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PATTERNS IN SINAI’S WALK

BY DIMITRIS CHELIOTIS1 AND BÁLINT VIRÁG2

University of Athens and University of Toronto

Sinai’s random walk in random environment shows interesting patterns
on the exponential time scale. We characterize the patterns that appear on
infinitely many time scales after appropriate rescaling (a functional law of
iterated logarithm). The curious rate function captures the difference between
one-sided and two-sided behavior.

1. Introduction. For every integer k, pick pk independently from a fixed
probability measure on [0,1]. Then, keeping the pk’s fixed, consider a nearest-
neighbor random walk S(n) on Z, with S(0) = 0 and with probabilities pk,1 − pk

of going right and left from k, respectively. This model, introduced by Chernov
(1967), is the most well-studied model of motion in random medium.

We will assume that the random variables p1, (1−p1) have some finite negative
moment. The walk S(n), pictured in Figure 1, is recurrent exactly when log 1−p1

p1
has mean zero; see Solomon (1975). The graph of the walk seems much more
confined than the ordinary random walk. Indeed, when log 1−p1

p1
has finite and

positive variance as well, the typical value of |S(n)| is of the order of log2 n, much
less than the usual

√
n for simple random walk; see Sinaı̆ (1982). The walk in this

regime is called Sinai’s walk.
The logarithmic behavior of |S(n)| suggests that we may get a more enlighten-

ing picture by considering S(n) on an exponential time scale, namely the process
t �→ S(et ) with the argument rounded down to the next integer. Figure 2 shows that
the walk tends to get trapped by the environment. Indeed, the stationary measure
for S(n) is given by the exponential of a function with increments log 1−pk

pk
, that

is, a random walk on Z. So at distance n there are regions with stationary measure
as large as e

√
n, in which S(n) gets trapped for a long time.

The pattern we see in Figure 2 suggests a natural question: what patterns can
we get that way? The main goal of this paper is to answer a mathematically pre-
cise version of this question. We consider rescaled versions of the path of S(et )
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FIG. 1. Path of Sinai’s walk S(n).

given by

S(eat )

a2 log loga
, t ≥ 0,

and ask what are the possible limit points of the graph of this process as a → ∞.
For this, a topology on graphs has to be specified. As we will see, the spatial scaling
factor a2 log loga is needed to ensure that the answer to our question is nontrivial.

Figure 2 suggests that we should consider a topology much weaker than the
usual uniform-on-compacts convergence of functions: the process shows too many
oscillations on this scale, and we do not even expect a function in the limit. Instead,
we consider the graph occupation measure, and we view it as an element of the
space of measures on R

+ ×R. For a measurable ϕ : R+ → R, its graph occupation
measure is given by

m(ϕ)(A) := Leb{s ≥ 0 : (s, ϕ(s)) ∈ A}

FIG. 2. The same path in exponential time, S(et ).
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for A ⊂ [0,∞) × R Borel set. Note that m(ϕ)(· × R) is the Lebesgue measure.
The space of Borel measures on R

+ × R is equipped with the topology of local
weak convergence. Then consider the following subset of that space:

M =
{
μ :

μ(· × R) is the Lebesgue measure,
∃f,g ≥ 0 nondecreasing s.t. supp(μ) ⊂ graph(f ) ∪ graph(−g)

}
.

For μ ∈ M, let fμ and gμ denote the unique minimal left-continuous choice of
f,g in the above definition. Now μ projects to Lebesgue measure on R

+, so μ

restricted to the upper and lower half planes project to a partition of Lebesgue
measure. Let sμ+, sμ− ∈ [0,∞] denote the supremum of the support of these pro-
jections, respectively. Let

I (μ) := π2

2

∫ sμ+

0

1

t2 d(fμ + gμ)(t) + π2

8

∫ ∞
sμ+

1

t2 dgμ(t) if sμ− = ∞,(1)

and if sμ− < ∞, in (1) we exchange fμ,gμ and replace sμ+ with sμ−. Note the
striking difference between the parts with π2/8 and π2/2 coefficients—we will
see that it is harder to be supported on the graph of two functions than on a single
one.

THEOREM 1. With probability 1, the a → ∞ limit points of the graph occu-
pation measures of the rescaled walk

S(eat )

a2 log loga
, t ≥ 0,

constitute the set

K := {μ ∈ M : I (μ) ≤ 1}.
Also, there is at least one limit point along every sequence an → ∞.

Our result is the analogue of Strassen’s functional law of iterated logarithm
for ordinary random walks [Strassen (1964)]. This is often stated in terms of the
rescaled process restricted to a finite interval; such results easily follow from the
full version. We also prove a version for the Brox diffusion, the continuous version
of Sinai’s walk; see Theorem 17 in Section 7. As discussed there, Theorem 1 ex-
tends to general environments that are close to Brownian motion. Our results are in
agreement with Theorems 1.3, 8.1 of Hu and Shi (1998) about the one-point law,

lim sup
a→∞

S(ea)

a2 log loga
= 8

π2 .

There are many ways in which Sinai’s walk and the Brox diffusion are deter-
mined by their environment; see, for example, the results of Hu (2000), quoted as
Theorem 16 in the present paper. In particular, the location of S(n) is well pre-
dicted by x(logn), where x is the process of wells for the environment. For the
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Brox diffusion, on the process level, the first author, Cheliotis (2008), showed that
after some large random time, the path of the process x(log t) is close to that of the
most-favorite-point process of the diffusion at time t .

In Section 2, we give a precise description of the process of wells xB for the
environment defined by two-sided Brownian motion B . Informally, consider the
graph of B as a vessel in which water is poured gradually from the positive y

axis. The water forms several increasing and merging puddles, also called wells.
Then xB(h) is the x-coordinate of the bottom of the first-created well with depth
at least h.

Our law of iterated logarithm is based on a similar theorem for the process of
wells. This, in turn, is based on a large deviation principle for this process.

THEOREM 2. The family of the laws of {m(xB/M) :M > 0}, as M → ∞,
satisfies a large deviation principle on M with speed M and good rate function I .

Interestingly, it is easier to avoid creating deep wells on one just of the axes
than on both; this will be apparent from the proof of the theorem. This is the main
reason for the two different factors π2/8 and π2/2.

In the flavor of the applications in Strassen (1964), we prove the following sim-
ple result about weighted integrals of S(·) along a geometric time scale.

COROLLARY 3. For r ≥ 0,

lim sup
a→∞

1

a2 log loga

∫ 1

0
t rS(eat ) dt = 4

π2

(
2

r + 3

)(r+3)/(r+1)

.

REMARK 4. There is a connection between our results and Chung’s Law of
iterated logarithm, which concerns the liminf behavior of the running maximum
of random walk {Sn} with increments of zero mean and variance 1. It states [see
Jain and Pruitt (1975)]

lim inf
n→∞ log logn

max1≤i≤n S2
i

n
= π2

8
.

Note the presence of the constant π2/8 also here. The reason is that the only way
Sinai’s walk will take an unusually large value at a given time is if in a large
interval the environment does not create large wells, which could delay the walk.
This, in effect, confines the environment to a small interval for a long time. In
this sense, our result is related to Wichura’s theorem, a functional law of iterated
logarithm for small values of the running absolute maximum of Brownian motion;
see Mueller (1991).
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Orientation. The structure of the paper is as follows. The first goal is to prove
Theorem 2. Thus, Section 3 contains the large deviations upper bound, and Sec-
tion 4 contains the lower bound. Section 5 combines these two results and ex-
ponential tightness to derive Theorem 2. Section 6 contains the proof of a func-
tional law of the iterated logarithm for the environment, that is, for the family
(a2 log loga)−1xB(a·), a > e. This is combined in Section 7 with a localization
result to transfer the law to the motion. In Section 8 we estimate the probabil-
ity that Brownian motion stays in certain sets for large intervals of time. The last
section contains topological lemmas needed in Sections 3, 4 and 6.

2. The process of wells in the environment. Let f : R → R be a continu-
ous function. In Section 1, we introduced the process of wells by the following
informal definition.

Consider the graph of f as a vessel in which water is poured gradually from
the positive y axis. The water forms several increasing and merging puddles, also
called wells. Then xf (h) is the x-coordinate of the bottom of the first-created well
with depth at least h.

We now proceed to give a more detailed definition. For each point x0 of lo-
cal minimum for f , there are intervals [a, c] containing x0 with the property that
f (x0) is the minimum value of f in [a, c] and f (a), f (c) are the maximum val-
ues of f on the intervals [a, x0], [x0, c], respectively. Let [ax0, cx0] be the maximal
such interval. We call f |[ax0, cx0] the well of x0 and the number

min{f (ax0) − f (x0), f (cx0) − f (x0)}
the depth of the well. We order wells by inclusion.

For h > 0, if there is a minimal well of depth at least h containing zero in its
domain, we define xf (h) to be the smallest point in the domain of the well where
f attains its minimum value on the well. If there is none, we let xf (h) = 0. Finally,
we let xf (0) = 0.

For almost all two-sided Brownian paths B , for all h > 0, there is a unique
point where B attains its minimum in the minimal well of depth at least h con-
taining 0, and there is such a well. For such paths, xB is a left-continuous step
function. Moreover, xB has the following monotonicity property: if h1 < h2 and
xB(h1), xB(h2) have the same sign, then |xB(h1)| ≤ |xB(h2)|.

Finally, xB inherits a scaling property from Brownian motion, namely for a > 0,

(xB(as))s≥0
L= (a2xB(s))s≥0.(2)

The first step toward the proof of Theorem 2 is to study the behavior of the function
xB . More precisely, we will try to understand the probability that xB is close to a
particular step function.

Toward this end, let S be the set of all pairs of finite sequences

(h,x) where h := (h1, . . . , hN),x := (x1, . . . , xN)
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for some N ≥ 1, with the properties

0 < h1 < h2 < · · · < hN, x1, x2, . . . , xN ∈ R \ {0},
and whenever i < j and xi , xj have the same sign, then |xi | ≤ |xj |.

For notational convenience, we will also use the indices 0,N + 1,∞, and set

x0 := 0, x∞ := −x1 and h0 := 0, hN+1 := h∞ := 2hN.

The mesh of the partition of [0, hN ] induced by h is the number

mesh(h) := min{hi − hi−1 : 1 ≤ i ≤ N}.
For a pair (h,x) as above, we let I := {1, . . . ,N} and I∞ ⊂ I the largest set of

consecutive integers in I containing N and for which all xi for i ∈ I∞ have the
same sign.

