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Abstract

For a diffusion Xt in a one-dimensional Wiener medium W , it is known that there is a
certain process (br(W ))r≥0 that depends only on the environment, so that Xt − blog t(W )
converges in distribution as t →∞. The paths of b are step functions. Denote by FX(t) the
point with the most local time for the diffusion at time t. We prove that, modulo a relatively
small time change, the paths of the process (br(W ))r≥0, (FX(er))r≥0 are close after some
large r.

1 Introduction

One of the simplest and most studied models of random motion in random environment is ran-
dom walk in random environment in Z. To see a realization of such a walk, first, independently
for every integer k, pick a random pk in [0, 1] according to a fixed probability measure (the same
for every k). Then, do a walk in Z, with pk, 1 − pk giving the probabilities of going from k to
k +1, k−1 respectively. The sequence (pk)k∈Z is called the environment, and its random nature
gives rise to several new and surprising phenomena.

The continuous time and space analog of this walk is the diffusion satisfying the formal
stochastic differential equation

dX(t) = dω(t)− 1
2W ′(X(t)) dt,

X(0) = 0,
(1)

where ω is a one-dimensional standard Brownian motion, and W is picked from a measure on
RR before the diffusion starts running. Here, W is called the environment.

In this work, we focus our attention to the case where W has the law of a two sided Brownian
motion path. With probability one, the derivative W ′ does not exist, but we will explain soon
what we mean exactly by the above diffusion. Assume for the moment that W is differentiable.
In intervals where W ′ is positive, the diffusion is pushed by the environment to the left, while
in intervals where W ′ is negative, the diffusion is pushed to the right. Thus, in a neighborhood
of a local minimum x0, the diffusion oscillates for some time around x0 until randomness (i.e.,
dω) manages to overcome the effect of the environment, and the diffusion moves away from the
“interval of influence” of x0. The explicit definition of this interval we give now.
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Assume that W is continuous and x0 is point of local minimum for W . There are intervals
[l, r] around x0 so that W (x0) is the minimum value of W in [l, r], and W (l),W (r) are the maxi-
mum values of W in [l, x0], [x0, r] respectively. Call J(x0) := [lx0 , rx0 ] the maximal such interval.
We will call it the interval of influence of x0, and the number min{W (lx0)−W (x0),W (rx0)−
W (x0)} the strength of the interval. Assume now that W is a “typical” two sided Brownian
path. A given interval J(x0) is strictly contained in other intervals J(x′) with greater strength.
Let J(x1) % J(x0) be the minimal such interval. x1 is uniquely determined this way because W
is a Brownian path. We call x1 the parent of x0. As each J(x) contains many other J(x)’s, the
process of temporary entrapment in a J(x) and the escape, described in the previous paragraph,
happens at all scales.

It is known that there is a real valued process (bs(W ))s>0 depending only on the environment
and whose values are points of local minimum for W , so that X(t) − blog t(W ) converges in
distribution as t → ∞. For stronger results, see, Golosov (1984), Tanaka (1988), Hu (2000).
bs(W ) moves from a local minimum x0 to its parent x1, and then to the parent of x1, and so
on. Consequently, as time passes, b discerns only rougher details of the path W .

This characteristic of b has been the basis for a renormalization picture in Le Doussal et al.
(1999). The authors of that paper call the process b “effective dynamics” of the motion, and
give many properties of the path (br(W ))r>0. For example,

lim
t→∞

number of sign changes of b in the interval [1, t]
log t

=
1
3

a.s.,

and for t > 1,

P(b is constant in [1, t]) =
1

3t2
(5− 2e1−t).

These two results are proved rigorously in Cheliotis (2005) and Zeitouni (2004) (Theorem 2.5.13)
respectively.

And a natural question is: what do such properties of b say about the diffusion itself? Or,
put differently, what object defined in terms of the diffusion is related to the path of the process
b? The diffusion itself is a much different process than b. e.g., it is continuous and recurrent,
while b is discontinuous and transient (this will be clear after the rigorous definition of b). The
next best thing is to find a process whose value at time t is determined by the knowledge of
(Xs)s≤t only which follows b closely (If we have the entire path of X, then we can completely
recover the process b with probability 1). The one we put forth is the process of the favorite point
of X at time t. And the result justifying this is our theorem, stated below, already announced
in Cheliotis (2005).

To make the above precise, we define explicitly the three processes of interest.

The diffusion: On the space W := C(R), consider the topology of uniform convergence on
compact sets, the corresponding σ-field of the Borel sets, and P the measure on W under which
the coordinate processes {W (t) : t ≥ 0}, {W (−t) : t ≥ 0} are independent standard Brownian
motions. Also let Ω := C([0,∞)), and equip it with the σ-field of Borel sets derived from the
topology of uniform convergence on compact sets. For W ∈ W, we denote by PW the probability
measure on Ω such that {X(t) : t ≥ 0}, the coordinate process, is a diffusion with X(0) = 0 and
generator

1
2
eW (x) d

dx

(
e−W (x) d

dx

)
.

Such a diffusion is defined by the formula

Xt := A−1(B(T−1(t))), (2)
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where

A(x) :=
∫ x

0
eW (s)ds,

T (u) :=
∫ u

0
e−2W (A−1(B(s)))ds

for all x ∈ R, u ≥ 0. A is the scale function for the diffusion, B is a standard Brownian motion,
and T is a time change. Then consider the space W ×Ω, equip it with the product σ-field, and
take the probability measure defined by

dP(W,X) := dPW (X) dP(W ).

Finally, take the completion of the above σ-field with respect to P. The marginal of P in Ω
gives a process that is known as diffusion in a random environment; the environment being the
function W .

The favorite point process: To the above diffusion corresponds the local time process
{LX(t, x) : t ≥ 0, x ∈ R}, which is jointly continuous and its defining property is

∫ t

0
f(Xs)ds =

∫

R
f(x)LX(t, x)dx

for all t ≥ 0 and any bounded Borel function f ∈ RR. Using the definition of X in (2), we can
see that

LX(t, x) = e−W (x)LB(T−1(t), A(x)), (3)

where LB is the local time process of the Brownian motion B.
For a fixed t > 0, the set FX(t) := {x ∈ R : LX(t, x) = supy∈R LX(t, y)} of the points with the

most local time at time t is nonempty and compact. Any point there is called a favorite point
of the diffusion at time t. One can prove that for fixed t > 0, FX(t) has at most two elements, and
with probability 1, FX(t) has exactly one element. Also, Leb({t : FX(t) has two elements }) = 0.

Define FX : (0,∞) → R with FX(t) := inf FX(t), the smallest favorite point at time t. This
is a left continuous function. (Note that what we prove does not change if we define FX as the
maximum of FX(t), or as any other choice function. The only difference in the latter case is
that some non-measurable sets may appear, e.g. in relation (6) below, and we will have a bound
on their outer measure. Our basic tool, the first Borel Cantelli Lemma, works in that case too,
and our result is unaffected)

The process b: For a function f : R → R, t > 0, and y0 ∈ R, we say that f admits a
t-minimum at y0 if there are α, β ∈ R with α < y0 < β, f(y0) = inf{f(y) : y ∈ [α, β]} and
f(α) ≥ f(y0) + t, f(β) ≥ f(y0) + t. We say that f admits a t-maximum at y0 if −f admits
a t-minimum at y0. We denote by Rt(f) the set of t-extrema of f .

It is easy to see that for a two sided Brownian path W , with probability one, for all t > 0,
the set Rt(W ) has no accumulation point in R, it is unbounded above and below, and the points
of t-maxima and t-minima alternate. Thus we can write Rt(W ) = {xk(W, t) : k ∈ Z}, with
(xk(W, t))k∈Z strictly increasing, and x0(W, t) ≤ 0 < x1(W, t). One of x0(W, t), x1(W, t) is a
point of local minimum. This we call bt(W ).

For a fixed t, the part W |[xk, xk+2] of the path of W between two consecutive t-maxima
we call it a t-valley, or simply a valley when the value of t is understood. The depth of the
valley is defined as min{W (xk)−W (xk+1),W (xk+2)−W (xk+1)}, and the point xk+1 is called
the bottom of the valley.
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Pick any c > 6, and for any x with |x| > 1, define the interval

I(x) := (x− (log |x|)c, x + (log |x|)c).

Our result says that the processes FX(exp(·)) and b are very close. The precise statement is
as follows.

Theorem. With P-probability 1, there is a τ = τ(W,X) > 0 so that if we label by (sn(W, τ))n≥1

the strictly increasing sequence of the points in [τ,∞) where b· jumps and xn(W, τ) its value in
(sn, sn+1), then there is a strictly increasing sequence (tn(X, W ))n≥1 converging to infinity so
that

(i) FX(et) ∈ I(xn) for n ≥ 1, t ∈ (tn, tn+1)

(ii) tn/sn → 1 P-a.s. as n →∞.

We abbreviated sn(W, τ), xn(W, τ), tn(X,W ) to sn, xn, tn.

The times {ti : i ≥ 1} will be defined explicitly in the proof of the theorem. Observe also
that for big x, the interval I(x) is a relatively small neighborhood of x. Thus, the theorem says
that after some point, the function FX(exp(·)) “almost tracks” the values of the process b with
the same order and at about the same time.

A consequence of the theorem and its proof is the following corollary. Note that the typical
size of bs is of the order s2, so that the result says something nontrivial.

Corollary. Let c > 6 be fixed. With P-probability 1, there is a strictly increasing map λ from
[0,∞) to itself with lims→∞ λ(s)/s = 1 and

|FX(eλ(s))− bs| < (log s)c

for all large s.

One can show that lims→∞ bs/(s2 log log s) = 8/π2 (it follows from the proofs in Hu and Shi
(1998). The process b is much easier to handle than X or FX). Using the corollary, we get

lim
s→∞

FX(es)
s2 log log s

=
8
π2

.

Remark 1. As we mentioned in the beginning of the paper, a diffusion satisfying (1) is related to a
random walk in random environment in Z for an appropriate law on the transition probabilities.
The relative of the case we consider (i.e., W Brownian path) in the discrete world is the so-called
Sinai’s walk; the two models behave in most respects in the same way. See the survey article
Shi (2001) for details.

For Sinai’s walk, limiting properties of the process (ξ(n))n≥1, with ξ(n) being the number of
visits paid to the most visited point by time n, have been studied in Révész (1990) and Dembo
et al. (2007). More related to our work is Hu and Shi (2000), where the authors study the process
F+(n) of the location of the biggest positive favorite point at time n as well as the analog for the
diffusion, i.e., F+

X (t) := maxF+
X(t), where F+

X(t) := {x ∈ [0,∞) : LX(t, x) = supy≥0 LX(t, y)}.
The results for the diffusion are that

lim
t→∞

F+
X (t)

(log t)2 log log log t
=

8
π2

,

and that for any non-decreasing function f > 1,

lim
t→∞

f(t)
log2 t

F+
X (t) =

{
0
∞ a.s ⇔

∫ ∞ log f(t)
t
√

f(t) log t
dt

{
= ∞
< ∞
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The crucial element in the proofs of the above two results is the fact that FX and b are closely
related. In connection with this paper of Hu and Shi, we should mention that in our work, we
use techniques we learned from it.

