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PROJECTIONS OF POLYTOPES ON THE PLANE
AND THE GENERALIZED BAUES PROBLEM

CHRISTOS A. ATHANASIADIS

(Communicated by John R. Stembridge)

Abstract. Given an affine projection π : P → Q of a d-polytope P onto a

polygon Q, it is proved that the poset of proper polytopal subdivisions of Q
which are induced by π has the homotopy type of a sphere of dimension d− 3
if π maps all vertices of P into the boundary of Q. This result, originally
conjectured by Reiner, is an analogue of a result of Billera, Kapranov and
Sturmfels on cellular strings on polytopes and explains the significance of the
interior point of Q present in the counterexample to their generalized Baues
conjecture, constructed by Rambau and Ziegler.

1. Introduction

Motivated by their theory of fiber polytopes [6] and [18, Lecture 9], Billera and
Sturmfels have associated to any affine projection of convex polytopes π : P → Q

the Baues poset ω(P π→ Q) of proper polytopal subdivisions of Q which are in-
duced by π. This poset reduces to the poset of proper cellular strings [7] on P
with respect to π, if dim(Q) = 1, and can be described in general as the poset of
proper “locally π-coherent cellular strings” on P [7, 13], which is a combinatorial
model for the space of all continuous sections of π lying in the boundary of P . It
provides a common framework in which one can study traditional objects in polyhe-
dral combinatorics, such as monotone paths, triangulations of point configurations
and zonotopal tilings, and their connectivity by polygon moves, geometric bistellar
operations and mutations, respectively. For the relevance of polytopal subdivisions
in various areas of mathematics, see [12, Chapter 1].

The connectivity of the Baues poset, in a topological sense, is the subject of
the generalized Baues problem, posed by Billera, Kapranov and Sturmfels [7] (see
[14] for a survey). Specifically, the problem asks to determine whether the poset
ω(P π→ Q), endowed with a standard topology [8], has the homotopy type of a
sphere of dimension dim(P ) − dim(Q)− 1. An affirmative answer was given in [7]
when dim(Q) = 1, proving in particular a conjecture of Baues [5] in the theory of
loop spaces. However, an explicit example of a projection π for which ω(P π→ Q)
is disconnected was constructed by Rambau and Ziegler [13] and the borderline of
positive and negative answers remains an intriguing area of research (see [16] for a
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more recent negative result). In the counterexample of [13], in which P and Q have
dimensions five and two, respectively, the image of one of the vertices of P under
π is an interior point of the polygon Q. Our main result explains the significance
of this fact.

Theorem 1.1. Let π : P → Q be an affine projection of a d-polytope P onto a
polygon Q. If π maps all vertices of P into the boundary of Q, then the Baues
poset ω(P π→ Q) has the homotopy type of a (d− 3)-sphere.

Theorem 1.1, which can be viewed as an analogue of the main result of [7], was
conjectured by Reiner [14, Conjecture 6.6]. In fact Reiner conjectures a stronger
statement, namely that the subposet of π-coherent proper subdivisions is a strong
deformation retract of ω(P π→ Q) under the same assumptions on π. This subposet
of coherent subdivisions is isomorphic to the poset of proper faces of the fiber poly-
tope [6] associated to π, a polytope of dimension d−2, and is hence homeomorphic
to a (d− 3)-sphere. In the case dim(Q) = 2, the generalized Baues problem is also
known to have an affirmative answer when P has dimension d ≤ 4 [13], when P
is a cube [17], when P is a simplex [10] and π maps the vertices of P to points in
general position in R2 and when P has d + 2 vertices and π satisfies a condition
weaker than the one in Theorem 1.1 (see [1, Theorem 1.2]).

We prove Theorem 1.1 in Section 3 after we introduce the necessary definitions
and background in Section 2. Our method is an analogue in two dimensions of the
method used in [2] to give a new proof and generalization to the main result of [7].
We also derive a connectivity result on triangulations of Q by diagonal flips as a
corollary, following reasoning from [14, Section 3].

2. Background

In this section we provide the necessary definitions and background. Any un-
defined terminology relating to convex polytopes can be found in Ziegler’s text
[18].

2.1. The Baues poset. Let π : P → Q be an affine projection of a polytope
P onto a polygon Q ⊆ R2 and let A be the point configuration of projections of
the vertices of P in R2. Thus A is a multiset of points, each labeled with the
corresponding vertex of P , and conv(A) = Q.

