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Abstract

We study the singular values of certain triangular random matrices. When their elements

are i.i.d. standard complex Gaussian random variables, the squares of the singular values form

a biorthogonal ensemble, and with an appropriate change in the distribution of the diagonal

elements, they give the biorthogonal Laguerre ensemble.

1 Introduction and statement of the results

1.1 Singular values of random matrices

Singular values of random matrices are of importance in numerical analysis, multivariate statistics,

information theory, and the spectral theory of random non-symmetric matrices. See the survey

paper Chafäı (2009). The starting point in this field is the result of Marchenko and Pastur (1967)

(see also Theorem 3.6 in Bai and Silverstein (2010) for a more recent exposition), which is the

following.

Let {Xi,j : i, j ∈ N+} be i.i.d. complex valued random variables with variance 1, and for

n,m ∈ N+ consider the n ×m matrix X(n,m) := (Xi,j)1≤i≤n,1≤j≤m. Call λn,m1 ≥ λn,m2 ≥ · · · ≥
λn,mn ≥ 0 the eigenvalues of the Hermitian, positive definite matrix

Sn,m =
1

m
X(n,m)X(n,m)∗,

and

Ln,m :=
1

n

n∑
i=1

δλn,mi
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their empirical distribution. Then for every c > 0, with probability 1, as n,m → ∞ so that

n/m→ c, Ln,m converges weakly to the measure

1a≤x≤b
1

2πxc

√
(b− x)(x− a) dx+ 1c>1

(
1− 1

c

)
δ0 (1)

where a = (1−
√
c)2, b = (1 +

√
c)2.

This is a universality result as the limit does not depend on the fine details of the distribu-

tion of the matrix elements Xi,j . On the other hand, the joint distribution of the eigenvalues

(λn,m1 , λn,m2 , . . . , λn,mn ), not surprisingly, depends on the exact distribution of the matrix elements.

In a few cases this joint distribution can be determined. For example, if the Xi,j follow the

standard complex Gaussian distribution and n ≤ m, the vector (λn,m1 , λn,m2 , . . . , λn,mn ) has density

with respect to Lebesgue measure in Rn which is

1∏n
k=1 Γ(m− n+ k)Γ(k)

e−
∑n
k=1 xk

( n∏
k=1

xi

)m−n ∏
1≤i≤j≤n

(xi − xj)21x1>x2>···>xn>0. (2)

See, for example, relation (3.16) in Forrester (2010).

1.2 Triangular Gaussian matrices

In this work, we study the singular values of certain triangular random matrices. The motivation

comes from the purely mathematical viewpoint as triangular matrices are ingredients in several

matrix decompositions.

Assume as above that {Xi,j : i, j ∈ N+, i ≥ j, } are i.i.d. complex valued random variables

with variance 1, and for n ∈ N+ let X(n) be the lower triangular n×n matrix whose (i, j) element

is Xi,j for 1 ≤ j ≤ i ≤ n. Call λ
(n)
1 ≥ λ

(n)
2 ≥ · · · ≥ λ

(n)
n ≥ 0 the eigenvalues of the Hermitian

matrix

Sn =
1

n
X(n)X(n)∗,

and

Ln :=
1

n

n∑
i=1

δ
λ
(n)
i

their empirical distribution.

The fact that Ln converges weakly and description of the limit was given in Dykema and

Haagerup (2004). It is analogous to the result of Marchenco and Pastur mentioned in the pre-

vious section and it says that with probability 1 the sequence (Ln)n≥1 converges weakly to a

deterministic measure µ0 on R with moments∫
R
xkdµ0(x) =

kk

(k + 1)!
(3)

for all k ∈ N. The measure µ0 is absolutely continuous with density that has support [0, e] and

can be expressed in terms of the Lambert function.
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Here we do the obvious next step. That is, explore cases of distributions for the elements of the

matrix X(n) for which the joint distribution of the eigenvalues of X(n)X(n)∗ can be computed.