Remark 2. Our interest in this paper is to connect the paths of the two processes
(
FX(es)

)
s>0

,
(
bs(W )

)
s>0

.

Regarding only their fixed time values, one can prove, using similar techniques as in the proof
of our theorem, that

FX(t)− blog t(W ) → 0 in probability as t →∞.

Remark 3. Related to the present work is the paper by Andreoletti (2006). The author works
with Sinai’s walk, and shows that the local time process of the walk at a given time gives an
estimate for the environment at many sites. In particular, for the location of bs(W ). He bounds
the probability that the estimate the local time gives differs significantly from the true values
of the environment (see Theorem 1.8 and Proposition 1.9 in Andreoletti (2006)).

Orientation. The paper is organized as follows. In the remaining of this section, we give
an outline of the proof. The main ideas are contained in Section 2, where the theorem is proved
assuming that the environment behaves in the way we expect it to. In Section 3 we show that,
with high probability, the environment indeed behaves the way we assumed.

1.1 Informal description of the proof

It will be useful for our discussion to imagine that the diffusion actually takes place on the graph
of W . If the diffusion at time t is at the point x (i.e., Xt = x), we will imagine instead that it
is at the point (x,W (x)). So that the motion will involve going up or down on the hills of W ,
with gravity favoring downward movement.

It is known that if the diffusion starts from the bottom of a valley and wants to reach a point
inside the valley so that while travelling towards it reaches maximum height h above the bottom,
then it takes typically time eh (see, e.g., Lemma 3.1 in Brox (1986)). Also, if one puts reflecting
barriers at the endpoints of an interval and starts the diffusion inside the interval, then the
diffusion has stationary probability measure C e−W (x)dx, with C a normalizing constant. Thus,
it spends more time on points that are deeper. Assume that we take an r-valley [xk, xk+2], with
r large. For fixed ε small, define

y1 := sup{s < xk+1 : W (s)−W (xk+1) = (1− ε)r},
y2 := inf{s > xk+1 : W (s)−W (xk+1) = (1− ε)r}.

So that I := [y1, y2] ⊂ [xk, xk+2]. If one starts a diffusion in I and observes it only in I until
it exits the valley [xk, xk+2], then it looks the same way as if we put reflecting barriers at the
endpoints of I. And since until the exit from the valley a large amount of time passes, the points
of I will have occupation time very close to the one dictated by the stationary measure. Thus,
points in [xk, xk+2] \ I are out of the competition for the favorite point (they are in an area
visited rarely), while for the points in I, the occupation time can be read off from the stationary
measure Ce−W (x)dx.

Now lets look at Figure 1. We drew the valleys around three consecutive values of b. z1, z2, z3.
Typically, the diffusion visits first z1, then moves on to z2, and then to z3. The favorite points
will be close to z2 at a certain time interval which we will describe.

Call h1, h2 the height of the first and second valley respectively. ζ is the smallest point with
the property that W (ζ)−W (z2) is a bit greater than h1 (in fact, we ask that it is h1 + k log h1
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h1

z2z1 ζ z3

W

η ζ ′

h2

Figure 1:

for some constant k ≥ 18). η is the smallest point with the property that W (η) −W (z3) is a
bit less than h2 (in fact, we ask that it is h2 − l log h2 for a constant l ≥ 10). The main claim is
the following.

Claim: From the time that the diffusion hits ζ up to the time that it hits η, with high
probability, the favorite point is near z2.

This is intuitively expected. When the diffusion leaves the valley of z1, it has spent time of
the order eh1 there. A considerable fraction of it was spent as local time on points near z1. So
that while it travels to z2, the favorite point is somewhere near z1. Now we wait until it spends
time a bit more than eh1 inside the valley of z2. This happens when it hits ζ. Then the favorite
point will move near z2. It will stay there until the diffusion moves to the next deeper valley,
and climbs up to heights a bit less than h2. That is, around the time that it hits η. After that,
it reaches the ζ corresponding to z3, call it ζ ′, where W (ζ ′)−W (z3) is a little over h2 (the depth
of the valley of z2). Then the favorite point will be near z3.

In the paper, we prove the above claims. Here we will provide a sample computation, to
illustrate how the above intuition comes up in the rigorous argument.
First, some notation that we will use throughout the paper. For x ∈ R, we define

τ(x) : = inf{t ≥ 0 : Xt = x},
ρ(x) : = inf{t ≥ 0 : Bt = x},

the hitting times of X and B respectively.
The local time of X has been expressed in (3) in terms of the local time process LB for Brownian
motion. A useful property of LB is

(
LB(ρ(a), x)

)
x∈R

law=
(|a|LB(ρ(1), x/a)

)
x∈R, (4)

for a 6= 0.

And now the computation we promised. At time τ(η), we will compare the local time of any
other point s with the local time of z2. We have

LX(τ(η), s)
LX(τ(η), z2)

= eW (z2)−W (s) LB(T−1(τ(η)), A(s))
LB(T−1(τ(η)), A(z2))

= eW (z2)−W (s) LB(ρ(A(η)), A(s))
LB(ρ(A(η)), A(z2))

= eW (z2)−W (s) ZA(η)−A(s)

ZA(η)−A(z2)
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because T−1(τ(η)) = ρ(A(η)). Z is a two dimensional squared Bessel process (Ray-Knight
theorem). We know that for large t, we have Zt ≈ t. So that the above ratio is about

eW (z2)−W (s) A(η)−A(s)
A(η)−A(z2)

=

∫ η
s eW (x)−W (s)dx∫ η

z2
eW (x)−W (z2)dx

. (5)

The dominant contribution to the integrals comes from the points x where W (x)−W (s),W (x)−
W (z2) are maximum. The exponent in the integrand of the denominator has maximum h2.
Regarding the numerator, if the point s is in the valley of z2 and away from zr, the values of
W (x)−W (s) will be a bit less than h2 (W (s) will be larger that W (z2)), while if s is in the valley
of z3, then by the definition of η, W (x)−W (s) will always be a bit less than h2. Consequently
the ratio in (5) is less than one for points s that are reachable by time τ(η) and away from z2.

The proof we sketched for the time τ(η) is done for all times in [τ(ζ), τ(η)]. As we said
before, when the diffusion visits ζ ′, the favorite point will be near z3. In this way, we know from
about what time the bottom of each valley starts being the favorite point and when it stops.
For each valley, the scenario we described happens on the complement of a set with a small
probability (which we bound in Lemma 2).

The next step is to glue together all the time intervals (one corresponding to each valley).
We prove that the probabilities of all exceptional sets where our scenario fails have finite sum,
and we use the first Borel-Cantelli lemma. The main tool for this step is Lemma 12 and the
bound given in Lemma 2. Thus we get part (i).

For part (ii), note that the process F (t) jumps from the vicinity of z2 to the vicinity of z3

around time eh2 . While the process b jumps exactly at h2.

2 Proof of the Theorem

The strategy of the proof is the following. Let (yi)i≥1 be the consecutive values of b in [1,∞).
First we show that outside a set Ki of very small probability, the favorite point FX(t) is very
close to yi in a time interval Ii. This is the content of Lemmas 2 and 3. Then we show that
the probabilities of the Ki’s are summable, and we use the first Borel-Cantelli lemma. This
is accomplished through Lemma 12 and the bounds given in Lemmas 2 and 3. Finally, the
intervals Ii are such that the right endpoint of Ii coincides with the left endpoint of Ii+1. So
that we have the required information for FX(t) on an interval of the form (a,∞).

2.1 A quenched probability estimate

Here we give precisely the argument outlined in Section 1.1. Imagine that (α, γ) is a small
neighborhood of β := z2, ζ, η are as before, and y0 is a point on the left of z1 higher than the
tip of the mountain between z2 and z3. If this piece of W has some nice properties ((i)-(vii)
below), then the favorite point will stay near β for a certain time interval.

Lemma 1. Assume W ∈ C(R), and y0 < 0 < ζ ≤ η, α < β < γ, ζ > β, H > 1, k4 ≥ 10 are
such that

(i) PW (X hits y0 before η) < H−2,

(ii) maxs∈[y0,η] W (s) ≤ H3/2,

(iii) |η − y0| ≤ H4,

(iv) log A(η)−A(β)
A(ζ)−A(β) < H2,
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(v) A(β)/A(ζ) > −H−5,

(vi) supy∈[ζ,η] supy0<s<y, s/∈(α,γ)

∫ y
s eW (t)−W (s)dt/

∫ y
β eW (t)−W (β)dt < H−k4+5,

(vii) supy∈[ζ,η] supy0<s<y(eW (s)
∫ y
β eW (t)−W (β)dt)−1 < exp(2H7/4).

Then we have the following quenched probability estimate.

PW (∃ t ∈ [τ(ζ), τ(η)] with FX(t) /∈ (α, γ)) < cH−2, (6)

where c is a universal constant.

Proof. It is enough to prove that the quantity

sup
τ(ζ)≤t≤τ(η)

sup
s/∈(α,γ)

LX(t, s)
LX(t, β)

is greater than or equal to one with probability at most cH−2. Using (3), we get

LX(t, s)
LX(t, β)

= eW (β)−W (s) LB(T−1(t), A(s))
LB(T−1(t), A(β))

.

Note that T−1(τ(ζ)) = ρ(A(ζ)) and T−1(τ(η)) = ρ(A(η)). Thus, we are interested in the
quantity

sup
ρ(A(ζ))<t<ρ(A(η))

sup
s/∈(α,γ)

eW (β)−W (s) LB(t, A(s))
LB(t, A(β))

.

Let
N := min{k ∈ Z : k ≥ (log 2)−1 log(

A(η)−A(β)
A(ζ)−A(β)

)},

uk = 2k(A(ζ)−A(β)) + A(β) for k = 0, 1, ..., N − 1, and uN = A(η).
There are unique points ζ =: p0 < p1 < . . . < pN := η such that uk = A(pk).

