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ON A REFINEMENT OF THE GENERALIZED CATALAN
NUMBERS FOR WEYL GROUPS

CHRISTOS A. ATHANASIADIS

Abstract. Let Φ be an irreducible crystallographic root system with Weyl
group W , coroot lattice Q̌ and Coxeter number h, spanning a Euclidean space
V , and let m be a positive integer. It is known that the set of regions into
which the fundamental chamber of W is dissected by the hyperplanes in V
of the form (α, x) = k for α ∈ Φ and k = 1, 2, . . . , m is equinumerous to the
set of orbits of the action of W on the quotient Q̌/ (mh + 1) Q̌. A bijection
between these two sets, as well as a bijection to the set of certain chains of order
ideals in the root poset of Φ, are described and are shown to preserve certain
natural statistics on these sets. The number of elements of these sets and
their corresponding refinements generalize the classical Catalan and Narayana
numbers, which occur in the special case m = 1 and Φ = An−1.

1. Introduction and results

Let V be an `-dimensional Euclidean space, with inner product ( , ), and let
Φ be an irreducible crystallographic root system spanning V . Let m be a fixed
nonnegative integer. We denote by CatmΦ the collection of hyperplanes in V defined
by the affine equations (α, x) = k for α ∈ Φ and k = 0, 1, . . . ,m. Thus CatmΦ is a
deformation of the Coxeter arrangement AΦ, in the sense of [1, 16], known as an
extended Catalan arrangement. It is invariant under the action of the Weyl group
W associated to Φ and reduces to AΦ for m = 0. The Weyl group W acts on
the coroot lattice Q̌ of Φ and its dilate (mh + 1) Q̌, where h denotes the Coxeter
number of Φ. Hence W acts also on the quotient

Q̌/ (mh+ 1) Q̌.

We denote this quotient by Tm. For a fixed choice of a positive system Φ+ ⊆ Φ,
consider the partial order on Φ+ defined by letting α ≤ β if β −α is a nonnegative
linear combination of positive roots, known as the root poset of Φ. A (dual) order
ideal in Φ+ is a subset I of Φ+ such that α ∈ I and α ≤ β in Φ+ imply β ∈ I.

Our starting point is the following theorem, on the origins of which we comment
later in this section.

Theorem 1.1 ([2, 10, 21]). Let Φ be an irreducible crystallographic root system
with Weyl group W , and let m be a nonnegative integer.

Received by the editors March 16, 2003 and, in revised form, June 26, 2003.
2000 Mathematics Subject Classification. Primary 20F55; Secondary 05E99, 20H15.
Key words and phrases. Weyl group, coroot lattice, root order, ideals, hyperplane arrange-

ments, regions, Narayana numbers.

c©2004 American Mathematical Society

179



180 CHRISTOS A. ATHANASIADIS

The number of regions into which the fundamental chamber of AΦ is dissected
by the hyperplanes of CatmΦ is equal to the number of orbits of the action of W on
Tm and is given by the product

(1.1)
∏̀
i=1

ei +mh+ 1
ei + 1

,

where ` is the rank, h is the Coxeter number and e1, e2, . . . , e` are the exponents of
Φ. Moreover, for m = 1 this number is equal to the number of ideals in the root
poset of Φ.

To state our main result we need to introduce some more notation and definitions.
For y ∈ Tm, consider the stabilizer of y with respect to the W -action on Tm. This
is a subgroup of W generated by reflections. We call the minimum number of
reflections needed to generate this subgroup its rank and denote it by r(y). We
may use the notation r(x) for a W -orbit x in Tm, since stabilizers of elements of Tm

in the same W -orbit are conjugate subgroups of W and hence have the same rank.
We denote by Hα,k the affine hyperplane in V defined by the equation (α, x) = k,
and by A◦ the fundamental alcove of the affine Weyl arrangement corresponding
to Φ. A wall of a region R of CatmΦ is a hyperplane in V which supports a facet
of R. We call a decreasing chain Φ+ = I0 ⊇ I1 ⊇ I2 ⊇ · · · ⊇ Im of ideals in Φ+ a
co-filtered chain of ideals of length m if

(1.2) (Ii + Ij) ∩ Φ+ ⊆ Ii+j
holds for all indices i, j, where Ii = Im for i > m, and

(1.3) (Ji + Jj) ∩ Φ+ ⊆ Ji+j
holds for all indices i, j ≥ 1 with i+ j ≤ m, where Ji = Φ+ \Ii. A positive root α is
indecomposable of rank m with respect to this chain if α ∈ Im and it is not possible
to write α = β + γ with β ∈ Ii and γ ∈ Ij for indices i, j ≥ 0 with i + j = m. The
following theorem gives a refinement of Theorem 1.1.

Theorem 1.2. Let Φ be an irreducible crystallographic root system with Weyl group
W , let m be a positive integer and let Om(Φ) be the set of orbits of the action of
W on Tm. For any nonnegative integer i, the following are equal:

(i) the number of regions R of CatmΦ in the fundamental chamber of AΦ such
that i walls of R of the form Hα,m separate R from A◦,

(ii) the number of orbits x ∈ Om(Φ) with r(x) = i, and
(iii) the number of co-filtered chains of ideals in the root poset Φ+ of length m

having i indecomposable elements of rank m.
In particular, the number of co-filtered chains of ideals in Φ+ of length m is equal
to the product (1.1).

In the special case m = 1 a co-filtered chain of ideals consists of a single ideal I in
Φ and the set of rank one indecomposable elements is the set of minimal elements of
I, which is an antichain in Φ+. The arrangement CatmΦ in this case consists of the
hyperplanes Hα and Hα,1 for all α ∈ Φ and is known as the Catalan arrangement
associated to Φ, denoted CatΦ. The equality between the quantities in (i) and
(iii) of the following corollary of Theorem 1.2 was conjectured by S. Fomin and
J.R. Stembridge and independently by F. Chapoton. It was obtained earlier in
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an equivalent form (via Lemma 4.1) by Panyushev [14] and is also implicit in the
recent work of Sommers [22] (see Proposition 6.2 there).

Corollary 1.3. Let Φ be an irreducible crystallographic root system with Weyl
group W , and let O(Φ) be the set of orbits of the action of W on T = Q̌/(h+ 1) Q̌.
For any nonnegative integer i, the following are equal:

(i) the number of i-element antichains in the root poset of Φ,
(ii) the number of regions R of CatΦ in the fundamental chamber of AΦ such

that i walls of R separate R from A◦, and
(iii) the number of orbits x ∈ O(Φ) with r(x) = i.