For an index i ∈ I , let i− denote the greatest index j ∈ I less than i so that xi

and xj have the same sign, and let i− = 0 if there is no such index. Similarly, let
i+ denote the least index j ∈ I greater than i so that xi and xj have the same sign,
and let i+ = ∞ if there is no such index. In particular, N+ = ∞. Also let α,β

denote the first index i with positive and negative xi , respectively, again with the
value ∞ if there is no such index.

Consider the function �h,x with domain [0,∞) and value x0 = 0 on the interval
[0, h1], xi on the interval (hi, hi+1] for i ∈ {1, . . . ,N −1} and xN on (hN,∞); see
Figure 3. Recall the definition of the graph occupation measure m(·) from the
Introduction, and let

μh,x := m(�h,x).

FIG. 3. The step function �h,x.
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We will use the shorthand notation I (h,x) for the rate corresponding to this mea-
sure, namely

I (h,x) := I (μh,x) = π2

2

∑
i∈I\I∞

|xi − xi−|
h2

i

+ π2

8

∑
i∈I∞

|xi − xi−|
h2

i

.(3)

3. Confining Brownian motion—the upper bound. The goal of this section
is to prove the core of the large deviations upper bound of Section 5.

In what follows, m denotes the graph occupation measure, B a standard two-
sided Brownian motion and x the process-of-wells mapping.

PROPOSITION 5 (Large deviation upper bound). For each μ ∈ M and A <

I (μ), there exists an open neighborhood U of μ so that for all sufficiently large
M , we have

P
(
m(xB/M) ∈ U

) ≤ e−AM.

The proof of this proposition is given in Lemmas 6 and 7. We first define neigh-
borhoods that will be easy to handle. Using the notation of Section 2, for (h,x) ∈ S
and ε > 0, we define the following open set of measures:

U (h,x, ε)

(4)
:=

{
ν ∈ M :

ν
(
(hi − ε,hi + ε) × (xi,∞)

)
> 0 for i ∈ I , xi > 0

ν
(
(hi − ε,hi + ε) × (−∞, xi)

)
> 0 for i ∈ I , xi < 0

}
.

We claim that these neighborhoods cover everything efficiently, even for small ε.

LEMMA 6. For each μ ∈ M and A < I (μ), there exists (h,x) ∈ S so that
I (h,x) > A and U (h,x, ε) � μ for all ε > 0.

The proof of this topological lemma is standard, but a bit technical. We postpone
it to Section 9.

LEMMA 7. For (h,x) ∈ S , A < I (h,x) and all small enough ε > 0, there is
an integer Mε so that

P
(
m(xB/M) ∈ U (h,x, ε)

) ≤ e−AM for all M ≥ Mε.(5)

For a two-sided Brownian motion B , we define its reflection from its past min-
imum as the process

R(t) := B(t) − inf{B(s) : s between 0 and t}(6)

for all t ∈ R. This process appears naturally in the study of the wells created by B .
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PROOF OF LEMMA 7. For a locally bounded function Q : R → R, define

Q(t) := inf{Q(s) : s between 0 and t},(7)

Q(t) := sup{Q(s) : s between 0 and t}(8)

for all t ∈ R.
Recall the mapping μ �→ (fμ, gμ) defined in the Introduction. For almost all

Brownian paths B , the measure μ := m(xB/M) satisfies

Mfμ = fm(xB) = xB, Mgμ = gm(xB) = (xB)−.

Also, μ ∈ U (h,x, ε) implies fμ(hi + ε) > xi for xi > 0, and similarly for xi < 0.
Then, for i ∈ I with xi > 0, we have

xB(hi + ε) > Mxi ⇒ R(Mxi) < hi + ε,

because otherwise an ascent on the right with height at least hi +ε is created before
Mxi . This can be paired with an ascent on the negative axis of height at least hi +ε,
and the two will make xB(hi + ε) to be located in (−∞,Mxi], a contradiction.
This and the symmetric argument for negative xi shows that, on the event in the
statement of the lemma, we have

R(Mxi) < hi + ε for all i ∈ I.

For M = 1, a realization of the process R satisfying these restrictions is depicted
in Figure 4.

There is one more piece of information we have for the path at the points Mxi

for all indices i ∈ I \ I∞ when this set is nonempty. That is,

B(Mxi) ≥ −hN − ε.

FIG. 4. The restrictions on the reflected process.
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To see this, assume without loss of generality that xi > 0. Since μ ∈ U (h,x, ε), we
have

μ
(
(hi − ε,hi + ε) × (xi,∞)

)
> 0,

and thus xB(h′) > Mxi > 0 for some h′ ∈ (hi − ε,hi + ε). Let

h∗ := inf{h > h′ :xB(h) < 0}.
We first argue that h∗ is well defined, that is, the above set is not empty. Since
i ∈ I \ I∞, there is j > i with xj < 0, and thus xB(h) < 0 for some h ∈ (hj −
ε,hj + ε). Since ε < mesh(h)/2, we have hj − ε > hi + ε, and so indeed we have
h > h′. Also, h∗ < hN + ε.

At h∗, xB is positive because it is left continuous, but just after that it is nega-
tive. This means that the well of xB(h∗) has depth exactly h∗. But B(xB(h∗)) =
B(xB(h∗)), and combining this with xB(h∗) ≥ xB(h′) > Mxi , we obtain

−hN − ε < −h∗ ≤ B(xB(h∗)) ≤ B(Mxi).

Thus the event of the lemma is contained on the event

CM :=
{

R(Mxi) < hi + ε for i ∈ I,

B(Mxi) ≥ −hN − ε for i ∈ I \ I∞

}
.

Recall from Section 2 that i− refers to the index preceding i so that xi and xi− have
the same sign. Let Pr,y denote the law of the Markov process (R,B) started at the
point (r, y). By the Markov property applied consecutively at Mxi− for i ∈ I , we
get

P(CM) ≤ ∏
i∈I\I∞

sup
r≥0,y≤0

Pr,y

(
R

(
M(xi − xi−)

)
< hi + ε,

B
(
M(xi − xi−)

) ≥ −hN − ε
)

× ∏
i∈I∞

sup
r≥0,y≤0

Pr,y

(
R

(
M(xi − xi−)

)
< hi + ε

)
.

As usual, the product over an empty index set is 1. Note that the process (R,−B)

is nondecreasing in both coordinates of its starting point (r,−y). Therefore we
have the upper bound∏

i∈I\I∞
P0,0

(
R

(
M(xi − xi−)

)
< hi,B

(
M(xi − xi−)

) ≥ −hN − ε
)

× ∏
i∈I∞

P0,0
(
R

(
M(xi − xi−)

)
< hi + ε

)
.

Then Lemma 20 implies that

lim
M→∞

log P(CM)

M
≤ −I (h,x) − o(ε),

where o(ε) depends on (h,x) only. The claim follows. �
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4. Making a vessel—the lower bound. The goal of this section is to prove
the large deviation lower bound. This can be formulated as follows:

PROPOSITION 8 (Large deviation lower bound). For every open set G ⊂ M,
every A > infG I and for all sufficiently large M , we have

P
(
m(xB/M) ∈ G

) ≥ e−AM.

Again, we proceed in two steps. We will first define a convenient set of Brown-
ian paths, R(h,x, ε, δ), and then prove a topological lemma that reduces the prob-
lem to showing that these paths have high probability.

LEMMA 9. For every open G ⊂ M, and every A > infG I , there exists
(h,x) ∈ S so that I (h,x) < A and

{m(xB) :B ∈ R(h,x, ε, ε)} ⊂ G

for all small enough ε > 0.

The proof of this topological lemma is postponed to Section 9. In light of this
lemma, it suffices to give a lower bound on the probability that for B two-sided
Brownian motion, m(xB) is close to μh,x in the large deviation regime. In fact, we
will do this for a more restrictive set, namely for the event that xB is close in the
Skorokhod topology to �h,x.

Recall the Skorokhod topology on left continuous paths on [0,∞) with right
limits. We call a set A of these paths an [a, b]-Skorokhod neighborhood of f if it
is the inverse image of a Skorokhod neighborhood of f |[a, b] under the restriction
map.

PROPOSITION 10. Let (h,x) ∈ S . Then every [0,2hN ]-Skorokhod neighbor-
hood of �h,x contains the image of the set R(h,x, δ, ε) under the map x for all
δ, ε small enough, and Brownian motion B satisfies

lim
M→∞

1

M
log P

(
B(M·) ∈ R(h,x, δ, ε)

) = −I (h,x) + Oh,x(δ, ε).(9)

The rest of this section contains the proof of the proposition. First, we construct
the desired set of paths, then we show that they can be arbitrarily close to �h,x,
and finally we prove the desired probability decay.

Each path in R(h,x, δ, ε) forms a “vessel,” in which when water is poured from
the y axis, the process of wells is close to �h,x almost until depth 2hN is reached.
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Construction. We define the following events, that is, sets of continuous func-
tions f : R → R, for ε, δ ∈ (0,1), h > 0 and x, y ∈ R with 0 ≤ x < y or y < x ≤ 0.
For all events, we require that, in the second endpoint of the interval mentioned, f

takes a value in [0, h − εh]; this is to make the building blocks fit together well. In
addition, we require:

Confinement, C(x, y,h): between times x(1 + δ), y(1 − δ), f stays in [−ε2h,h].
Hole, H(y,h): between times y(1−δ), y, f stays in [−εh,h], visits below −εh+

ε2h.
HoleR , HR(y,h): between times y(1 − δ), y, f stays in [0, h], visits 0.
Barrier, B(y,h): between times y, y(1 + δ), f stays in [−ε2h,h + εh], visits

above h.

We omit the dependence on ε, δ from the notation.
Our basic restriction set, R(h,x, δ, ε), is defined as the intersection of the fol-

lowing sets Ei , for i ∈ I ∪ {0}. Our goal is to ensure that functions f in these
sets will have the property that xf is [0,2hN ]-Skorokhod-close to �h,x. We will
comment on the importance of the individual sets Ei after their definition.

The beginning.

E0 := C
(
0, xαδ/(1 − δ), hα

) ∩ B(xαδ,hα)
(10)

∩ C
(
0, xβδ/(1 − δ), hβ

) ∩ B(xβδ,hβ).

For f ∈ E0, we have

xf (h) ∈ (
δ(1 + δ)xβ, δ(1 + δ)xα

)
for h ∈ [0, h1],

because the two barrier sets create a well around zero of depth at least h1.