Let A1 := [ X hits η before y0 ]. Then

PW

(
sup

ρ(A(ζ))<t<ρ(A(η))
sup

s/∈(α,γ)
eW (β)−W (s) LB(t, A(s))

LB(t, A(β))
≥ 1

)

≤ PW (Ac
1) + H2(log 2)−1 sup

k<N
PW

(
{ sup

ρ(uk)<t<ρ(uk+1)
sup

s/∈(α,γ)
eW (β)−W (s) LB(t, A(s))

LB(t, A(β))
≥ 1} ∩A1

)
,

using assumption (iv). Now

PW

(
{ sup

ρ(uk)<t<ρ(uk+1)
sup

s/∈(α,γ)
eW (β)−W (s) LB(t, A(s))

LB(t, A(β))
≥ 1} ∩A1

)

≤ PW

(
{ sup

s/∈(α,γ)

eW (β)−W (s)

uk+1 −A(β)
LB(ρ(uk+1), A(s)) >

1
H4

} ∩A1

)
(7)

+ PW

( 1
uk+1 −A(β)

LB(ρ(uk), A(β)) ≤ 1
H4

)
. (8)

Bound on the term of (7): We observe that the local time appearing in the expression is
zero for s ≥ pk+1, and we use the Ray-Knight theorem to get

{ eW (β)−W (s)

uk+1 −A(β)
LB(ρ(uk+1), A(s)) : s < pk+1} law= { eW (β)−W (s)

uk+1 −A(β)
Z̃uk+1−A(s) : s < pk+1}

= {
(∫ pk+1

β
eW (y)−W (β)dy

)−1
e−W (s)Z̃R pk+1

s eW (y)dy
: s < pk+1},
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where (Z̃s)s≥0 is a two dimensional squared Bessel process up to time uk+1 and then zero
dimensional squared Bessel process. Let also Z be the two dimensional squared Bessel process
which is run with the same Brownian motion as Z̃. Then with probability one,

Zt ≥ Z̃t for all t ≥ 0

by Theorem 3.7 of Chapter IX in Revuz and Yor (1999). The function ρ required by that
theorem is in our case ρ(x) = x for all x ≥ 0. So that

{ eW (β)−W (s)

uk+1 −A(β)
LB(ρ(uk+1),

A(s)
uk

) : s ≤ pk+1}
law≤ {

(∫ pk+1

β
eW (y)dy

)−1
eW (β)−W (s)ZR pk+1

s eW (y)dy
: s ≤ pk+1}.

Let
x1(s) := eW (β)−W (s), x2(s) :=

∫ pk+1

s
eW (y)dy = A(pk+1)−A(s).

Assumptions (vi) and (vii) give respectively

sup
y0<s<pk+1,s/∈(α,γ)

x1(s)x2(s)
x2(β)

≤ H−k4+5 and sup
y0<s<pk+1,s/∈(α,γ)

x1(s)
x2(β)

≤ 2 exp(H7/4). (9)

Thus the term of (7) is bounded by

PW

(
{ sup

s/∈(α,γ), s<pk+1

x1(s)
x2(β)

Zx2(s) >
1

H4
} ∩A1

)

≤ PW

(
{ sup

s/∈(α,γ)

x2(s)≤e−H2
, s<pk+1

x1(s)
x2(β)

Zx2(s) >
1

H4
}∩A1

)
+PW

(
{ sup

s/∈(α,γ)

x2(s)≥e−H2

x1(s)x2(s)
x2(β)

Zx2(s)

x2(s)
>

1
H4

}∩A1

)

≤ PW

(
sup

t≤e−H2

e2H7/4
Zt >

1
H4

)
+ PW

(
sup

e−H2≤t≤H4eH2

Zt

t
> Hk4−9

)

= PW

(
sup
t≤1

Zt >
eH2−2H7/4

H4

)
+ PW

(
sup

1≤t≤H4e2H2

Zt

t
> Hk4−9

)
(10)

To justify the last inequality, we use the bound x2(s) ≤ H4eH2
(coming from (ii),(iii)) and (9).

By well known property of Brownian motion, P(supt≤1 Zt > a) ≤ 4P(B1 >
√

a
2 ) < 4e−a/4. So

the first term in (10) is bounded by 4 exp(− eH2−2H7/4

4H4 ). To bound the last term in (10), we use

Lemma 4 with the choices a =
√

Hk4−9

2 ,M = H4e2H2
, and σ = 2, and we find that it is bounded

by

8
(4 log H + 2H2

log 2
+ 1

) 1√
Hk4−9

exp
(
− Hk4−9

8

)
< 60H2 exp

(
− Hk4−9

8

)

using the fact that H > 1.

Bound on the term of (8): If β ≥ 0, then we use the Ray-Knight theorem to obtain

PW

( 1
uk+1 −A(β)

Zuk−A(β) ≤
1

H4

)
= PW

( uk −A(β)
uk+1 −A(β)

Z1 ≤ 1
H4

)
≤ PW

(
Z1 ≤ 2

H4

)
≤ 1

H4
.

Here Z is a two dimensional squared Bessel process. We used also the scaling property of
Z, the fact that Z1 has a density bounded by 1/2 (it is exponential with mean 2), and that
(uk+1 − A(β))/(uk − A(β)) ≤ 2 (see the definition of uk. We have equality unless k = N − 1).
For the case β < 0, we will need the inequality (uk+1 − A(β))/uk < 4. This translates to
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2k+1(A(ζ) − A(β)) + 4A(β) > 0. The last quantity is enough to be positive for k = 0. Then
the inequality becomes A(ζ) + A(β) > 0 which holds because of (v). Thus, using (4) and
(uk+1 −A(β))/uk < 4, we get

1
uk+1 −A(β)

LB(ρ(uk), A(β)) law=
uk

uk+1 −A(β)
LB(ρ(1),

A(β)
uk

) >
1
4
LB(ρ(1),

A(β)
uk

).

So that the term is bounded by PW (LB(ρ(1), A(β)/uk) < 4/H4). The process Z̃s := LB(ρ(1), 1−
s), s ≥ 0, is up to time 1 a two dimensional squared Bessel process, and after that a zero dimen-
sional squared Bessel process. Let (Ẑ)s≥0 be a two dimensional squared Bessel process. Then
the comparison Theorem IX.3.7 in Revuz and Yor (1999), the fact that Z̃1, Ẑ1 are exponential
with mean 2, and the assumption 0 > A(β)/A(ζ) > −H−5 give

PW

(
Z̃1−A(β)/uk

≤ 4
H4

)
≤ PW

(
Z̃1 ≤ 8

H4

)
+ PW

(
|Z̃1 − Z̃1−A(β)/uk

| > 4
H4

)

≤ 4
H4

+ PW

(
Ẑ−A(β)/uk

>
4

H4

)
<

4
H4

+ PW

(
Ẑ1 > − 4

H4

uk

A(β)

)
=

4
H4

+ exp
( 2

H4

uk

A(β)

)

<
4

H4
+ exp(−2H) < 5H−4.

Putting all estimates together, we get for the probability in (6) the bound

PW (Ac
1) +

H2

log 2

(
4 exp

(− eH2−2H7/4

4H4

)
+ 60 H2 exp

(− Hk4−9

8
)

+ 5H−4
)

< c H−2

for some universal constant c and for all H > 1. The bound on PW (Ac
1) is assumption (i), and

we used the fact that k4 ≥ 10. ¥

2.2 The typical behavior of the favorite point

In this section, we prove an annealed version of estimate (6) for a certain random valley. We
check that this valley satisfies with high probability the assumptions for (6), and then apply the
quenched estimate.

Let r > 0 be fixed, and x0(W, r), x1(W, r) be the r-extrema around zero (their definition
given together with that of b in the introduction). Assume that br = x1(W, r). Otherwise, all
the definitions following should be applied to the path (s 7→ W (−s)). Let r− = sup{x < r :
bx 6= br}, r+ = inf{x > r : bx 6= br} the points where b jumps just before and after r respectively.
Since the probability that r− = r or r+ = r is zero, in the following we assume that r− < r < r+.

A comment on notation: Note that the function (r 7→ br) (and similarly all functions
(r 7→ xi(W, r)), i ∈ Z) is step and left continuous. So for the next value of it after r we will use
the notation br++, i.e., the right limit of b at the point r+. We will do the same for the other
functions too.

For x, y ∈ R, we define

W#(x, y) := sup{W (s)−W (t) : (t− s)(x− y) ≥ 0}.

That is, the highest slope the diffusion should climb in order to go from x to y.
In the following, we will use three constants k1, k2, k3. Our assumption for them is that

k1, k3 ≥ 10, k2 ≥ 18. We prefer not to choose values for them so that their role in the proof is
clearer.

Let

10



jr := sup{s < br : W (s)−W (br) = r}, (11)
lr := inf{s > br : W (s)−W (br) = r}, (12)

and

αr := inf{t > jr : W (t)−W (br) < k1 log r}, (13)
γr := sup{t < lr : W (t)−W (br) < k1 log r}. (14)

So that, for t ∈ [jr, lr] \ (αr, γr), we have

W (t) ≥ W (br) + k1 log r.

Also let h1 := W#(br− , br), h2 := W#(br, br++), and

ζr : = inf{t > br : W (t)−W (br) ≥ h1 + k2 log h1},

ηr : =

{
inf{t > br++ : W (t)−W (br++) ≥ h2 − k3 log h2} if br++ > 0,

sup{t < br++ : W (t)−W (br++) ≥ h2 − k3 log h2} if br++ < 0,

The two cases br++ > 0, br++ < 0 are shown in Figures 2, 3 respectively along with other
points which are introduced in the proof of Lemma 2.

W

br br++ ηrζr

W#(br−, br)

br−

W#(br, br++)

Figure 2: The scenario br > 0, br++ > 0

It will be shown that, with high probability, the diffusion hits first ζr and then ηr. And the
main claim is that from time τ(ζr) to τ(ηr), the favorite point is around br (recall the definition
of τ(x) from Section 1.1). More precisely, for the event

∆r := [τ(ζr) > τ(ηr) or there is a t ∈ [τ(ζr), τ(ηr)] such that FX(t) /∈ (αr, γr)],

we have the following lemma.

Lemma 2. There is a C > 0 so that for all r > 0,

P(∆r) < C r−1/4. (15)

11



W

ζ̃r

ζrηr br++ br

ζ̂r

Figure 3: The scenario br > 0, br++ < 0

Proof. We are always under the assumption br > 0. Consider two cases.

Case 1: br++ > 0.

We will apply Lemma 1 for the path W and the choice

(y0, α, β, γ, ζ, η, H) := (x0(W, r++), αr, br, γr, ζr, ηr, r).

Call E1 the event that one of (i)-(vii) of Lemma 1 fails. The probability of ∆r is bounded by

P(E1) + P(∆r ∩ Ec
1) ≤ cr−1/4

for some constant c that depends on k1, k2, k3 but not on r. The first term is bounded with the
use of Lemma 7, while the bound for the second follows from Lemma 1.

Case 2: br++ < 0.

Let

ζ̃r : = sup{s < 0 : W (s)−W (br) ≥ W#(br, 0) + 2k2 log W#(br, 0)}, (16)

ζ̂r : = inf{s > ζr : W (s)−W (br) ≥ W#(br, 0) + 3k2 log W#(br, 0)}, (17)

and
A3 := [τ(ζr) < τ(ζ̃r) < τ(ζ̂r) < τ(ηr)].

See Figure 3. Then

P(τ(ζr) > τ(ηr) or F ([τ(ζr), τ(ηr)]) * (αr, γr)) ≤ P({F ([τ(ζr), τ(ηr)]) * (αr, γr)}∩A3)+P(Ac
3).