A few comments on Theorem 1.1 are in order. Formula (1.1) was proved for the
number of regions of CatmΦ in the fundamental chamber by the author [2, Corollary
1.3] (see also [1, Theorem 4.6]) and for the number of W -orbits of Q̌/k Q̌ (with
mh+1 replaced by k) by Haiman [10, Theorem 7.4.2] under a hypothesis on k which
includes the cases k = mh + 1. The same formula for the number of such orbits
was earlier proved by Djoković [7, page 183] under a more restrictive assumption,
namely that k is relatively prime to the order of W . The number of ideals in Φ+ was
computed case by case by Shi [21], and by A. Postnikov (unpublished) in the cases
of the classical root systems, and was observed in [17] to fit the uniform formula
(1.1) for m = 1. In his study of sign types for affine Weyl groups [20, 21], Shi also
showed that the set of ideals in Φ+ is in bijection with the set of positive sign types
for W and with the set of regions into which the fundamental chamber is dissected
by the hyperplanes of CatΦ. A bijection between ideals in Φ+ and W -orbits of T
was later described by Cellini and Papi [5] and is based on the construction of a
map which assigns an element of the affine Weyl group Wa to each ideal in Φ+ [4].

In the special case m = 1, the expression (1.1) is refered to as the Catalan num-
ber associated to Φ [2, 17], since it reduces to the familiar n th Catalan number for
the root system An−1. It has a variety of interesting combinatorial interpretations
apart from those given in Theorem 1.1, for instance as the number of noncrossing
partitions associated to W [3, Proposition 5.2.1], [15, Section 4], as the number of
vertices of the simple generalized associahedron associated to Φ [8, Theorem 1.9],
and as the number of clusters in the corresponding cluster algebra of finite type
[9]. No case-free proofs of any of these facts are known. The numbers which ap-
pear in Corollary 1.3 refine this Catalan number and are known as the Narayana
numbers [12] in the case of the root system An−1. Therefore they may be refered
to as the Narayana numbers associated to Φ. It has been verified case by case
that the same numbers appear as the rank numbers of the poset of noncrossing
partitions associated to W and as the entries of the h-vector of the simplicial gen-
eralized associahedron associated to Φ [6, 8] (and hence as the dimensions of the
real cohomology groups of the associated complex projective toric variety); see, for
instance, [18, Section 5.2]. These Catalan and Narayana numbers are generalized
by the numbers which appear in Theorems 1.1 and 1.2, respectively.

Theorem 1.2 is proved in Sections 3 and 4 by means of two bijections. The first
maps the set of co-filtered chains of ideals in Φ+ of length m to the set of regions
of CatmΦ in the fundamental chamber (Theorem 3.6). It specializes to the bijection
of Shi [21], mentioned earlier, when m = 1. The second maps this set of regions
to the set of W -orbits of Tm (see Lemma 4.1 and Theorem 4.2). Our proof in fact
yields a refinement of Theorem 1.2 (see Corollaries 3.12 and 4.3). More precisely,
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it is shown that for any fixed k with 1 ≤ k ≤ m and for corresponding chain I,
region R and orbit x under the bijections, indecomposable elements of I of rank k
(see Definition 3.8) correspond to facets of R of the form Hα,k separating R from
A◦ and to facets of a certain simplex Σmk whose supporting hyperplanes contain
the point of Q̌ ∩ (mh + 1)A◦ which represents the orbit x. The simplices Σmk are
translated dilates of A◦, one nested inside the other. In the case m = 1, it turns
out that the composite of our two bijections coincides with the one constructed in
[5]. However, our motivation for constructing the second bijection comes from the
paper by Shi [20], in which an element of the affine Weyl group is associated to
each sign type of Φ in order to count the total number of sign types. The existence
of such an element (for positive sign types) is generalized to arbitrary m in Section
3 and plays an important role in our proof of Theorem 1.2. Section 2 includes
notation and terminology related to root systems and their (affine) Weyl groups,
as well as some basic facts that are needed in the following sections. In Section 5
we compute the numbers which appear in Theorem 1.2 in the cases of the classical
root systems.

2. Preliminaries

In this section we introduce notation and terminology, and state a few elementary
facts related to root systems and Weyl groups. We refer the reader to the text by
Humphreys [11] for basic definitions and background.

Let V be an `-dimensional Euclidean space with inner product ( , ). Given a
hyperplane arrangement A in V , meaning a discrete set of affine subspaces of V
of codimension one, the regions of A are the connected components of the space
obtained from V by removing the hyperplanes in A. Let Φ be an irreducible,
crystallographic root system spanning V . We fix a positive system Φ+ ⊆ Φ and
the corresponding (ordered) set of simple roots ∆ = (σ1, . . . , σ`). Part (i) of the
following lemma is well known, while part (ii) (which is stronger) follows from the
results of Sommers in [22, Section 3] (see also [14, Lemma 2.3]).

Lemma 2.1. (i) If α1, α2, . . . , αr ∈ Φ+ with r ≥ 2 and α = α1 +α2+· · ·+αr ∈ Φ+,
then there exists i with 1 ≤ i ≤ r such that α− αi ∈ Φ+.

(ii) ([14, 22]) If α1, α2, . . . , αr ∈ Φ and α1 +α2 + · · ·+αr = α ∈ Φ, then α1 = α
or there exists i with 2 ≤ i ≤ r such that α1 + αi ∈ Φ ∪ {0}.

Proof. For reasons of self-containment we give a proof of part (ii). The statement
is trivial for r ≤ 2, so let r ≥ 3 and proceed by induction on r. Clearly either
α1 = α or (α − α1, α2 + α3 + · · ·+ αr) > 0, whence we conclude that (α1, αi) < 0
or (α, αi) > 0 for some i ≥ 2. In the former case it follows that α1 + αi ∈ Φ ∪ {0},
as desired. In the latter case it follows that α− αi ∈ Φ ∪ {0} and hence, assuming
i = r without loss of generality, that either α1 + α2 + · · ·+ αr−1 = α − αr ∈ Φ or
α1 +α2 + · · ·+αr−2 = −αr−1 ∈ Φ. Induction completes the proof in both cases. �

We denote by s1, s2, . . . , s`, respectively, the reflections in the linear hyperpanes
orthogonal to the elements of ∆, called simple reflections. We let α̃ be the highest
root, e1, e2, . . . , e` be the exponents and h be the Coxeter number of Φ, and we set
p = mh+ 1, where m is a fixed positive integer. The following fact can be checked
directly, for instance, from the tables given in [11, Sections 3.18 and 4.9].

Lemma 2.2. If α̃ =
∑`

i=1 ci σi, then
∑`
i=1 ci = h− 1.
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We denote by AΦ the Coxeter arrangement associated to Φ, i.e., the collection
of linear hyperplanes in V which are orthogonal to the roots, and by W the cor-
responding Weyl group, generated by the reflections in these hyperplanes. Thus
W is finite and minimally generated by the set of simple reflections; it leaves Φ
invariant and acts simply transitively on the set of regions of AΦ, called chambers.
The fundamental chamber is the region defined by the inequalities 0 < (α, x) for
α ∈ Φ+. The set Z(Φ) of vectors x ∈ R` satisfying (α, x) ∈ Z for all α ∈ Φ is the
coweight lattice associated to Φ. The coroot lattice Q̌ of Φ is the Z-span of the set
of coroots

Φ∨ =
{

2α
(α, α)

: α ∈ Φ
}
.

