Note

On Hanlon's Eigenvalue Conjecture

R. M. Adin*
Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
AND
C. A. Athanasiadis ${ }^{\dagger}$
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Communicated by Gian-Carlo Rota

Received January 13, 1995
P. Hanlon (J. Combin. Theory Ser. A 59 (1992), 218-239) has conjectured an explicit formula for the eigenvalues of certain combinatorial matrices related to the cohomology of nilpotent Lie algebras. Several special cases of this conjecture are now established. © 1996 Academic Press, Inc.

1. Introduction

Let $G_{k}(a, b)$ be the disjoint union of the graphs $G_{k}(a, b ; w)$, introduced in $[\mathrm{H}]$, for all possible w. Recall that if

$$
M_{k}(x, y, \lambda)=\sum_{a, b, r} \mu_{k}(a, b ; r) x^{a} y^{b} \lambda^{r}
$$

is the generating function for the multiplicities $\mu_{k}(a, b ; r)$ of r as an eigenvalue of $G_{k}(a, b)$, then Hanlon's remarkable conjecture may be stated as follows.

[^0]Conjecture (Hanlon [H]).

$$
M_{k}(x, y, \lambda)=\prod_{i=0}^{k}\left(1+x+y+\lambda^{i+1} x y\right) .
$$

Hanlon determined explicitly the eigenvalues of $G_{k}(a, b ; w)$ under certain restrictions on the parameters, the so-called stable case [H, Theorem 2.5]. Since, for most values of a, b, and k, some values of w are not stable-the above conjecture remained unsettled for almost all cases.

The current paper contains a proof of Hanlon's conjecture in the following cases:
(i) $\quad a=1, b=2$, arbitrary k (nonzero eigenvalues).
(ii) $\quad a=1$, arbitrary b and k (the zero eigenvalue).

Before we state precisely our results, let us recall some basic notation and background from [H]. Let \mathscr{H} be the three-dimensional Heisenberg Lie algebra. As a complex vector space, \mathscr{H} has a basis $\{e, f, x\}$ with Lie brackets

$$
[e, f]=x, \quad[e, x]=[f, x]=0 .
$$

Now fix a nonnegative integer k and let \mathscr{H}_{k} be the Lie algebra

$$
\mathscr{H}_{k}=\mathscr{H} \otimes\left(\mathbf{C}[t] /\left(t^{k+1}\right)\right),
$$

with Lie bracket given by

$$
[g \otimes p(t), h \otimes q(t)]=[g, h] \otimes p(t) q(t) .
$$

For $i \in[0, k]=\{0,1, \ldots, k\}$, let e_{i}, f_{i}, and x_{i} denote $e \otimes t^{i}, f \otimes t^{i}$, and $x \otimes t^{i}$, respectively. These elements form the standard basis of \mathscr{H}_{k}, with the only nonzero brackets among them having the form

$$
\left[e_{i}, f_{j}\right]=x_{i+j},
$$

where $i+j \leqslant k$. Denote by E, F, and X the subspaces spanned by the e_{i}, f_{i}, and x_{i}, respectively. We then have

$$
\mathscr{H}_{k}=E \oplus F \oplus X
$$

and, also,

$$
\Lambda \mathscr{H}_{k}=(\Lambda E) \wedge(\Lambda F) \wedge(\Lambda X),
$$

where Λ stands for the exterior algebra. For a set of indices $I=\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$ with $0 \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant k$ set, as usual, $e_{I}=e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{r}}$ and, similarly, for f_{I} and x_{I}. The elements

$$
e_{A} \wedge f_{B} \wedge x_{C}
$$

where A, B, and C range over all subsets of $[0, k]$, form a basis of $\Lambda \mathscr{H}_{k}$, which we call the standard basis. Denote by $V_{k}(a, b, c)$ the subspace $\left(\Lambda^{a} E\right) \wedge\left(\Lambda^{b} F\right) \wedge\left(\Lambda^{c} X\right)$ of $\Lambda \mathscr{H}_{k}$. Its standard basis consists of the elements $e_{A} \wedge f_{B} \wedge x_{C}$ satisfying $|A|=a,|B|=b$ and $|C|=c$.