The indices in I \ I∞. For each index i ∈ I \ I∞, we define the set

Ei := C(wi, xi, hi) ∩ H(xi, hi) ∩ B(xi, hi+),

where for all i ∈ I , we let

wi :=
{

xi−, i �= α,β,
xiδ, i = α or β.

The purpose of Ei is to guarantee that for f ∈ E0 ∩ · · · ∩ Ei , the value of xf (·)
will be near xi for a time interval very close to [hi, hi+1].

More precisely, assume that xi > 0, and focus on the positive half of the path
f |[0,∞). See Figure 5 for the case i = 1. What Ei adds to the intersection is that
f |[0,∞) up to the point xi(1 − δ) does not reach a new minimum or maximum.
Then it creates a new minimum (hole) near xi , and then a barrier of height hi+
ahead of it. But Ei− has already created a barrier of height about hi . Moreover, on
the negative side there is a barrier of height at least hi+1 following a minimum for
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FIG. 5. The first positive blocks of the construction.

f |(−∞,0] which is not deeper than the hole in the event Ei . So indeed, the value
of xf (·) will be near xi at least for a time interval almost equal to [hi, hi+1].

Note also that the barrier created by Ei makes sure that from height about hi

until height about hi+ , the process xf either stays constant or jumps to negative
values; that is, it does not advance to another positive value.

The indices in I∞. By symmetry, we may assume that the xi ’s for i ∈ I∞
are positive. For a locally bounded function f defined in R, and z fixed, let
Rzf : [z,∞) → [0,∞) denote f reflected from its running minimum after z,
namely

Rzf (x) := f (x) − inf
s∈[z,x]f (s).(11)

Let q = min I∞. For i ∈ I∞, define the set Ei of paths f so that Rwq(1+δ)f is in

C(wi, xi, hi) ∩ HR(xi, hi) ∩ B(xi, hi+),

and f satisfies

f (x) − f
(
wi(1 + δ)

) ≤ ε2 for x ∈ [wi(1 + δ), xi(1 + δ)].(12)

Note that i+ = i + 1 unless i = N .
In order to understand these events Ei , we first consider the effect of the pre-

ceding events E0 ∩ · · · ∩ Eq−1. See Figure 6.
Assume first that I∞ �= I . In this case, E0 ∩ · · · ∩ Eq−1 puts restriction on the

path on the interval [xq−1(1 + δ),wq(1 + δ)]. The minimum value of f there is
negative of order ε, the maximum is attained in the interval [xq−1(1 + δ), xq−1],
where the path goes over 2hN because (q − 1)+ = ∞ and h∞ = 2hN .
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FIG. 6. The last part.

When I∞ = I , the event E0 puts restriction on the path on the interval
[−x1δ(1 + δ),wq(1 + δ)]. The minimum value of f there is negative of order
ε, the maximum is attained on [−x1δ(1 + δ),−x1δ], where the path goes over
2hN .

In both cases, the maximum on [0,wq(1 + δ)] is attained in the interval
[wq,wq(1 + δ)], where the path goes a bit over hq and ends up in [0, hq − εhq].

Then the set Eq requires from f up to the point xq(1− δ) not to create an ascent
of height larger than hq (see Figure 6) and then to create one with lowest point
having x-coordinate in (xq(1 − δ), xq(1 + δ)) and height around hq+ . The goal of
(12) is to force f not to go above hq , and this is obtained because as we noted
f (wq(1 + δ)) ≤ hq − εhq , and from that point on f stays below hq − εhq + ε2.
These, together with the barrier of height 2hN on the negative axis, guarantee that
xf (h) is around xq at least for h in an interval very close to [hq,hq+].

The other Ei ’s with i ∈ I∞ work in the same way.

The behavior of xf for f ∈ R(h,x, δ, ε). We will now examine more precisely
how xf behaves when f ∈ R(h,x, δ, ε). For x, y ∈ R, define

f #(x, y) =
{

sup{f (t) − f (s) :x ≤ s ≤ t ≤ y}, x ≤ y,
sup{f (t) − f (s) :y ≤ t ≤ s ≤ x}, x ≥ y.

Also let

h̃1 := max{f (x) :x between 0 and x1δ(1 + δ)},
and let z1 be the closest to zero point between 0 and xα∨βδ(1 + δ) where f takes
the value h̃1. In the interval between z1 and x1δ(1 + δ), we have a well of depth
around h1. Its exact depth is

v1 := h̃1 − min{f (x) :x between z1 and x1δ(1 + δ)}.
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Also define

vi :=
⎧⎪⎨
⎪⎩

f #(
xi−1, xiδ(1 + δ)

)
, if i = α ∨ β �= ∞,

f #(
xi−1(1 − δ), xi−1(1 + δ)

)
, if i − 1 = i− ∈ I \ I∞,

f #(
xi−1, xi−(1 + δ)

)
, if i − 1 �= i− ∈ I \ I∞.

Now for i− ∈ I∞ let

vi := sup
{
Rwq(1+δ)f (x) :x ∈ [xi−, xi−(1 + δ)]},

and finally let vN+1 = 2hN . From the above discussion and the definition of
R(h,x, δ, ε), we conclude that

vi ∈

⎧⎪⎪⎨
⎪⎪⎩

[h1, h1 + ε(h1 + εhα∨β)], if i = 1,
[hi + (ε − ε2)hi−1, hi + ε(hi + hi−1)], if i = α ∨ β �= ∞

or i− ∈ I \ I∞,
(hi, hi + εhi], if i− ∈ I∞,

(13)

and

|xf (h)| ≤ δ(δ + 1)(xα ∨ |xβ |) for h ∈ [0, v1],
(14)

xf (h) is between xi(1 − δ), xi for h ∈ (vi, vi+1], i ∈ I.

We assumed that ε is small enough so that v1 < v2 < · · · < vN , and −εhi + ε2hi <

−εhi−1 for i ∈ I \ I∞. Informally, the second requirement guarantees that, for
these i’s, the set H(xi, hi) creates a new, deeper minimum, and this is used for
(14).

Relations (13), (14) show that any [0,2hN ]-Skorokhod neighborhood of �h,x
contains {xf :f ∈ R(h,x, δ, ε)} if ε, δ are small enough.

The asymptotic probability of R(h,x, δ, ε). It remains to prove (9).
We apply the Markov property and use Lemma 21. Note that for any two restric-

tion sets concerning contiguous intervals, say [x, y], [y, z], with 0 < x < y < z, the
allowed values for f (y−) are the same as the ones on which we condition in the
first three relations of Lemma 21. If the second set corresponds to an index in I∞,
the ending point of the first block is irrelevant.

It is also important that the limits computed in that lemma are uniform over the
starting points of the processes involved. These observations allow us to conclude
that the left-hand side of (9) equals

−π2

2

∑
i=α,β

|xi |δ
h2

i

(
1

(1 + ε2)2 + δ

(1 + ε + ε2)2

)

− π2

2

∑
i∈I\I∞

( |xi − wi − δ(xi + wi)|
h2

i (1 + ε2)2
+ δ|xi |

h2
i (1 + ε)2

+ δ|xi |
h2

i+(1 + ε + ε2)2

)

− π2

8

∑
i∈I∞

( |xi − wi − δwi |
h2

i

+ δ|xi |
h2

i+(1 + ε)2

)
,
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which is −I (h,x) + Oh,x(δ, ε). Note that for δ ↘ 0, only the confinement sets
appearing in Ei , for i ∈ I , contribute to the rate of decay. The reason is that all
other sets put restrictions on intervals of size proportional to δ. Similarly, the first
restriction set E0 does not contribute.

5. The large deviation principle for the process of wells. In this section, we
complete the proof of the large deviation principle for the family {m(xB/M) :M >

0} stated in Theorem 2.
Recall that a family {μM :M > 0} of Borel measures on a topological space M

satisfies the large deviation principle with rate I : M → [0,∞] as M → ∞ if for
every measurable set B ⊂ M and every A > infB◦ I and A′ < infB̄ I we have

−A ≤ logμM(B)

M
≤ −A′(15)

for all sufficiently large M , where B◦, B̄ denote the interior and the closure of B,
respectively.

Recall also that I is a good rate function if I−1[0,A] is compact for all finite A.
In particular, these sets are closed, which is equivalent to I being lower semicon-
tinuous.

We have established in Propositions 5, 8 the core upper and lower bounds. Next,
we prove exponential tightness. Recall that a family of measures {μM :M > 0} as
above is exponentially tight as M → ∞ if for every A > 0 there is a compact set
Q ⊂ M so that μM(Qc) < e−AM for all large enough M .

LEMMA 11. The family {m(xB/M) :M > 0} is exponentially tight.

PROOF. By the definition of M, for every a > 0, the set

Qa :=
{
μ ∈ M : supp(μ) ⊂

∞⋃
k=1

[k − 1, k] × [−ak3, ak3]
}

(16)

is compact in M. Recall definitions (6) and (8). We have

P
(
m(xB/M) ∈ Qc

a

) ≤
∞∑

k=1

P
(
max{xB(k), (xB)−(k)} ≥ aMk3)

(17)

≤ 2
∞∑

k=1

P
(
xB(1) ≥ aMk

)

using the scaling and symmetry properties of xB . But for all x > 0, we have that
xB(1) ≥ x implies R̄(x) < 1, which has probability at most

P
(
B[0, x] ⊂ (−1,1)

) ≤ Ce−xπ2/8
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with C a constant. Here we used the fact that R has the same law as |B| and relation
(36). Consequently,

P
(
m(xB/M) ∈ Qc

a

) ≤ C′e−Maπ2/8(18)

for a constant C′. Since a was arbitrary, exponential tightness follows. �

PROOF OF THEOREM 2, THE LARGE DEVIATION PRINCIPLE. The first in-
equality in (15) is a reformulation of Proposition 8 applied to the open set B◦. For
the second, let A < infB̄ I . By exponential tightness (Lemma 11) there exists a
compact set Q so that

P
(
m(xB/M) ∈ Qc) ≤ e−AM

for all sufficiently large M . Each point in Q ∩ B̄ can be covered with an open set
satisfying the same asymptotic bound by Proposition 5. To get the second inequal-
ity of (15), take a finite subcover of the compact set Q ∩ B̄, and use the union
bound.

Finally, we show that I is a good rate function. Take A > 0 and μ ∈ I−1(A,∞].
By Proposition 5, μ has an open neighborhood U so that

−A > lim sup
M→∞

logP(m(xB/M) ∈ U )

M
.