Since Φ is crystallographic, we have Q̌(Φ) ⊆ Z(Φ). The group W acts on the lattice
Q̌ and on its sublattice p Q̌; hence it also acts on the quotient Tm = Q̌/p Q̌. We
denote by Om(Φ) the set of orbits of the W -action on Tm, and we use the notation
T and O(Φ) when m = 1.

For any real k and α ∈ Φ we denote by Hα,k the hyperplane in V defined by the
equation (α, x) = k, and we set Hα = Hα,0. We denote by ÃΦ the affine Coxeter
arrangement, which is the infinite hyperplane arrangement in V consisting of the
hyperplanes Hα,k for α ∈ Φ and k ∈ Z, and by Wa the affine Weyl group, generated
by the reflections in the hyperplanes of ÃΦ. The group Wa is the semidirect product
of W and the translation group in V corresponding to the coroot lattice Q̌, and is
minimally generated by the set {s0, s1, . . . , s`} of simple affine reflections, where s0

is the reflection in the hyperplane Hα̃,1. For w ∈ Wa and 0 ≤ i ≤ `, the reflection
si is a right descent of w if `(wsi) < `(w), where `(w) is the length of the shortest
expression of w as a product of simple affine reflections. The action of Wa on ÃΦ

is determined by the following elementary lemma.

Lemma 2.3 ([11, Section 4.1]). For w ∈W , α ∈ Φ, λ ∈ Q̌ and k ∈ R we have:
(i) wHα,k = Hwα,k.
(ii) Hα,k + λ = Hα,k+(α,λ).

The group Wa acts simply transitively on the set of regions of ÃΦ called alcoves.
The fundamental alcove of ÃΦ can be defined as

A◦ = {x ∈ V : 0 < (σi, x) for 1 ≤ i ≤ ` and (α̃, x) < 1}.
Note that every alcove can be written as wA◦ for a unique w ∈ Wa. Moreover,
given α ∈ Φ+, there exists a unique integer k, denoted k(w,α), such that k <
(α, x) < k + 1 for all x ∈ wA◦. The next lemma is the main result of [19].

Lemma 2.4 ([19, Theorem 5.2]). Let kα be an integer for each α ∈ Φ+. There
exists w ∈Wa such that k(w,α) = kα for each α ∈ Φ+ if and only if

(2.1) kα + kβ ≤ kα+β ≤ kα + kβ + 1

for all α, β ∈ Φ+ with α+ β ∈ Φ+.

We say that two open regions in V are separated by a hyperplane H ∈ ÃΦ if
they lie in different half-spaces relative to H . If R is a region of a subarrangement
of ÃΦ or the closure of such a region (in particular, if R is a chamber or an alcove),
we refer to the hyperplanes of ÃΦ which support facets of R as the walls of R. Let
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H0 = Hα̃,1 and Hi = Hσi for 1 ≤ i ≤ ` be the walls of A◦. The next lemma follows,
for instance, from the content of [11, Section 4.5].

Lemma 2.5. For w ∈ Wa the number of walls of the alcove wA◦ separating wA◦
from A◦ is equal to the number of right descents of w.

3. Ideals, regions and the affine Weyl group

In this section we generalize some of the work of Shi [20, 21] and Cellini and
Papi [4] on regions of CatΦ and order ideals in Φ+ to regions of CatmΦ and co-
filtered chains of ideals, and we prove part of Theorem 1.2. More specifically, we
establish the equality of the numbers appearing in (i) and (iii) in the statement of
the theorem.

Let I be a co-filtered chain of ideals

Φ+ = I0 ⊇ I1 ⊇ I2 ⊇ · · · ⊇ Im
in Φ+ of length m, so that (1.2) and (1.3) hold, where Ji = Φ+\ Ii. For any α ∈ Φ+

we define

kα(I) = max{k1 + k2 + · · ·+ kr : α = α1 + α2 + · · ·+ αr with αi ∈ Iki for all i}.

This quantity will play a major role in the sequel. Observe that kα(I) = 0 if and
only if α ∈ J1. Moreover, if kα(I) ≥ 1, then, by applying Lemma 2.1 (ii) repeatedly,
we can write α = α1 + α2 + · · ·+ αr with αi ∈ Iki , kα(I) = k1 + k2 + · · ·+ kr and
ki ≥ 1 for all i. We begin with a few lemmas.

Lemma 3.1. If α = α1 + α2 + · · ·+ αr ∈ Φ+ and αi ∈ Φ+ for all i, then

kα(I) ≥
r∑
i=1

kαi(I).

Proof. This is clear from the definition. �

Lemma 3.2. Let α ∈ Φ+ and kα(I) = k.

(i) We have α ∈ Imin{k,m}.
(ii) If k > m, then there exist β, γ ∈ I1 with α = β + γ and k = kβ(I) + kγ(I).

Moreover, we may choose β so that β ∈ It, where kβ(I) = t ≤ m.

Proof. Let α = α1 +α2 + · · ·+αr with αi ∈ Iki for all i and k = k1 + k2 + · · ·+ kr.
We may assume that k ≥ 1 and hence that ki ≥ 1 for all i. Conditions (1.2) and
Lemma 2.1 (i) imply part (i) by induction on r. If k > m, then clearly r ≥ 2, and
by Lemma 2.1 (i) again there exists an index j such that α−αj ∈ Φ+. Let β = αj ,
γ = α − αj and t = kj , and observe that kβ(I) ≥ t and kγ(I) ≥ k − t. Since
kβ(I) + kγ(I) ≤ k by Lemma 3.1, we must have kβ(I) = t and kγ(I) = k− t. This
proves (ii). �

The next lemma generalizes Lemma 2.3 in [4].

Lemma 3.3. If α, β, α+β ∈ Φ+ and a, b ≥ 0 are integers such that kα+β(I) ≥ a+b,
then kα(I) ≥ a or kβ(I) ≥ b.
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Proof. We proceed by induction on k = kα+β(I). If k ≤ m then α + β ∈ Ik by
Lemma 3.2 (i), and hence α + β ∈ Ia+b. In view of (1.3) this implies that α ∈ Ia
or β ∈ Ib, from which the result is clear. If k > m, by Lemma 3.2 (ii) we can write
α+ β = η + θ, where η, θ ∈ Φ+, kη(I) = t, kθ(I) = k − t and 0 < t < k. If α = η
and β = θ or vice versa, then kα(I) + kβ(I) = kη(I) + kθ(I) = k ≥ a+ b, and the
result is clear. If not, since

(α, η) + (α, θ) + (β, η) + (β, θ) = (α+ β, α+ β) > 0,

one of the four summands on the left side must be positive. This implies that at
least one of α − η = θ − β and α − θ = η − β is in Φ. By exchanging the roles of
η and θ, if necessary, we may assume that α − η ∈ Φ. By exchanging the roles of
α and β too, if necessary, we may assume further that α− η ∈ Φ+. Let α = η + µ
with µ ∈ Φ+, so that β = θ − µ. If kα(I) ≥ a, then there is nothing to prove. If
kα(I) < a, then kη(I) + kµ(I) < a by Lemma 3.1, so that kµ(I) < a − t. Since
θ = β + µ and kθ(I) = k − t < k, it follows by induction that kβ(I) ≥ k − a and
hence that kβ(I) ≥ b, as desired. �

Corollary 3.4. We have

kα(I) + kβ(I) ≤ kα+β(I) ≤ kα(I) + kβ(I) + 1

whenever α, β, α + β ∈ Φ+.