Let $\partial: \Lambda \mathscr{H}_{k} \rightarrow \Lambda \mathscr{H}_{k}$ be the boundary map defining the Koszul complex of \mathscr{H}_{k}. Thus, ∂ is a linear map defined on elements of the standard basis by

$$
\begin{aligned}
\partial\left(m_{1}\right. & \left.\wedge m_{2} \wedge \cdots \wedge m_{r}\right) \\
& =\sum_{1 \leqslant i<j \leqslant r}(-1)^{i+j-1}\left[m_{i}, m_{j}\right] m_{1} \wedge \cdots \wedge \hat{m}_{i} \wedge \cdots \wedge \hat{m}_{j} \wedge \cdots \wedge m_{r}
\end{aligned}
$$

where $m \in\{e, f, x\}$. Then

$$
\partial \partial=0
$$

and

$$
H_{*}\left(\mathscr{H}_{k}\right)=\operatorname{ker} \partial / \operatorname{im} \partial
$$

is the (Lie algebra) homology of \mathscr{H}_{k}. Define the Laplacian operator $L: \Lambda \mathscr{H}_{k} \rightarrow \Lambda \mathscr{H}_{k}$ to be

$$
L=\partial \partial^{*}+\partial^{*} \partial
$$

where the adjoint of ∂ (the coboundary map) is taken with respect to the Hermitian form for which the standard basis of $\Lambda \mathscr{H}_{k}$ is orthonormal. Then (see [K]) ker L and $H_{*}\left(\mathscr{H}_{k} ; \mathbf{C}\right)$ are isomorphic as graded vector spaces, so that the (graded) multiplicity of zero as an eigenvalue of L gives the dimensions of homology groups of \mathscr{H}_{k}. The grading on $\Lambda \mathscr{H}_{k}$ is obtained by assigning degree 1 to each nonzero element of \mathscr{H}_{k}, so that nonzero elements of $V_{k}(a, b, c)$ have degree $a+b+c$. The maps ∂ and ∂^{*} do not preserve this grading (although L does), since

$$
\partial: V_{k}(a, b, c) \rightarrow V_{k}(a-1, b-1, c+1)
$$

and

$$
\partial^{*}: V_{k}(a-1, b-1, c+1) \rightarrow V_{k}(a, b, c)
$$

Each subspace $V_{k}(a, b, c)$ is therefore invariant under L. It is also clear that ∂ and ∂^{*} do preserve another grading of $\Lambda \mathscr{H}_{k}$, defined by assigning degree i to e_{i}, f_{i}, and x_{i} for each i. With this grading, an element $e_{A} \wedge f_{B} \wedge x_{C}$ of $\Lambda \mathscr{H}_{k}$ has degree $\|A\|+\|B\|+\|C\|$, where $\|S\|$ stands for the sum of the elements of S. This quantity is called the weight of the triple (A, B, C).

The adjacency matrix of the graph $G_{k}(a, b)$ (as defined in [H]) is the matrix representing the restriction of the Laplacian L to $V_{k}(a, b, 0)$ with respect to the standard basis. The adjacency matrix of the component $G_{k}(a, b ; w)$ of $G_{k}(a, b)$ is the matrix representing the restriction of L to the homogeneous component of $V_{k}(a, b, 0)$ of total weight w. Note that $\partial^{*}=0$ on $V_{k}(a, b, 0)$, and, hence, this restriction of L actually has the form $\partial^{*} \partial$, where

$$
\partial: V_{k}(a, b, 0) \rightarrow V_{k}(a-1, b-1,1)
$$

and

$$
\partial^{*}: V_{k}(a-1, b-1,1) \rightarrow V_{k}(a, b, 0) .
$$

Let $\lfloor x\rfloor$ denote the largest integer not exceeding the real number x.