The right-hand side is bounded below by − infU I because of the large deviation
lower bound. Thus U ⊂ I−1(A,∞], which shows that the latter set must be open.
Thus I−1[0,A] is closed. On the other hand, exponential tightness and the large
deviation lower bound gives infQc I > A for some compact Q, so I−1[0,A] ⊂ Q
must also be compact. �

6. The limit points of the environment. For a > 1, and B : R → R a contin-
uous path, we define the function Za : [0,∞) → R by

Za(s) := xB(sa)

a2 log loga
(19)

for all s ≥ 0. We will determine the limit points of the family of measures
(m(Za))a>e, as a → ∞, with respect to the topology of local weak convergence,
when B is a two-sided Brownian path. Then Theorem 1 will follow from local-
ization results connecting xB with the Sinai walk. We start by doing this along
geometric sequences.

Geometric sequences. In the next proposition, we show that all limit points
of (m(Za))a>e along geometric sequences fall into a certain set K. Then Proposi-
tion 13 shows that in fact along any geometric sequence, all points of K are limit
points.
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PROPOSITION 12. If c > 1, then with probability one, every subsequence of
{m(Zcn) :n > 1/ log c} has a further convergent subsequence, and the limit points
of the original sequence are contained in the set

K := {μ ∈ M : I (μ) ≤ 1}.

PROOF. By the scaling property of xB and (18),

P
(
m(Zcn) ∈ Qc

a

) = P
(
m(xB/ log log cn) ∈ Qc

a

) ≤ C′ exp
(
−aπ2

8
log log cn

)
.

For a > 8/π2, the first Borel–Cantelli lemma implies that m(Zcn) ∈ Qa eventually,
and the first claim follows by the compactness of Qa .

For each point in Kc, Proposition 5 provides an open set U containing it so that
for some A(U ) > 1 and for all large enough n, we have

P
(
m(Zcn) ∈ U

) ≤ exp
(−A(U ) log log cn)

.(20)

Now each such set U can be written as a union of elements of a fixed countable
base. Thus Kc can be covered with a countable collection of open sets Uk satisfying
(20). By the first Borel–Cantelli Lemma and the union bound, no Uk contains a
limit point a.s. �

The promised complement of Proposition 12 is as follows.

PROPOSITION 13. If c > 1, then with probability one, the limit points of
{m(Zcn) :n > 1/ log c} include the points of the set

K := {μ ∈ M : I (μ) ≤ 1}.

PROOF. Note that it suffices to prove that every open set U intersecting K
contains a limit point with probability one. Using this claim for all such elements
U of a countable base for M, we conclude that the limit points are a.s. dense in K.
Since they form a closed set, this set must contain K.

By Lemma 26 the minimum of I on an open set is either 0, ∞ or is not achieved.
Therefore every open set U intersecting K has infU I < 1. By Lemma 9, there
exists (h,x) ∈ S so that I (h,x) < 1 and

{m(xB) :B ∈ R(h,x, ε, ε)} ⊂ U

for all small enough ε > 0.
Define n0 = �1/ log c� + 2, and for n ≥ n0, let An be the set of paths B so that

the rescaling satisfies

B(c2n log log cn × ·)
cn

∈ R(h,x, ε, ε).
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Note that if a path B belongs to An, then the corresponding path Zcn from (19)
satisfies m(Zcn) ∈ U . Thus it suffices to show that An i.o. a.s.

Since

An = R(hcn,xc2n log log cn, ε, ε),(21)

the scaling property of Brownian motion implies

P(An) = P(R(h,x log log cn, ε, ε)).

Then Proposition 10 gives

lim inf
n→∞

log P(An)

log log cn
≥ −I (h,x) − Oh,x(ε) > −(1 − δ1)

for some δ1 ∈ (0,1 − I (h,x)) and all small enough ε. Consequently, there is an n1
so that for n ≥ n1 we have P(An) ≥ n−1+δ1 . Then for all n,

n∑
k=n0

P(Ak) > Cnδ1(22)

for an appropriate constant C > 0. In particular,
∑

P(Ak) = ∞. In order to con-
clude that An i.o., we use a correlation bound given in the upcoming Lemma 14.
Let 
n := 1An0

+ · · · + 1An . We write

E(
2
n) = E
n + 2

n∑
k=n0
l>k

P(Ak ∩ Al).

Let �,C0 be as in Lemma 14, and dk := � + (log log k)/(2 log c). We bound the
probabilities P(Ak ∩ Al), n0 ≤ k < l ≤ n, in one of two ways, according whether
|k − �| ≤ dk , thus getting for their sum the upper bound

C0

n∑
k=n0

l−k>dk

P(Ak)P(Al) + dn

n∑
k=n0

P(Ak) ≤
(

C0

2
+ dn

E(
n)

)
(E
n)

2.

But dn/E(
n) → 0 by (22), so that the Kochen–Stone lemma [Durrett (2010),
Exercise 2.3.20] gives

P(An i.o.) ≥ lim sup
n→∞

(E
n)
2

E(
2
n)

≥ 1/C0.(23)

To prove that {An i.o.} holds a.s., we will prove that it is a tail event, that is, that it
belongs to the σ -algebra

⋂
t>0 σ(B(s) : |s| ≥ t), and we will apply Theorem 8.2.7

from Durrett (2010).
To see this, fix t0 > 0. A function f : R → R belongs to An if its values on a

certain interval around zero satisfy certain conditions imposed by the sets whose
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intersection defines An. For n that satisfies t0 < ε(xα ∧ |xβ |)c2n log log cn, we iso-
late the conditions concerning the values of f on [−t0, t0] and write

An = R(hcn,xc2n log log cn, ε, ε)

= C
(
0, c2n(log log cn)xαε/(1 − ε), cnhα

)
∩ C

(
0, c2n(log log cn)xβε/(1 − ε), cnhβ

) ∩ Cn

= C
(
0, t0/(1 − ε), cnhα

) ∩ C
(
t0/(1 + ε), c2n(log log cn)xαε/(1 − ε), cnhα

)
∩ C

(
0,−t0/(1 − ε), cnhβ

)
∩ C

(−t0/(1 + ε), c2n(log log cn)xβε/(1 − ε), cnhβ

) ∩ Cn

= C
(
0, t0/(1 − ε), cnhα

) ∩ C
(
0,−t0/(1 − ε), cnhβ

) ∩ A′
n,

where Cn is the intersection of the remaining sets involved in the definition of An,
and

A′
n := C

(
t0/(1 + ε), c2n(log log cn)xαε/(1 − ε), cnhα

)
∩ C

(−t0/(1 + ε), c2n(log log cn)xβε/(1 − ε), cnhβ

) ∩ Cn.

Now {An i.o.} ⊂ {A′
n i.o.}, but also {A′

n i.o.} ⊂ {An i.o.} since every function f in
the first set belongs to C(0, t0/(1 − ε), cnhα) ∩ C(0,−t0/(1 − ε), cnhβ) provided
that max{|f (s)| : |s| ≤ t0} < ε2(hα ∨ hβ)cn. And the last inequality holds for all
large n because c > 1, and f is bounded on [−t0, t0], being continuous. Since for
all large n we have A′

n ∈ σ(B(s) : |s| ≥ t0), it follows that {An i.o.} ∈ σ(B(s) : |s| ≥
t0), and this proves our assertion. �

The next lemma shows a version of near independence for the family of sets
{An :n ≥ 1}, defined in the proof of Proposition 13, and uses the notation set up in
that proof.

LEMMA 14. There are �,C0 ∈ (0,∞) depending on h,x, ε such that

P(Ak ∩ Al) ≤ C0P(Ak)P(Al)

for k ≥ n0 and

l − k > � + 1

2

log logk

log c
.(24)

PROOF. For the pair (h,x) ∈ S , we will use the notation of Section 2.
We assume that xN > 0. Let p equal max(I \ I∞) if the set is nonempty, and

∞ otherwise. For any integer n ≥ n0, define

Jn := c2n log log cn[xp(1 + ε), xN(1 + ε)].
Recall that x∞ = −x1. Jn is the interval where An imposes restrictions on B .
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Al is the intersection of several requirements the first of which [the two con-
finement sets of E0 in (10)] refers to the time interval

Fl := c2l log log cl[εxβ, εxα].
We would like to have l so large that Jk will be in the interior of Fl , so that knowing
that Ak happened does not influence much the probability of Al . We ensure that
Jk ⊂ Fl/2 by assuming that

l > k + 1

2 log c

{
log

( |xp|
|xβ | ∨ xN

xα

)
+ log

2(1 + ε)

ε

}
(25)

for the rest of the proof. Note that (25) is implied by (24) with an appropriate
choice of �. We let

A+ = {B|[0,∞) :B ∈ A}, A− = {B|(−∞,0] :B ∈ A}.
It is enough to prove the claim of the lemma for the pairs {A+

k ,A+
l }, {A−

k ,A−
l } as

they are independent. We will do it for the first. Let

�l := hαcl[−ε2,1] ⊃ hαcl

[
−ε2

2
,1 − ε2

2

]
=: �̃l

and

A+
k,l := A+

k ∩ {B(s) ∈ �l for 0 < s ∈ Jk}.
Paths B in Al satisfy B(Fl ∩ [0,∞)) ⊂ �l . So that A+

k ∩ A+
l = A+

k,l ∩ A+
l since

Jk ⊂ Fl . Let A+
l (Jk) denote the paths that satisfy the restrictions put by A+

l for
the time interval Jk , and define A+

l (Jl \ Jk) analogously. Denote by jk the right
endpoint of Jk , and let

q(x) := P
(
A+

l (Jl \ Jk)|Bjk
= x

)
.

We have

A+
k ∩ A+

l = A+
k,l ∩ A+

l ⊂ A+
k,l ∩ A+

l (Jl \ Jk),

and the probability of the right-hand side can be written as

E[1A+
k,l

q(Bjk
)] ≤ P(A+

k )max
�l

q.

On the other hand,

P(A+
l ) = P

(
A+

l (Jl \ Jk) ∩ A+
l (Jk)

) = E
[
1A+

l (Jk)
q(Bjk

)
]

≥ P
(
A+

l (Jk) and Bjk
∈ �̃l

)
min
�̃l

q.

So that

P(A+
k ∩ A+

l )

P(A+
k )P(A+

l )
≤ max�l

q

min�̃l
q

P
(
A+

l (Jk) and Bjk
∈ �̃l

)−1
.(26)
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To bound the last term, note that B|[0,∞) ∈ A+
l (Jk) follows from B([0, jk]) ⊂

�̃�. The restriction (24) on l − k shows that

c2k−2l log log ck < c−2�

(
1 + log log c

log 2

)
=: c1.