Proof. The first inequality is a special case of Lemma 3.1. Letting a = kα(I) + 1
and b = kα+β(I) − a, the second inequality follows from Lemma 3.3 in the case
b ≥ 0, and is obvious otherwise. �

To define a region R of CatmΦ in the fundamental chamber associated to I, let
RI be the set of points x ∈ V which satisfy

(α, x) > k, if α ∈ Ik ,
0 < (α, x) < k, if α ∈ Jk,

for 0 ≤ k ≤ m.

Proposition 3.5. There exists w ∈ Wa such that k(w,α) = kα(I) for α ∈ Φ+.
Moreover, wA◦ ⊆ RI . In particular, RI is nonempty.

Proof. The first statement follows from Lemma 2.4 and Corollary 3.4. For the
second statement, let α ∈ Φ+ and 0 ≤ k ≤ m. Part (i) of Lemma 3.2 implies that
kα(I) ≥ k if and only if α ∈ Ik. Hence from the inequalities

kα(I) < (α, x) < kα(I) + 1,

which hold for x ∈ wA◦, we conclude that wA◦ ⊆ RI . �

Let ψ be the map which assigns the set RI to a co-filtered chain of ideals I in
Φ+ of length m. Conversely, given a region R of CatmΦ in the fundamental chamber
of AΦ, let φ(R) be the sequence Φ+ = I0 ⊇ I1 ⊇ I2 ⊇ · · · ⊇ Im, where Ik is the set
of α ∈ Φ+ for which (α, x) > k in R. The next theorem generalizes [21, Theorem
1.4].

Theorem 3.6. The map ψ is a bijection from the set of co-filtered chains of ideals
in Φ+ of length m to the set of regions of CatmΦ which lie in the fundamental chamber
of AΦ, and the map φ is its inverse.
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Figure 1. The representing alcoves of the regions in the funda-
mental chamber for Φ = B2 and m = 1.

Proof. That the map ψ is well defined follows from Proposition 3.5, which guar-
antees that the set RI is nonempty. To check that φ is well defined, observe that
if R is a region of CatmΦ in the fundamental chamber of AΦ and if (α, x) > i and
(β, x) > j hold for x ∈ R, then (α+ β, x) > i+ j must hold for x ∈ R, so that φ(I)
satisfies (1.2). Similarly, φ(I) satisfies (1.3). It is clear that ψ and φ are inverses
of each other. �

Let R = RI be a region of CatmΦ in the fundamental chamber of AΦ, where
I = φ(R). Let wR denote the element of the affine Weyl group Wa which is
assigned to I in Proposition 3.5. The following proposition implies that wRA◦ is
the alcove in R which is closest to A◦; see Figures 1 and 2 (§4). In the special case
m = 1 the existence of such an alcove was established by Shi [20, Proposition 7.2]
for all regions of the arrangement in V consisting of the hyperplanes Hα and Hα,1

for α ∈ Φ+.

Proposition 3.7. Let R be a region of CatmΦ in the fundamental chamber of AΦ.
The element wR is the unique w ∈ Wa such that wA◦ ⊆ R and whenever α ∈ Φ+,
k ∈ Z and (α, x) < k for some x ∈ R we have (α, x) < k for all x ∈ wA◦.

Proof. Suppose that α ∈ Φ+, and (α, x) < k holds for some x ∈ R = RI and k ∈ Z.
To show that (α, x) < k holds for x ∈ wRA◦ it suffices to show that kα(I) < k. Let
us write α = α1 +α2 + · · ·+αr with αi ∈ Iki for all i and k1 +k2 + · · ·+kr = kα(I).
We have (αi, x) > ki for all x ∈ R, and hence (α, x) > kα(I) for all such x. Thus
if (α, x) < k for some x ∈ R, we must have kα(I) < k. Uniqueness is clear. �

We now introduce the elements of Φ+ which will play the role that the minimal
elements of the ideal I play in the case m = 1.
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Definition 3.8. Given 1 ≤ k ≤ m, a root α ∈ Φ+ is indecomposable of rank k
with respect to I if α ∈ Ik and

(i) kα(I) = k,
(ii) it is not possible to write α = β + γ with β ∈ Ii and γ ∈ Ij for indices

i, j ≥ 0 with i+ j = k, and
(iii) if α+β ∈ It for some β ∈ Φ+ and t ≤ m and if kα+β(I) = t, then β ∈ It−k.

Observe that, by part (i) of Lemma 3.2, the assumption α ∈ Ik in this definition
is actually implied by condition (i). For k = m the definition is equivalent to the
one proposed in Section 1, as the following lemma shows.

Lemma 3.9. A positive root α is indecomposable of rank m with respect to I if
and only if α ∈ Im and it is not possible to write α = β + γ with β ∈ Ii and γ ∈ Ij
for indices i, j ≥ 0 with i+ j = m.

Proof. Suppose that α ∈ Im satisfies the condition in the statement of the lemma.
Since condition (iii) in Definition 3.8 is trivial for k = m, to show that α is indecom-
posable of rank m it suffices to show that kα(I) = m. Indeed, if kα(I) = k > m,
then, by part (ii) of Lemma 3.2, we can write α = β + γ with β ∈ It for some
1 ≤ t ≤ m, γ ∈ I1 and kγ(I) = k − t. Then kγ(I) > m − t, and part (i) of the
same lemma implies that γ ∈ Im−t, contrary to the hypothesis. The converse is
trivial. �
Lemma 3.10. Suppose that α is indecomposable with respect to I.

(i) We have kα(I) = kβ(I) + kγ(I) + 1 whenever α = β + γ with β, γ ∈ Φ+.
(ii) We have kα(I) + kβ(I) = kα+β(I) whenever β, α+ β ∈ Φ+.

Proof. Let kα(I) = k, so that α ∈ Ik.
(i) Suppose that α = β+γ with β, γ ∈ Φ+, and let kβ(I) = i and kγ(I) = j. By

Lemma 3.2 (i) we have β ∈ Ii and γ ∈ Ij , so condition (ii) in Definition 3.8 does
not allow that k = i+ j. By Corollary 3.4 we must have k = i+ j + 1.