Theorem 1. For $a=1, b=2$, and arbitrary k, the nonzero eigenvalues of the Laplacian restricted to $V_{k}(a, b, 0)$ are the integers $1, \ldots, k+1$, each with multiplicity k :

$$
\mu_{k}(1,2 ; r)= \begin{cases}k, & \text { if } 1 \leqslant r \leqslant k+1 \\ 0, & \text { otherwise }\end{cases}
$$

Their distribution among the various weights w is
$\mu_{k}(1,2, w ; r)$

$$
= \begin{cases}1, & \text { if } 1 \leqslant w \leqslant k, 1 \leqslant r \leqslant w+1, r \neq \mathrm{L}(w+2) / 2\rfloor \\ 1, & \text { if } k+1 \leqslant w \leqslant 2 k, w-k \leqslant r \leqslant k+1, r \neq \mathrm{L}(w+2) / 2\rfloor \\ 0, & \text { otherwise. }\end{cases}
$$

Theorem 2. For $a=1$ and arbitrary b and k, the multiplicity of the zero eigenvalue of the Laplacian restricted to $V_{k}(a, b, 0)$ is

$$
\mu_{k}(1, b ; 0)=\binom{k+1}{1, b, k-b}=(k+1)\binom{k}{b} .
$$

Its distribution among the various weights w is

$$
\mu_{k}(1, b, w ; 0)=\sum_{i=0}^{k} \#\left\{\left(j_{1}, \ldots, j_{b}\right) \mid 1 \leqslant j_{1}<\cdots<j_{b} \leqslant k, \sum_{t=1}^{b} j_{t}=w-i\right\} .
$$

Sections 2 and 3 contain, respectively, proofs of the above two theorems.

2. Nonzero Eigenvalues

In order to prove Theorem 1, let us first compute the eigenvalues of an interesting family of symmetric matrices. For a positive integer n, let

$$
A_{n}=\operatorname{diag}(1,2, \ldots, n)-T_{n},
$$

where T_{n} is the $n \times n$ "lower-right triangular" Hankel matrix defined by

$$
T_{n}(i, j)= \begin{cases}1, & \text { if } i+j \geqslant n+1 \\ 0, & \text { otherwise }\end{cases}
$$

For $n=1,2,3,4,5, A_{n}$ is

$$
\begin{aligned}
(0), \quad\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right), & \left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
-1 & -1 & 2
\end{array}\right), \\
& \left(\begin{array}{rrrrr}
1 & 0 & 0 & 0 & -1 \\
0 & 2 & 0 & -1 & -1 \\
0 & 0 & 2 & -1 & -1 \\
0 & -1 & -1 & 3 & -1 \\
-1 & -1 & -1 & -1 & 4
\end{array}\right) .
\end{aligned}
$$

Lemma 3. The eigenvalues of A_{n} are the elements of $\{0,1, \ldots, n\} \backslash$ $\{\llcorner(n+1) / 2\rfloor\}$, each with multiplicity one.

Proof. To compute the determinant of $A_{n}-\lambda I$, add to the first row all the other rows. Now every entry in row 1 equals $-\lambda$, so factor out $-\lambda$ and add row 1 to the last row, which becomes $(0, \ldots, 0, n-\lambda)$. Expanding the determinant on its last row and then again on its first column, it follows that the eigenvalues of A_{n} are $0, n$, and the eigenvalues of $A_{n-2}+I$. Induction on n now completes the proof.