The first such case is the following.

Theorem 1. Let n ∈ N+ and assume that the random variables {Xi,j : i, j ∈ N+, i ≥ j} are

complex standard normal. Then:

(i). The vector Λn := (λ
(n)
1 , λ

(n)
2 , . . . , λ

(n)
n ) of the eigenvalues λ

(n)
1 ≥ λ

(n)
2 ≥ · · · ≥ λ

(n)
n of

X(n)X∗(n) has density given by

fΛn(x1, x2, . . . , xn) =
1∏n−1
j=1 j!

e−
∑n
j=1 xj

∏
i<j

(xi − xj)(log xi − log xj)1x1>x2>···>xn>0 (4)

(ii). The point process {λ(n)
1 , λ

(n)
2 , . . . , λ

(n)
n } is determinantal.

The theorem will be implied by the more general Theorems 2 and 3 of the next subsection.

1.3 Eigenvalue realization of the biorthogonal Laguerre ensemble

The next model of random triangular matrix that we study is one where the elements strictly

below the diagonal are i.i.d. standard complex normal but the elements of the diagonal are

independent but not identically distributed.

More specifically, fix a positive integer n, reals θ ≥ 0, b > 0, and let

ck = θ(k − 1) + b (5)

for all k ∈ {1, 2, . . . , n}. Next, consider the lower triangular matrix Xθ,b(n) = (Xi,j)1≤i,j≤n with

{Xi,j : 1 ≤ j < i ≤ n} standard complex normal variables and Xk,k having density

fk(z) =
1

πΓ(ck)
e−|z|

2 |z|2(ck−1) (6)

for all z ∈ C. Thus Xk,k can be written as

Xk,k =
1√
2
eiφkYk (7)

where Yk follows the χ2ck distribution and φk is uniform on [0, 2π) independent of Yk. For the

distribution of the squares of the singular values of Xθ,b(n) we have the following theorem.

Theorem 2. The vector Λn := (λ
(n)
1 , λ

(n)
2 , . . . , λ

(n)
n ) of the eigenvalues λ

(n)
1 ≥ λ(n)

2 ≥ · · · ≥ λ(n)
n ≥

0 of Xθ,b(n)Xθ,b(n)∗ has density fΛn(x1, x2, . . . , xn) given by

1∏n−1
j=1 j!

θ−n(n−1)/2∏n
k=1 Γ(ck)

e−
∑n
j=1 xj

( n∏
j=1

xb−1
j

) ∏
1≤i<j≤n

(xi − xj)(xθi − xθj) 1x1>x2>···>xn>0 (8)
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when θ > 0, and

1∏n−1
j=1 j!

1

Γ(b)n
e−

∑n
j=1 xj

( n∏
j=1

xb−1
j

) ∏
1≤i<j≤n

(xi − xj)(log xi − log xj) 1x1>x2>···>xn>0 (9)

when θ = 0.

Remark 1. i) When θ = 0 and b = 1, the matrix Xθ,b(n) is exactly X(n) of the previous

subsection. And thus we get Part (i) of Theorem 1.

ii) When θ = 1 and b = m− n+ 1, with m ≥ n positive integers, (8) is the density (2). This

is expected because there is a unitary matrix U so that X(n,m)U
d
= [X1,m−n(n), 0], where 0 is

the n× (m− n) zero matrix.

iii) The density in (8) is the density of the n-point biorthogonal Laguerre ensemble, so termed

and studied in Section 4 of Borodin (1999), with parameter pair (α, θ) being (b− 1, θ). Note that

(9) is the θ → 0 limit of (8).

iv) Densities of the form (8) were introduced by Muttalib (1995) in the context of disordered

conductors. The conductance of such a conductor is given by the sum
∑n

k=1(1 + Xk)
−1, where

{Xk : 1 ≤ k ≤ n} are random variables with joint density of the form

∏
1≤i<j≤n

(xi − xj)({arcsinh(
√
xi)}2 − {arcsinh(

√
xj)}2)

n∏
k=1

e−Vn(xk)1xk>0. (10)