(ii) Suppose that β, α+β ∈ Φ+ and write α+β = α1 +α2 + · · ·+αr with αi ∈ Iki
for all i and k1 + k2 + · · · + kr = kα+β(I). Letting t = kα+β(I), by Corollary 3.4
it suffices to show that kβ(I) ≥ t− k. If r = 1, then α+ β ∈ It, and condition (iii)
in Definition 3.8 implies that β ∈ It−k, so the desired inequality is clear. Suppose
r ≥ 2. We have −α + α1 + · · · + αr = β ∈ Φ, and hence −α + αi ∈ Φ ∪ {0}
for some i by Lemma 2.1 (ii), say for i = 1. Thus either α = α1 or α = α1 + µ
or α1 = α + µ with µ ∈ Φ+. In the first case we have β = α2 + · · · + αr, and
hence kβ(I) = t − k1 = t − k. In the second case we have β + µ = α2 + · · · + αr,
and hence kβ+µ(I) = k2 + · · · + kr = t − k1. Since α is indecomposable, we have
k = kα(I) = kα1(I) + kµ(I) + 1 = k1 + kµ(I) + 1 by Lemma 3.10 (i), and hence

kβ(I) ≥ kβ+µ(I)− kµ(I)− 1 = kβ+µ(I) + k1 − k = t− k.
In the last case we have kµ(I) ≥ k1 − k by the case r = 1 treated earlier and
β = µ+ α2 + · · ·+ αr, so

kβ(I) ≥ kµ(I) + k2 + · · ·+ kr ≥ t− k.
This completes the proof. �

The following theorem explains the connection between indecomposable elements
of I and separating walls of RI . Recall from the proof of Proposition 3.7 that
(α, x) > kα(I) holds for all α ∈ Φ+ and x ∈ RI .
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Theorem 3.11. If I is a co-filtered chain of ideals in Φ+ of length m with corre-
sponding region R = RI and 1 ≤ k ≤ m, then the following sets are equal:

(i) the set of indecomposable roots α ∈ Φ+ with respect to I of rank k,
(ii) the set of α ∈ Φ+ such that Hα,k is a wall of R separating R from A◦, and
(iii) the set of α ∈ Φ+ such that Hα,k is a wall of wRA◦ separating wRA◦ from

A◦.

Proof. Let Φ+ = I0 ⊇ I1 ⊇ I2 ⊇ · · · ⊇ Im be the chain I, as usual. Let w = wR
and let Fk(I), Fk(R) and Fk(w) denote the sets refered to in (i), (ii) and (iii),
respectively. To prove that these sets coincide, we will show that Fk(R) ⊆ Fk(I) ⊆
Fk(w) ⊆ Fk(R).

Suppose that α ∈ Fk(R). Since (α, x) > k holds for x ∈ R, we have α ∈ Ik. To
show that α is indecomposable of rank k with respect to I, we need to check that
the conditions in Definition 3.8 are satisfied. We first claim that it is not possible
to write α = β + γ with β, γ ∈ Φ+ satisfying kβ(I) ≥ i and kγ(I) ≥ j for some
i, j ≥ 0 with i+ j = k. Indeed, if that were the case, then (β, x) > i and (γ, x) > j
would be valid for x ∈ R. Since these inequalities imply the inequality (α, x) > k,
the hyperplane Hα,k would not support a facet of R. Clearly the claim implies
condition (ii). In view of Lemma 3.2 (ii) it also implies that kα(I) ≤ m, so we
have k ≤ kα(I) ≤ m. If k = m, then we must have kα(I) = m. If k < m, then
(α, x) < k + 1 holds for x ∈ R, and hence α ∈ Jk+1. Lemma 3.2 (i) then forces
that kα(I) = k, and this verifies condition (i). Similarly, to verify (iii) suppose that
α + β ∈ It for some β ∈ Φ+ and kα+β(I) = t. Since (α, x) > k is implied by the
inequalities (α+β, x) > t and (β, x) < t−k and the first of these is valid for x ∈ R,
the second cannot be valid for all such x. This means that β ∈ It−k.

Next suppose that α ∈ Fk(I), meaning that α is indecomposable of rank k with
respect to I. We have (α, x) > k for all x ∈ R and hence all x ∈ wA◦. Recall that
k(w, β) = kβ(I) for all β ∈ Φ+. To show that Hα,k is a wall of wA◦, it suffices to
show that there exists a w′ ∈Wa with k(w′, β) = kβ for all β ∈ Φ+, where

kβ =

{
kβ(I), if β 6= α,

kα(I) − 1, if β = α.

In view of Lemma 2.4 and Corollary 3.4, this amounts to proving that kα(I) =
kβ(I) + kγ(I) + 1 whenever α = β + γ with β, γ ∈ Φ+, and that kα(I) + kβ(I) =
kα+β(I) whenever β, α+ β ∈ Φ+. This is precisely the content of Lemma 3.10.

Finally, suppose that α ∈ Fk(w). If w′A◦ is the alcove of ÃΦ which is the reflec-
tion of wA◦ on its wall Hα,k, then (α, x) < k holds for all x ∈ w′A◦. Proposition
3.7 implies that w′A◦ is not contained in R. Hence Hα,k must be a wall of R; in
other words, α ∈ Fk(R). �

We denote by Wm
Cat the subset of Wa consisting of the elements wR for the

regions R of CatmΦ in the fundamental chamber of AΦ, and abbreviate this set as
WCat in the case m = 1.

Corollary 3.12. For any nonnegative integers i1, i2, . . . , im the following are equal:

(i) the number of co-filtered chains of ideals in Φ+ of length m having ik inde-
composable elements of rank k for each 1 ≤ k ≤ m,
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(ii) the number of regions R of CatmΦ in the fundamental chamber of AΦ such
that ik walls of R of the form Hα,k separate R from A◦ for each 1 ≤ k ≤ m,
and

(iii) the number of w ∈ Wm
Cat such that ik walls of wA◦ of the form Hα,k separate

wA◦ from A◦ for each 1 ≤ k ≤ m.

Proof. Combine Theorems 3.6 and 3.11. �

The following corollary is immediate.

Corollary 3.13. For any nonnegative integer i the quantities which appear in (i)
and (iii) in the statement of Theorem 1.2 are both equal to the number of w ∈Wm

Cat

such that i walls of wA◦ of the form Hα,m separate wA◦ from A◦.

We now consider the special case m = 1. A co-filtered chain of ideals I of
length m in this case is simply a single ideal I in Φ+ and, by Lemma 3.9, the
indecomposable elements of I are exactly the minimal elements of I. These elements
form an antichain in Φ+, meaning a subset of pairwise incomparable elements.
Conversely, any antichain A ⊆ Φ+ defines the ideal IA which consists of all β ∈ Φ+

such that β ≥ α for some α ∈ A. The set of minimal elements of IA is equal to A,
and the map which assigns IA to A is a bijection from the set of antichains to the
set of ideals in Φ+.