To compute the nonzero eigenvalues of the Laplacian for $a=1, b=2$ (and arbitrary k), let us use the following elementary fact from linear algebra: If $A: U \rightarrow W$ and $B: W \rightarrow U$ are linear transformations between finite dimensional vector spaces, then the nonzero eigenvalues of $B A$ are the same as the nonzero eigenvalues of $A B$, including multiplicites. In other words,

$$
\lambda^{\operatorname{dim} W} \operatorname{ch}(B A, \lambda)=\lambda^{\operatorname{dim} U} \operatorname{ch}(A B, \lambda),
$$

where $\operatorname{ch}(T, \lambda)$ stands for the characteristic polynomial of T. Thus the eigenvalues we are looking for are the nonzero eigenvalues of the operator $\partial \partial^{*}: W \rightarrow W$, where

$$
W=V_{k}(a-1, b-1,1)=V_{k}(0,1,1) .
$$

The standard basis for W consists of all $f_{i} \wedge x_{j}$ such that $i, j \in[0, k]$. Denote this basis element by (i, j), for brevity. The rule for describing the entries of the matrix of $\partial \partial *$ with respect to this basis is as follows. The entry in row (i, j) and column $\left(i^{\prime}, j^{\prime}\right)$ is 0 unless $\left(i^{\prime}, j^{\prime}\right)$ can be obtained from (i, j) by the following procedure: Write $j=h^{\prime \prime}+i^{\prime \prime}$ with $h^{\prime \prime}, i^{\prime \prime} \in[0, k]$ but $i^{\prime \prime} \neq i$. Let j^{\prime} be the sum of $h^{\prime \prime}$ and either i or $i^{\prime \prime}$, and let i^{\prime} be the remaining one ($i^{\prime \prime}$ or i). Such a choice contributes (to the matrix entry) either 1 (when $i^{\prime}=i$) or -1 (when $i^{\prime}=i^{\prime \prime}$).

As was noted before, $\partial \partial^{*}$ preserves the weight $w=i+j$ of each basis element. Thus its matrix, with a suitable ordering of rows and columns, has block form with blocks indexed by weight. Take the row (and column) indices (i, j) of weight w in the following order:

$$
\begin{array}{ll}
(w, 0),(w-1,1), \ldots,(0, w) & \text { if } 0 \leqslant w \leqslant k \\
(k, w-k),(k-1, w-k+1), \ldots,(w-k, k) & \text { if } k \leqslant w \leqslant 2 k
\end{array}
$$

The corresponding blocks are seen to be

$$
B_{k, w}= \begin{cases}A_{w+1}, & \text { if } \quad 0 \leqslant w \leqslant k \\ A_{2 k-w+1}+(w-k) I, & \text { if } \quad k \leqslant w \leqslant 2 k,\end{cases}
$$

where A_{n} are the matrices defined at the beginning of this section.
It now follows that the eigenvalues of $B_{k, w}$ are $\{0,1, \ldots, w+1\} \backslash$ $\{\lfloor(w+2) / 2\rfloor\}$ for $0 \leqslant w \leqslant k$, and $\{w-k, w-k+1, \ldots, k+1\} \backslash\{L(w+2) / 2\rfloor\}$ for $k \leqslant w \leqslant 2 k$. Collecting the nonzeros among these numbers for $0 \leqslant$ $w \leqslant 2 k$, one gets exactly the eigenvalues with uniform multiplicities claimed in Theorem 1.

3. Multiplicity of the Zero Eigenvalue

It is clear that the special case $b=2$ of Theorem 2 may be proved using the arguments and computations of the previous section. However, the treatment of general values of b will proceed in a different route.

First note that, for an upper layer $V_{k}(a, b, 0)$,

$$
\operatorname{ker}(L)=\operatorname{ker}\left(\partial^{*} \partial\right)=\operatorname{ker}(\partial) .
$$

Thus we are interested in the dimension of $\operatorname{ker}(\partial)$, where ∂ is restricted to $V_{k}(1, b, 0)$. Since the dimension of $V_{k}(1, b, 0)$ itself is easy to compute, it will suffice to find a (vector space) complement to $\operatorname{ker}(\partial)$ whose dimension is also easy to compute.