As Lemma 11 shows, P(Ac
3) < Cr−1/4. The first quantity is bounded by

P(F ([τ(ζr), τ(ζ̂r)]) * (αr, γr)) + P(F ([τ(ζ̃r), τ(ηr)]) * (αr, γr)).

Both of these two probabilities are bounded with the use of Lemma 1.
For the first, we apply Lemma 1 for the path W and the choice

(y0, α, β, γ, ζ, η, H) := (x0(W, r), αr, br, γr, ζr, ζ̂r, r).

12



Working as in Case 1, we obtain the required bound.
For the second, we apply Lemma 1 for the path W ∗ := W (−·) and the choice

(y0, α, β, γ, ζ, η,H) := (−x1(W, r++),−γr,−br,−αr,−ζ̃r,−ηr, r).

We will use the notation XW for the diffusion run in the fixed environment W . Let E2 be the
event that, with these choices, one of (i)-(vii) fails. As in Case 1, we use the bound on P(E2)
given in Lemma 7 to get that for W outside E2, we have

PW (FXW∗ ([τ(−ζ̃r), τ(−ηr)]) * (−γr,−αr)) < cr−1/4

But XW ∗ law= −XW . So that

PW (FXW ([τ(ζ̃r), τ(ηr)]) * (αr, γr)) < cr−1/4

as required. ¥

In the time interval [τ(ηr), τ(ζr++)], we will show that F jumps from a neighborhood of br

to a neighborhood of br++. That is, if we let

Kr :=





There is a time zr ∈ [τ(ηr), τ(ζr++)] so that
F (t) ∈ (αr, γr) for t ∈ [τ(ηr), zr),

and F (t) ∈ (αr++, γr++) for t ∈ (zr, τ(ζr++)].



 ,

then the following holds.

Lemma 3. There is a constant c so that

P(Kc
r) < cr−1/4

for all r > 0.

Proof. Assume that br++ > 0. Then br < br++ < ηr < ζr++. Let

mr : = sup{s < br++ : W (s)−W (br) = W#(br, br++)},
z : = sup{s < br++ : W (s)−W (br+) ≥ W#(br, br++) + k2 log W#(br, br++) + k2 log r},

(see Figure 4), and recall that W (ζr+)−W (br+) = W#(br, br++) + k2 log W#(br, br++).
Also call Yt := Xτ(z)+t the diffusion after time τ(z). All objects defined for X (e.g., the local
time, the process of the favorite point) are defined analogously for Y .
Define the events

Σ0 := [z > mr],
Σ1 := [FX(τ(ηr)) ∈ (αr, γr)],
Σ2 := [FX(τ(ζr++)) ∈ (αr++, γr++)],
Σ3 := [(Xτ(ηr)+s)s≥0 hits ζr++ before z],

Σ4 := [FY ([τY (ηr), τY (ζr++)]) ⊂ (αr++, γr++)].

On Σ1 ∩ Σ3 ∩ Σ4 we claim that

t ∈ [τ(ηr), τ(ζr++)] ⇒ FX(t) ∈ (αr, γr) ∪ (αr++, γr++). (18)

Let t ∈ [τ(ηr), τ(ζr++)]. Points in (−∞, z] collect local time only from the part (Xs)s≤τ(ηr) of
the path (Xs)s≤τ(ζr++) by the definition of Σ3. And by the definition of Σ1, the ones with the

13



W

mr

z ζr++ηrbr br++

Figure 4:

most local time are in (αr, γr). Points in [z,∞) collect local time only from the part (Xs)τ(z)≤s≤t

of the path. And by the definition of Σ4, we know that out of them, the ones with the most
local time at time t are in (αr++, γr++). This proves our claim.
On Σ0 ∩ Σ1 ∩ Σ2 ∩ Σ3 ∩ Σ4 we know that F (τ(ηr)) ∈ (αr, γr), F (τ(ζr++)) ∈ (αr++, γr++), and
from time τ(ηr) to τ(ζr++), X does not visit (αr, γr). These combined with (18) show that
Σ0 ∩ Σ1 ∩ Σ2 ∩ Σ3 ∩ Σ4 ⊂ Kr.

The proof will be completed after we bound the probability of (Σ0 ∩ Σ1 ∩ Σ2 ∩ Σ3 ∩ Σ4)c.
Lemmas 10(iii) and 2 give the bound for P(Σc

0) and P(Σc
1) respectively. To bound P(Σc

2), we
apply Lemma 1 with the choice

(y0, α, β, γ, ζ, η, H) := (x0(W, r++), αr++, br++, γr++, ζr++, ζr++, r).

Lemma 11 shows that P(Σc
3) < cr−1/4 for some constant c (independent of r).

For Σc
4, we write Σc

4 ⊂ (Σc
4 ∩ Σ0) ∪ Σc

0 The probability of Σc
4 ∩ Σ0 is bounded with the use of

Lemma 1 for the environment W z := W (z + ·) and with the choice

(y0, α, β, γ, ζ, η, H) := (mr − z, αr++ − z, br++ − z, γr++ − z, ηr − z, ζr++ − z, r).

Let E4 be the event that, with this choice, one of (i)-(vii) fails. Lemma 7 shows that P(E4) <
cr−1/4, and as in Lemma 2, we show that P(Σc

4 ∩ Σ0) < cr−1/4. This finishes the proof. ¥

2.3 Proof of the main results

Proof of the Theorem: The proof is a consequence of Lemmas 2, 3, 12.
Pick any a ∈ (0, 1/2), and let rk = exp(ka) for k ≥ 1. Then

∑∞
k=0 r

−1/4
k < ∞, combined

with Lemmas 2, 3, 12, 13, implies that there is a k0 > 0 so that

(1) Krk
,∆rk

happen for k ≥ k0,

if we call (sn(W ))n≥1 the increasing sequence of the point where b|[rk0 ,∞) jumps, then

(2) between any two terms from (sn(W ))n≥1 there is a term from (rk)k≥k0 , and

(3) (αrk
, γrk

) ⊂ I(brk
) for k ≥ k0.

Now we claim that if r−k > rk0 , then

FX(t) ∈ (αrk
, γrk

) for all t ∈ (zr−k
, zrk

). (19)
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Indeed, this holds for t ∈ [τ(ζrk
), zrk

) because Krk
happens. Let j := max{n : rn < r−k }. The

assumption r−k > rk0 gives that j ≥ k0, and this together with (2) implies that in [rj , rk] the
path of b jumps only at r−k . Since Krj happens, FX(t) ∈ (αr+

j
, γr+

j
) for all t ∈ (zrj , τ(ζr+

j
)]. But

r+
j = r−k , so ζr+

j
= ζrk

, zrj = zr−k
, and (αr+

j
, γr+

j
) ⊂ (αrk

, γrk
) (recall the definitions of αr, γr in

(13), (14), and note that r+
j < rk).

Let xn := bsn+1 , the value of b in (sn(W ), sn+1(W )], and tn := log zsn . Because of observation
(2) above, for n ≥ 1 there is a k with sn < rk ≤ sn+1. Then zr−k

= zsn = etn , zrk
= zsn+1 = etn+1 ,

and FX((etn , etn+1)) ⊂ (αrk
, γrk

) because of (19) (note that r−k = sn > rk0). This together with
fact (3) above proves (i) of the theorem.

For the second claim of the theorem, observe that tn/sn = log zsn/sn, and zsn ∈ [τ(ηsn), τ(ζsn+)].
One can see that

lim
n→∞

log τ(ζsn+)
sn

≤ 1 and lim
n→∞

log τ(ηsn)
sn

≥ 1.

The proof of these two is done by modifying the proof of (4.7), (4.8), (4.11) in Hu and Shi
(1998). Since no new idea is involved, we omit it. ¥

Proof of the Corollary: Let λ(s) = (t1/s1)s for s ∈ [0, s1]. Then in any interval [sn, sn+1]
with n ≥ 1, λ(s) is defined as the unique increasing map of the form γns + δn mapping that
interval to [tn, tn+1]. Since on [sn, sn+1] the function λ(s)/s = an + δns−1 is monotone, it maps
[sn, sn+1] to the interval with endpoints tn/sn, tn+1/sn+1. It follows that lims→∞ λ(s)/s = 1.
Then for all large s, the theorem says that |FX(eλ(s))− bs| < (log |bs|)c. It is easy to prove that,
with probability 1, log |bs| < 3 log s for all large s.

[Recall that the typical size of bs is s2. The proof is similar with the proof of (28). We
show log β+

s < 3 log s for large s (see the beginning of the next section for notation). The basic
ingredient is that for large A > 0, it holds P(β+

s > s2A) = P(β+
1 > A) ≤ Ce−Aπ2/8. The last

inequality holds because β+
1 has Laplace transform (

√
2λ coth

√
2λ)−1 (see Neveu and Pitman

(1989), Lemma of §1) so that its density is
∑∞

k=0 exp
( − (2k+1)2π2

8 x
)
1x>0, having tail as we

claimed.] This finishes the proof. ¥

3 Auxiliary lemmas

3.1 Estimates on the environment

In this section, we prove several facts we needed in the proof of Lemma 2 and of the main
theorem. First a useful fact for studying the process b. For any real valued process (Zs)s∈R and
t ∈ R, we define

Zt : = inf{Zs : s between 0 and t },
Zt : = sup{Zs : s between 0 and t }.

Call W+ the process (W (s) : s ≥ 0) and W− the process (W (−s) : s ≥ 0). For r > 0, let

τ+
r := min{s ≥ 0 : W+(s)−W+(s) = r},

β+
r := min{s ≥ 0 : W+(s) = W+(τ+

r )},
τ−r := min{s ≥ 0 : W−(s)−W−(s) = r},
β−r := −min{s ≥ 0 : W−(s) = W−(τ−r )}.

One can see that with probability one, it holds br ∈ {β−r , β+
r } (see e.g. Zeitouni (2004)). We

will make frequent use of this fact in what follows.
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The next statement is from lemma of §1 in Neveu and Pitman (1989).

Fact 1: −W (β+
1 ) is an exponential random variable with mean 1.

The following uniform continuity result is an immediate consequence of Lemma 1.1.1 in
Csörgö and Révész (1981).

Fact 2: There is a constant C so that for any ρ > 0, h ∈ [0, ρ], v > 0, it holds

P( sup
y,z∈[0,ρ],|y−z|≤h

|W (y)−W (z)| ≥ v
√

h) ≤ C
ρ

h
e−v2/3.

For an interval I ⊂ [0,∞), the random variable sup{|Bt|/
√

t : t ∈ I} is infinite if one of
the endpoints of I is 0 or ∞ (by the law of the iterated logarithm). However if the interval is
bounded away from 0 and infinity, the variable is finite, and one can get the following result on
its tail.

Lemma 4. Let σ > 1,M > 1, and a > 0. Then

P
(

sup
1≤t≤M

|Bt|√
t
≥ a

)
≤ 4

(
log M

log σ
+ 1

)√
σ

a
exp

(
− a2

2σ

)
.