Corollary 3.14. For any nonnegative integer i the following are equal:
(i) the number of i-element antichains in the root poset of Φ,
(ii) the number of regions R of CatΦ in the fundamental chamber of AΦ such

that i walls of R separate R from A◦,
(iii) the number of w ∈ WCat such that i walls of wA◦ separate wA◦ from A◦,

and
(iv) the number of elements w ∈ WCat having i right descents.

Proof. This follows from the case m = 1 of Corollary 3.12 and Lemma 2.5. �

Observe that the region of CatΦ which corresponds to the ideal IA under the
bijection ψ of Theorem 3.6 is the set RA of points x in V which satisfy

(β, x) > 1, if β ∈ IA,
0 < (β, x) < 1, if β ∈ Φ+ \ IA.

By Theorem 3.6, the map which sends an antichain A to the set RA is a bijection
from the set of antichains in Φ+ to the set of regions of CatΦ in the fundamental
chamber of AΦ. This bijection was first established and exploited by Shi [21]. In
view of Theorem 3.11 (applied for k = m = 1), its inverse sends a region R to the
set of α ∈ Φ+ such that Hα,1 is a wall of R and (α, x) > 1 holds for x ∈ R.

4. Proof of the main theorem

In this section we complete the proof of Theorem 1.2 (see Corollary 4.4). We
begin with some more notation and known facts on the action of W on Tm.

By the reflection in W corresponding to a hyperplaneHα,k we mean the reflection
in the linear hyperplane Hα. We let p = mh+1, as in Section 2, and denote by Dm

Φ

the set Q̌∩ pA◦. The following lemma, which is part of [10, Lemma 7.4.1], implies
that Dm

Φ is a set of representatives for the orbits of the W -action on Tm.



190 CHRISTOS A. ATHANASIADIS

Figure 2. The representing alcoves of the regions in the funda-
mental chamber and the simplex pA◦ for Φ = A2 and m = 2.

Lemma 4.1. The natural inclusion map from Dm
Φ to the set Om(Φ) of orbits of

the W -action on Tm is a bijection.
Moreover, if y ∈ Dm

Φ , then the stabilizer of y with respect to the W -action on
Tm is the subgroup of W generated by the reflections corresponding to the walls of
pA◦ which contain y. In particular, r(y) is equal to the number of walls of pA◦
which contain y.

Our objective is to define a bijection ρ : Wm
Cat → Dm

Φ such that for w ∈ Wm
Cat,

the number of walls of wA◦ of the form Hα,m which separate wA◦ from A◦ is
equal to the number of walls of pA◦ which contain ρ(w). Let Rf be the region of
CatmΦ defined by the inequalities m < (σi, x) for 1 ≤ i ≤ `. Let wf = wRf be the
unique element w of Wm

Cat such that wA◦ ⊆ Rf . Note that wf is not necessarily a
translation in V (see, for instance, Figure 1). We define the map ρ : Wm

Cat → Q̌ by

ρ(w) = (wf w−1) · 0
for w ∈ Wm

Cat. Observe that, by Lemma 2.2, the alcove wfA◦ can be described
explicitly as the open simplex in V defined by the linear inequalities m < (σi, x)
for 1 ≤ i ≤ ` and (α̃, x) < mh−m+ 1. For any 0 ≤ k ≤ m we define the simplex

Σmk = {x ∈ V : m− k ≤ (σi, x) for 1 ≤ i ≤ ` and (α̃, x) ≤ mh−m+ k + 1},
so that Σmk reduces to wfA◦ and pA◦ for k = 0 and k = m, respectively. For any `-
dimensional simplex Σ in V bounded by hyperplanes Hα,k in ÃΦ with α ∈ ∆∪{α̃}
we denote by H(Σ, i) the wall of Σ orthogonal to α̃ or σi, if i = 0 or i > 0,
respectively. We write H(w, i) instead of H(wA◦, i) for w ∈ Wa. The following
theorem is the main result of this section. The reader is invited to verify the
statement of the theorem in the case pictured in Figure 2.

Theorem 4.2. The map ρ is a bijection from Wm
Cat to Dm

Φ . Moreover, for any
w ∈ Wm

Cat, 1 ≤ k ≤ m and 0 ≤ i ≤ `, the point ρ(w) lies on the wall H(Σmk , i)
if and only if the wall (ww−1

f )H(wf , i) of wA◦ is of the form Hα,k and separates
wA◦ from A◦.
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Proof. First we will check that ρ is injective. Indeed, if ρ(w1) = ρ(w2), with
w1, w2 ∈ Wm

Cat, then w2w
−1
1 fixes the origin, and hence w2w

−1
1 ∈ W . Moreover,

w2w
−1
1 carries w1A◦ to w2A◦, and both alcoves lie in the fundamental chamber of

AΦ. Since W acts simply transitively on the chambers of AΦ, w2w
−1
1 must be the

identity; that is, w1 = w2.
We next check that ρ(w) ∈ Dm

Φ for w ∈ Wm
Cat, and prove the second statement

in the theorem. Clearly ρ(w) ∈ Q̌, so for the first claim it suffices to show that
ρ(w) ∈ pA◦. Let us write wf w−1 = tλu, where λ ∈ Q̌, tλ is the translation map in
V which sends x to x+λ, and u ∈W , so that ρ(w) = λ. Let 0 ≤ i ≤ `, 1 ≤ k ≤ m,
and let H be the wall (ww−1

f )H(wf , i) of wA◦. We need to show (i) that

(4.1) (λ, α̃) ≤ mh+ 1, if i = 0,
(λ, σi) ≥ 0, if 1 ≤ i ≤ `,

and (ii) that H = Hα,k for some α ∈ Φ+ with H separating wA◦ from A◦ if and
only if

(4.2) (λ, α̃) = mh−m+ k + 1, if i = 0,
(λ, σi) = m− k, if 1 ≤ i ≤ `.

Let H = Hα,r for some α ∈ Φ+ and nonnegative integer r. Observe first that H
separates wA◦ from A◦ if and only if H(wf , i) = (wfw−1)H separates wfA◦ from
(wfw−1)A◦ = (tλu)A◦ or, equivalently, if and only if

(4.3)
(ux+ λ, α̃) > mh−m+ 1, if i = 0,
(ux+ λ, σi) < m, if 1 ≤ i ≤ ` ,

for all x ∈ A◦. Next observe that 0 < (β, x) < 1 for all x ∈ A◦ and β ∈ Φ+, and
hence that −1 < (β, ux) < 1 holds for all such x and β. In view of Lemma 2.3, the
fact that tλuHα,r = wfw

−1 H = H(wf , i) implies that

(4.4) Huα,r+(uα,λ) =

{
Hα̃,mh−m+1, if i = 0,
Hσi,m, if 1 ≤ i ≤ `.

