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ABSTRACT

Let Φ be a finite root system of rank n and let m be a nonnegative integer.

The generalized cluster complex ∆m(Φ) was introduced by S. Fomin and

N. Reading. It was conjectured by these authors that ∆m(Φ) is shellable

and by V. Reiner that it is (m + 1)-Cohen-Macaulay, in the sense of Ba-

clawski. These statements are proved in this paper. Analogous statements

are shown to hold for the positive part ∆m

+ (Φ) of ∆m(Φ). An explicit ho-

motopy equivalence is given between ∆m

+ (Φ) and the poset of generalized

noncrossing partitions, associated to the pair (Φ, m) by D. Armstrong.

1. Introduction

Let Φ be a finite root system of rank n and let m be a nonnegative integer. The

generalized cluster complex ∆m(Φ) was introduced by S. Fomin and N. Read-

ing [11], soon after it was studied in [19] in the special cases in which Φ has
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type A or B in the Cartan-Killing classification. If Φ has type A, then faces of

∆m(Φ) correspond to certain polygonal subdivisions of a convex polygon with

m(n+1)+2 vertices (see Section 2.2). If m = 1 and Φ has type A, then ∆m(Φ)

is combinatorially isomorphic to the boundary complex of the n-dimensional

simplicial associahedron, a classical object of study in enumerative and poly-

hedral combinatorics. More generally, ∆m(Φ) reduces to the cluster complex

∆(Φ) when m = 1, a simplicial complex of importance in the context of cluster

algebras and Y -systems [12, 13]; see [10] for a nice introduction to these topics.

Motivation for defining and studying generalized cluster complexes came from

at least two directions. In [11], combinatorial algorithms for determining Cox-

eter theoretic invariants were given, in which certain identities satisfied by the

face numbers of generalized cluster complexes are crucial. On the other hand, it

was conjectured by the first author that the m-generalized Narayana (or Fuss–

Narayana) numbers defined in [3] for a crystallographic root system Φ form

the h-vector of an (n − 1)-dimensional Cohen–Macaulay simplicial complex.

It follows from the results of this paper (as well as those of [3, 11]) that the

generalized cluster complex ∆m(Φ) is the desired complex having these proper-

ties (this was verified earlier by the second author in the special cases of [19]).

Moreover, it has been shown [2, 6, 11, 19, 20] that the complex ∆m(Φ), as well

as a natural subcomplex ∆m
+ (Φ) called its positive part, share essentially all

enumerative properties of cluster complexes, relating to a variety of interesting

structures within the algebraic combinatorics of Coxeter groups, root systems

and hyperplane arrangements; see [3] [10, Lecture 5] [11].

This paper shows that the complexes ∆m(Φ) and ∆m
+ (Φ) have attractive

topological properties as well. Recall that a simplicial complex ∆ is said to be

k-Cohen–Macaulay (over Z or some field K) if the complex obtained from ∆

by removing any subset of its vertex set of cardinality less than k is Cohen–

Macaulay (over Z or K) and has the same dimension as ∆. The following

theorem is the main result of this paper.

Theorem 1.1: (i) The simplicial complex obtained from ∆m(Φ) by re-

moving any subset of its vertex set of cardinality not exceeding m is

pure, of dimension n−1, and shellable. In particular, ∆m(Φ) is shellable,

hence homotopy equivalent to a wedge of (n − 1)-dimensional spheres,

and (m + 1)-Cohen–Macaulay.
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(ii) The simplicial complex obtained from ∆m
+ (Φ) by removing any subset

of its vertex set of cardinality not exceeding m−1 is pure, of dimension

n−1, and shellable. In particular, ∆m
+ (Φ) is pure of dimension n−1 and

shellable, hence homotopy equivalent to a wedge of (n− 1)-dimensional

spheres, and m-Cohen–Macaulay.