A face of a subconfiguration σ ⊆ A is a subconfiguration of σ consisting of all
points on which some linear functional in R2 takes its minimum over σ. We call σ
spanning if conv(σ) has dimension two. A proper (polytopal) subdivision of A is a
finite collection x of spanning, proper subconfigurations of A, called the cells of x,
such that:

(i)
⋃
σ∈x conv(σ) = Q

and for any two σ1, σ2 ∈ x,
(ii) conv(σ1) ∩ conv(σ2) = conv(σ1 ∩ σ2) and
(iii) σ1 ∩ σ2 is either empty or a face of both σ1 and σ2.

A subconfiguration σ ⊆ A is π-induced if the corresponding set of vertices of
P spans a face of P and a subdivision x of A is π-induced if so is every cell of x.
The Baues poset ω(P π→ Q) [6, 7] is the set of proper π-induced subdivisions of
A, ordered by refinement, i.e. by letting x ≤ y if for every σ ∈ x there exists a
τ ∈ y with σ ⊆ τ . If P is a simplex, then this is the refinement poset of all proper
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polytopal subdivisions of A. If B ⊆ A is a spanning subconfiguration, we denote
by ωπ(B) the refinement poset of all π-induced subdivisions of B, i.e. subdivisions
x of B such that each cell of x is π-induced. By definition this poset contains the
trivial subdivision, which consists only of the cell B, if B is π-induced.

The previous definitions extend naturally when Q has any dimension. For a
definition of induced subdivisions as collections of faces of P , see [18, Section 9.1],
[13] or [1, Section 2].

2.2. Poset topology. When referring to the topology of a finite poset ω we mean
the topology of the geometric realization of its order complex ∆(ω), i.e. the sim-
plicial complex of chains in ω [8]. For x ∈ ω we write ω≤x = {y ∈ ω : y ≤ x}.
The following variation of the Quillen Fiber Lemma [11] will be useful in relating
homotopy types of posets.

Lemma 2.1 (Babson [4]). Let f : ω → ω′ be an order preserving map of posets. If

(i) f−1(y) is contractible for every y ∈ ω′ and
(ii) ω≤x ∩ f−1(y) is contractible for every x ∈ ω and y ∈ ω′ with f(x) > y,

then f induces a homotopy equivalence.

We say that a poset ω is connected if its Hasse diagram is connected as a graph.

2.3. Face and flag cuts. Given a proper face F of a d-polytope P ⊆ Rd, let H
be a supporting hyperplane of F , given by the equation c ·x = c0, so that c ·x ≥ c0
for x ∈ P . We call the intersection of P with the hyperplane c · x = c0 + δ for
some small δ > 0 the face cut of P at F . This is a polytope which reduces to the
vertex figure [18, p. 54] of P at v if F is a vertex v of P . Its face poset is the set of
faces of P which intersect both F and P − F , ordered by inclusion, and hence its
combinatorial type is independent of δ.

By iterating this construction we get the following lemma.

Lemma 2.2. Let ∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fk−1 ⊂ Fk = P be a flag F of faces of the
d-polytope P . The set of faces of P which intersect Fi − Fi−1 for all 1 ≤ i ≤ k,
ordered by inclusion, is the face poset of a polytope of dimension d− k + 1.

We call this polytope the flag cut of P at F . Note that the flag cut reduces to
the face figure [18, Problem 2.9] of P at Fk−1 if dim(Fi) = i− 1 for each 1 ≤ i < k.

The following elementary lemma will be needed in Section 3.

Lemma 2.3. If P ⊆ Rd is a polytope and U is an open halfspace in Rd which
intersects P , then the poset ω of faces of P which lie in U , ordered by inclusion, is
contractible.

Proof. Let u be one of the vertices of P which lies in U and either minimizes or
maximizes the linear functional associated to U . Let F be the polytopal complex
of faces of P contained in U and note that ∆(ω) is the barycentric subdivision of
F . If P ⊆ U , then ω has a maximum element and hence is contractible. Otherwise,
there is a stereographic projection h which maps homeomorphically the union of
the faces of F onto a closed subset of the boundary of U which is star convex with
respect to the point h(u). Hence this union is contractible and thus, so is ω.
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3. Homotopy type and connectivity

Throughout this section, P ⊆ Rd and Q ⊆ R2 are full dimensional polytopes,
π : P → Q is as in Theorem 1.1 and A is the point configuration in R2 of projected
vertices of P , as in Section 2.1, each lying in the boundary of Q.