To prove (4.1), suppose i = 0 first. It follows from (4.4) that either uα = α̃ and
r+ (uα, λ) = mh−m+ 1, or uα = −α̃ and r+ (uα, λ) = −mh+m− 1. Therefore
(λ, α̃) = mh−m− r + 1 or mh−m+ r + 1. Thus to prove that (λ, α̃) ≤ mh+ 1
it suffices to show that we have r ≤ m in the second case. Indeed, suppose that
(λ, α̃) = mh − m + r + 1. We may assume that r ≥ 1. From the statement in
(4.3) we conclude that H = Hα,r separates wA◦ from A◦. Since H is a facet of a
region of CatmΦ in the fundamental chamber of AΦ (Theorem 3.11), we must have
r ≤ m. The case 1 ≤ i ≤ ` is similar. From (4.4) we get that either uα = σi and
r + (uα, λ) = m, or uα = −σi and r + (uα, λ) = −m. Therefore (λ, σi) = m− r or
m + r. If (λ, σi) = m − r and r ≥ 1, it follows again from the statement in (4.3)
that H = Hα,r separates wA◦ from A◦, and hence r ≤ m, as before. Thus (4.1)
holds, which means that ρ(w) ∈ pA◦.

We now prove the second claim. Suppose first that H = Hα,k for some α ∈ Φ+,
and that H separates wA◦ from A◦. Then we have k ≥ 1, and the analysis we
just went through with r replaced by k shows that (λ, α̃) = mh − m − k + 1 or
mh−m+ k + 1 if i = 0, and that (λ, σi) = m− k or m+ k if 1 ≤ i ≤ `. In view of
(4.3) and the inequality −1 < (ux, β) < 1 for x ∈ A◦ and β ∈ Φ+, equation (4.2)
follows. Conversely, suppose that (4.2) holds for some 1 ≤ k ≤ m. Then (4.3) is



192 CHRISTOS A. ATHANASIADIS

valid, and hence H separates wA◦ from A◦. Letting H = Hα,r for some r ≥ 1, we
deduce (4.4), as before, and that (λ, α̃) = mh − m − r + 1 or mh −m + r + 1 if
i = 0, while (λ, σi) = m− r or m+ r if 1 ≤ i ≤ `. It follows from (4.2) that r = k.

Finally, note that Wm
Cat and Dm

Φ are equinumerous by Theorem 1.1. Since the
map ρ : Wm

Cat → Dm
Φ is injective, it has to be a bijection. �

Corollary 4.3. For any nonnegative integers i1, i2, . . . , im each of the quantities
which appear in the statement of Corollary 3.12 is equal to the number of points in
Dm

Φ which lie in ik walls of Σmk for all 1 ≤ k ≤ m.

Proof. Indeed, it follows from Theorem 4.2 that the number of w ∈Wm
Cat such that

ik walls of wA◦ of the form Hα,k separate wA◦ from A◦ for 1 ≤ k ≤ m is equal to
the number of points x ∈ Dm

Φ such that x lies in ik walls of Σmk for 1 ≤ k ≤ m. �
The following corollary implies Theorem 1.2.

Corollary 4.4. For any nonnegative integer i each of the quantities which appear
in the statement of Theorem 1.2 is equal to

(i) the number of points in Dm
Φ which lie in i walls of pA◦, and

(ii) the number of w ∈ Wm
Cat such that i walls of wA◦ of the form Hα,m separate

wA◦ from A◦.

Proof. By Lemma 4.1, the number of orbits x ∈ Om(Φ) with rank r(x) = i is equal
to the number of points in Dm

Φ which lie in i walls of pA◦. The statement now
follows by specializing Corollary 4.3 and recalling that Σmk = pA◦ for k = m. �
Remark 4.5. For i = 0, the number which appears in Theorem 1.2 is equal to∏̀

i=1

ei + (m− 1)h+ 1
ei + 1

.

Indeed, in view of the fact that Q̌(Φ) ⊆ Z(Φ), the number of points in DΦ lying in
no wall of pA◦ is equal to the cardinality of Q̌∩Σmm−1. By Lemma 2.2, the simplex
Σmm−1 is a translate of (p − h)A◦ by an element of the coweight lattice Z(Φ).
It follows, for instance, from [5, Lemma 1] and the remark following this lemma
that there exists a w ∈ Wa such that (p − h)A◦ = w(Σmm−1). Thus Q̌ ∩ Σmm−1 is
equinumerous to Q̌∩(p−h)A◦. Our claim then follows from Corollary 4.4, Lemma
4.1 and Theorem 1.1, where m is replaced by m− 1.

5. The classical types

In this section we compute the numbers which appear in Theorem 1.2 in the
cases of the classical root systems, as follows.

Proposition 5.1. Let Φ be a root system, W its Weyl group, and let Tm be as in
Theorem 1.2. The number of W -orbits x of Tm with r(x) = n− k is equal to

1
k

(
n− 1
k − 1

)(
mn

k − 1

)
, if Φ = An−1,(

n

k

)(
mn

k

)
, if Φ = Bn or Cn,(

n

k

)(
mn−m

k

)
+
(
n− 2
k − 2

)(
mn−m+ 1

k

)
, if Φ = Dn.
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Remark 5.2. The number of k-element antichains in Φ+ has been computed for
the exceptional root systems by V. Reiner and J. McCammond, as shown in the
following table.

Table 1. The numbers NΦ(k) for the exceptional root systems.

k 0 1 2 3 4 5 6 7 8
Φ = G2 1 6 1
Φ = F4 1 24 55 24 1
Φ = E6 1 36 204 351 204 36 1
Φ = E7 1 63 546 1470 1470 546 63 1
Φ = E8 1 120 1540 6120 9518 6120 1540 120 1

In the remainder of this section we prove Proposition 5.1. We denote by Nm
Φ (k)

the number of W -orbits x of Tm with r(x) = k, which we simply write as NΦ(k) if
m = 1.

5.1. The case Φ = An−1. The coroot lattice Q̌ is the lattice of points in Zn with
zero coordinate sum, W is the symmetric group on n elements which acts on Q̌ by
permuting coordinates, and h = n. If Qm,n is the set of points in Znmn+1 having zero
coordinate sum, on which W also acts, then the natural map Q̌→ Qm,n induces an
isomorphism of W -modules Q̌/(mn+ 1) Q̌ → Qm,n. Since n is relatively prime to
mn+1, it follows that the set Qm,n is in bijection with the set Znmn+1/(1, 1, . . . , 1) of
cosets of the cyclic subgroup of Znmn+1 generated by (1, 1, . . . , 1), and this bijection
commutes with the natural action of W on the two sets. The stabilizer within W
of such a coset, represented say by a = (a1, a2, . . . , an) ∈ Znmn+1, is generated by
the transpositions in coordinates i and j for which ai = aj . It follows easily that
Nm

Φ (k) is equal to the number of W -orbits of such cosets for which {a1, . . . , an} has
n− k elements, and hence to

1
mn+ 1

(
n− 1

n− k − 1

)(
mn+ 1
n− k

)
,

which is equivalent to the proposed formula. It is known that another set of coset
representatives for Znmn+1/(1, 1, . . . , 1) is the set of m-parking functions of length n
[23], meaning integer sequences a = (a1, a2, . . . , an) such that the unique increasing
rearrangement (b1, b2, . . . , bn) of a satisfies 0 ≤ bi ≤ m(i− 1) for all i. Thus Tm is
isomorphic as a W -module to the set of m-parking functions of length n, on which
W acts. The orbits of this action are indexed by the increasing parking functions, in
other words the increasing integer sequences (a1, a2, . . . , an) with 0 ≤ ai ≤ m(i−1)
for each i. In the case m = 1 it follows that NΦ(k) is equal to the number of lattice
paths in Z2 with possible steps (1, 0) and (0, 1) which start at (0, 0), end at (n, n),
stay below the line x = y and have n − k − 1 northeast corners. The latter is a
standard combinatorial interpretation of the Narayana number 1

k+1

(
n
k

)(
n−1
k

)
; see,

for instance, [13, 24].

