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1. Introduction

Consider a sequence (Xi)i≥1 of independent identically distributed (i.i.d.) ran-
dom variables, each having exponential distribution with mean 1. For each i ∈
N+ define the sample mean of the first i variables as Xi := (X1+X2+· · ·+Xi)/i.
The supremum of this sequence

Z∞ := sup{X̄i : i ∈ N+}

is finite because the sequence converges to 1 with probability 1.
In this note we compute the distribution function, F∞, of Z∞. In fact, what

has nice form is the inverse of this distribution function. Our main result is the
following.

Theorem 1. (a) Z∞ has distribution function

F∞(x) = 1−
∞∑
k=1

kk−1

k!
xk−1e−kx

for x > 0, and density which is continuous on R\{1}, positive on (1,∞), and
zero on (−∞, 1).
(b) The restriction of F∞ on (1,∞) is one to one and onto (0, 1) with inverse

F−1∞ (u) =
− log(1− u)

u
for all u ∈ (0, 1). (1)
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Remark 1. (a) For F∞ we have the alternative expression

F∞(x) = 1 +
1

x
W0(−xe−x)

where W0 is the principal branch of the Lambert W function, that is, the inverse

function of x 7→ xex, x ≥ 1; see [2]. Indeed, the power series
∑∞
k=1

kk−1

k! y
k has

interval of convergence [−1/e, 1/e] and equals −W0(−y).
(b) Clearly, the results of the theorem extend immediately to the case that

the Xi’s are i.i.d. and X1 = aY +b with a > 0, b ∈ R and Y ∼ Exp(1). However,
we were not able to find an explicit formula for the distribution of Z∞ for any
other distribution of the Xi’s.

(c) Although it is intuitively clear that F∞(x) > 0 for x > 1, it is not entirely
obvious how to verify it by direct calculations. However, this fact is evident from
Theorem 1.

(d) Formula (1) enables the explicit calculation of the percentiles of F∞.
Therefore, the result is useful for the following kind of problems: Suppose that
a quality control machine calculates subsequent averages, and alarms if some
average X̄n is greater than c, where c is a predetermined constant such that the
probability of false alarm is small, say α. For α ∈ (0, 1), the upper percentage
point of F∞ (that is, the point cα with F∞(cα) = 1−α) is given by cα = − logα

1−α ,
and thus the proper value of c is c = cα.

If in the definition of Z∞ we discard the first n − 1 values of X̄i, we obtain
the random variable

Mn := sup{X̄i : i ≥ n}

for which, however, (for n ≥ 2) the distribution function is quite complicated
even for the exponential case. For instance, the distribution of M2 is given by
(we omit the details)

FM2(x) = F∞(x) + e−2x
F∞(x)

1− F∞(x)
, x ≥ 0.

What we can compute is the asymptotic distribution of
√
n(Mn−1) as n→∞.

This distribution is the same for a large class of distributions of the Xi’s, as the
following theorem shows.

Theorem 2. Assume that the (Xi)i≥1 are i.i.d. with mean 0, variance 1, and
there is p > 2 with IE |X1|p < ∞. Let Mn := sup{X̄i : i ≥ n} for all n ∈ N+.
Then, √

nMn ⇒ |Z|

where Z ∼ N(0, 1) is a standard normal random variable.

It is easy to see that under the assumptions of Theorem 2, by the law of the
iterated logarithm, it holds

lim sup
n→∞

√
n√

2 log log n
Mn = 1.
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2. Proofs

Proof of Theorem 1. (a) For each n ∈ N+ consider the random variable

Zn := max
{
X̄1, X̄2, . . . , X̄n

}
and call Fn its distribution function. The sequence (Zn)n≥1 is increasing and
Z∞ = limn→∞ Zn, F∞(x) = limn→∞ Fn(x). We will compute Fn recursively.

For n ∈ N+ and x ≥ 0 we have

Fn+1(x) = Pr[X1 ≤ x,X1 +X2 ≤ 2x, . . . ,X1 +X2 + · · ·+Xn+1 ≤ (n+ 1)x]

=

∫ x

0

∫ 2x−y1

0

· · ·
∫ (n+1)x−(y1+y2+···+yn)

0

e−(y1+y2+···+yn+1)dyn+1

=

∫ x

0

∫ 2x−y1

0

· · ·
∫ nx−(y1+y2+···+yn−1)

0

{
e−(y1+y2+···+yn) − e−(n+1)x

}
dyn

= Fn(x)− e−(n+1)x Vol(Kn(x))

where dyk = dyk · · · dy2dy1 and

Kn(x) := {(y1, y2, . . . , yn) ∈ Rn+ : 0 ≤ y1 + · · ·+ yi ≤ ix, i = 1, 2, . . . , n}.

Note that F1(x) = 1− e−x and introduce the convention Vol(K0(x)) = 1. It
follows that Fn(x) = 1 −

∑n
k=1 Vol(Kk−1(x))e−kx and from Lemma 1, below,

we get the explicit form

Fn(x) = 1−
n∑
k=1

kk−1

k!
xk−1e−kx, for all x ≥ 0, n ∈ N+.