Proof. Let N := [ log M
log σ ], and tn := σn for n = 0, . . . N + 1. Then

P
(

sup
1≤t≤M

|Bt|√
t
≥ a

)
≤

N∑

n=0

P
(

sup
tn≤s≤tn+1

|Bs|√
s
≥ a

)
≤

N∑

n=0

P
(

sup
0≤s≤tn+1

|Bs| ≥
√

tna
)

≤ 4
N∑

n=0

P
(
B1 ≥ a√

σ

)
≤ 4

(
log M

log σ
+ 1

)√
σ

a
exp

(− a2

2σ

)
.

In the last line, the first inequality follows by the reflection principle, while the second, from a
well known bound on the tail of the standard normal distribution. ¥

Lemma 5. For all x > 0, we have

1. P(W#(b1− , b1) < x) ≤ 4
√

x.

2. P(W#(b1, b1++) > x) < 2x−1.

3. P(W#(b1, 0) < x) ≤ 2x.

4. P(W#(b1, 0) > x) < 6e−x.

5. P(|b1| > x) < 2 exp
(− π2

8 x
)
.

6. (W (b1)−W (b1++))/W#(b1, b1++) is an exponential random variable with mean 1.

Proof. 1. W#(b1− , b1) ≥ min{W (β+
1 ), W (β−1 )} because b1 ∈ {β−1 , β+

1 }. So that P(W#(b1− , b1) <
x) ≤ 2P(W (β+

1 ) < x) < 4
√

x by Lemma 8.

2. From the proof of Lemma 12, it follows that W#(b1, b1+) ≤ D`1 = σ0τ0. The variables
σ0, τ0 are independent and have density 2x−31x≥1. It is easy to compute that for x ≥ 1, it holds
P(σ0τ0 > x) = (2 log x + 1)/x2. This proves the claim.

3. W#(b1, 0) ≥ min{−W (β+
1 ),−W (β−1 )}. So that P(W#(b1, 0) < x) ≤ 2P(−W (β+

1 ) < x) <
2x, since −W (β+

1 ) has exponential distribution with mean 1.

4. W#(b1, 0) = W (b1) −W (b1) < 1−W (b1), and −W (b1) ≤ max{−W (β+
1 ),−W (β−1 )}. So

that P(W#(b1, 0) > x) ≤ P(−W (b1) > x− 1) ≤ 2P(−W (β+
1 ) > x− 1) ≤ 2e1−x.
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5. The density of b1 is fb1(x) := 2
π

∑∞
k=0

(−1)k

2k+1 exp
(− (2k+1)2π2

8 |x|) (see relation (1.4) in Shi
(2001)), which is less than 2

π exp(−π2

8 |x|). And the required inequality follows after integration.

6. For the proof of this claim, drawing a picture will help the reader. For ` ∈ R, let

H−
` := sup{s < 0 : Ws = `},

H+
` := inf{s > 0 : Ws = `},

K` :=min{ max
H−

` ≤s≤0
Ws, max

0≤s≤H+
`

Ws} − `.

Also let `0 := sup{` < 0 : one of H−,H+ jumps at `, and limx↗` Kx ≥ 1}. Clearly, `0 =
W (b1). Assume that H− jumps at `0. Assume moreover that lim`↗`0 maxH−

` ≤s≤0 Ws

> lim`↗`0 max0≤s≤H+
`

Ws (the case that the reverse inequality holds is treated similarly). Then

b1++ > 0, and W#(b1, b1++) = max0≤s≤H+
`0

Ws. The way to locate (b1++,W (b1++)) is as follows.

We look at B = {W (H+
`0

+ s) − W (br) : s > 0} (which is a standard Brownian motion), and
we wait until B −B hits W#(b1, b1++). When this happens, the value of −B is an exponential
random variable with mean W#(b1, b1++) (see Fact 1 in the beginning of this section). This
proves our claim. ¥

For the next lemma, recall the definitions of x0(W, 1), x1(W, 1), given together with that of
b in the introduction.

Lemma 6. |x0(W, 1)|, x1(W, 1) have densities bounded by 1.

Proof. It is true that {xk+1(W, 1) − xk(W, 1) : k ∈ Z \ {0}} is a set of i.i.d. random variables
with the same distribution as ` := inf{s ≥ 0 : |Ws| = 1} (see proposition of §1 in Neveu and
Pitman (1989)) . Call f`(x) the density of this random variable. Since for any fixed t, the
process (Ws−t − W−t : s ∈ R) is a standard Brownian motion, one can take t → ∞ and use
the renewal theorem to show that x1(W, 1), |x0(W, 1)| are respectively the residual waiting time
after 0 and the age at time 0 for a renewal process “starting at −∞” and with increments having
distribution `. Their densities are computed in Exercise 4.7 of Chapter 3 in Durrett (1996), and
they both equal

∫∞
x f`(z)dz, which is less than 1. ¥

An estimate on the hitting time of Brownian motion is as follows.

Fact 3: Let W be standard Brownian motion. For the time ρ(1) := inf{s > 0 : W (s) = 1}, it
holds

P(ρ(1) > u) < u−1/2 for all u > 0.

This follows from P(ρ(1) > u) = P(W (u) < 1) = P(W (1) < u−1/2) and the fact that W (1) has
density

√
2/πe−x2/21x≥0.

Lemma 7. There are constants C1, C2 (C2 depends on k1, k2, k3) so that for the three choices
of y0, α, β, γ, ζ, η, H in Lemma 2 and the two in Lemma 3, we have for r > 0

1. P(|η − y0| > H4) < 26 r−1/4.

2. P(maxs∈[y0,η] W (s) > H3/2) < 4 r−1/4.

3. P(A(η)/(A(η) + |A(y0)|) > H−2) < r−2.

4. P(A(η)−A(β)
A(ζ)−A(β) > eH2

) < r−1/3.

5. P(A(β)/A(ζ) < −H−5) < C1r
−1/2.

6. P(supy∈[ζ,η] supy0<s<y,s/∈(α,γ)

∫ y
s eW (t)−W (s)dt/

∫ y
β eW (t)−W (β)dt > H−min{k1,k3}+5) < C2 r−1/4.

7. P(supy∈[ζ,η] supy0<s<y,s/∈(α,γ)(eW (s)
∫ y
0 eW (t)−W (β)dt)−1 > exp(2H7/4)) < 7 r−1/4.
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Proof. In all uses of the lemma, it is H = r.

1. We prove this claim at once for all the cases that we use it. Let

ρ(r) := inf{s > 0 : W (s) = r},
τ1(r) := inf{s > ρ(r) : W (s) = W (ρ(r))},
τ2(r) := inf{s > τ1(r) : W (s) = W (τ1(r))}.

Through the analogous series of definitions, we define τ̃2(r) for the path (W (−·))s≥0. In all cases
that we use the lemma, it holds [y0, η] ⊂ [−τ̃2(r), τ2(r)]. Also let τ0(r) := inf{s ∈ [0, τ1(r)] :
W (s) = W (τ1(r))}.

Clearly, τ2(r)
law= r2τ2(1). We will show that P(τ2(r) > r2/2) < r−1/4/2 for large r. We write

τ2(1) = ρ(1) +
(
τ0(1)− ρ(1)

)
+

(
τ2(1)− τ0(1)

)
, (20)

and we will bound separately the probability that each of the three terms in the last expression
is large.

For the first term, we note that P(ρ(1) > r) < r−1/2 for all r > 0 (Fact 3).

For the second term. The random variable r1 := W (τ0(1)) − 1/(1 −W (ρ(1))) has density
(1 + x)−21x≥0 because

P(r1 > x) = E{P((W (τ0(1))− 1 > x(1−W (ρ(1)))|W (ρ(1))))}
= E{P(W starting from 1 hits first 1 + x(1−W (ρ(1)) and then W (ρ(1))|W (ρ(1))))}

= E
( 1−W (ρ(1))

1−W (ρ(1)) + x(1−W (ρ(1)))

)
= (1 + x)−1.

We used the Markov property on the stopping time ρ(1). Now given the values of W (ρ(1)),W (τ0(1))−
1, the law of τ0(1)− ρ(1) is the same as the time it takes for a three dimensional Bessel process
starting from 1+W (ρ(1)) to hit W (τ0(1))+W (ρ(1)) (Proposition 3.13 (iv), Chapter VI in Revuz
and Yor (1999)). So it is bounded stochastically from above by the time it takes for Brownian
motion starting from zero to hit W (τ0(1))− 1. This last time equals in law to

(W (τ0(1))− 1)2X = r2
1(1−W (ρ(1)))2X,

where r1 has density (1+x)−21x≥0, X has the same law as ρ(1), and X, r1, ρ(1) are independent.
Also it is easy to see that 1−W (ρ(1)) has density (1 + x)−21x≥0 (the proof goes as that for r1

above).
Consequently

P(τ0(1)− ρ(1) > r3/2) ≤ P(r1 > r1/4) + P(1−W (ρ(1)) > r1/4) + P(X > r1/2) < 3r−1/4.

For the third term in (20). As above, we show that the random variable

r2 :=
W (τ1(1))−W (τ2(1))
W (τ0(1))−W (ρ(1))

has density (1 + x)−21x≥0. Given W (τ0(1))−W (τ2(1)), the law of τ2(1)− τ0(1) is the same as
the law of (W (τ0(1))−W (τ2(1)))2(Y1 +Y2), where Y1, Y2 (are independent and) have the law of
the time it takes for a three dimensional Bessel process starting from zero to hit 1. This follows
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from Proposition 3.13 (iii), (iv), (v), Chapter VI, in Revuz and Yor (1999), and the scaling
property of the Bessel process. Observe that

W (τ0(1))−W (τ2(1)) = W (τ0(1))−W (τ1(1)) + W (τ1(1))−W (τ2(1))
= W (τ0(1))−W (τ1(1)) + r2(W (τ0(1))−W (τ1(1)))
= (1 + r2)(W (τ0(1))−W (τ1(1))) = (1 + r2)(1 + r1)(1−W (ρ(1))).

So that
τ2(1)− τ0(1) = (1 + r2)2(1 + r1)2(1−W (ρ(1)))2(Y1 + Y2),

and

P(τ2(1)− τ0(1) >
r2

3
) ≤ P(1 + r1 > r1/4) + P(1 + r2 > r1/4)

+ P(1−W (ρ(1)) > r1/4) + P(Y1 >
r1/2

6
) + P(Y2 >

r1/2

6
) < 9r−1/4.

We used P(Y1 > x) ≤ P(ρ(1) > x) and Fact 3. Combining all the above estimates, we get that
on a set whose complement has probability at most 13r−1/4, it holds τ2(1) ≤ r + r3/2 + r2/3,
which is less than r2/2 for r > 50. This finishes the proof of part 1.