5.2. The case Φ = Cn. We have h = 2n, Q̌ = Zn, and W is the hyperocta-
hedral group which acts on Q̌ by changing signs and permuting coordinates. If
[−mn,mn] = {−mn, . . . ,−1, 0, 1, . . . ,mn}, then it is clear that Q̌/(2mn+ 1) Q̌ is
isomorphic as a W -module to Zn2mn+1, and hence to [−mn,mn]n, on which W
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acts. The orbits of this action are indexed by the increasing integer sequences
a = (a1, a2, . . . , an) satisfying 0 ≤ ai ≤ mn. These sequences biject to lattice paths
in Z2 which start at (0, 0) and end at (n,mn), where the path corresponding to a
is the one which passes through the points (i− 1, ai) and (i, ai) for 1 ≤ i ≤ n. The
stabilizer of a within W is minimally generated by the transpositions in coordinates
i and i + 1 for those i with ai = ai+1 and the sign change in the first coordinate,
if a1 = 0. It follows that Nm

Φ (k) is equal to the number of increasing sequences
(a1, a2, . . . , an) with 0 ≤ ai ≤ mn such that the set {a1, . . . , an} has n− k nonzero
elements, and hence to the number of lattice paths in Z2 which start at (0, 0),
end at (n,mn) and have n− k northeast corners. The last statement implies that
Nm

Φ (k) =
(
n

n−k
)(

mn
n−k
)
.

5.3. The case Φ = Bn. We have h = 2n, Q̌ is the lattice of points in Zn having
even coordinate sum, and W is as in the type Cn case. By direct reasoning or by
appealing to Lemma 4.1 we see that a set of representatives for the orbits of the
W -action on Q̌/(2mn+ 1) Q̌ is the set Om,n of (cosets of) increasing nonnegative
integer sequences a = (a1, a2, . . . , an) such that a1 + a2 + · · ·+ an is even and

an−1 + an ≤ 2mn+ 1.

Moreover, the stabilizer of a within W is minimally generated by the transpositions
in coordinates i and i + 1 for those i with ai = ai+1, the sign change in the
first coordinate, if a1 = 0, and the element of W which exchanges the last two
coordinates and changes their signs, if an−1 +an = 2mn+1. It follows that Nm

Bn
(k)

is equal to the number of sequences a = (a1, a2, . . . , an) ∈ Om,n such that the set
{a1, . . . , an−1, an, 2mn+1−an} has n−k+1 nonzero elements. Let O′m,n be the set
of increasing sequences (a1, a2, . . . , an) with 0 ≤ ai ≤ mn, considered in the type Cn
case. The map f : O′m,n → Om,n which sends an element (a1, a2, . . . , an) ∈ O′m,n
to {

(a1, . . . , an−1, 2an − an−1), if a1 + · · ·+ an−2 is even,
(a1, . . . , an−1, 2mn+ 1− 2an + an−1), if a1 + · · ·+ an−2 is odd,

is a bijection having the property that {b1, . . . , bn−1, bn, 2mn+ 1− bn} has exactly
one nonzero element more than {a1, . . . , an}, where (b1, . . . , bn) = f(a1, . . . , an); we
leave it to the reader to check this. This shows that Nm

Bn
(k) = Nm

Cn
(k).

5.4. The case Φ = Dn. We have h = 2n− 2, where n ≥ 3, Q̌ is as in the type Bn
case, and W is the index two subgroup of the hyperoctahedral group on n elements
which acts on Q̌ by changing an even number of signs and permuting coordinates.
By direct reasoning or by appealing to Lemma 4.1, as in the previous case, we see
that a set of representatives for the orbits of the W -action on Q̌/(mh+1) Q̌ is the set
Om,n of (cosets of) integer sequences a = (a1, a2, . . . , an) such that a1 +a2 + · · ·+an
is even,

(5.1) 0 ≤ |a1| ≤ a2 ≤ · · · ≤ an
and

(5.2) an−1 + an ≤ 2m(n− 1) + 1.

The stabilizer of a within W is minimally generated by the transpositions in coor-
dinates i and i + 1 for those i with ai = ai+1, the element of W which exchanges
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the first two coordinates and switches their signs, if a1 +a2 = 0, and that which ex-
changes the last two coordinates and switches their signs, if equality holds in (5.2).
It follows that NΦ(k) is equal to the number of sequences (a1, a2, . . . , an) ∈ Om,n
such that the set {|a1|, a2, . . . , an−1, an, 2m(n − 1) + 1 − an} has n − k nonzero
elements, if a1 = 0 and a2 > 0, and n−k+1 nonzero elements otherwise. Let O′m,n
be the set of integer sequences (a1, a2, . . . , an) satisfying (5.1) and an ≤ m(n− 1).
As in the type Bn case, the bijection f : O′m,n → Om,n which sends an element
(a1, a2, . . . , an) ∈ O′m,n to{

(a1, . . . , an−1, 2an − an−1), if a1 + · · ·+ an−2 is even,
(a1, . . . , an−1, 2m(n− 1) + 1− 2an + an−1), if a1 + · · ·+ an−2 is odd,

shows that NΦ(k) is equal to the number of (a1, a2, . . . , an) ∈ O′m,n such that
{|a1|, a2, . . . , an} has n− k − 1 nonzero elements, if a1 = 0 and a2 > 0, and n − k
nonzero elements otherwise. The set of such sequences in O′m,n with a1 = a2 = 0
bijects to the set of lattice paths in Z2 starting at (2, 0), ending at (n,mn − m)
and having n − k northeast corners, which has cardinality

(
n−2
n−k
)(
mn−m
n−k

)
. Similar

reasoning shows that there are
(
n−2

n−k−2

)(
mn−m
n−k−1

)
such sequences in O′m,n with a1 = 0

and a2 > 0, and 2
(
n−1

n−k−1

)(
mn−m
n−k

)
having a1 nonzero. Hence

NΦ(k) =
(
n− 2
k − 2

)(
mn−m
n− k

)
+
(
n− 2
k

)(
mn−m
n− k − 1

)
+ 2
(
n− 1
k

)(
mn−m
n− k

)
,

which simplifies to the proposed formula.
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