A few comments on the theorem are in order. Shellability of ∆m(Φ) was

conjectured by S. Fomin and N. Reading [11, Conjecture 11.3] (see also [1,

Problem 6.3]) and verified by the second author [19] when Φ has type A or

B. This conjecture was extended to ∆m
+ (Φ) by the authors [6, Conjecture 4.6].

The question of higher Cohen–Macaulay connectivity of ∆m(Φ) was raised by

V. Reiner; see [1, p. 17] (later, the same question was raised independently by

G. Kalai [14]). The result of Theorem 1.1 in this respect is best possible (see

Remark 3.2) and nontrivial even when Φ has type A. The Euler characteristic

of ∆m(Φ) was computed in [11, Section 11]. It is known [11, Section 10] that the

m-generalized Narayana numbers defined in [3] for crystallographic Φ coincide

with the entries of the h-vector of ∆m(Φ), except possibly when m ≥ 2 and

Φ contains an irreducible component of type F4, E6, E7 or E8. Hence the

statement on shellability in Theorem 1.1 (i) establishes the conjecture on these

numbers, mentioned earlier, in these cases.

The concept of higher Cohen–Macaulay connectivity was introduced by K. Ba-

clawski [7]. We refer the reader to [7] [16] [17, Section III.3] and references

therein for other interesting classes of simplicial complexes known to be k-

Cohen–Macaulay for some k ≥ 2.

The general layout of this paper is as follows. Section 2 includes background

on simplicial complexes, (generalized) cluster complexes and a related partial

order on a finite real reflection group. In particular, a new characterization

(Theorem 2.3) of ∆m(Φ), due to the second author [20, 21], is reviewed, gen-

eralizing the one for ∆(Φ) given by T. Brady and C. Watt [9, Section 8]. The

proof of Theorem 1.1, which relies on this characterization, is given in Section

3. Section 3 also includes a computation of the Euler characteristic of ∆m
+ (Φ)

(Corollary 3.3). Finally, some applications to the topology of the posets of gen-

eralized noncrossing partitions, introduced and studied by D. Armstrong [2],

are given in Section 4.
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2. Background

Throughout the paper we denote by |σ| the cardinality of a finite set σ.

2.1. Simplicial complexes. Let E be a finite set. An (abstract) simplicial

complex on the ground set E is a collection ∆ of subsets of E such that

τ ⊆ σ ∈ ∆ implies τ ∈ ∆. The set V = {v ∈ E : {v} ∈ ∆} is the set

of vertices of ∆. The elements of ∆ are called faces and those which are

maximal with respect to inclusion are called facets. The dimension of a face σ

is defined as one less than the cardinality of σ and the dimension of ∆ as the

maximum dimension of a face. The complex ∆ is pure if all its facets have the

same dimension and flag if all its minimal nonfaces have two elements. The

k-skeleton ∆≤k of ∆ is the subcomplex formed by the faces of ∆ of dimension

at most k. The simplicial join ∆1 ∗∆2 of two abstract simplicial complexes ∆1

and ∆2 on disjoint ground sets has as its faces the sets of the form σ1 ∪ σ2,

where σ1 ∈ ∆1 and σ2 ∈ ∆2.

The link of v ∈ E in ∆ is defined as lk∆(v) = {σ\ {v} : σ ∈ ∆, v ∈ σ}. The

induced subcomplex or restriction of ∆ on A ⊆ E is defined as ∆A = {σ ∈

∆ : σ ⊆ A}. We will write ∆\v for the restriction of ∆ on the set E\ {v}. A pure

simplicial complex ∆ is shellable if there exists a total ordering σ1, σ2, . . . , σm

of the set of facets of ∆ such that for any given indices 1 ≤ i < k ≤ m there

exists 1 ≤ j < k and v ∈ σk with σi ∩ σk ⊆ σj ∩ σk = σk\ {v}. The following

lemma is elementary and well-known; see, for instance, [15, Section 2].

Lemma 2.1: (i) If ∆\v is pure of dimension d and shellable and lk∆(v) is

pure of dimension d − 1 and shellable for some v ∈ E, then ∆ is pure

of dimension d and shellable.

(ii) The simplicial join of pure shellable complexes is pure and shellable.