2. As we mentioned in the proof of part one, in all uses of the lemma, it holds [y0, η] ⊂
[−τ̃2(r), τ2(r)]. So maxs∈[y0,η] W (s) ≤ max{W (τ2(r)), W (−τ̃2(r))} = max{W (τ0(r)),W (−τ̃0(r))}.
Now W (τ0(r))

law= rW (τ0(1)), and we saw that W (τ0(1)) = 1+W (τ0(1))−1 = 1+r1(1−W (ρ(1))).
Since

P(1 + r1 > r1/4) = P(1−W (ρ(1)) > r1/4) = r−1/4,

for r > 1, we have outside a set of probability at most 2r−1/4, that W (τ0(1)) < 1+(r1/4−1)r1/4 <
r1/2. Consequently, P(max{W (τ2(r)), W (τ̃2(r))} > r3/2) ≤ 4r−1/4.

7. On [ζ < 1]c, for y ∈ [ζ, η] and s ∈ [y0, η], we have

e−W (s)

∫ y
0 eW (t)−W (β)dt

≤ exp(− inf
y0<s<ηr

W (s))

because W (β) is the minimum value of W in [0, ζ], and ζ ≥ 1. Recall the definitions made
above, in the proof of part 1. The exponent of the last expression is bounded above by
max{−W (τ2(r)),−W (τ̃2(r))}, which has the same distribution as r max{−W (τ2(1)),−W (τ̃2(1))}.
Observe that

−W (τ2(1)) = −W (ρ(1)) + W (τ1(1))−W (τ2(1)) = −W (ρ(1)) + r2(W (τ0(1))−W (ρ(1)))
= −W (ρ(1)) + r2(W (τ0(1))− 1 + 1−W (ρ(1))) = −W (ρ(1)) + r2(1 + r1)(1−W (ρ(1))),

and P(max{r2, 1+r1, 1−W (ρ(1))} > r1/4) < 3r−1/4. On the complement of [max{r2, 1+r1, 1−
W (ρ(1))} > r1/4], we have −W (τ2(1)) ≤ r1/4 + r3/4 < 2r3/4. Consequently, for r > 1,

P(− inf
x0<s<ηr

W (s) > 2r7/4) < 6r−1/4.

Also P(ζ < 1) < r−2, in all the uses of the lemma. For example, when ζ = ζr, we have
P(ζr < 1) = P(ζ1 < r−2) ≤ P(x1(W, 1) < r−2) < r−2 (the last inequality follows from Lemma
6). So that the probability in the statement is bounded by 6r−1/4 + r−2 < 7r−1/4.
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Now we move to the proof of the remaining claims. The events

A4 : = [x0(W, r++) ∈ (−1, 0]] ∪ [|x0(W, r++)| > r4] ∪ [ζr < 1] ∪ [|ζr| > r4] ∪ [|ηr| > r4],
A5 : = [ sup

y,z∈[−r4,r4],|y−z|≤1

|W (y)−W (z)| ≥ log r],

will be used bellow. Observe that

P(x0(W, r++) ∈ (−1, 0]) ≤ P(x0(W, r) ∈ (−1, 0]) = P(x0(W, 1) ∈ (−1/r2, 0]) ≤ r−2,

and P(ζr < 1) < r−2 as we proved just before. Combining these with part 1 of the lemma, we
get P(A4) < cr−2. Also, applying Fact 2, with h = 1, ρ = r4, v = log r/2, we get

P(A5) ≤ Cr4e−(log r)2/12 < cr−2.

5. In four of the five cases we use the lemma, it holds A(br)/A(ζr) > 0, and we have nothing to
prove. The only case where something needs a proof is in the claim PW (FXW∗ ([τ(−ζ̃r), τ(−ηr)]) *
(−γr,−αr)) < cr−1/4 contained in the proof of Lemma 2 (Case 2). Let A7 := [W#(br, 0) <√

r] ∪ [|br| > r3] ∪ [ζ̃r > −1]. Then P(A7) ≤ P(W#(b1, 0) < 1/
√

r) + P(|b1| > r) + P(ζ̃1 >
−r−2) ≤ 2/

√
r + 2e−r + cr−1/2 < Cr−1/2. On (A4 ∪A5 ∪A7)c we have

A(br)
|A(ζ̃r)|

=

∫ br

0 eW (y)−W (br)dy∫ 0
ζ̃r

eW (y)−W (br)dy
≤ bre

W#(br,0)

eW#(br,0)+k2 log W#(br,0)−log r
=

rbr

(W#(br, 0))k2
≤ r4−k2/2 < r−5

since k2 ≥ 18.

The remaining parts of the lemma we prove only for the first choice of y0, α, β, γ, ζ, η, H,
i.e., (y0, α, β, γ, ζ, η, H) := (x0(W, r++), αr, br, γr, ζr, ηr, r). For the other choices, the proof is
similar.

3. The quotient inside the probability equals

A(ηr)
A(ηr) + |A(x0(W, r+))| =

1
1 + |A(x0(W, r+))|/A(ηr)

,

and we will show that |A(x0(W, r+))|/A(ηr) is large. We will use x0 instead of x0(W, r+) in
the following. On (A4 ∪ A5)c we have sups∈[x0,x0+1] |W (s) −W (x0)| < log r. So that W (s) ≥
W (x0)− log r on [x0, x0 + 1], and

|A(x0(W, r+))|
A(ηr)

=

∫ 0
x0

eW (y)dy∫ ηr

0 eW (y)dy
=

∫ 0
x0

eW (y)−W (br)dy∫ ηr

0 eW (y)−W (br)dy
≥ eW (x0)−W (br)−log r

ηre
W#(br,br+)−k3 log W#(br,br+ )

≥ ek3 log W#(br,br+ )−log r

r4
=

(W#(br, br+))k3

r5
≥ rk3−5.

We used the fact that W (x0) − W (br) ≥ W#(br, br+), which holds because we assumed that
br++ > 0, and also that W#(br, br+) ≥ r. Thus, on the complement of A4 ∪A5, it holds

A(ηr)
A(ηr) + |A(x0(W, r+))| ≤

1
1 + rk3−5

≤ r−2

since k3 ≥ 7.

4. Let A6 := [W#(br− , br) < log r] ∪ [W#(br, br+) > r3/2]. Then

P(A6) = P(W#(b1− , b1) < log r/r) + P(W#(b1, b1+) >
√

r) < r−1/3/3,
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for large r, using Lemma 5. Now on (A4∪A5∪A6)c we have ζr−br > 1 (because of the definition
of A5 and the fact that W (ζr)−W (br) > W#(br− , br) > log r on Ac

6), and

A(ηr)−A(br)
A(ζr)−A(br)

=

∫ ηr

br
eW (y)−W (br)dy

∫ ζr

br
eW (y)−W (br)dy

≤ ηre
W#(br,br+)−k3 log W#(br,br+)

eW#(br− ,br)+k2 log W#(br− ,br)−log r

=
rηre

W#(br,br+)−W#(br− ,br)

W#(br, br+)k3W#(br− , br)k2
≤ r5−k3eW#(br,br+ )−W#(br− ,br)

W#(br− , br)k2
< r5−k3er3/2

< er2
.

The last inequality holding for large r, and the same is true for P(A4 ∪A5 ∪A6) < r−1/3.

6. The quantity of interest is ∫ y
s eW (t)−W (s)dt∫ y
br

eW (t)−W (br)dt
. (21)

Let mr := inf{x > br : W (x)−W (br) = W#(br, br++)} and

A7 := [ there is an s ∈ [x0(W, r++),mr] \ (αr, γr) with W (s)−W (br) ≤ k1 log r].

For s ∈ [jr, lr] \ (αr, γr), it holds W (s)−W (br) ≥ k1 log r by the definition of αr, γr. It remains
to study the intervals [x0(W, r++), jr], [lr,mr]. We will study only the first; the case of the
second is similar. B := (W (−s + jr) −W (jr))s≥0 is a standard Brownian motion. If there is
s ∈ [x0(W, r++), jr] with W (s)−W (br) < k1 log r, then B visits −r + k1 log r and then returns
to 0 before hitting −r. This last event has probability k1 log r/r. So that P(A7) < r−1/2 for
large r. Finally, P(mr > r4) < r−1/4 from part 1 of the lemma.

Working as in part 4, we see that on ([mr > r4] ∪ [ζr < 1] ∪A5 ∪A7)c we have the following
bound on (21).
If y < mr, then the bound is

(y − s) exp(W#(br, y)− k1 log r)
exp(W#(br, y)− log r)

< (ηr − x0(W, r))r−k1+1 < r−k1+5.

If y > mr, then the bound is

(ηr − x0(W, r)) exp(W#(br, br+)− k3 log W#(br, br+))
exp(W#(br, br1+)− log r)

< (ηr−x0(W, r))(W#(br, br+))−k3r < r−k3+5.

We used the definition of ηr to bound the numerator. ¥

Lemma 8. The random variable W (β+
1 ) has density f(x) = −1x∈(0,1] log x. In particular,

P(W (β+
1 ) < x) < 2

√
x and P(|W (β+

1 )−W (β−1 )| < x) < 3
√

x for all x ∈ [0, 1].

Proof. The proof uses excursion theory, for which we give the basic setup. The following are
standard (see Revuz and Yor (1999), Chapter XII).

Consider the process Y (t) := W (t)−W (t). A local time process for Y is −W . Let (εt)t>0 be
the corresponding excursion process. For any ε in the space of the excursions, we denote by ε the
maximum value of ε. The process {(εt, t) : t ≥ 0} is a Poisson point process in [0,∞)×[0,∞) with
characteristic measure x−2dxdt. The time t∗ := inf{s ≥ 0 : εs ≥ 1} has exponential distribution
with mean one, and {(εt, t) : t ≤ t∗} has the same law as the restriction in [0, 1] × [0, τ ] of a
Poisson point process in [0, 1] × [0,∞) with characteristic measure dn := x−2dxdt, where τ is
an exponential random variable independent of the process. Let N be the counting measure of
that process. Also for all t > 0, let At := {(y, s) : s ∈ [0, t] and y > x + s}. Then n(At) =
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∫ min{t,1−x}
0

∫ 1
s+x y−2dyds, which equals log(1+ t/x)− t if t < 1−x, and − log x−1+x otherwise.

Then

P(W (β+
1 ) < x) = P( for all s < t∗, it holds εs − s < x) =

∫ ∞

0
e−tP (N(At) = 0)dt

=
∫ ∞

0
e−te−n(At)dt =

∫ 1−x

0

x

x + t
dt +

∫ ∞

1−x
e−txe1−xdt = −x log x + x.

In particular, the density is f(x) = − log x. To bound P(W (β+
1 ) < x), we observe that for

x ∈ (0, 1], it holds −x log x + x < 2
√

x. To bound P(|W (β+
1 ) −W (β−1 )| < x), we use the fact

that f is decreasing in (0, 1] and the bound we just established to get

P(|W (β+
1 )−W (β−1 )| < x) =

∫ 1

0
f(y)P(W (β+

1 ) ∈ (y − x, y + x))dy ≤
∫ 1

0
f(y)P(W (β+

1 ) < 2x)dy

< 2
√

2x.