This implies the first formula for F∞. By the law of large numbers, we get that
F∞(x) = 0 for all x ∈ (−∞, 1), and thus, the derivative of F∞ in R\{1} is

f∞(x) := 1x>1

∞∑
k=1

kk−1

k!

(
k − k − 1

x

)
xk−1e−kx.

(b) First we rewrite F∞ in a more convenient form. The fact that F∞(x) = 0
for x ∈ [0, 1) implies the remarkable identity (see Fig. 1)

∞∑
k=1

kk−1

k!
xk−1e−kx = 1 for all x ∈ [0, 1). (2)

Our aim is to compute the value of the series in the left hand side also for x ≥ 1.
The series converges uniformly for x ∈ [0,∞) because

sup
x≥0

kk−1

k!
xk−1e−kx =

(k − 1)k−1

k!
e−(k−1) ∼ 1

k3/2
√

2π
,

which is summable in k. Thus, by continuity, (2) holds also for x = 1. Now we
rewrite (2) in the form

∞∑
k=1

kk−1

k!
(xe−x)k = x for all x ∈ [0, 1]. (3)
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Fig 1. The series (2) in the interval 0 ≤ x ≤ 4.

The power series h(y) :=
∑∞
k=1

kk−1

k! y
k is strictly increasing in [0, e−1] and thus

(3) says that h is the inverse function of the restriction, gr, on [0, 1] of the
function g : [0,∞) → [0, e−1] with g(x) = xe−x. The function g is continuous,
strictly increasing in [0, 1], and strictly decreasing in [1,∞) with g(0) = 0, g(1) =
e−1, g(∞) = 0. Thus, for each x ∈ [1,∞), there exists a unique t = t(x) ∈ (0, 1]
such that gr(t) = xe−x, i.e., te−t = xe−x; hence, we define

t(x) := g−1r (xe−x) = h(xe−x), x ≥ 0. (4)

Since t(x) = x for x ∈ [0, 1], we have

F∞(x) =

{
0, if x ≤ 1,

1− t(x)
x , if x ≥ 1.

(5)

Now for any fixed u ∈ (0, 1), the relation F∞(x) = u gives x − t(x) = xu so
that t(x) = (1− u)x. Consequently,

exu =
e−t(x)

e−x
=

x

t(x)
=

1

1− u
.

Thus, x = − log(1− u)/u and the proof is complete.

Remark 2. From the well-known relation IEZαn = α
∫∞
0
xα−1(1−Fn(x))dx for

α > 0, we obtain a simple expression for the moments:

IEZαn = α

n∑
k=1

Γ(α+ k − 1)

kαk!
.

In particular,

IEZn =
∑n
k=1

1
k2 , IEZ2

n = 2
∑n
k=1

1
k2 , IEZ3

n = 3
∑n
k=1

1
k2 + 3

∑n
k=1

1
k3 .
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Since Zn ↗ Z∞ with probability one, the above relations combined with the
monotone convergence theorem give the moments of Z∞ and in particular that

it has mean π2

6 and variance π2

6 (2− π2

6 ).

The next lemma is a special case of Theorem 1 in [5] (see relation (7) in that
paper), however, to keep the exposition self-contained, we provide a proof.

Lemma 1. For x ≥ 0, x+ t ≥ 0, and n ∈ N+, define

Kn(x, t) := {(y1, y2, . . . , yn) ∈ Rn+ : y1 + · · ·+yi ≤ ix+ t for all i = 1, 2, . . . , n}.

Then,

Vn(x, t) := Vol(Kn(x, t)) =
1

n!
(x+ t)((n+ 1)x+ t)n−1, n = 1, 2, . . . , (6)

and, in particular, setting t = 0, Vol(Kn(x)) = 1
n! (n+ 1)n−1xn.

Proof. Clearly V1(x, t) = x+ t and for n ≥ 1

Vn+1(x, t) =

∫ x+t

0

∫ 2x+t−y1

0

· · ·
∫ (n+1)x+t−(y1+y2+···+yn)

0

dyn+1

=

∫ x+t

0

∫ x+(x+t−y1)

0

· · ·
∫ nx+(x+t−y1)−(y2+···+yn)

0

dyn+1

=

∫ x+t

0

Vn(x, x+ t− y1)dy1.

(7)

The claim follows by induction on n.

It is consistent with the recursion (7) for Vn and (6) to define V0(x, t) := 1 so
that (6) holds for all n ∈ N+∪{0}. This agrees with the convention Vol(K0(x)) =
1 we made in the proof of Theorem 1(a).

Proof of Theorem 2. By Theorem 2.2.4 in [3] we may assume that we can place
(Xi)i≥1 in the same probability space with a standard Brownian motion (Ws)s≥0,
so that, with probability 1, we have |nX̄n −Wn|/n1/p(log n)1/2 → 0 as n→∞.
This implies that

lim
n→∞

√
n

(
Mn − sup

k∈N,k≥n

Wk

k

)
= 0

with probability 1. On the other hand, with probability one, we have for all
large n the bound sups∈[n,n+1] |Ws −Wn| ≤ 2

√
log n, thus

lim
n→∞

√
n

(
sup

k∈N,k≥n

Wk

k
− sup
s≥n

Ws

s

)
= 0.