This and Brownian scaling yield the lower bound

P
(
A+

l (Jk) and Bjk
∈ �̃l

) ≥ P
(
B

([0, c1(1 + ε)xN ]) ⊂ hα

[
−ε2

2
,1 − ε2

2

])
,

which is positive and does not depend on k, l.
To bound the fraction in the right-hand side of (26), note that with fl the right

endpoint of Fl , the event A+
l (Fl \ Jk) is equivalent to B([jk, fl]) ⊂ �� and Bfl

∈
[0, (1−ε)hαcl], by the definition of the confinement set C(0, xαε/(1−ε), hα). Let
r(x, y) denote the density of B(fl) for Brownian motion started from x at time jk

restricted to this event. By the Markov property, we have

q(x) =
∫

r(x, y)P
(
A+

l (Jl \ Fl)|B(fl) = y
)
dy,

which gives the bound

max�l
q

min�̃l
q

≤ max
{
r(x1, y)

r(x2, y)
:x1 ∈ �l, x2 ∈ �̃l, y ∈ [0, (1 − ε)hαcl]

}
.

With the notation introduced in the beginning of Section 8, we have

r(x, y) = Q(1+ε2)hαcl

(fl − jk, x + ε2hαcl, y + ε2hαcl),

and (36), (37) give that the above maximum is bounded above by a constant (that
depends only on ε) as long as

fl − jk

(1 + ε2)2h2
αc2l

≥ t0(ε).

This holds for k, l satisfying (24) provided that � is large enough. �

From geometric sequences to the full family. We will now show that Proposi-
tions 12, 13 imply the result for the full family. As noted in Vervaat (1990), this can
be done easily using the scaling properties of the rate function I and the regular
variation of the scaling factor a2 log loga in (19).

PROPOSITION 15. With probability one, every sequence (m(Ztk ))k≥1 with
tk → ∞ has a convergent subsequence, and the set of all possible limit points
is exactly

K := {μ ∈ M : I (μ) ≤ 1}.
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PROOF. For a measure μ ∈ M and a > 0, let μa ∈ M denote the rescaled
version of μ defined on every product of measurable sets H × X ⊂ [0,∞) × R as

μa(H × X) = aμ(a−1H × a−2X).

Then for all continuous functions ψ : [0,∞) × R → R with compact support,∫
ψ(h,x) dμa(h, x) = a

∫
ψ(ah,a2x)dμ(h, x).(27)

Also, fμa (t) = a2fμ(t/a) for all t ≥ 0, and the analogous statement holds for gμa .
Consequently, I (μa) = I (μ).

For t > 1, let μ(t) = m(Zt). We will use the following claim.

CLAIM. If μ ∈ M, and for two sequences (tk)k≥1, (pk)k≥1 with limk→∞ tk =
∞, limk→∞ tk/pk = a ∈ (0,∞) we have μ(pk) → μ, then μ(tk) → μ1/a .

PROOF. Take ψ : [0,∞) × R → R continuous of compact support. For k ≥ 1,
we may assume that pk, tk ≥ 1, and let

ak := tk

pk

, βk := log logpk

log log tk
.

Then
∫

ψ(h,x) dμ(tk)(h, x) equals∫ ∞
0

ψ

(
t,

xB(akpkt)

a2
kp

2
k log log tk

)
dt = a−1

k

∫ ∞
0

ψ

(
a−1
k s, a−2

k βk

xB(pks)

p2
k log logpk

)
ds

= a−1
k

∫
ψ(a−1

k h, a−2
k βkx) dμ(pk)(h, x)

= aa−1
k

∫
ψ(aa−1

k h, a2a−2
k βkx) dμ

(pk)
1/a (h, x).

The last equality follows form (27). Since aa−1
k → 1 and μ

(pk)
1/a → μ1/a , it suffices

to prove that∫
ψ(aa−1

k h, a2a−2
k βkx) dμ

(pk)
1/a (h, x) −

∫
ψ(h,x) dμ

(pk)
1/a (h, x) → 0

as k → ∞.
Let C be the set of points in [0,∞)× R with Euclidean distance at most 1 from

the support of ψ , and h∗ the maximum of the first projection of C. For ε > 0, using
the compactness of C, the uniform continuity of ψ , and the fact that μ

(pk)
1/a ∈ M,

we obtain that for large k, the absolute value of the last difference is bounded from
above by ∫

C
εdμ

(pk)
1/a (h, x) ≤ εh∗.

This proves the claim. �
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Now let tk → ∞ be a sequence. We fix a c > 1, and write this sequence uniquely
as tk = akc

ik with integers ik and real numbers ak ∈ [1, c).
Regarding the first assertion of the proposition, note that by Proposition 12,

m(Zcik ) has limit points in K. Pick one, say μ, and then passing to a further sub-
sequence along which ak converges to some limit a(c) ∈ [1, c], we see using the
claim above that μ1/a(c) is a limit point along the sequence tk .

For the second assertion, we have by Propositions 12, 13 that almost surely, all
limit points along ck are exactly the elements of the set K. It remains to show that
along the above sequence (tk)k≥1, we do not get limit points outside K. If μ′ is a
limit point along tk , then as above, we pass to a further subsequence along which
ak converges to some limit a(c) ∈ [1, c]. It follows again from the claim above that
along cik , μ′

a(c) is a limit point. By Proposition 12, we have I (μ′
a(c)) ≤ 1. So that

I (μ′) = I (μ′
a(c)) ≤ 1, that is, μ′ ∈ K. �

7. The limit points of the motion. The continuous time and space analogue
of Sinai’s walk is diffusion in random environment, that is, the diffusion X with
X(0) = 0 that satisfies the formal differential equation

dX(t) = dβ(t) − 1
2V ′(X(t)) dt.(28)

Here, β is standard Brownian motion, and V , the environment, is a random func-
tion we pick before running the diffusion. For the rigorous definition of this diffu-
sion, as well as its relation with Sinai’s walk; see Shi (2001), Seignourel (2000).

In this work, we will consider diffusions run in a Brownian-like environment.
That is, we require from the measure governing V to be such that there is, on
a possibly enlarged probability space, a standard two-sided Brownian motion B

such that for all n ≥ 1, we have

P
(

sup
|x|≤n

|V (x) − B(x)| ≥ C1 logn
)

≤ 1

nC2
(29)

for some constants C1,C2. For these environments, the diffusion does not explode
in finite time. Moreover, its behavior is dominated by the environment, and one
aspect of this phenomenon is captured by the following result. Recall the definition
of xB from Section 2.

THEOREM 16 [Hu (2000), Theorem 1.1]. Assume that V satisfies (29). For
every δ1 > 0, there exists C, t0 > 0 so that for t ≥ t0 and λ ≥ 1, we have

P
(|X(t) − xB(log t)| > λ

) ≤ C

(
log log t√

λ
+ 1

(log t)1−δ1

)
.(30)
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The limit points of the diffusion. For the diffusion defined by (28), where V

satisfies (29), we have the following analog of Theorem 1.

THEOREM 17. With probability 1, the limit points, as a → ∞, in the topol-
ogy of local weak convergence of the graph occupation measures of the random
functions

ya := X(eat )

a2 log loga
, t ≥ 0,

constitute the set

K := {μ ∈ M : I (μ) ≤ 1}.
Also, there is at least one limit point along every sequence an → ∞.

PROOF. Note that if fn, gn is a sequence of functions on [a, b] with m(fn) →
μ and fn − gn → 0 in (Lebesgue) measure, then m(gn) → μ. Indeed, assuming
that for bounded, uniformly continuous ϕ we have∫ b

a
ϕ(t, fn(t)) dt →

∫
[a,b]×R

ϕ dμ,

we break down the integral to the set where |fn(s) − gn(s)| < ε and its com-
plement. Since ϕ is uniformly continuous, on this set the integrand is close
to ϕ(t, gn(t)), while the measure of the complement of this set is small. Thus
m(gn) → μ.

Using this observation, Proposition 15 and the definition of the topology of M,
it is clear that to prove Theorem 17, it suffices to show that for every 0 < ε < M <

∞, as a → ∞ we have

L{s ∈ [ε,M] : |X(eas) − xB(as)| > εa2 log loga} → 0.

We prove this for 0 < ε < M = 1, as this is in no way different than the general M

case. By changing variables w = as, the above quantity will become∫ a

aε

1(|X(ew) − xB(w)| > εa2 log loga)

a
dw

≤
∫ ∞
aε

1(|X(ew) − xB(w)| > εw2 log logw)

w
dw.

If the last integral is finite for some a > 0, then it converges to 0 as a → ∞. Its
expectation is bounded using Theorem 16, provided a satisfies εa > log t0 and
(εa)2 log log(εa) > 1, by∫ ∞

aε

1

w
P

(|X(ew) − xB(w)| > εw2 log logw
)
dw

≤
∫ ∞
aε

c

w

(
logw√

w2 log logw
+ 1

w1−δ1

)
dw < ∞.
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So that the integral is finite with probability 1. �

The limit points of the walk. To prove Theorem 1, we will embed the walk it
in a diffusion generated by an appropriate random environment V .

Let (Sn)n≥1 be Sinai’s walk with Var(log((1 − p1)/p1)) = 1. Define the step
potential V as follows: V (0) = 0, and for every n ∈ Z, V is constant in [n −
1, n), and jumps at n by V (n) − V (n−) = log((1 − pn)/pn). This potential can
be placed on a possibly enlarged probability space with a two-sided Brownian
motion B so that (29) is satisfied. This follows from the strong approximation
theorem of Komlós–Major–Tusnády [Theorem 1 in Komlós, Major and Tusnády
(1976)]. The theorem requires that Y := log((1 − p1)/p1) has E(eλY ) < ∞ for λ

in a neighborhood of 0, which is exactly the assumption we made for the law of p

in the Introduction.
The walk can be embedded in the diffusion X run in the environment V as

follows. Let t0 = 0 and tn = inf{t > tn−1 : |X(t) − X(tn−1)| = 1} for n ≥ 1.

THEOREM 18 [Hu and Shi (1998), Proposition 9.1]. (X(tn))n≥1 has the same
law as (Sn)n≥1. Moreover, {tn+1 − tn :n ≥ 1} are i.i.d. with distribution that of the
first hitting time T of 1 for reflected standard Brownian motion.