See Beenakker and Rejaei (1993) for the derivation of this formula. With the purpose of having

manageable formulas for the correlation functions of the Xi’s, Muttalib suggested to simplify this

density (10) by replacing the function {arcsinh(
√
x)}2 by a polynomial Pk(x). To illustrate the

utility of this modification he considered the case of a monomial Pk(x) = xk, he showed that

the density then defines a determinantal point process, and gave formulas for the correlation

functions. Later, Borodin (1999) gave an explicit formula for the kernel of the process for a few

choices of the exponent Vn and using it determined the n → ∞ limit of an appropriate blowup

of the process around zero.

v) After the appearance of this preprint, Forrester et al. (2017) gave an alternative proof of

Theorem 2. Moreover they show how utilizing the matrices Xθ,b(n) one can define a matrix whose

eigenvalues have the density of the Jacobi biorthogonal ensemble, also defined in Borodin (1999).

The formula for fΛn implies that {λ(n)
1 , λ

(n)
2 , . . . , λ

(n)
n } is a biorthogonal ensemble (Borodin

(1999), Forrester (2010) Section 5.8). And this allows to prove with little effort that the ensemble

is a determinantal point process. In the case θ > 0, this is already known. We cover next the

θ = 0 case. Define

gj,k :=

∫ ∞
0

xj(log x)ke−x dx

for j, k ∈ N, and consider the matrix G := (gi,j)i,j∈N.

Theorem 3. For each positive integer n:
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(i). The matrix G(n) := (gj,k)0≤j,k≤n−1 is invertible.

(ii). The point process {λ(n)
1 , λ

(n)
2 , . . . , λ

(n)
n } with law given by (9) is determinantal with kernel

Kn(x, y) = e−
x+y
2 (xy)

b−1
2

n∑
j,k=1

c
(n)
j−1,k−1(log y)j−1xk−1.

where (c
(n)
j,k )0≤j,k≤n−1 is the inverse of G(n).

Finally, we come to the empirical spectral distribution Lθ,bn of Xθ,b(n)Xθ,b(n)∗/n. The work

in Dykema and Haagerup (2004) implies that this converges to a non trivial limit. To explain

this connection, we need the notion of a DT -element.

Assume that ν a probability measure on C with compact support, and c > 0. For each n,

let Tn be an n × n matrix with (Tn)i,j = 0 if 1 ≤ i ≤ j ≤ n and {(Tn)i,j : 1 ≤ j < i ≤ n} i.i.d.

standard complex Gaussian. Also let Dn be a diagonal n×n matrix with i.i.d. diagonal elements,

each having law ν, and independent of Tn. Finally, define Zn := Dn+ cn−1/2Tn. It can be proved

that for each k ≥ 1 and ε(1), ε(2), . . . , ε(k) ∈ {1, ∗} the limit

lim
n→∞

1

n
E(tr{Zε(1)

n Zε(2)
n · · ·Zε(k)

n }) (11)

exists (Theorem 2.1 in Dykema and Haagerup (2004)).

Definition 1. An element x of a ∗-noncommutative probability space (A, φ) is called a DT (ν, c)-

element if for every k ≥ 1 and ε(1), ε(2), . . . , ε(k) ∈ {1, ∗}, we have that φ(xε(1)xε(2) · · ·xε(k))

equals the value in (11).

And we are now ready to discuss the convergence of the sequence (Lθ,bn )n≥1.

Theorem 4. The empirical distribution of the eigenvalues of Xθ,b(n)Xθ,b(n)∗/n converges to a

measure µθ whose moments are the moments of xx∗ where x is a DT (νθ, 1) element, and νθ is

the uniform measure on the disc D(0,
√
θ) := {z ∈ C : |z| ≤

√
θ}.