When we talk about algebraic or topological properties of an abstract simpli-

cial complex ∆ we refer to those of its Stanley-Reisner ring [17, Chapter II] or

geometric realization [8, Section 9], respectively. Thus any pure d-dimensional,

shellable simplicial complex ∆ is Cohen–Macaulay over Z and all fields and

homotopy equivalent to a wedge of spheres of dimension d.

2.2. Generalized cluster complexes. Let Φ be a finite root system span-

ning R
n, endowed with the standard inner product, and let Φ+ be a fixed choice

of a positive system with corresponding simple system Π. Assume temporarily
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that Φ is irreducible and let Π = {α1, . . . , αn} be ordered so that for some

1 ≤ s ≤ n, each of the sets Π+ = {α1, . . . , αs} and Π− = {αs+1, . . . , αn} has

pairwise orthogonal elements. Let Φ≥−1 = Φ+∪(−Π) and define the involutions

τ± : Φ≥−1 → Φ≥−1 by

τε(α) =







α, if α ∈ −Π−ε

Rε(α), otherwise

for ε ∈ {+,−} and α ∈ Φ≥−1, where Rε is the product of the reflections (taken

in any order) in the linear hyperplanes in R
n orthogonal to the elements of Πε.

The product R = τ−τ+, introduced in [13], can be viewed as a deformation of

the Coxeter element in the real reflection group corresponding to Φ. Given a

nonnegative integer m, the set

Φm
≥−1 = {αi : α ∈ Φ+ and 1 ≤ i ≤ m} ∪ (−Π)

consists of the negative simple roots and m copies of each positive root, each

copy colored with one of m possible colors. Using the convention α1 = α for

α ∈ −Π, the map Rm : Φm
≥−1 → Φm

≥−1 is defined by

Rm(αk) =







αk+1, if α ∈ Φ+ and k < m

(R(α))1, otherwise.

It was shown [11, Theorem 3.4] that there exists a unique symmetric binary

relation on Φm
≥−1, called “compatibility”, which has the following two properties:

• αk is compatible with β` if and only if Rm(αk) is compatible with

Rm(β`);

• for α ∈ Π, the root −α is compatible with β` if and only if the simple

root expansion of β does not involve α.

The generalized cluster complex ∆m(Φ) is defined in [11, Section 3] is the ab-

stract simplicial complex on the vertex set Φm
≥−1 which has as its faces the

subsets of mutually compatible elements of Φm
≥−1. If Φ is a direct product

Φ1 × Φ2 then ∆m(Φ) is defined as the simplicial join of ∆m(Φ1) and ∆m(Φ2).

The complex ∆m(Φ) is flag by definition and pure of dimension n − 1 [11,

Theorem 3.9]. Following [6], we denote by ∆m
+ (Φ) the induced subcomplex of

∆m(Φ) on the set of vertices obtained from Φm
≥−1 by removing the negative

simple roots and call this simplicial complex the positive part of ∆m(Φ).

For α ∈ Π we denote by Φα the standard parabolic root subsystem obtained
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by intersecting Φ with the linear span of Π\ {α}, endowed with the induced

positive system Φ+
α = Φ+ ∩ Φα. Let us summarize the properties of ∆m(Φ)

which will be of importance for us.

Proposition 2.2 ([11]): (i) If Φ is a direct product Φ1×Φ2, then ∆m(Φ)=

∆m(Φ1) ∗ ∆m(Φ2) and ∆m
+ (Φ) = ∆m

+ (Φ1) ∗ ∆m
+ (Φ2).

Suppose that Φ is irreducible.

(ii) If α ∈ Π, then lk∆m(Φ)(−α) = ∆m(Φα).

(iii) The map Rm : Φm
≥−1 → Φm

≥−1 is a bijection with the following proper-

ties:

(a) σ ∈ ∆m(Φ) if and only if Rm(σ) := {Rm(α) : α ∈ σ} ∈ ∆m(Φ);

(b) for any β ∈ Φm
≥−1 there exists j such that Rj

m(β) ∈ (−Π).

It is not hard to describe ∆m(Φ) explicitly when Φ has type An−1 [11, 19].