Lemma 4. $\quad V_{k}(1, b, 0)=\operatorname{ker}(\partial) \oplus\left(f_{0} \wedge V_{k}(1, b-1,0)\right)$.
Proof. For any index $i \in[0, k]$ and any set of indices $B \subseteq[0, k]$,

$$
\partial\left(e_{i} \wedge f_{B}\right)=\sum_{j \in B} \pm f_{B \backslash\{j\}} \wedge x_{i+j}
$$

where it is understood that $x_{t}=0$ if $t>k$. Thus, for any index i_{0} and set of indices S,

$$
\partial\left(\sum_{i \in S} \pm e_{i_{0}+i} \wedge f_{S \backslash\{i\}}\right)=\sum_{i \in S} \sum_{j \in S \backslash\{i\}} \pm f_{S \backslash\{i, j\}} \wedge x_{i_{0}+i+j}=0 .
$$

The summands in the double summation simply cancel in pairs; this fact is a close relative of the fundamental identity $\partial \partial=0$ for the boundary map. In other words,

$$
\sum_{i \in S} \pm e_{i_{0}+i} \wedge f_{S \backslash\{i\}} \in \operatorname{ker}(\partial) \quad\left(\forall i_{0} \in[0, k], S \subseteq[0, k]\right) .
$$

Taking now $S=\{0\} \cup B$ for $B \subseteq[1, k]$, it follows that

$$
e_{i_{0}} \wedge f_{B} \in \operatorname{ker}(\partial)+\left(f_{0} \wedge V_{k}(1, b-1,0)\right)
$$

where $b=|B|$. Thus

$$
V_{k}(1, b, 0)=\operatorname{ker}(\partial)+\left(f_{0} \wedge V_{k}(1, b-1,0)\right) .
$$

In order to prove that this is a direct sum, consider a nonzero element $v \in f_{0} \wedge V_{k}(1, b-1,0)$. We shall prove that $\partial(v) \neq 0$. Indeed, let

$$
v=\sum_{i, T} \alpha_{i, T} e_{i} \wedge f_{0} \wedge f_{T},
$$

where the sets T do not contain the index 0 and at least one coefficient $\alpha_{i, T} \neq 0$. Let

$$
i_{0}=\min \left\{i \mid(\exists T) \alpha_{i, T} \neq 0\right\} .
$$

For $i \in[0, k]$, let

$$
X_{i}=x_{i} \wedge V_{k}(0, b-1,0)
$$

and let P_{i} be the projection from

$$
V_{k}(0, b-1,1)=\bigoplus_{i=0}^{k} X_{i}
$$

onto its direct summand X_{i}. It is now clear that

$$
P_{i_{0}}(\partial(v))=\sum_{i_{0}, T} \alpha_{i_{0}, T} x_{i_{0}} \wedge f_{T} \neq 0,
$$

so that indeed $\partial(v) \neq 0$.
Having proved that

$$
V_{k}(1, b, 0)=\operatorname{ker}(\partial) \oplus\left(f_{0} \wedge V_{k}(1, b-1,0)\right),
$$

it now follows that

$$
\begin{aligned}
\operatorname{dim} \operatorname{ker}(\partial) & =\operatorname{dim} V_{k}(1, b, 0)-\operatorname{dim}\left(f_{0} \wedge V_{k}(1, b-1,0)\right) \\
& =(k+1)\binom{k+1}{b}-(k+1)\binom{k}{b-1}=(k+1)\binom{k}{b},
\end{aligned}
$$

as claimed in Theorem 2.

References

[H] P. Hanlon, Some remarkable combinatorial matrices, J. Combin. Theory Ser. A 59 (1992), 218-239.
[K] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. 74 (1961), 329-387.

[^0]: * Research supported in part by the Israel Science Foundation, administered by the Israel Academy of Sciences and Humanities, and by an internal research grant from Bar-Ilan University. E-mail: radin@bimacs.cs.biu.ac.il.
 ${ }^{\dagger}$ E-mail: cathan@math.mit.edu.