Note that the limit does not depend on b. In the case that θ > 1 and b = 1, it is proven in

Paragraph 4.5.1 of Claeys and Romano (2014) that the measure µθ has density fθ with support

Iθ = [0, (1 + θ)1+1/θ]. To describe it, let J : C\[−1, 0]→ C with

J(z) = (z + 1)

(
z + 1

z

)1/θ

θ.

For each x interior point of Iθ, there are exactly two solutions of J(z) = x, which are conjugate

complex numbers. Call them I−(x), I+(x) so that Im(I+(x)) > 0. Then the density fθ is given

by

fθ(x) =

 θ
2πxi(I+(x)− I−(x)) if x ∈

(
0, (1 + θ)1+1/θ

)
,

0 if x ∈ R\
(
0, (1 + θ)1+1/θ

)
.

(12)

Orientation: Theorems 2, 3, 4 are proved in Sections 2, 3, 4 respectively.
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2 Distribution of singular values for Xθ,b(n)

Define the following sets of matrices

Tn: lower triangular n× n matrices with elements in C and diagonal elements in C\{0}.
T +
n : elements of Tn with diagonal elements in (0,∞),

Vn: diagonal n× n matrices with diagonal elements complex of modulus 1.

M+
n : positive definite n× n matrices with elements in C.

We identify the spaces Tn, T +
n ,Vn with Rn(n−1) × (R2\{0, 0})n,Rn(n−1) × (0,∞)n, [0, 2π)n respec-

tively, and viewM+
n as a subset of n×n Hermitian matrices, which we identify with Rn2

. Densi-

ties of random variables with values in these spaces are meant with respect to the corresponding

Lebesgue measure.

Consider the maps g : T +
n × Vn → Tn, h : T +

n →M+
n with

g(T, V ) := TV, (13)

h(Y ) := Y Y ∗. (14)

They are both one to one and onto. Call g−1 := (γ1, γ2), and X := Xθ,b(n). Then XX∗ =

h(γ1(X)) provided that X ∈ Tn, which holds with probability 1. We will use this relation in

order to find the joint law of the elements of XX∗, and then, the law of its eigenvalues will follow

from a well known formula.

Lemma 1. The Jacobian of the map g has absolute value

n∏
j=1

tj,j .

Proof. Let X := g(T, V ) = TV and call xi,j its (i, j) element. For a complex number x, we write

xR, xI for its real and imaginary part respectively. The Jacobian matrix of g is an n(n+1)×n(n+1)

block diagonal matrix with n blocks, one for each column of X. I.e., it is of the form
A1 0 · · · 0

0 A2 · · · 0
...

...
. . . 0

0 0 · · · An

 . (15)

The block Aj , corresponding to column j, is the {2(n− j + 1)} × {2(n− j + 1)} matrix

∂(xRj,j , x
I
j,j , x

R
j+1,j , x

I
j+1,j , . . . , x

R
n,j , x

I
n,j)

∂(θj , tj,j , tRj+1,j , t
I
j+1,j , . . . , t

R
n,j , t

I
n,j)

,

and an easy computation shows that its determinant equals −tj,j . �

Lemma 2. The map h has Jacobian

2n
n∏
i=1

t
2(n−i)+1
i,i .
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Proof. This is Proposition 3.2.6 of Forrester (2010). �

In the following, we use the notation set in Subsection 1.3. Let C(θ, b) :=
(∏n

k=1 Γ(ck)
)−1

.

The density of Xθ,b(n) is

fXθ,b(n)(x) =
1

πn(n+1)/2
C(θ, b) e−

∑
1≤j≤i≤n |xi,j |2

n∏
k=1

|xk,k|2(ck−1) (16)

=
1

πn(n+1)/2
C(θ, b) e− tr(xx∗)

n∏
k=1

|xk,k|2(ck−1) (17)

for all x ∈ Cn(n+1)/2.