We will need the fact that the law of 1/T has exponential tails. This holds since
if 1/T > x > 0, then the maximum or the negative of the minimum of Brownian
motion on [0,1/x] is at least 1. Since the maximum has the same distribution as
|B(x)|, we have

P(1/T > x) ≤ 2P
(|B(1/x)| > 1

) = 4P
(
B(1) >

√
x
) ≤ ce−x/2.(31)

PROOF OF THEOREM 1. Let t (·) be the the piecewise linear continuous ex-
tension of tn so that t (n) = tn. To prove the theorem, it suffices to show that for
every 0 < ε < M < ∞, as a → ∞,

S(eas) − xB(as)

a2 log loga
→ 0 in measure on [ε,M], a.s.

Since |S(s) − X(t(s))| ≤ 1, it suffices to show the previous claim with X(t(eas))

instead of S(eas). We break this down into two parts, namely

X(t(eas)) − xB(log t (eas))

a2 log loga
→ 0,

xB(as) − xB(log t (eas))

a2 log loga
→ 0(32)

in measure on the interval [ε,M] as a → ∞. We assume for simplicity that M = 1.
Proceeding the same way as for the diffusion, for the first claim it suffices to prove
that ∫ ∞

εa

1

w
1
(|X(t(ew)) − xB(log t (ew))| > εw2 log logw

)
dw < ∞



PATTERNS IN SINAI’S WALK 1925

for some a > 0. The function t has derivative equal to tn − tn−1 in (n − 1, n),
and undefined in n for every positive integer n. The integral over the w’s with
1/t ′(ew) > logw has expectation bounded above by

E
∫ ∞
εa

1

w
1
(
1/t ′(ew) > logw

)
dw =

∫ ∞
εa

1

w
P

(
1/t ′(ew) > logw

)
dw,

which is finite because 1/t ′ has the same distribution as 1/T in (31). For the rest
of the integral, we change variables r = log t (ew) and reduce the problem to the
finiteness of∫ ∞

aε

1

w

t(ew)

ew

1(1/t ′(ew) ≤ logw)

t ′(ew)
1
(|X(er) − xB(r)| > εw2 log logw

)
dr.

By the law of large numbers and the fact that ET = 1, we have t (s)/s → 1. So
t (ew)/ew → 1 as r → ∞, which shows that w/r → 1 as well. Thus the above
integral is finite if∫ ∞

aε

log r

r
1
(|X(er) − xB(r)| > (ε/2)r2 log log r

)
dr

is finite. This follows by taking expectations and using Theorem 16.
For the second convergence claim in (32), it suffices to show that∫ ∞

2

1

w
1
(
xB(w) �= xB(log t (ew))

)
dw < ∞.

Note that xB(w) �= xB(log t (ew)) implies that xB has a jump between w and
log t (ew). By the law of large numbers, for all w large, this interval is contained in
(w − 1,w + 1). So it suffices to show the finiteness of the integral∫ ∞

2

1

w
1
(
xB has a jump in (w − 1,w + 1)

)
dw.

Applying Lemma 19, we bound its expectation from above by

c

∫ ∞
2

1

w
log

w + 1

w − 1
dw < ∞. �

In the proof of Theorem 1, we use the next lemma, which gives a bound on the
probability that xB jumps on an interval.

LEMMA 19. The process xB satisfies P(xB(s) �= xB(t)) ≤ c| log(t/s)| for
some finite constant c and all t, s > 0.

PROOF. This holds because the jumps of xB(et ) form a translation-invariant
point process on R with finite mean density c. Rather than proving this, we will
invoke the exact formula for the above probability. Assuming that s < t , and using
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the scaling property of xB [see (2)], the probability in question equals P(xB(1) �=
xB(t/s)). However,

P
(
xB(1) = xB(t/s)

) =
(

t

s

)−2 5 − 2e−(t/s)+1

3

as is shown in the proof of Theorem 2.5.13 in Zeitouni (2004). And this gives
easily the required bound. �

PROOF OF COROLLARY 3. In fact, we will prove that if γ : [0,1] → [0,∞) is
differentiable with (t �→ t3γ (t)) nondecreasing, then

lim sup
a→∞

1

a2 log loga

∫ 1

0
γ (t)S(eat ) dt = 4

π2 s3
0a(s0),(33)

where s0 is any root of 2
∫ 1
s γ = sγ (s) in (0,1).

For H : [0,∞) × R → R with compact support and whose projection of the
set of the discontinuity points in the x-axis has Lebesgue measure zero, the map
(M � μ �→ ∫

H dμ) is continuous in the weak topology, because any μ ∈ M has
first projection Lebesgue measure. Combining this with the definition of the graph
occupation measure, we get

lim sup
a→∞

∫ ∞
0

H

(
t,

S(eat )

a2 log loga

)
dt

(34)

= sup
{∫

H(x,y) dμ(x, y) :μ ∈ M, I (μ) ≤ 1
}
.

Everywhere below, we use the abbreviation A := 8/π2.
For the choice H(x,y) := γ (x)y1x∈[0,1],|y|≤A+1 the limits in equations (33),

(34) agree because by Theorem 1.3 in Hu and Shi (1998), it holds

lim
n→∞

max1≤k≤n |Sk|
(logn)2 log log logn

= A.

It remains to evaluate the supremum in (34) for this choice of H . If γ is identically
zero, the corollary holds trivially. So we assume that γ is positive somewhere in
[0,1]. Since γ is nonnegative, it follows from the form of the rate function I that
the above supremum equals

sup
{∫ 1

0
γ (t)f (t) dt :f (0) = 0, f nondecreasing,

∫ 1

0
t−2 df (t) ≤ A

}
.

We did not include the factor 1|f (t)|≤A+1 inside the integral because the conditions
on f imply that 0 ≤ f (t) = ∫ t

0 df (s) ≤ ∫ 1
0 s−2 df (s) ≤ A.

For a given nondecreasing f ≥ 0, define F(t) := ∫ t
0 s−2 df (s), so that f (t) =∫ t

0 s2 dF(s). We use this representation of f and apply first Fubini’s theorem and
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then integration by parts in
∫ 1

0 γ (t)f (t) dt to write it as∫ 1

0
F(s)r ′(s) ds,

where r(s) := −s2 ∫ 1
s γ (t) dt . Using the fact that (t �→ t3γ (t)) is nondecreasing in

[0,1], we find that r ′ is nonpositive before s0 and nonnegative after s0. And since
F ≤ A, the above integral is bounded above by

−Ar(s0) = A

2
s3

0γ (s0).

The last equality follows from r ′(s0) = 0.
For the choice f γ (t) = s2

0A1(s0,∞), we get
∫ 1

0 γ (t)f γ (t) dt = As2
0

∫ 1
s0

γ (t) dt =
As3

0γ (s0)/2, so that the supremum is achieved. Clearly, the only measure that
achieves the supremum is the element of M that puts all its mass on the graph
of f γ .

Finally, for the case of the corollary, γ (t) = t r , we compute s0 = ηr :=
( 2
r+3)1/(r+1), while the value of the supremum is (A/2)ηr+3

r . �

8. The probability of confinement. In this section, we compute the asymp-
totic decay of the probabilities that Brownian motion or Brownian motion reflected
from its running minimum stay on certain bounded sets for large intervals of time.

Fix h > 0, x ∈ (0, h), t > 0, and let Qh(t, x, ·) be the density of the measure

S �→ Px

(
Bt ∈ S,B[0, t] ⊂ (0, h)

)
.

Proposition 8.2 in Port and Stone (1978) gives

Q1(t, x, y) = 2
∞∑

n=1

e−n2π2t/2 sin(nπx) sin(nπy).(35)

Using this and Brownian scaling, we get that there exists a universal constant c2
so that for all t ≥ 1, x, y ∈ [0, h], we have

Qh(t, x, y) ≤ c2h
−1 exp

(
−π2

2

t

h2

)
.(36)

Moreover, for every ε > 0 there exists a constant c1 = c1(ε) so that for all t ≥ 1,
and x, y ∈ [εh, (1 − ε)h], we have

Qh(t, x, y) ≥ c1(ε)h
−1 exp

(
−π2

2

t

h2

)
.(37)

Recall from (7) the notation for the past minimum of a given process, and from
(6) the process R = B − B . The probability that R stays confined in an interval
for a large time interval [0, t] decays exponentially in t . In the next lemma, we
compute the exact rate of decay.
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LEMMA 20. For K > 0, ε ∈ [0,1/2), w ∈ [0,1) and z ∈ (0,1),

(a) lim
t→∞

1

t
log Pz

(
B([0, t]) ⊂ [0,1],B(t) ∈ [ε,1 − ε]) = −π2

2
,

(b) lim
t→∞

1

t
log P

(
R([0, t]) ⊂ [0,1],R(t) ∈ [0,1 − ε]|R(0) = w

) = −π2

8
,

(c) lim
t→∞

1

t
log P0

(
R([0, t]) ⊂ [0,1],B(t) ≥ −K

) = −π2

2
.

For ε1 ∈ (0,1/2) fixed, the convergence in (a) is uniform over z ∈ [ε1,1 − ε1],
and the convergence in (b) is uniform over w ∈ [0,1 − ε1].

Comparing (b) and (c), note the drastic effect of the restriction B(t) ≥ −K . The
process (R,−B) has the same law as (|B|,L) where L is the process of local time
at zero for the Brownian motion B . Phrased in terms of (|B|,L), the first event
requires B([0, t]) ⊂ [−1,1], the other requires additionally that L0

t ≤ K , that is,
B does not hit zero many times. This restriction makes the second event more like
B([0, t]) ⊂ (0,1], that is, B is essentially restricted to an interval of half size than
before.

PROOF. (a) Follows by integrating (36) and (37) over y.
(b) Since R has the same law as the absolute value of Brownian motion, the

claim follows by the scaling property of Brownian motion and (a).
(c) Lower bound: Pick an open interval V of length 1 around 0 that does not

contain −K . Then

B([0, t]) ⊂ V implies R([0, t]) ⊂ [0,1], Bt ≥ −K.

By (a) applied with ε = 0, the probability of the first event decays like exp(−t[π2/

2 + o(1)]) as t → ∞.
(c) Upper bound: Let At denote the event in question. Subdivide the rectangle

[0, t]×[−K,0] into n×n small isomorphic rectangles. Each rectangle is a product
of a time interval Ti := [(i − 1)t/n, it/n] with i = 1,2, . . . , n and a space interval.
Consider the graph of the process B , and let J be the union of the subdivision
rectangles it intersects. Fix m ≥ 1. When B(t) ≥ −K , we have:

• J = ⋃n
i=1 Ti × Bi for some space intervals Bi .

• Let N = {i : length Bi ≤ (m + 2)K/n}. Then |N | ≥ (1 − 1/m)n.