Finally, by scaling and time inversion, we conclude that

√
n sup
s≥n

Ws

s

d
= sup

s≥1

Ws

s

d
= sup
s∈[0,1]

Ws
d
= |W1|,

and the proof is complete.
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3. An application to ruin probability

Following the same steps as in the proof of Theorem 1(b), one can evaluate the
distribution function, Fn;λ, of the random variable

Zn;λ := max

{
X1

1 + λ
,
X1 +X2

2 + λ
, . . . ,

X1 +X2 + · · ·+Xn

n+ λ

}
for all λ > −1 and n ∈ N+. Indeed, using (6) and induction on n it is easily
verified that for all x ≥ 0 we have

Fn;λ(x) = 1− (1 + λ)e−λx
n∑
k=1

k(k + λ)k−2

k!
xk−1e−kx.

Thus, the distribution function of Z∞,λ := limn→∞ Zn;λ equals

F∞;λ(x) = 1− (1 + λ)e−λx
∞∑
k=1

k(k + λ)k−2

k!
xk−1e−kx (8)

= 1− t(x)

x
eλ(t(x)−x), (9)

where the function t is defined by (4). To justify the equality (9), we use the
same arguments that lead from (2) to (5). Similarly as in Theorem 1(b), we find
that F∞;λ is zero in (−∞, 1], strictly increasing in [1,∞) with range [0, 1), and
its distribution inverse is given by

F−1∞;λ(u) =
− log(1− u)

1− (1− u)
1

1+λ

× 1

λ+ 1
, 0 < u < 1. (10)

Remark 3. By the law of large numbers, the series in the right hand side of
(8) equals to one for all x ∈ [0, 1]. Therefore, setting x = α, 1 + λ = θ and
k → k + 1, the function

p(k;α, θ) = θe−α(θ+k)
αk(k + θ)k−1

k!

defines a probability mass function supported on N+ ∪ {0}, known (after a
suitable re-parametrization) as generalized Poisson distribution with parameter
(α, θ) ∈ [0, 1]× (0,∞); see [1] and references therein.

Consider now the following risk model. Assume that the aggregate claim at
time n is described by Sn := X1 + · · · + Xn, where the (Xi)i≥1 are i.i.d. with
IEX1 = 1, the premium rate (per time unit) is c = 1 + θ > 0 (θ is the safety
loading of the insurance), and the initial capital is u > −(1 +θ), where negative
initial capital is allowed for technical reasons. The risk process is defined by

Un = u+ cn− Sn, n ∈ N+.
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Clearly, the ruin probability

ψ(u) := Pr(Un < 0 for some n ∈ N+) (11)

is of fundamental importance. Our explicit formulae are useful in computing
the minimum initial capital needed to ensure that ψ(u) is small. The particular
problem (for general claims) has been studied in [4], under the name discrete-
time surplus-process model. It is well-known that ψ(u) = 1 when c ≤ 1, no
matter how large u is, because IEXi = 1. Hence, the problem is meaningful
only for c > 1, i.e., θ > 0.

Theorem 3. Assume that the i.i.d. individual claims (Xi)i≥1 are exponential
random variables with mean 1, fix α ∈ (0, 1) and θ > 0, and set c = 1+θ. Then,
(a) the ruin probability (11) is given by

ψ(u) =

{
t(c)
c exp

(
−u
(

1− t(c)
c

))
, if u > −c,

1 if u ≤ −c,
(12)

where the function t is given by (4);
(b) the minimum initial capital u = u(α, θ) needed to ensure that ψ(u) ≤ α is
given by the unique root of the equation

(1 + θ + u)
(

1− α
1+θ

1+θ+u

)
= − logα, u > −(1 + θ). (13)

Proof. (a) For u > −c, we can use (9) to get

ψ(u) = 1− F∞;u/c(c) =
t(c)

c
e(u/c)(t(c)−c),

which is (12). Then, the definition of t shows that limu→−c+ ψ(u) = t(c)e−t(c)

ce−c =
1, and the monotonicity of ψ implies that ψ(u) = 1 for u ≤ −c.

(b) By the formula of part (a), the function ψ is strictly decreasing in the
interval (−c,∞) and maps that interval to (0, 1). Therefore, there is a unique
u = u(α, θ) > −c such that ψ(u) = α. Let λ := u/c, which is greater than −1.
Then, using (10), we see that

ψ(u) = α⇔ F∞;λ(c) = 1− α⇔ c = F−1∞;λ(1− α) =
− logα

(1 + λ)
(

1− α
1

1+λ

) .
We substitute c = 1 + θ, λ = u/(1 + θ), and the above equivalences show that u
is the unique solution of(

1 +
u

1 + θ

)(
1− α

1+θ
1+θ+u

)
=
− logα

1 + θ
.

The exact values of u in (13) are in perfect agreement with the numerical
approximations given in the last line of Table 1 in [4]. Notice that the initial
capital u can be negative sometimes, e.g., u(.5, .5) ' −.3107.
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