Let τ ⊆ A be π-induced and such that conv(τ) is a line segment. If B is spanning
with τ ⊆ B ⊆ A, we denote by lkπ(τ,B) the set of spanning, π-induced σ ⊆ B which
have τ as a face and partially order this set by inclusion.

Lemma 3.1. Let τ ⊆ A be π-induced, as above, and let e be the line segment
conv(τ). Suppose that B is either

(i) A itself, if e is contained in the boundary of Q or
(ii) the configuration of points in A which lie in one of the two polygons into

which Q is divided by e, if e intersects the interior of Q,
so that τ ⊆ B ⊆ A and e lies in the boundary of conv(B). Then the poset lkπ(τ,B)
is nonempty and contractible.

Proof. Let L and L+ be the line defined by e and the closed halfplane defined by
L which contains B, respectively. The set π−1(L+) is a closed halfspace H+ in Rd
defined by the hyperplane H = π−1(L). Let F be the face of P which induces τ ,
so that F ⊆ H .

By definition, lkπ(τ,B) is isomorphic to the poset of faces G of P such that
F ⊂ G ⊆ H+ and H ∩ G = F , ordered by inclusion. Since the poset of faces of P
which contain F is the face poset of the face figure PF of P at F , it follows that
lkπ(τ,B) is isomorphic to the poset of faces of the polytope PF which lie in an open
halfspace which intersects PF . This poset is contractible by Lemma 2.3.

For point configurations B ⊆ C, we say (with a slight abuse of language) that a
subdivision of B refines one of C if every cell of the former subdivision is contained
in a cell of the latter.

Lemma 3.2. Let τ and B be as in case (ii) of Lemma 3.1 and let X be a subdivision
in ωπ(C) (possibly trivial), for some C with B ⊆ C ⊆ A, such that τ is contained in
a cell of X.

Then the subposet ωX(τ,B) of ωπ(B), consisting of the subdivisions x such that
x refines X and τ is a face of a cell of x, is contractible.

Proof. We proceed by induction on the cardinality of B. Let σ be the unique cell of
X which contains τ and at least one point of B not in conv(τ). Let ω = ωX(τ,B),
σ′ = σ∩B and ω′ = lkπ(τ, σ′). For x ∈ ω, let f(x) be the unique cell in x which has
τ as a face. Clearly f(x) ∈ ω′ and f : ω → ω′ is an order preserving map of posets.
By Lemma 3.1 applied to the restriction of π to the face of P which induces σ, ω′

is nonempty and contractible. Hence it suffices to show that the two conditions of
Lemma 2.1 are satisfied.

To verify condition (i), let y ∈ ω′ and τ(y) be the set of 1-faces of y other than
τ whose convex hull intersects the interior of Q (see Figure 1a). For τ ′ ∈ τ(y), let
Bτ ′ ⊂ B be the point configuration assigned to τ ′ in case (ii) of Lemma 3.1. Note
that each τ ′ ∈ τ(y) is π-induced and contained in the cell σ of X (since so is y) and
that any subdivision in f−1(y) must contain a cell other than y having τ ′ as a face.
It follows that f−1(y) is the direct product of the posets ωX(τ ′,Bτ ′), to which the
induction hypothesis applies, and hence is contractible. Similarly for condition (ii),
if x ∈ ω satisfies f(x) > y, then each τ ′ ∈ τ(y) is contained in the cell f(x) of x
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Figure 1. (a) τ is contained in a cell of X and is a face of y. (b)
conv(y) contains v and intersects the interior of e.

and ω≤x ∩ f−1(y) is the direct product of the posets ωx(τ ′,Bτ ′). These posets are
contractible again by induction and hence, so is their product.

We now prove Theorem 1.1.

