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P. Hanlon (J. Combin. Theory Ser. A 59 (1992), 218�239) has conjectured an
explicit formula for the eigenvalues of certain combinatorial matrices related to the
cohomology of nilpotent Lie algebras. Several special cases of this conjecture are
now established. � 1996 Academic Press, Inc.

1. Introduction

Let Gk(a, b) be the disjoint union of the graphs Gk(a, b; w), introduced
in [H], for all possible w. Recall that if

Mk(x, y, *)= :
a, b, r

+k(a, b; r) xayb*r

is the generating function for the multiplicities +k(a, b; r) of r as an eigen-
value of Gk(a, b), then Hanlon's remarkable conjecture may be stated as
follows.
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Conjecture (Hanlon [H]).

Mk(x, y, *)= `
k

i=0

(1+x+ y+*i+1xy).

Hanlon determined explicitly the eigenvalues of Gk(a, b; w) under certain
restrictions on the parameters, the so-called stable case [H, Theorem 2.5].
Since, for most values of a, b, and k, some values of w are not stable��the
above conjecture remained unsettled for almost all cases.

The current paper contains a proof of Hanlon's conjecture in the follow-
ing cases:

(i) a=1, b=2, arbitrary k (nonzero eigenvalues).

(ii) a=1, arbitrary b and k (the zero eigenvalue).

Before we state precisely our results, let us recall some basic notation
and background from [H]. Let H be the three-dimensional Heisenberg
Lie algebra. As a complex vector space, H has a basis [e, f, x] with Lie
brackets

[e, f ]=x, [e, x]=[ f, x]=0.

Now fix a nonnegative integer k and let Hk be the Lie algebra

Hk=H� (C[t]�(tk+1)),

with Lie bracket given by

[ g� p(t), h�q(t)]=[ g, h]� p(t) q(t).

For i # [0, k]=[0, 1, ..., k], let ei , fi , and xi denote e� ti, f � ti, and x� ti,
respectively. These elements form the standard basis of Hk , with the only
nonzero brackets among them having the form

[ei , fj]=xi+ j ,

where i+ j�k. Denote by E, F, and X the subspaces spanned by the ei , fi ,
and xi , respectively. We then have

Hk=E�F�X

and, also,

4Hk=(4E) 7 (4F) 7 (4X),
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where 4 stands for the exterior algebra. For a set of indices I=[i1 , i2 , ..., ir]
with 0�i1<i2< } } } <ir�k set, as usual, eI=ei1 7 ei2 7 } } } 7 eir and,
similarly, for fI and xI . The elements

eA 7 fB 7xC ,

where A, B, and C range over all subsets of [0, k], form a basis of 4Hk ,
which we call the standard basis. Denote by Vk(a, b, c) the subspace
(4aE) 7 (4bF ) 7 (4cX) of 4Hk . Its standard basis consists of the elements
eA 7 fB 7 xC satisfying |A|=a, |B|=b and |C|=c.

Let �: 4Hk � 4Hk be the boundary map defining the Koszul complex of
Hk . Thus, � is a linear map defined on elements of the standard basis by

�(m1 7m2 7 } } } 7 mr)

= :
1�i< j�r

(&1) i+ j&1 [mi , mj]m1 7 } } } 7 m̂i 7 } } } 7 m̂j 7 } } } 7 mr ,

where m # [e, f, x]. Then

��=0

and

H
*

(Hk)=ker ��im �

is the (Lie algebra) homology of Hk . Define the Laplacian operator
L: 4Hk � 4Hk to be

L=��*+�*�,

where the adjoint of � (the coboundary map) is taken with respect to the
Hermitian form for which the standard basis of 4Hk is orthonormal. Then
(see [K]) ker L and H

*
(Hk ; C) are isomorphic as graded vector spaces, so

that the (graded) multiplicity of zero as an eigenvalue of L gives the dimen-
sions of homology groups of Hk . The grading on 4Hk is obtained by
assigning degree 1 to each nonzero element of Hk , so that nonzero
elements of Vk(a, b, c) have degree a+b+c. The maps � and �* do not
preserve this grading (although L does), since

�: Vk(a, b, c) � Vk(a&1, b&1, c+1)

and

�*: Vk(a&1, b&1, c+1) � Vk(a, b, c).
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Each subspace Vk(a, b, c) is therefore invariant under L. It is also clear that
� and �* do preserve another grading of 4Hk , defined by assigning degree
i to ei , fi , and xi for each i. With this grading, an element eA 7 fB 7 xC of
4Hk has degree &A&+&B&+&C&, where &S& stands for the sum of the
elements of S. This quantity is called the weight of the triple (A, B, C).