The first claim is clear. For the second, note that on the time intervals Ti for i /∈ N
the process B decreases by at least mK/n. But the total decrease is at most K , so
there are at most n/m such indices i. We have

P(At) = P
(
B(t) ≥ −K, graph B[0, t] ⊂ graph B[0, t] + {0} × [0,1])

≤ ∑
J

P(graph B[0, t] ⊂ J + {0} × [0,1]).
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Here the sum is over all unions J of rectangles satisfying the conditions above. By
the Markov property, we get the upper bound

∑
J

n∏
i=1

max
x

Px

(
B(Ti ) ⊂ Bi + [0,1])

≤ 2(n2) max
x

(
Px

(
B[0, t/n] ⊂ [0,1 + (m + 2)K/n]))|N |

.

The inequality follows by considering only the indices i ∈ N . Brownian scaling,
part (a) with ε = 0 and the fact |N | ≥ n(1 − 1/m) gives

lim sup
t→∞

1

t
log P(At ) ≤ −1

n

(
π2

2

1

(1 + (m + 2)K/n)2

)
n(1 − 1/m).

Since this holds for m,n arbitrary, we let n = m2 → ∞ to get the desired upper
bound. �

Below, we will use the operator Rx of reflection from the past infimum, defined
in (11), and the notation R = R0B from (6).

For 0 ≤ w ≤ x < y and 0 < h1 < h2, call �(w,x, y,h1, h2) the set

{Rwf ∈ C(x, y,h1) ∩ HR(y,h1) ∩ B(y,h2)}
∩ {

f − f
(
x(1 + δ)

) ≤ ε2 on [x(1 + δ), y(1 + δ)]},
which is involved in the definition of R(h,x, δ, ε). More precisely, the set Ei cor-
responding to an index i ∈ I∞, defined in Section 4, is exactly the set

�
(
wq(1 + δ),wi, xi, hi, hi+

)
.

The following lemma computes for large M the probability that the scaled
Brownian motion B(M·) is in the special sets C,H,B,�, defined in Section 4
and above.

LEMMA 21. Let 0 ≤ x < y,0 < h1 < h2, h > 0, and small enough ε, δ > 0.
Uniformly on z ∈ [0, h − εh], z1 ∈ [0, h1 − εh1], z2 ∈ R, as M → ∞ we have:

(a)
1

M
log P

(
B(M·) ∈ C(x, y,h)|B(

Mx(1 + δ)
) = z

) → −π2

2

y − x − δ(x + y)

h2(1 + ε2)2 ;

(b)
1

M
log P

(
B(M·) ∈ H(y,h)|B(

My(1 − δ)
) = z

) → −π2

2

δy

h2(1 + ε)2 ;

(c)
1

M
log P

(
B(M·) ∈ B(y,h2)|B(My) = z1

) → −π2

2

δy

h2
2(1 + ε + ε2)2

;

(d)
1

M
log P

(
B(M·) ∈ �

∣∣∣∣R
(
Mx(1 + δ)

) = z1
B

(
Mx(1 + δ)

) = z2

)

→ −π2

8

(
y − x − δx

h2
1

+ δy

h2
2(1 + ε)2

)
,
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where � := �(w,x, y,h1, h2) and the events C,H,B,� depend on ε, δ.

PROOF. (a) It follows from Lemma 20(a) and the scaling property of Brown-
ian motion.

(b) The exponential rate of decay of the event in question is the same as the one
of confinement on [−εh,h] between times y(1 − δ), y and ending in [0, (1 − ε)h].
Because the difference of the two events is contained on the event of confinement
on the smaller interval [−εh+ε2h,h], which decreases exponentially faster. Thus,
the result follows again from Lemma 20(a).

(c) The same reasoning as in part (b) proves this claim too.
(d) We can assume that w = 0. Then we let �(x, y,h1, h2) = �(0, x, y,h1, h2),

and �′(x, y,h1, h2) to be only the first set in the intersection defining �(x, y,h1,

h2); that is, we remove the restriction f −f (x(1+δ)) ≤ ε2 on [x(1+δ), y(1+δ)].
We first prove the claim with �′ in place of �. To this aim, we observe that

lim
M→∞

1

M
log P

(
R(M·) ∈ C(x, y,h1)|R(

Mx(1 + δ)
) = z1

)
(38)

= −π2

8

y − x − δ(x + y)

h2
1

,

lim
M→∞

1

M
log P

(
R(M·) ∈ HR(y,h1)|R(

My(1 − δ)
) = z1

) = −π2

8

δy

h2
1

,(39)

lim
M→∞

1

M
log P

(
R(M·) ∈ B(y,h2)|R(My) = z1

) = −π2

8

δy

h2
2(1 + ε)2

,(40)

where the convergence is uniform over z1 ∈ [0, h1 − εh1].
The first expression follows from Lemma 20(b). For the second, an upper bound

is given by the same relation because the event requires confinement on [0, h1] for
the time interval [My(1 − δ),Myδ]. For a lower bound, we will consider two
events whose intersection is inside the event of interest and whose probability we
will estimate. The first event{

In the time interval [My(1 − δ),My(1 − δ) + 1],
R visits 0, stays in [0, h1], ends in [0, h1 − εh1]

}

realizes the requirement of the visit to zero. Given that R(My(1 − δ)) = z1 ∈
[0, h1 − εh1], this event has a positive probability independent of M . The second
event is {

In the time interval [My(1 − δ) + 1,My],
R stays in [0, h1], ends in [0, h1 − εh1]

}
.

To compute the probability of the intersection, we apply the Markov property at
time My(1 − δ) + 1. Then the probability of the second event, conditioned on
the value of R at My(1 − δ) + 1, will decay exponentially as M → ∞ with the
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same rate as if R was staying in [0, h1] in the slightly larger time interval [My(1−
δ),My] and was ending in [0, h1 − εh1]. So that the lower bound obtained for the
left-hand side of (39) coincides with the upper bound. Equation (40) is proved in
the same way.

Relation (d) with �′ is place of � now follows by applying the Markov property
and using (38), (39), (40).

To prove (d) itself, we note that the left-hand side increases if we put �′ in place
of �. This observation, together with the above, gives an upper bound, but we can
show a lower bound, too.

Let �M be the set of continuous functions f on [0,∞) with

f
(
x(1 + δ) + M−1) − f

(
x(1 + δ)

) ≤ −h2(1 + ε),

f (s) − f
(
x(1 + δ)

)
< ε2, Rf (s) ≤ h1 − εh1

for s ∈ [x(1 + δ), x(1 + δ) + M−1], and EM the set

C
(
x + (

M(1 + δ)
)−1

, y, h1
) ∩ HR(y,h1) ∩ B(y,h2).

Then

{B(M·) ∈ �M} ∩ {R(M·) ∈ EM} ⊂ {B(M·) ∈ �(x, y,h1, h2)}.
To see this, note that the inclusion holds with �′ in place of �. But because at x(1+
δ)+M−1 the process B(M·)−B(Mx(1 + δ)) takes a value less than −h2(1 + ε),
and after that R stays below h2(1 + ε), it follows that B(M·) − B(Mx(1 + δ))

stays negative in the interval [x(1 + δ) + M−1, y(1 + δ)]. And of course it stays
below ε2 in [x(1 + δ), x(1 + δ) + M−1] because of �M .

By applying the Markov property at time Mx(1 + δ) + 1, we get that the
probability of the above intersection, conditioned on the values of R(Mx(1 +
δ)),B(Mx(1 + δ)) as in (d), is at least the product of

P
(
B(M·) ∈ �M

∣∣∣∣R
(
Mx(1 + δ)

) = z1
B

(
Mx(1 + δ)

) = z2

)
(41)

and

inf
z3∈[0,h1−εh1]

P
(
R(M·) ∈ EM |R(

Mx(1 + δ) + 1
) = z3

)
.(42)

The probability in (41) is positive and does not depend on M . The asymptotic
decay as M → ∞ for the probability in (42) is computed as in the case of �′. The
change in the restriction interval from [Mx(1 + δ),My(1 − δ)] to [Mx(1 + δ) +
1,My(1 − δ)] does not change the result. �
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9. The topology of M and step functions. This section contains the proofs
of the topological lemmas used in Sections 3, 4 and 6 for the large deviation prin-
ciple and the functional law of the iterated logarithm for the environment.

Lemma 6 is a consequence of Lemmas 22 and 23 below.

LEMMA 22. Let μ ∈ M and (h,x) ∈ S . Assume that

there is x′ ∈ R
N so that (hi, x

′
i) ∈ supp(μ) for all i ∈ I and x′

i > xi

if xi > 0 and x′
i < xi if xi < 0.

(43)

Then the set U (h,x, ε) defined in (4) is a neighborhood of μ for every ε > 0.

The proof is straightforward using the definition of weak convergence, so we
omit it.

LEMMA 23. For each μ ∈ M and A < I (μ), there is (h,x) ∈ S satisfying
(43) so that I (h,x) > A.

PROOF. We will abbreviate fμ,gμ to f,g. We also remind the reader that for
a bounded function F , a nondecreasing function α, both defined on a finite closed
interval [a, b], and a partition P = {a =: t0 < t1 < · · · < tn := b} of [a, b], the
lower Stieltjes sum L(P,F,α) is defined as

n∑
i=1

inf{F(t) : t ∈ [ti−1, ti]}(α(ti) − α(ti−1)
)
.

We consider three cases for μ.
CASE 1. 0 < sμ− < sμ+ = ∞.
We can write A = (A1 + A2)π

2/2 + A3π
2/8 for some Ai ’s with∫ sμ−

0
t−2 df (t) > A1,

∫ sμ−

0
t−2 dg(t) > A2,

∫ H

sμ−
t−2 df (t) > A3,

where H ∈ (sμ−,∞) is large enough. Since f,g are left continuous at sμ−, we
can find two finite subsets P1, P2 of [0, sμ−) so that P1 ∩ P2 = {0}, and when con-
sidered as partitions of the intervals [0,max P1], [0,max P2], the corresponding
lower Stieltjes sums satisfy

L(P1, t
−2, f ) > A1, L(P2, t

−2, g) > A2.(44)

We can also find a finite subset P3 of [sμ−,H ] containing sμ−, with

L(P3, t
−2, f ) > A3.(45)

We can assume that f |P1 ∪ P3, g|P2 are strictly increasing. In particular,
f (ζ1), g(ζ2) > 0, with ζi := min(Pi \ {0}) for i = 1,2. We can also assume that

(h, f (h)) ∈ supp(μ) for h ∈ P1 ∪ P3,
(46)

(h,−g(h)) ∈ supp(μ) for h ∈ P2.
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If, for example, this is not the case for an h ∈ P1, we go as follows. The point

h′ := sup{η ≤ h : (η, f (η)) ∈ supp(μ)}
satisfies h′ < h by the assumption and the left continuity of f , f (h′) = f (h) by
the minimality property in the definition of f , and (h′, f (h′)) ∈ supp(μ). We can
find an h′′ < h′ near h′ such that (h′′, f (h′′)) ∈ supp(μ), h′′ /∈ P2, and f (h′′) is
as close to f (h) as we want, because f is left continuous. Finally, we replace h

with h′′ in P1. The lower Stieltjes sum over the new partition is larger than before
because t−2 is decreasing.