Call a diagonal of a convex polygon P with mn + 2 vertices m-allowable if

it divides P into two polygons, each with number of vertices congruent to 2

mod m. Then vertices of ∆m(Φ) biject to the m-allowable diagonals of P so

that faces correspond to the sets of pairwise noncrossing diagonals of this kind.

2.3. The reflection length order. We will denote by R(α) the reflection

in the linear hyperplane in R
n orthogonal to a nonzero (colored or not) vector

α ∈ R
n. Let W be the finite real reflection group generated by the set T of

reflections R(α) for α ∈ Φ. For w ∈ W we denote by `T (w) the smallest integer

r such that w can be written as a product of r reflections in T . The set W can

be partially ordered by letting

u � w if and only if `T (u) + `T (u−1w) = `T (w),

in other words, if there exists a shortest factorization of u into reflections in

T which is a prefix of such a shortest factorization of v. The order �, called

reflection length order or absolute order, turns W into a graded poset

having the identity of W as its unique minimal element and rank function

`T . If Φ has type An−1, so that W can be realized as the symmetric group of

permutations of the set {1, 2, . . . , n}, then one can describe these concepts more

explicitly as follows; we have `T (w) = n − c(w), where c(w) is the number of

cycles of w, and u � w if and only if each cycle of u can be obtained from some

cycle of w by deleting elements and no two cycles of u which can be obtained

from the same cycle of w by deleting elements cross each other.
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We will assume elementary properties of the order �; see [9, Section 2], [5,

Section 2]. For instance, if v � u � w, then v−1u � v−1w and uv−1 � wv−1.

2.4. Generalized cluster complexes via the reflection length or-

der. Suppose that Φ is irreducible and let N denote the cardinality of Φ+. As

in Section 2.2, let Π = {α1, . . . , αn} be ordered so that for some 1 ≤ s ≤ n

the sets Π+ = {α1, . . . , αs} and Π− = {αs+1, . . . , αn} have pairwise orthogonal

elements and let

γ = R(α1)R(α2) · · ·R(αn)

be a corresponding bipartite Coxeter element of W . As in [5, 9] we set ρi =

R(α1)R(α2) · · ·R(αi−1)(αi) for i ≥ 1, where the αi are indexed cyclically mod-

ulo n (so that ρ1 = α1), and ρ−i = ρ2N−i for i ≥ 0 and recall that

{ρ1, ρ2, . . . , ρN} = Φ+,

{ρN+i : 1 ≤ i ≤ s} = {−ρ1, . . . ,−ρs} = −Π+,

{ρ−i : 0 ≤ i < n − s} = {−ρN−i : 0 ≤ i < n − s} = −Π−.

We consider the total order < on the set Φ≥−1 = Φ+ ∪ (−Π) defined by

(1) ρ−n+s+1 < · · · < ρ0 < ρ1 < · · · < ρN+s.

This order induces a total order, which we denote again by <, on the set of

elements of Φm
≥−1 which are positive roots of some fixed color i simply by for-

getting the color. For τ = {τ1, τ2, . . . , τk} ⊆ Φm
≥−1 such that either τ ⊆ (−Π)

or τ consists of positive roots of the same color, let

(2) wτ = R(τk)R(τk−1) · · ·R(τ1),

where τ1 < τ2 < · · · < τk, with the convention that wτ is the identity element

of W if τ = ∅. For any σ ⊆ Φm
≥−1 let

(3) wσ = wσ+wσ(m)wσ(m−1) · · ·wσ(1)wσ−

where σ± = (−Π±) ∩ σ and for 1 ≤ i ≤ m, σ(i) is the set of elements of σ

which are positive roots of color i. The following characterization of ∆m(Φ)

generalizes that of ∆(Φ) given in [9, Section 8].

Theorem 2.3: ([20], [21, Section 4.3]) A set σ ⊆ Φm
≥−1 is a face of ∆m(Φ) if

and only if wσ � γ and `T (wσ) = |σ|.
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Example 2.4: Suppose that Φ has type A2. Then the simple roots α1, α2 can

be chosen as unit vectors in the Euclidean plane forming an angle of 2π/3 and

we have Π+ = {α1}, Π− = {α2} and Φ+ = {α1, α2, α}, where α = α1 + α2.