For an n × n matrix a = (ai,j)1≤i,j≤n and k ∈ {1, 2, . . . , n}, we denote by ak its main k × k
minor, that is, the matrix (ai,j)1≤i,j≤k.

Proposition 1. Let X := Xθ,b(n). The matrix A := XX∗ has density

fA(a) =
1

πn(n−1)/2

1∏n
k=1 Γ(ck)

e− tr(a){det(a)}cn−1{det(a1) det(a2) · · · det(an−1)}−θ−1 (18)

for all a ∈M+
n , and fA(a) = 0 for every Hermitian matrix not an element of M+

n .

Proof. Let (T, V ) := g−1(X). Since XX∗ = h(T ), our first step is to find the distribution of T .

The density of the pair (T, V ) is

fT,V (t, v) = fX(g(t, v))|Jg(t, v)| = fX(t)

n∏
j=1

tj,j

for (t, v) ∈ T +
n × Vn. We used that fX(tv) = fX(t) for all v ∈ Vn. We integrate fT,V (t, v) over v

to find the marginal of T as

fT (t) = (2π)nfX(t)
n∏
j=1

tj,j .

Now, for given a ∈M+
n , let t := h−1(a). Then

fA(a) = fT (h−1(a))|Jh−1(a)| = (2π)nfX(h−1(a))

( n∏
j=1

tj,j

)
1

|Jh(h−1(a))|

= (2π)n
1

πn(n+1)/2
C(θ, b) e− tr(a)

n∏
j=1

|tj,j |2(cj−1) 1

2n
∏n
j=1 t

2(n−j)+1
j,j

n∏
j=1

tj,j

=
1

πn(n−1)/2
C(θ, b) e− tr(a)

( n∏
i=1

t
2(n−j−cj+1)
j,j

)−1

=
1

πn(n−1)/2
C(θ, b) e− tr(a)

( n∏
j=1

t2j,j

)cn−1( n∏
j=1

t
2(n−j)
j,j

)−(1+θ)

.
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In the third equality we used Lemma 2, and in the last equality the fact that −cj = θ(n− j)− cn
for all j ∈ {1, 2, . . . , n}. Finally, we express the products involving the variables tj,j in terms of

the variable a. Since T is lower triangular, we have ai = TiT
∗
i . Thus

det(ai) = | det(Ti)|2 = (t1,1t2,2 . . . ti,i)
2.

Multiplying these equalities for all 1 ≤ i ≤ n− 1, we get

det(a1) det(a2) · · · det(an−1) =

n∏
i=1

t
2(n−i)
i,i .

This finishes the proof of the proposition. �

Proof of Theorem 2. From relations (4.1.17), (4.1.18) in Anderson et al. (2010), and the fact that

Xθ,b(n)Xθ,b(n)∗ is positive definite, we have that the vector of the eigenvalues in decreasing order

has density

fΛn(λ) = Cn
∏
i<j

(λi − λj)2

∫
U(n)

fA(HDλH
∗)(dH) 1λ1>λ2>...>λn>0

where λ := (λ1, λ2, . . . , λn), Dλ is the diagonal matrix with diagonal λ, (dH) is the normalized

Haar measure on U(n), and the constant Cn is

Cn :=
πn(n−1)/2∏n−1

j=1 j!
.

Thus, writing a := HDλH
∗ and taking into account Proposition 1, we get

fΛn(λ) =
C(θ, b)∏n−1
j=1 j!

