$

Thus, the distribution function of $Z_{\infty,\lambda} := \lim_{n \to \infty} Z_{n;\lambda}$ equals

$$F_{\infty;\lambda}(x) = 1 - (1+\lambda)e^{-\lambda x} \sum_{k=1}^{\infty} \frac{k(k+\lambda)^{k-2}}{k!} x^{k-1} e^{-kx}$$
(8)

$$= 1 - \frac{t(x)}{x} e^{\lambda(t(x) - x)},$$
(9)

where the function t is defined by (4). To justify the equality (9), we use the same arguments that lead from (2) to (5). Similarly as in Theorem 1(b), we find that $F_{\infty;\lambda}$ is zero in $(-\infty, 1]$, strictly increasing in $[1, \infty)$ with range [0, 1), and its distribution inverse is given by

$$F_{\infty;\lambda}^{-1}(u) = \frac{-\log(1-u)}{1-(1-u)^{\frac{1}{1+\lambda}}} \times \frac{1}{\lambda+1}, \quad 0 < u < 1.$$
(10)

Remark 3. By the law of large numbers, the series in the right hand side of (8) equals to one for all $x \in [0, 1]$. Therefore, setting $x = \alpha$, $1 + \lambda = \theta$ and $k \to k + 1$, the function

$$p(k; \alpha, \theta) = \theta e^{-\alpha(\theta+k)} \frac{\alpha^k (k+\theta)^{k-1}}{k!}$$

defines a probability mass function supported on $\mathbb{N}^+ \cup \{0\}$, known (after a suitable re-parametrization) as generalized Poisson distribution with parameter $(\alpha, \theta) \in [0, 1] \times (0, \infty)$; see [1] and references therein.

Consider now the following risk model. Assume that the aggregate claim at time n is described by $S_n := X_1 + \cdots + X_n$, where the $(X_i)_{i\geq 1}$ are i.i.d. with $\mathbb{E}X_1 = 1$, the premium rate (per time unit) is $c = 1 + \theta > 0$ (θ is the safety loading of the insurance), and the initial capital is $u > -(1+\theta)$, where negative initial capital is allowed for technical reasons. The risk process is defined by

$$U_n = u + cn - S_n, \quad n \in \mathbb{N}^+.$$

Clearly, the ruin probability

$$\psi(u) := \Pr(U_n < 0 \text{ for some } n \in \mathbb{N}^+)$$
(11)

is of fundamental importance. Our explicit formulae are useful in computing the minimum initial capital needed to ensure that $\psi(u)$ is small. The particular problem (for general claims) has been studied in [4], under the name *discretetime surplus-process model*. It is well-known that $\psi(u) = 1$ when $c \leq 1$, no matter how large u is, because $\mathbb{E}X_i = 1$. Hence, the problem is meaningful only for c > 1, i.e., $\theta > 0$.

Theorem 3. Assume that the *i.i.d.* individual claims $(X_i)_{i\geq 1}$ are exponential random variables with mean 1, fix $\alpha \in (0,1)$ and $\theta > 0$, and set $c = 1 + \theta$. Then, (a) the ruin probability (11) is given by

$$\psi(u) = \begin{cases} \frac{t(c)}{c} \exp\left(-u\left(1 - \frac{t(c)}{c}\right)\right), & \text{if } u > -c, \\ 1 & \text{if } u \le -c, \end{cases}$$
(12)

where the function t is given by (4);

(b) the minimum initial capital $u = u(\alpha, \theta)$ needed to ensure that $\psi(u) \leq \alpha$ is given by the unique root of the equation

$$(1+\theta+u)\left(1-\alpha^{\frac{1+\theta}{1+\theta+u}}\right) = -\log\alpha, \quad u > -(1+\theta).$$
(13)

Proof. (a) For u > -c, we can use (9) to get

$$\psi(u) = 1 - F_{\infty;u/c}(c) = \frac{t(c)}{c} e^{(u/c)(t(c)-c)},$$

which is (12). Then, the definition of t shows that $\lim_{u\to -c^+} \psi(u) = \frac{t(c)e^{-t(c)}}{ce^{-c}} = 1$, and the monotonicity of ψ implies that $\psi(u) = 1$ for $u \leq -c$.

(b) By the formula of part (a), the function ψ is strictly decreasing in the interval $(-c, \infty)$ and maps that interval to (0, 1). Therefore, there is a unique $u = u(\alpha, \theta) > -c$ such that $\psi(u) = \alpha$. Let $\lambda := u/c$, which is greater than -1. Then, using (10), we see that

$$\psi(u) = \alpha \Leftrightarrow F_{\infty;\lambda}(c) = 1 - \alpha \Leftrightarrow c = F_{\infty;\lambda}^{-1}(1 - \alpha) = \frac{-\log \alpha}{(1 + \lambda)\left(1 - \alpha^{\frac{1}{1 + \lambda}}\right)}.$$

We substitute $c = 1 + \theta$, $\lambda = u/(1 + \theta)$, and the above equivalences show that u is the unique solution of

$$\left(1+\frac{u}{1+\theta}\right)\left(1-\alpha^{\frac{1+\theta}{1+\theta+u}}\right) = \frac{-\log\alpha}{1+\theta}.$$

The exact values of u in (13) are in perfect agreement with the numerical approximations given in the last line of Table 1 in [4]. Notice that the initial capital u can be negative sometimes, e.g., $u(.5, .5) \simeq -.3107$.

References

- Charalambides, Ch.A. Abel series distributions with applications to fluctuations of sample functions of stochastic processes. *Communications in Statistics - Theory & Methods*, 19(1), (1990), 317–335.
- [2] Corless, R.M, Gonnet G.H., Hare, D.E.G., Jeffrey D.J., and Knuth D.E. On the Lambert W function. Advances in Computational Mathematics, 5(1), (1996), 329–359.
- [3] Csörgő, Miklos, and Révész, Pál. Strong approximations in probability and statistics. Academic Press, 1981.
- [4] Sattayatham, P., Sangaroon, K., and Klongdee, W. Ruin probability-based initial capital of the discrete-time surplus process. Variance, Advancing the Science of Risk, 7(1), (2013), 74–81.
- [5] Stanley, Richard P., and Pitman, Jim. A polytope related to empirical distributions, plane trees, parking functions, and the associahedron. *Discrete* & Computational Geometry, 27(4), (2002), 603–634.