Moreover, W is the dihedral group of order 6 generated by the reflections R(α1),

R(α2) and R(α) and γ = R(α1)R(α2) is a rotation by 2π/3. One can compute

easily that ρ1 = α1, ρ2 = α, ρ3 = α2, ρ4 = −α1 and ρ0 = ρ6 = −α2. Therefore

the total order (1) on the set Φ≥−1 is given by

−α2 < α1 < α < α2 < −α1.

Assume that m = 1 and let τ = {α, α2}. We have wτ = R(α2)R(α) = γ and

hence, according to the condition in Theorem 2.3, τ must be a facet of ∆(Φ).

Similarly we find that ∆(Φ) must have exactly four more facets, namely, {α1, α},

{−α2, α1}, {−α1,−α2} and {α2,−α1}, corresponding to the factorizations

R(α)R(α1) = R(α1)R(−α2) = R(−α1)R(−α2) = R(−α1)R(α2)

of γ. Indeed, ∆(Φ) is the one-dimensional simplicial complex having these

five two-element sets as its facets [13, p. 985]. Assume now that m = 2 and

τ = {α1
2, α

2
1}. We have wτ = R(α2

1)R(α1
2) = R(α1)R(α2) = γ and hence, by

Theorem 2.3, τ is a facet of ∆2(Φ). Similarly we find that ∆2(Φ) has the fol-

lowing 12 two-element sets as its facets: {α1
1, α

1}, {α1
1, α

2}, {α2
1, α

2}, {α1, α1
2},

{α1, α2
2}, {α

2, α2
2}, {α

1
2, α

2
1}, {−α2, α

1
1}, {−α2, α

2
1}, {α

1
2,−α1}, {α2

2,−α1} and

{−α1,−α2}.

Given w � γ, we denote by ∆m
+ (w) the subcomplex of ∆m

+ (Φ) consisting of

those faces σ for which wσ � w. Clearly the dimension of ∆m
+ (w) is at most

`T (w) − 1. It follows from [5, Lemma 2.1 (iv)] that ∆m
+ (w) coincides with

the induced subcomplex of ∆m(Φ) on the vertex set of positive colored roots

α ∈ Φm
≥−1 satisfying R(α) � w. We will denote this vertex set by Φm

+ (w), so

that Φm
+ (γ) is the vertex set of ∆m

+ (Φ). When m = 1 the complex ∆m
+ (w),

written simply as ∆+(w), is homeomorphic to a triangulation of a simplex of

dimension `T (w)−1 [9, Corollary 7.7] (in particular it is pure of that dimension)

and was shown to be shellable in [5, Theorem 7.1].

Theorem 2.5: ([5, 9]) For any w � γ the complex ∆+(w) is pure of dimension

`T (w) − 1 and shellable. Moreover, it is homeomorphic to a ball.

Our definitions of ∆m
+ (w) and Φm

+ (w) extend naturally when Φ is reducible.

More precisely, if Φ = Φ1 × Φ2, then γ = γ1γ2, where γi is a bipartite Coxeter
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element for the reflection group Wi corresponding to Φi, and w � γ if and only if

w = w1w2 with w1 � γ1 and w2 � γ2. For σ ∈ ∆m
+ (Φ) we can write σ = σ1 ∪σ2

with σi ∈ ∆m
+ (Φi) for i = 1, 2 and define wσ = wσ1wσ2 . The subcomplex ∆m

+ (w)

of ∆m
+ (Φ) consisting of those faces σ with wσ � w is equal to the simplicial join

of ∆m
+ (w1) and ∆m

+ (w2) and has vertex set Φm
+ (w) = Φm

+ (w1) ∪ Φm
+ (w2).

3. Proof of Theorem 1.1

Theorem 1.1 will be derived from the following proposition.

Proposition 3.1: Fix an index 1 ≤ j ≤ m.

(i) Given w � γ, the induced subcomplex of ∆m
+ (w) on any subset of its

vertex set Φm
+ (w) containing all positive roots in Φm

+ (w) of color j is

pure of dimension `T (w) − 1 and shellable.