{∏
i<j

(λi − λj)2
}
e−

∑n
j=1 λj

( n∏
j=1

λj

)cn−1

K(λ) 1λ1>λ2>...>λn>0 (19)

with

K(λ) :=

∫
U(n)
{det(a1) det(a2) · · · det(an−1)}−θ−1 (dH). (20)

The computation of the last integral is given in Lemma 3. Combining that computation with

(19), we finish the proof. �

Lemma 3. For θ ≥ 0, the integral in (20) equals

K(λ) =

∏
1≤i<j≤n

∫ λi
λj
x−θ−1 dx∏

1≤i<j≤n(λi − λj)
=

(
n∏
i=1

λi

)−θ(n−1) ∏
1≤i<j≤n

∫ λi
λj
xθ−1 dx∏

1≤i<j≤n(λi − λj)
. (21)

Proof. To simplify the exposition, we introduce a binary relation which we denote by �. x � y

means that there is k ∈ N+ so that x = (x1, x2, . . . , xk+1) ∈ Rk+1, y = (y1, y2, . . . , yk) ∈ Rk, and

x1 ≥ y1 ≥ x2 ≥ y2 · · · ≥ xn ≥ yn ≥ xk+1.
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For x = (x1, x2, . . . , xk) ∈ Rk with x1 ≥ x2 ≥ . . . ≥ xk, we let Y (x) be the set of all elements

(y(k−1), y(k−2), . . . , y(1)) of Rk−1 × Rk−2 × · · · × R2 × R that satisfy

x � y(k−1) � y(k−2) � · · · � y(2) � y(1).

It is shown in Lemma 1.12 of Baryshnikov (2001) that

Vol(Y (x)) =
∏

1≤i<j≤k

xi − xj
j − i

. (22)

We can now start the proof of the lemma. For each i = 1, 2, . . . , n−1, call x(i) = (x
(i)
1 , x

(i)
2 , · · · , x(i)

i )

the vector of the eigenvalues of the symmetric matrix ai with x
(i)
1 ≥ x

(i)
2 ≥ · · · ≥ x

(i)
i . Then the

integrand in (20) is simply
n−1∏
i=1

i∏
j=1

(x
(i)
j )−θ−1.

Under (dH), the law of a is the one of an n × n GUE matrix conditioned to have eigenvalues

λ1, λ2, . . . , λn, and according to Proposition 4.7 in Baryshnikov (2001), the law of (x(n−1), x(n−2), . . . , x(1))

is the uniform on Y (λ) with respect to Lebesgue measure. Thus the integral equals

1

Vol(Y (λ))

∫ λn−1

λn

∫ λn−2

λn−1

· · ·
∫ λ1

λ2︸ ︷︷ ︸
n− 1 integrals

∫ x
(n−1)
n−2

x
(n−1)
n−1

· · ·
∫ x

(n−1)
1

x
(n−1)
2︸ ︷︷ ︸

n− 2 integrals

· · ·
∫ x

(2)
1

x
(2)
2︸ ︷︷ ︸

1 integral

∏
1≤j≤i≤n−1

(x
(i)
j )−θ−1

∏
1≤j≤i≤n−1

dx
(i)
j .

(23)

Assume now that θ > 0. Let λ̃(θ) := (λ−θn , λ−θn−1, . . . , λ
−θ
1 ), and in the integral make the change

of variables y
(i)
j = (x

(i)
j )−θ for all 1 ≤ j ≤ i ≤ n− 1. Then the previous expression becomes

1

Vol(Y (λ))
(−θ)−n(n−1)/2

∫ λ−θn−1

λ−θn

∫ λ−θn−2

λ−θn−1

· · ·
∫ λ−θ1

λ−θ2︸ ︷︷ ︸
n− 1 integrals

∫ y
(n−1)
n−2

y
(n−1)
n−1

· · ·
∫ y

(n−1)
1

y
(n−1)
2︸ ︷︷ ︸

n− 2 integrals

· · ·
∫ y

(2)
1

y
(2)
2︸ ︷︷ ︸

1 integral

n−1∏
i=1

i∏
j=1

dy
(i)
j

= θ−n(n−1)/2 Vol(Y (λ̃(θ)))

Vol(Y (λ))
= θ−n(n−1)/2

∏
1≤i<j≤n(λ−θj − λ

−θ
i )∏

1≤i<j≤n(λi − λj)
(24)

=

(
n∏
i=1

λi

)−θ(n−1)
θ−n(n−1)/2

∏
1≤i<j≤n(λθi − λθj)∏

1≤i<j≤n(λi − λj)
. (25)