The adjacency matrix of the graph Gk(a, b) (as defined in [H]) is the
matrix representing the restriction of the Laplacian L to Vk(a, b, 0) with
respect to the standard basis. The adjacency matrix of the component
Gk(a, b; w) of Gk(a, b) is the matrix representing the restriction of L to the
homogeneous component of Vk(a, b, 0) of total weight w. Note that �*=0
on Vk(a, b, 0), and, hence, this restriction of L actually has the form �*�,
where

�: Vk(a, b, 0) � Vk(a&1, b&1, 1)

and

�*: Vk(a&1, b&1, 1) � Vk(a, b, 0).

Let wxx denote the largest integer not exceeding the real number x.

Theorem 1. For a=1, b=2, and arbitrary k, the nonzero eigenvalues of
the Laplacian restricted to Vk(a, b, 0) are the integers 1, ..., k+1, each with
multiplicity k:

+k(1, 2; r)={k,
0,

if 1�r�k+1;
otherwise.

Their distribution among the various weights w is

+k(1, 2, w; r)

1, if 1�w�k, 1�r�w+1, r{w(w+2)�2x;

={1, if k+1�w�2k, w&k�r�k+1, r{w(w+2)�2x;

0, otherwise.

Theorem 2. For a=1 and arbitrary b and k, the multiplicity of the zero
eigenvalue of the Laplacian restricted to Vk(a, b, 0) is

+k(1, b; 0)=\ k+1
1, b, k&b+=(k+1) \k

b+ .
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Its distribution among the various weights w is

+k(1, b, w; 0)= :
k

i=0

* {( j1 , ..., jb) | 1� j1< } } } < jb�k, :
b

t=1

jt=w&i= .

Sections 2 and 3 contain, respectively, proofs of the above two theorems.

2. Nonzero Eigenvalues

In order to prove Theorem 1, let us first compute the eigenvalues of an
interesting family of symmetric matrices. For a positive integer n, let

An=diag(1, 2, ..., n)&Tn ,

where Tn is the n_n ``lower-right triangular'' Hankel matrix defined by

Tn(i, j )={1, if i+ j�n+1;
0, otherwise.

For n=1, 2, 3, 4, 5, An is

1 0 &1

(0), \ 1 &1
&1 1+ , \ 0 1 &1+ , \

1
0
0

&1

0
2

&1
&1

0
&1

2
&1

&1
&1
&1

3+ ,

&1 &1 2

1 0 0 0 &1

0 2 0 &1 &1\ 0 0 2 &1 &1+ .

0 &1 &1 3 &1

&1 &1 &1 &1 4

Lemma 3. The eigenvalues of An are the elements of [0, 1, ..., n]"

[w(n+1)�2x], each with multiplicity one.

Proof. To compute the determinant of An&*I, add to the first row all
the other rows. Now every entry in row 1 equals &*, so factor out &* and
add row 1 to the last row, which becomes (0, ..., 0, n&*). Expanding the
determinant on its last row and then again on its first column, it follows
that the eigenvalues of An are 0, n, and the eigenvalues of An&2+I. Induc-
tion on n now completes the proof. K
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To compute the nonzero eigenvalues of the Laplacian for a=1, b=2
(and arbitrary k), let us use the following elementary fact from linear
algebra: If A: U � W and B: W � U are linear transformations between
finite dimensional vector spaces, then the nonzero eigenvalues of BA are
the same as the nonzero eigenvalues of AB, including multiplicites. In other
words,

*dim W ch(BA, *)=*dim U ch(AB, *),

where ch(T, *) stands for the characteristic polynomial of T. Thus the
eigenvalues we are looking for are the nonzero eigenvalues of the operator
��*: W � W, where

W=Vk(a&1, b&1, 1)=Vk(0, 1, 1).