¥

Lemma 9. There is a constant c so that for all x > 0, it holds

P(ζ̃1 ∈ [−x, 0]) ≤ cx1/4.

Proof. Recall the definition of ζ̃1 (given in the proof of Lemma 2) and the other definitions in
the beginning of this section. Also let ρW−(c) = inf{t > 0 : W−(t) = c}. Then

P(ζ̃1 ∈ [−x, 0]) ≤ P(ρW−(W (β+
1 )) < x) = −

∫ 1

0
P(ρW−(s) < x) log sds

= −
∫ 1

0
P(ρW−(1) < x/s2) log sds =

∫ ∞

1

log y

y2
P(ρW−(1) < xy2)dy

<

∫ x−1/2

1

log y

y2
(xy2)1/2dy +

∫ ∞

x−1/2

log y

y2
dy =

√
x

∫ x−1/2

1

log y

y
dy +

√
x(1− log x

2
)

We used Lemma 8 for the density of W (β+
1 ), and Fact 3. The last quantity is easily shown to

have bound of the form cx1/4. ¥

The next lemma says that, with high probability, the points z̃r, ζ̂r,mr, z are as we depict
them in Figures 3, 4. Parts 1 and 2 should be used when one proves the versions of Lemma 7
needed in the proof of Lemma 2. Part 3 is used in the proof of Lemma 3.

Lemma 10. There is a constant c, depending on k2, so that for all r > 0 it holds

(i) P(br++ > ζ̃r) < cr−1/2,
(ii) P(mins∈[ζr,ζ̂r] W (s) < W (br)) < cr−1/2,

(iii) P(z < mr) < cr−1/2.

Proof. 1. The probability of interest is bounded by twice the following probability (since br will
be either β+

r or β−r ).

P(W− starting from W (β+
r ) hits W (β+

r ) before W (β+
r ) + k2 log(W (β+

r )−W (β+
r )))

= E
(2k2 log(W (β+

r )−W (β+
r ))

W (β+
r )−W (β+

r )

)
< 4k2E

((
W (β+

r )−W (β+
r )

)−1/2
)

<
4k2√

r
E

((
W (β+

1 )
)−1/2

)
.

It follows from Lemma 8 that the last expectation is finite.

22



2. Let T+
r := inf{s > 0 : W (s) −W (s) ≥ max{r,W (s) −W (s)}}. This is a stopping time.

Introduce B a standard Brownian motion independent of W , and denote by PB its law. The
probability in question is bounded by

E(PB(B hits first −W#(br, 0) and then 3k2 log W#(br, 0)|B(0) = 0))

= E
( 3k2 log W#(br, 0)

W#(br, 0) + 3k2 log W#(br, 0)

)
<

6k2√
r
E(W#(b1, 0)−1/2) <

12k2√
r
E(W (β+

1 )−1/2)

The last expectation is finite as we mentioned above.

3. Let Y := W (b1) − W (b1++)/W#(b1, b1++). From Lemma 5, Y is an exponential with
mean 1. So that

P(z < mr) ≤ P(W (br)−W (br++) ≤ k2 log W#(br, br++) + k2 log r)

≤ P
(
W (b1)−W (b1++) ≤ k2 log(r2W#(b1, b1++))

r

)
≤ P(W#(b1, b1++) > r)

+ P
(
W#(b1, b1++) Y ≤ k2 log(r3)

r

)
≤ 2

r
+ P

(
Y ≤ 3k2 log r

r

)
<

2
r

+
3k2 log r

r
.

We used part 2 of Lemma 5 and the fact that W#(b1, b1++) ≥ 1. ¥

3.2 Exit from certain intervals

Lemma 11. With the notation as in Lemmas 2, 3, there is a constant C so that for all r > 0
it holds

P([τ(ζr) < τ(ζ̃r) < τ(ζ̂r) < τ(ηr)]c) < Cr−1/4,

P([(Xτ(ηr)+s)s≥0 hits ζr++ before z]c) < Cr−1/4.

Proof. The first probability is bounded by

P(τ(ζ̃r) < τ(ζr)) + P(τ(ζ̂r) < τ(ζ̃r)) + P(τ(ηr) < τ(ζ̂r))

= E
( A(ζr)

A(ζr) + |A(ζ̃r)|
)

+ E
( |A(ζ̃r)|
|A(ζ̃r)|+ A(ζ̂r)

)
+ E

( A(ζ̂r)

A(ζ̂r) + |A(ηr)|
)

We work as in part 3 of Lemma 7. Let A5 be defined as there, and

A8 :=
{

ζr < 1 or ζ̃r ∈ (−1, 0] or ζ̂r > r4 or |ηr| > r4 or |ζr| > r4

or W#(br, 0) <
√

r or |W (β+
r )−W (β−r )| < √

r

}
.

Then P(ζr < 1 or ζ̃r ∈ (−1, 0]) ≤ P(x1(W, r) < 1)+P(ζ̃r ∈ (−1, 0]) < r−2+cr−1/2 (using Lemmas
6, 9), P(ζ̂r > r4 or |ηr| > r4 or |ζr| > r4) < 26 r−1/4 (part 1 of Lemma 7), P(W#(br, 0) <

√
r) <

2r−1/2 (part 3 of Lemma 5), P(|W (β+
r ) − W (β−r )| <

√
r) < 3 r−1/4 (Lemma 8). So that

P(A8) < C r−1/4 for a constant C (independent of r).
On (A8 ∪A5)c the quantities |A(ζ̃r)|/A(ζr), A(ζ̂r)/|A(ζ̃r)|,|A(ηr)|/A(ζ̂r) are large. Indeed

|A(ζ̃r)|
A(ζr)

=

∫ 0
ζ̃r

eW (y)−W (br)dy
∫ ζr

0 eW (y)−W (br)dy
≥ exp(W#(br, 0) + 2k2 log W#(br, 0)− log r)

ζr exp(W#(br− , br) + k2 log W#(br− , br))
≥ (W#(br, 0))k2

r5
≥ rk2/2−5,

A(ζ̂r)
|A(ζ̃r)|

=

∫ ζ̂r

0 eW (y)−W (br)dy∫ 0
ζ̃r

eW (y)−W (br)dy
≥ exp(W#(br, 0) + 3k2 log W#(br, 0)− log r)

|ζ̃r| exp(W#(br, 0) + 2k2 log W#(br, 0))
≥ (W#(br, 0))k2

r5
≥ rk2/2−5,

|A(ηr)|
A(ζ̂r)

=

∫ 0
ηr

eW (y)−W (br)dy
∫ ζ̂r

0 eW (y)−W (br)dy
≥ exp(W#(br, br+)− log r)

ζ̂r exp(W#(br, 0) + 3k2 log W#(br, 0))
=

exp(W#(br, br+)−W#(br, 0))

ζ̂rr(W#(br, 0))3k2
.
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In the first line, we used the fact that W#(br− , br) ≤ W#(br, 0). Regarding the last quan-
tity of the third line, observe that W#(br, br+) − W#(br, 0) ≥ |W (β+

r ) − W (β−r )| ≥ √
r, and

ζ̂rr(W#(br, 0))3k2 ≤ r5+3k2/2. So that |A(ηr)|/A(ζ̂r) ≥ e
√

rr−5−3k2/2 > r2 for large r.
Finally,

P([(Xτ(ηr)+s)s≥0 hits ζr++ before z]c) = E
(A(ζr++)−A(ηr)

A(ζr++)−A(z)

)
.

The quantity in the expectation is always at most one. And there is a constant c so that for
all r, the set A5 ∪ [ζr++ < 1 or ζr++ > r4] has probability at most 26 r−1/4 + cr−2 (because of
0 < x1(W, r) < ζr++ and Lemma 6, part 1 of Lemma 7, and the bound on P(A5) given in the
proof of the same lemma). On the complement of that set, it holds

A(ζr++)−A(ηr)
A(ζr++)−A(z)

=

∫ ζr++
ηr

eW (y)−W (br++)dy
∫ ζr++
z eW (y)−W (br++)dy

≤ ζr+ exp(W (ζr++)−W (br++))
exp(W (ζr++)−W (br++) + k2 log r − log r)

= ζr++/rk2−1 < r5−k2 < r−2.

This finishes the proof. ¥

3.3 The jumps of b, and the intervals around its values

Let (Ri)i≥1 be the increasing sequence of points where b jumps in [1,∞). The next lemma gives
a measure of how rare these points are as we approach infinity. It is the result that makes
possible to move from Lemmas 2, 3 to the theorem by gluing all the time intervals for which the
two lemmas give information.

Lemma 12. Let a ∈ (0, 1/2). With probability one, ultimately between any two terms from
(Ri)i≥1 there is at least one term from the sequence (exp(ka))k≥1.

Proof. There are four cases for the signs of the pair {bRi+, bRi+1+}. First we show that the se-
quence (exp(ka))k≥1 enters eventually in the intervals (Ri, Ri+1) with bRi+, bRi+1+ > 0 (similarly
if bRi+, bRi+1+ < 0).

The indices i with bRi+, bRi+1+ > 0 : The process (β+
r )r>0 (defined in the beginning of

this section) takes only positive values, and it is increasing. The points where b jumps from a
positive to a positive value are contained in the points where β+ jumps. So we will prove our
claim for the process β+. The points where β+ jumps in [1,∞) make up an increasing sequence
(hn)n≥0 with h0 the first such point, and hn+1 := (1 + rn) hn for n ≥ 0, where the rn’s are i.i.d.
with density (1 + x)−21x≥0 (It is the same idea as in the proof of part 1 of Lemma 7). We note
that log(1 + rn) is exponential random variable with mean one.
For n ≥ 1 there is a unique kn so that c(kn) < hn ≤ c(kn+1), i.e.,

ka
n < log hn ≤ (kn + 1)a. (22)

We want to prove that eventually log hn+1 > (kn + 1)a. It is enough to prove that log hn+1 −
log hn > (kn + 1)a − ka

n. The last quantity is less than aka−1
n (we use the fact that a < 1 and

the mean value theorem). Also log hn+1 − log hn = log(1 + rn), and by the first Borel-Cantelli,
we have eventually log(1 + rn) > (n log2 n)−1. So that a.s. eventually

(kn + 1)a − ka
n

log hn+1 − log hn
< aka−1

n n log2 n < a((log hn)1/a − 1)a−1n log2 n.

In the second inequality, we used (22) and a− 1 < 0. Since log(1 + ri) is exponential with mean
one, we have log hn ≈ n (for the rigorous argument, we use the strong law of large numbers to
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say that log hn > n/2 eventually). So that the above bound is of the order n2−1/a log2 n which
goes to zero as n →∞ provided that a < 1/2.