Also, for the ηi := max Pi for i = 1,2, we can arrange that η1 < η2 because
(sμ−,−g(sμ−)) ∈ supp(μ).

Let h ∈ R
N be the vector having coordinates the elements of the set (P1 ∪ P2 ∪

P3) \ {0} ordered as h1 < · · · < hN , and define the vector x(ε) ∈ R
N as

xi(ε) :=
{

f (hi) − ε, if hi ∈ P1 ∪ P3,
−g(hi) + ε, if hi ∈ P2,

for all i ∈ {1, . . . ,N} and all ε ∈ [0, f (ζ1) ∧ g(ζ2)).
Using the notation of Section 2, we note that for ε small enough, as above, all the

pairs (h,x(ε)) give rise to the same index set I∞, and we have I∞ = {i :hi ∈ P3}
because hi ≤ η1 < η2 for all i with hi ∈ P1, and η2 = hi0 with xi0(ε) < 0. Also

I (h,x(ε)) = π2

2

∑
i∈I\I∞

|xi(ε) − xi−(ε)|
h2

i

+ π2

8

∑
i∈I∞

|xi(ε) − xi−(ε)|
h2

i

and

lim
ε→0

I (h,x(ε)) = I (h,x(0)) > A.

The last inequality follows from (44), (45), the equalities

∑
i∈I\I∞ : xi>0

|xi(0) − xi−(0)|
h2

i

= L(P1, t
−2, f ),(47)

∑
i∈I : xi<0

|xi(0) − xi−(0)|
h2

i

= L(P2, t
−2, g),(48)

in which we use that f (0) = g(0) = 0, and the inequality

∑
i∈I∞

|xi(0) − xi−(0)|
h2

i

≥ L(P3, t
−2, f ).

The last inequality holds because the left-hand side equals exactly the Stieltjes sum
in the right-hand side plus the term corresponding to i := min I∞.

Thus, for small ε, the pair (h,x(ε)) is in S , satisfies assumption (43) because of
(46), and it has I (h,x(ε)) > A.
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CASE 2. sμ− = sμ+ = ∞.
There is H > 0 finite with

(π2/2)

∫ H

0
t−2 d(f + g)(t) > A.

Let A1,A2 be such that A = (π2/2)(A1 + A2) and∫ H

0
t−2 df (t) > A1,

∫ H

0
t−2 dg(t) > A2.

We find two finite subsets P1, P2 of [0,H ], so that P1 ∩ P2 = {0}, and when
considered as partitions of the intervals [0,max P1], [0,max P2], the correspond-
ing lower Stieltjes sums satisfy

L(P1, t
−2, f ) > A1,(49)

L(P2, t
−2, g) > A2.(50)

Again, we can assume that f |P1, g|P2 are strictly increasing, (h, f (h)) ∈ supp(μ)

for h ∈ P1, (h,−g(h)) ∈ supp(μ) for h ∈ P2, and η1 < η2, where ηi := max Pi for
i = 1,2, as before.

Pick a number η′
1 > η2 with (η′

1, f (η′
1)) ∈ supp(μ) (recall that sμ+ = ∞), and

let P3 := {η2, η
′
1}.

Let h ∈ R
N be the vector having coordinates the elements of the set (P1 ∪

P2 ∪ P3) \ {0} ordered as h1 < · · · < hN = η′
1, and the proof continues as in the

first case. Here we just note that in the resulting pairs (h,x(ε)), only one element
belongs to the final index set I∞, which is due to η′

1. The presence of η′
1 is needed

so that in the formula for I (h,x), all increments (xi − xi−)/h2
i with i ≤ N − 1 get

coefficient π2/2, and this is enough to make I (h,x) larger than A because of (49),
(50).

CASE 3. 0 = sμ− < sμ+ = ∞.
In this case, we work only with the function f and one partition. The proof is

similar to the previous case and easier.
Since the roles of f,g are symmetric, these are the only truly different cases.

�

Lemma 9 is an immediate consequence of Lemmas 24 and 25 below. The
next lemma essentially shows that the pairs (μh,x, I (h,x)) are relatively dense
in {(μ, I (μ)) :μ ∈ M}.

For L > 0, let TL be the topology of weak convergence on compact subsets of
[0,L] × R for elements of M. Note that the topology of M is the union of the
family {TL :L > 0}, which is increasing.

LEMMA 24. For every open G ⊂ M, μ ∈ G with I (μ) < ∞, and δ > 0,
there exists (h,x) ∈ S and Gh,x ∈ T2hN

so that μh,x ∈ Gh,x ⊂ G, and |I (μh,x) −
I (μ)| < δ.
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PROOF. Assume that 0 < sμ− < ∞. For 0 < b < a and f,g increasing and
left continuous on [0, a], we will use the notation

I (f, g, a, b) = π2

2

∫ b

0

1

t2 d(f + g)(t) + π2

8

∫ a

b

1

t2 df (t).

By the definition of the topology of M, there is an L > sμ− and U ∈ TL neigh-
borhood of μ such that U ⊂ G. We can also assume that I (fμ, gμ,L, sμ−) >

I (μ) − δ.
We can approximate in the Skorokhod topology the restrictions of fμ,gμ on

[0,L] by monotone left continuous step functions f (n), g(n) with finitely many
steps so that f (n), g(n) are constant on [L,∞) and [sμ− − 1/n,∞) respectively
[we use the left continuity of gμ at sμ− to satisfy that together with (51)], they do
not have common jump times, and

I
(
f (n), g(n),L, sμ−

) → I (fμ, gμ,L, sμ−).(51)

We can also assume that f (n) has a jump in (L/2,L).
Then we approximate the measure μ(· × R

+) on [0,L] by a sequence of mea-
sures on [0,∞) whose densities are right continuous step functions qn with values
0,1, finitely many steps, qn = 1 on [sμ−,∞), and qn = 0 on an interval inside
(sμ− − 2/n, sμ− − 1/n). By introducing extra jumps in qn, we can further ensure
that

qn(h) =
{

1, if h is a jump time of f (n),
0, if h is a jump time of g(n).

(52)

If fμ has a jump at sμ−, then we require in addition that

f (n) is 1/n-close to fμ at time sμ− − 1/n, and qn = 1 on [sμ− − 1/n,∞).(53)

Define the step function

un(h) =
{

f (n)(h), if qn(h) = 1,
−g(n)(h), if qn(h) = 0

at all points h ∈ [0,∞) where qn does not jump, and extend it to the remaining
finite set of points so that it is left continuous. Clearly this is a function of the form
�h,x with (h,x) ∈ S .

Let νn = m(un), the graph occupation measure of un. By our construction,
fνn = f (n), gνn = g(n), because of (52) and the right continuity of qn, νn|[0,L] ×
R → μ|[0,L] × R, sνn+ = ∞, and sνn− → sμ− because sμ− − 2/n < sνn− < sμ−.

Furthermore, by (51), the fact that sνn− → sμ−, and that any possible jump of
fμ at sμ− is treated appropriately through (53), we have

I (νn) = I
(
f (n), g(n),L, sνn−

) → I (fμ, gμ,L, sμ−) ∈ (
I (μ) − δ, I (μ)

]
.

Take now n sufficiently large so that νn ∈ U, I (νn) > I (μ) − δ, and let (h,x) ∈ S
be such that νn = μh,x. Finally, let Gh,x := U . Since f (n) has a jump in (L/2,L),
it holds 2hN > L, and thus U ∈ TL ⊂ T2hN

.
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The remaining truly different cases are sμ− = 0, sμ− = sμ+ = ∞; the proof in
these cases is similar and easier. �

LEMMA 25. If (h,x) ∈ S , and μh,x ∈ Gh,x ∈ T2hN
, then for all sufficiently

small ε, we have

{m(xB) :B ∈ R(h,x, ε, ε)} ⊂ Gh,x.

PROOF. The paths B contained in R(h,x, ε, ε) have the property that xB is a
step function whose jump times and values are close to that of �h,x in the interval
[0,2hN ]; see (13) and (14). In particular, for any δ > 0, there exists ε0 > 0 so that
for ε ∈ (0, ε0), {xB :B ∈ R(h,x, ε, ε)} is contained in the [0,2hN ]-Skorokhod ball
of radius δ about �h,x.

On the space of real left continuous functions on [0,∞) having right lim-
its, consider for L > 0 the topology of Skorokhod convergence in [0,L]. Also
let T ′

L the topology of weak convergence on the compact subsets of [0,L] × R

for measures on [0,∞) × R. The graph occupation measure is a continuous
functions between the two spaces with the above topologies. Let G′ ∈ T ′

2hN
so

that G′ ∩ M = Gh,x. By the continuity of m just mentioned, it follows that
m−1(G′) contains some [0,2hN ]-Skorokhod ball around �h,x, and therefore also
the set {xB :B ∈ R(h,x, ε, ε)} for all ε > 0 small enough. Since the image of
{xB :B ∈ R(h,x, ε, ε)} under m is also in M, the claim follows. �

The following lemma is needed in Proposition 13, toward the proof of the func-
tional law of iterated logarithm for the environment. In order to show that all rate-
1 measures are limit points, we need to show that they can be approximated by
lower-rate ones. This is implied by the following.

LEMMA 26. The minimum of the rate function I on an open set is either zero,
infinity, or is not achieved.

PROOF. Let μ ∈ G with G open and I (μ) positive and finite. Recall that I (μ)

is defined in (1) in terms of f,g whose graph μ is supported on. Let με(I × J ) =
μ(I × (1 − ε)−1J ), that is, a scaled version of μ that is supported on the graph of
(1 − ε)f and (1 − ε)g. Then I (με) = (1 − ε)I (μ). Also, με → μ locally weakly
as ε → 0, so for small enough ε we have με ∈ G. �
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