The standard basis for W consists of all fi 7 xj such that i, j # [0, k].
Denote this basis element by (i, j ), for brevity. The rule for describing the
entries of the matrix of ��* with respect to this basis is as follows. The
entry in row (i, j) and column (i $, j $) is 0 unless (i $, j $) can be obtained
from (i, j ) by the following procedure: Write j=h"+i" with h", i" # [0, k]
but i"{i. Let j $ be the sum of h" and either i or i", and let i $ be the
remaining one (i" or i). Such a choice contributes (to the matrix entry)
either 1 (when i $=i ) or &1 (when i $=i").

As was noted before, ��* preserves the weight w=i+ j of each basis ele-
ment. Thus its matrix, with a suitable ordering of rows and columns, has
block form with blocks indexed by weight. Take the row (and column)
indices (i, j ) of weight w in the following order:

(w, 0), (w&1, 1), ..., (0, w) if 0�w�k;

(k, w&k), (k&1, w&k+1), ..., (w&k, k) if k�w�2k.

The corresponding blocks are seen to be

Bk, w={Aw+1 ,
A2k&w+1+(w&k)I,

if 0�w�k;
if k�w�2k,

where An are the matrices defined at the beginning of this section.
It now follows that the eigenvalues of Bk, w are [0, 1, ..., w+1]"

[w(w+2)�2x] for 0�w�k, and [w&k, w&k+1, ..., k+1]"[w(w+2)�2x]
for k�w�2k. Collecting the nonzeros among these numbers for 0�
w�2k, one gets exactly the eigenvalues with uniform multiplicities claimed
in Theorem 1. K
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3. Multiplicity of the Zero Eigenvalue

It is clear that the special case b=2 of Theorem 2 may be proved using
the arguments and computations of the previous section. However, the
treatment of general values of b will proceed in a different route.

First note that, for an upper layer Vk(a, b, 0),

ker(L)=ker(�*�)=ker(�).

Thus we are interested in the dimension of ker(�), where � is restricted to
Vk(1, b, 0). Since the dimension of Vk(1, b, 0) itself is easy to compute, it
will suffice to find a (vector space) complement to ker(�) whose dimension
is also easy to compute.

Lemma 4. Vk(1, b, 0)=ker(�)� ( f0 7Vk(1, b&1, 0)).

Proof. For any index i # [0, k] and any set of indices B�[0, k],

�(ei 7 fB)= :
j # B

\ fB"[ j] 7xi+j ,

where it is understood that xt=0 if t>k. Thus, for any index i0 and set of
indices S,

� \ :
i # S

\ei0+i 7 fS"[i]+= :
i # S

:
j # S"[i]

\ fS"[i, j] 7 xi0+i+ j=0.

The summands in the double summation simply cancel in pairs; this fact is
a close relative of the fundamental identity ��=0 for the boundary map.
In other words,

:
i # S

\ei0+i 7 fS"[i] # ker(�) (\i0 # [0, k], S�[0, k]).

Taking now S=[0] _ B for B�[1, k], it follows that

ei0 7 fB # ker(�)+( f0 7Vk(1, b&1, 0)),

where b=|B|. Thus

Vk(1, b, 0)=ker(�)+( f0 7 Vk(1, b&1, 0)).

In order to prove that this is a direct sum, consider a nonzero element
v # f0 7 Vk(1, b&1, 0). We shall prove that �(v){0. Indeed, let

v=:
i, T

:i,Tei 7 f0 7 fT ,

366 NOTE
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where the sets T do not contain the index 0 and at least one coefficient
:i, T{0. Let

i0=min[i | (_T ) :i,T{0].

For i # [0, k], let

Xi=xi 7Vk(0, b&1, 0)

and let Pi be the projection from

Vk(0, b&1, 1)=�
k

i=0

Xi

onto its direct summand Xi . It is now clear that

Pi0(�(v))= :
i0,T

:i0,Txi0 7 fT{0,

so that indeed �(v){0.
Having proved that

Vk(1, b, 0)=ker(�)� ( f0 7 Vk(1, b&1, 0)),

it now follows that

dim ker(�)=dim Vk(1, b, 0)&dim( f0 7Vk(1, b&1, 0))

=(k+1) \k+1
b +&(k+1) \ k

b&1+=(k+1) \k
b+ ,

as claimed in Theorem 2. K
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