Proof of Theorem 1.1. Let ω denote the poset ω(P π→ Q). We fix an arbitrary
vertex v of Q and an edge e which contains v. Let ω′ be the set of spanning, π-
induced proper subconfigurations σ ofA such that conv(σ) contains v and intersects
the relative interior of e. We order ω′ by inclusion and define the map f : ω → ω′

which sends a subdivision x ∈ ω to the unique cell in x ∩ ω′. Note that f is well
defined and order preserving and that σ ⊂ A is in ω′ if and only if the corresponding
subset of vertices of P intersects each one of the sets π−1(v), π−1(e)− π−1(v) and
P − π−1(e) and spans a proper face of P . Hence ω′ is isomorphic to the poset of
proper faces of the flag cut of P at the flag of faces

∅ ⊂ π−1(v) ⊂ π−1(e) ⊂ P
(see Lemma 2.2) and is therefore homeomorphic to a (d−3)-sphere. One can check,
as in the proof of Lemma 3.2, that the conditions of Lemma 2.1 for the map f are
satisfied. More specifically, let x ∈ ω, y ∈ ω′, τ(y) be the set of 1-faces of y whose
convex hull intersects the interior of Q and for each τ ∈ τ(y), let Bτ be the point
configuration assigned to τ in case (ii) of Lemma 3.1, chosen so that Bτ does not
contain points of y − τ (see Figure 1b). The poset f−1(y) is the direct product of
the posets ωX(τ,Bτ ) which are contractible by Lemma 3.2, where X denotes the
trivial subdivision of A. If f(x) > y, then ω≤x∩ f−1(y) is the direct product of the
posets ωx(τ,Bτ ), which are again contractible by Lemma 3.2.

In the remainder of this section we assume that P is a simplicial d-polytope,
where d ≥ 3, and that π maps bijectively the vertex set of P onto the vertex set of
the polygon Q.

Under these assumptions, the minimal elements of ω(P π→ Q) are the π-induced
triangulations of Q. We say that two such triangulations are connected by a diag-
onal π-flip (see [15] for a general notion of π-flip) if they both refine a π-induced
subdivision of Q into polygons one of which is a quadrangle T and the rest trian-
gles, so that one triangulation is obtained from the other by “flipping the diagonal”
in T . Let G(Q, π) denote the graph with nodes the π-induced triangulations of Q
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and edges the diagonal π-flips. Note that G(Q, π) is the 1-skeleton of the (d − 2)-
dimensional associahedron [18, Example 9.11] if P is a simplex.

Corollary 3.3. If P is a simplicial d-polytope with d ≥ 4 and π : P → Q induces
a bijection of the vertex sets of P and Q, then the graph G(Q, π) of π-induced
triangulations of Q and diagonal π-flips is connected.

Proof. Let ω̂ denote the poset ω := ω(P π→ Q) with a maximum element attached
and Gω denote the graph which is the restriction of the Hasse diagram of ω̂ to its
first two ranks, i.e. the set of minimal elements and those which cover a minimal
element. We claim that Gω is connected. Indeed, by an observation of Reiner
[14, Lemma 8], it suffices to show that all strict principal order ideals ω̂<x are
either empty or connected or consist of exactly two incomparable elements. That
ω is connected follows from Theorem 1.1, so let x ∈ ω. If x contains at most
one polygon T which is not a triangle, then ω<x is either empty, or consists of
two incomparable elements (if T is a quadrangle) or is isomorphic to the poset of
proper faces of an associahedron of dimension at least two, which is connected. If
not, then ω<x has the form ω1 × ω2 − 1̂ × 1̂, where each poset ωi has a maximum
element 1̂ and cardinality at least two, and each poset of this form is easily seen to
be connected.

Now observe that if x ∈ ω̂ covers some minimal element, then this is an isolated
element in ω̂<x. By our previous analysis, x must be a proper subdivision in ω,
one of whose cells is a quadrangle and the rest triangles. It follows that Gω is
isomorphic to the first barycentric subdivision of G(Q, π), which is therefore also
connected.

Recall that a graph G is j-connected if any induced subgraph of G, obtained
by removing at most j − 1 nodes, is connected and has at least two nodes. The
following question is suggested by the previous corollary.

Question 3.4. Under the assumptions of Corollary 3.3 on π : P → Q, is there a
j ≥ 2 such that the graph G(Q, π) is always j-connected?

In particular, does every node of G(Q, π) always have at least j neighbors for
some j ≥ 2?

For similar questions and results in the context of the Baues problem see [2, 3, 9]
and [14, Section 3].
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