And the lemma is proved in this case. In the case θ = 0, in the integral of (23), we let y
(i)
j = log x

(i)
j

for all 1 ≤ j ≤ i ≤ n − 1 and proceed as above. Alternatively, we can take θ → 0 in the last

expression. �

3 Determinantal process. Proof of Theorem 3

Proof. (i). For each positive integer n and y1, y2, . . . , yn ∈ R, we let

∆(y1, y2, . . . , yn) := det(yj−1
k )1≤j,k≤n =

∏
1≤j<k≤n

(yk − yj).
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Equation (3.3) of Deift and Gioev (2009) gives that the determinant of G(n) is

det

(∫ ∞
0

xj(log x)ke−x dx

)
0≤j,k<n

=
1

n!

∫ ∞
0
· · ·
∫ ∞

0
det(xj−1

k )1≤j,k≤n det((log xk)
j−1)1≤j,k≤n

n∏
k=1

dxk

(26)

=
1

n!

∫ ∞
0
· · ·
∫ ∞

0
∆n(x1, . . . , xn)∆n(log x1, . . . , log xn)

n∏
k=1

dxk

(27)

The integrand is positive, thus the determinant is not zero.

(ii) Follows from part (i) and Proposition 5.8.1 of Forrester (2010). �

In the rest of the section, we discuss the structure of G(n) and compute explicitly the value of its

determinant.

Lemma 4. The matrix G := (gi,j)i,j∈N has an LU factorization G = LU with

Li,j = |s(i+ 1, j + 1)| for i ≥ j ≥ 0, (28)

Ui,j = (j)ig0,j−i for 0 ≤ i ≤ j. (29)

Here s(·, ·) denotes the Stirling number of the first kind while (j)i is the falling factorial defined

as (x)i := x(x−1) · · · (x− (i−1)) for all x ∈ C and i positive integer, and (x)0 = 1 for all x ∈ C.

For the the definition of the Stirling numbers, see Chapter 13 in van Lint and Wilson (2001).

Since Lk,k = 1 and Uk,k = k! for all k ∈ N, we obtain

det(G(n)) = 1!2! · · · (n− 1)!.

Proof. We compute the exponential generating function of the sequence (gj,k)j,k∈N.

∞∑
j,k=0

uj

j!

vk

k!
gj,k =

∫ ∞
0

e−xeuxev log x dx =

∫ ∞
0

e−xe−(1−u)xxv dx = (1− u)−v−1Γ(1 + v)

=

∞∑
j=0

(v + 1)(v + 2) · · · (v + j)
uj

j!

∞∑
s=0

Γ(s)(1)

s!
vs

=

∞∑
j=0

uj

j!

j∑
r=0

(−1)j−rs(j + 1, r + 1)vr
∞∑
s=0

Γ(s)(1)

s!
vs

=

∞∑
j,k=0

uj

j!
vk

j∧k∑
r=0

Γ(k−r)(1)

(k − r)!
(−1)j−rs(j + 1, r + 1).

Since for m,n ∈ N the integer s(m,n), if not zero, has sign (−1)m−n and Γ(n)(1) = g0,n, we get

gj,k =

j∧k∑
r=0

|s(j + 1, r + 1)|(k)rg0,k−r

for all j, k ∈ N. This proves the factorization G = LU . �
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4 Limiting empirical distribution in the θ > 0 case

Proof of Theorem 4: We first prove the following.

Claim: The sequence
(
Xθ,b(n)/

√
n
)
n≥1

converges in ∗-moments to a DT (νθ, 1) element.