The indices i with bRi+bRi+1+ < 0 : For ` ∈ R, recall the definitions of H−
` ,H+

` given in
the proof of Lemma 5, and moreover define Θ` := −min{Ws : s ∈ [H−

` ,H+
` ]}. Let (`n)n≥1 be the

strictly increasing sequence consisting exactly of the points in [1,∞) where Θ jumps, and `0 := 1.
At every “time” `, we observe A` := W |[H−

` ,H+
` ]. We call this a well, and D` := `+Θ` its depth.

As ` increases, in the picture A`, excursions of W+−W+ and W−−W− are introduced (on the
right and the left respectively). And Θl jumps at ` if, just after `, an excursion is added that has
height strictly greater than D`. Let ζ0 := 1, and for n ≥ 0, let ζ2n+1 := D`n+, ζ2n+2 := D`n+1 ,
σn := ζ2n+1/ζ2n, τn := ζ2n+2/ζ2n+1. So that ζ2n+2 =

∏n
i=0 σiτi and ζ2n+1 = σnζ2n for n ≥ 0.

It can be shown that {σn : n ≥ 1} are i.i.d. with density x−21x≥1, and σ0, {τn : n ≥ 0} are
i.i.d. with density 2x−31x≥1 (similar arguments as in the proof of part 1 of Lemma 7). If i is
such that bRi+bRi+1+ < 0, then there is a n ∈ N with Ri < ζ2n+1 < ζ2n+2 = Ri+1 (a picture
can convince the reader that indeed this is the case). As before, we prove that, a.s. eventually,
between ζ2n+1, ζ2n+2 there is a term from the sequence (exp(ka))k≥1. ¥

The interval (αr, γr) has been defined in terms of r. For our theorem, we need to get control
on its size in terms of the distance of its center from zero (i.e., |br|. It makes more pleasing the
statement of the theorem). This is accomplished in the next lemma.

Lemma 13. Let c > 6 be fixed. With probability one, there is a random r0 > 1 so that

(αr, γr) ⊂ (br − (log br)c, br + (log br)c)

for all r > r0.

Proof. First we will show that with probability one we have

(αr, γr) ⊂ (br − (log r)c, br + (log r)c) (23)

for all big r.
Define

J+
r (W ) := inf{t > 0 : W (t)−W (t) = r},

β+
r (W ) := inf{t > 0 : W (t) = W (J+

r (W ))},
α+

r (W ) := inf{t > 0 : W (t)−W (β+
r (W )) < 2k1 log r},

γ+
r (W ) := sup{t < J+

r (W ) : W (t)−W (β+
r (W )) < 2k1 log r}.

The set whose infimum is α+
r (W ) could be empty, in which case α+

r (W ) = ∞. We show in (24)
below that this is not the case for large r.
Then consider the process (W−(s))s∈R defined by W−(s) = W (−s) for s ∈ R, and set

β−r (W ) :=− β+
r (W−),

α−r (W ) :=− α+
r (W−),

γ−r (W ) :=− γ+
r (W−).

In the following, we will omit the argument W in the above functionals.
Note that −W (β+

r ),−W (β−r ) are i.i.d with density r−1e−x/r1x>0 (i.e., exponential with mean
r, see Fact 1).

Observation 1: −W (β−r ),−W (β+
r ) are not small.
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It holds
P(−W (β+

r ) ≤ 4k1 log r) <
4k1 log r

r

as −W (β+
r ) has density bounded by 1/r. Now using interpolation and the monotonicity of

(r 7→ −W (β+
r )) , we can show that a.s.

−W (β+
r ) > 2k1 log r for all large r. (24)

[We present a similar interpolation argument in detail below in the proof of (26), which is
trickier. So we skip the details here.] The same holds for −W (β−r ). And these guarantee that
α+

r , α−r are finite for all large r.

Observation 2: The neighborhood (α+
r , γ+

r ) of β+
r is small.

Here we will give a bound on the probability that β+
r − α+

r , γ+
r − β+

r are large. Note first
that the process

(W (J+
r )−W (J+

r − t))0≤t≤J+
r −β+

r

is a three-dimensional Bessel processes starting from zero and killed when hitting r. This follows
from the proof of the lemma in §1 of Neveu and Pitman (1989), the structure of Brownian
excursions (see Revuz and Yor (1999), Chapter XII, Theorem 4.5), and Proposition 4.8, Chapter
VII, of Revuz and Yor (1999). Thus, γ+

r − β+
r has distribution τ r−2k1 log r

r (Y ). Where by τy
c (Z)

we denote the first time that a continuous process (Zs)s≥0 with Z0 = y hits c, and Y is a
three dimensional Bessel process. Since Y satisfies the stochastic differential equation dYs =
dws + Y −1

s ds (w is standard Brownian motion), we have for y, d > 0, that τy
y+d(Y ) ≤ τy

y+d(w).
And consequently

P(τy
y+d(Y ) > z) ≤ P(τy

y+d(w) > z) = P(τ0
d (w) > z) = P(τ0

1 (w) > z/d2) < d/
√

z.

For the last inequality, we used Fact 3. Thus

P(γ+
r − β+

r > z) ≤ P(τ0
2k1 log r(w) > z) <

2k1 log r√
z

. (25)

We will show the same bound for β+
r −α+

r . The Poisson process of excursions away from zero
for (Wt−W t)0≤t≤β+

r
has characteristic measure n( · ∩{e : h(e) < 1}) where n is the characteristic

measure for the Poisson process of excursions for (Wt − W t)t≥0. For an excursion e, we will
denote by `(e) its lifetime, and by h(e) its height. If (wt)t≥0 is Brownian motion with (et)t>0 the
process of excursions for (wt − wt)t≥0 (parametrized with the inverse local time corresponding
to the local time process (−w)t>0) , then , on the event [α+

r < ∞], the length β+
r − α+

r equals
in law to ∑

0≤t≤2k1 log r

`(et)1h(et)<1.

This is less than
∑

t≤2k1 log r `(et) which equals τ0
−2k1 log r. Thus, we get as before

P([β+
r − α+

r > z] ∩ [a+
r < ∞]) <

2k1 log r√
z

.

Take r = rn = exp(na), z = (log rn)c/2 where c > 2, in (25) to get

P(γ+
rn
− β+

rn
> (log rn)c/2) < n−a(c−2)/24k1.

Of course, P([β+
rn
− α+

rn
> (log rn)c/2] ∩ [a+

rn
< ∞]) has the same bound. For any c > 6, there

is an a ∈ (0, 1/2) with −a(c − 2)/2 < −1. For this choice of a, it holds
∑∞

n=0 n−a(c−2)/2 < ∞.

26



Thus a.s. eventually we have β+
rn
− α+

rn
< (log rn)c/2, γ+

rn
− β+

rn
< (log rn)c/2. We use here and

in the following that a+
r < ∞ for large r, because of (24).

Now take an r > 0 large. There is a unique n so that rn < r ≤ rn+1. Then β+
r = β+

rn

or β+
r = β+

rn+1
because in the interval (rn, rn+1] there is at most one jump for β+

r (this is
included in the proof of Lemma 12). If β+

r = β+
rn

, then k1 log r < k1 log rn+1 = k1(n + 1)a =
(1+n−1)ak1 log rn < 2k1 log rn. So β+

r −α+
r < β+

rn
−α+

rn
< (log rn)c < (log r)c, and similarly for

γ+
r − β+

r .
If β+

r = β+
rn+1

, then

β+
r − α+

r ≤ β+
rn+1

− α+
rn+1

<
1
2
(log rn+1)c =

(n + 1)ac

2
=

(1 + n−1)ac

2
(log rn)c < (log r)c

for large n. And similarly for γ+
r − β+

r . We do the same on the negative side with α−r − β−r ,
β−r − γ−r . So that, a.s. for all large r

max{β+
r − α+

r , γ+
r − β+

r , α−r − β−r , β−r − γ−r } < (log r)c (26)

Observation 3: W (β−r ),W (β+
r ) are not close.

We claim that a.s. for all big r, we have |W (β+
r )−W (β−r )| ≥ 3k1 log. Indeed

P(|W (β+
r )−W (β−r )| ≤ 6k1 log r) = P

(
|W (β+

r )
r

− W (β−r )
r

| < 4k1 log r

r

)
≤ 8k1 log r

r

because −W (β+
r )/r,−W (β−r )/r are i.i.d. exponentials with mean 1, so that their density is

bounded above by 1. And since
∑∞

n=0(log rn)/rn < ∞, it follows that a.s., for big n, we have
|W (β+

rn
) − W (β−rn

)| > 6k1 log rn. Similarly we show that a.s. for big n it holds |W (β+
rn

) −
W (β−rn+1

)| > 6k1 log rn, |W (β+
rn+1

) − W (β−rn
)| > 6k1 log rn. And with similar arguments as

above, we show that

|W (β+
r )−W (β−r )| > 3k1 log r for all big r, a.s. (27)

Assume that br = β+
r . Then clearly γr = γ+

r , and we claim that also αr = α+
r (recall the

definition of αr in (13)). The only way this can fail is if W (β−r ) < W (β+
r ) and W#(β+

r , β−r ) < r
(Otherwise (27) combined with W (β−r ) > W (β+

r ) or W#(β+
r , β−r ) ≥ r gives that αr = α+

r ). But
then br = β−r . So that (23) follows from (26).

To finish the proof of the lemma, it is enough to show that with probability 1, it holds

log |br| > log r for big r. (28)

Since for all r, it is br ∈ {β+
r , β−r }, we will show this for β+

r . First we note the following.

Claim: There is a constant C so that P(β+
1 < x) ≤ C

√
x for all x > 0.

The claim needs a proof only for small x. The Laplace transform of β+
1 is (

√
2λ coth

√
2λ)−1,

i.e., of the form λ−1/2L(λ) with L slowly varying function at ∞ (see Neveu and Pitman (1989),
Lemma of §1). By a Tauberian theorem (Theorem 3 of §XIII.5 in Feller (1971)), it follows that
P(b+

1 < x) ∼ x1/2L(1/x)/Γ(3/2) for small x.

Now to show the analog of (28) for β+
r , it is enough to show that, with probability 1,

β+
r >

r2

log4 r
for all big r. (29)
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We will use again an interpolation argument. This time, the sequence rn = en for n ≥ 1 is
enough. Observe that, because of the above claim and scaling,

P
(
β+

rn
<

r2
n

log3 rn

)
= P

(
β+

1 <
1

log3 rn

)
< Cn−3/2.

The first Borel-Cantelli lemma implies that, with probability one, β+
rn

> r2
n/ log3 rn for all big

n. Now for r > e there is a unique n such that rn < r ≤ rn+1, and since β+
r ≥ β+

rn
, we get

β+
r

log4 r

r2
≥ β+

rn

log3 rn

r2
n

r2
n

r2
log r ≥ β+

rn

log3 rn

r2
n

r2
n

r2
n+1

log r = β+
rn

log3 rn

r2
n

log r

e2
.

With probability one, the last quantity is greater than log r/e2 for big r, which is greater than
one for r > exp(e2). This proves (29).

¥
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