Recall the form of the diagonal elements of Xθ,b(n) in (7). Denote by

µn,k : the law of Xk,k/
√
n,

ηn : = µn,1 × µn,2 × · · · × µn,n, the law of the vector (Xk,k/
√
n)1≤k≤n,

η̃n : the symmetrization of ηn, that is, the law of (Xπ(k),π(k)/
√
n)1≤k≤n, where π is a

random permutation of {1, 2, . . . , n} uniformly chosen and independent of the matrix,

η̃(p)
n : the marginal of the first p coordinates of η̃n(p ∈ {1, 2, . . . , n}).

According to Theorem 2.13 in Dykema and Haagerup (2004), it is enough to show that η̃
(p)
n

converges in ∗-moments to ×p1νθ, where ×p1νθ is the product measure having p factors each equal

to νθ. We prove this in three steps.

Step 1. limn→∞ dTV (η̃
(p)
n ,×p1η̃

(1)
n ) = 0.

Here, dTV is the total variation distance for probability measures. Since

η̃(p)
n =

1

(n)p

∑
r1,r2,...,rp∈[n]

all different

µn,r1 × µn,r2 × · · · × µn,rp ≤
np

(n)p
×p1 η̃

(1)
n ,

(recall that (n)p is the falling factorial, defined in the statement of Lemma 4) the function

qn :=
np

(n)p
×p1 η̃

(1)
n − η̃(p)

n

is a measure and

η̃(p)
n −×

p
1η̃

(1)
n =

(
np

(n)p
− 1

)
×p1 η̃

(1)
n − qn.

The right hand side of the last equality is the difference of two measures each having mass

np/(n)p − 1. Thus the total variation distance between η̃
(p)
n and ×p1η̃

(1)
n is at most 2(np/(n)p − 1)

which tends to 0 as n→∞.

Step 2. η̃
(1)
n converges weakly to νθ as n→∞.

Note that if X has distribution νθ, then |X|2 is uniformly distributed on [0, θ]. Since the law of

η̃
(1)
n is radially symmetric, it suffices to prove that for any bounded Lipschitz function h : R→ R,

it holds that
1

n

n∑
k=1

Eh

(
Y 2
k

2n

)
→ 1

θ

∫ θ

0
h(r) dr (30)

as n → ∞. Take independent random variables (Wk)k≥1 so that W1 ∼ Γ(b, 1) and Wk ∼ Γ(θ, 1)

for all k ≥ 2. Then Y 2
k /2 has the same law as Sk := W1 +W2 + · · ·+Wk. The left hand side of

(30) is

1

n

n∑
k=1

Eh

(
Sk
k

k

n

)
. (31)
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Call In this quantity and În := n−1
∑n

k=1 h(θk/n), which converges to
∫ 1

0 h(θx) dx since h is

continuous. Then |In− În| ≤ Jn := n−1
∑n

k=1 E(min{2||h||∞, C|Sk/k−θ|}) where C is a Lipschitz

constant for h. Using the fact that Sk/k converges pointwise to θ and the bounded convergence

theorem, we get limk→∞E(min{2||h||∞, C|Sk/k − θ|}) = 0. Thus, limn→∞ Jn = 0 and (30) is

proved.

Step 3. η̃
(p)
n converges in ∗-moments to ×p1νθ as n→∞.

It follows from the previous two steps and the Cramer-Wold theorem that η̃
(p)
n converges weakly

to ×p1νθ. This implies convergence in ∗-moments because for all k1, k2, . . . , kp ∈ N+ it holds

sup
r1,r2,...,rp∈[n]

all different

∫
|x1|2k1 |x2|2k2 · · · |xp|2kp dµn,r1(x1) dµn,r2(x2) · · · dµn,rp(xk) <∞.

The last assertion is easy to show using the formulas for the moments of the chi squared distri-

bution.

Now call x the DT(νθ, 1) element mentioned in the claim. We can assume that x is an element

of a von Neumann algebra (see Remark 2.3 in Dykema and Haagerup (2004)), and thus there is

a unique measure µθ which has support a compact subset of R and moments the same as xx∗

(Lemma 5.2.19 in Anderson et al. (2010)). The theorem follows by combining this with the above

claim. �
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