(ii) The induced subcomplex of ∆m(Φ) on any subset of the vertex set of

∆m(Φ) containing all positive roots of color j is pure of dimension n−1

and shellable.

Proof. (i) In view of the discussion following Theorem 2.5 and Lemma 2.1 (ii),

we may assume that Φ is irreducible. Let r = `T (w) and recall that the dimen-

sion of ∆m
+ (w) does not exceed r−1. Let ∆m

A (w) denote the induced subcomplex

of ∆m
+ (w) on the vertex set A ⊆ Φm

+ (w). Suppose that A contains all positive

roots in Φm
+ (w) of color j. To simplify notation we set ∆ = ∆m

A (w) and let τ

be any face of ∆. By Theorem 2.3 we have

wτ = wτ (m)wτ (m−1) · · ·wτ (1) � w

in the notation of (3), and `T (wτ ) = |τ |. It follows that wτ (j) � u where

u = (wτ (m) · · ·wτ (j+1))−1 w (wτ (j−1) · · ·wτ (1))−1 � w

and `T (u) = r−|τ |+|τ (j)|. Observe that the set obtained from τ (j) by uncoloring

its elements is a face of ∆+(u), which is pure of dimension `T (u)−1 by Theorem

2.5. Hence there exists a set σ(j) containing τ (j) and consisting of `T (u) positive

roots of color j such that wσ(j) = u. Setting σ(i) = τ (i) for all 1 ≤ i ≤ m with

i 6= j, we obtain a subset σ of the vertex set of ∆m
+ (Φ) such that τ ⊆ σ, wσ = w

and |σ| = `T (w) = r. It follows from Theorem 2.3 that σ is a face of ∆m(Φ),

and hence of ∆m
+ (w). Notice that (i) A contains all positive roots in Φm

+ (w) of

color j, (ii) σ\ τ = σ(j)\ τ (j) consists only of such roots and (iii) τ ⊆ A. As a
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consequence we have σ ⊆ A. Therefore σ is an (r − 1)-dimensional face of ∆

containing τ . This proves that ∆ is pure of dimension r − 1.

To prove that ∆ is shellable we proceed by induction on r and the cardinality

of A, the statement being trivial for r ≤ 1. Let S be the set of all pairs (α, i)

such that α ∈ A has color i, considered with the total ordering in which (α, i)

precedes (α′, i′) if either i < i′ or i = i′ and α < α′ in the order of roots

(1). Theorem 2.3 implies that if (α, i) is the smallest or the largest element of

S, then lk∆(α) coincides with the complex ∆m
B (u), where u = wR(α) in the

former case and u = R(α)w in the latter, and B = A ∩ Φm
+ (u). Observe that

B contains all roots in Φm
+ (u) of color j and hence, by the previous paragraph

and the induction hypothesis, lk∆(α) is pure of dimension `(u)− 1 = r − 2 and

shellable. We now distinguish two cases. If A does not contain any vertices of

color other than j, then ∆ is combinatorially isomorphic to ∆+(w) and hence

shellable by Theorem 2.5. Otherwise the smallest or the largest pair (α, i) in S

satisfies i 6= j. We already know that lk∆(α) is pure (r − 2)-dimensional and

shellable. By the same argument ∆\α = ∆m
A\ {α}(w) is pure (r−1)-dimensional

and shellable, since A\ {α} contains all roots in Φm
+ (w) of color j. Part (i) of

Lemma 2.1 implies that ∆ is shellable as well.

(ii) Let ∆m
A (Φ) denote the induced subcomplex of ∆m(Φ) on the vertex set

A ⊆ Φm
≥−1. Suppose that A contains all positive roots of color j and set

∆ = ∆m
A (Φ). We proceed by induction on the rank n of Φ and the cardinality

of A and assume again, as we may, that Φ is irreducible. If A does not contain

any negative simple root, then the result follows from the special case w = γ of

part (i). If α = −αi ∈ A for some αi ∈ Π, then ∆\α = ∆m
A\ {α}(Φ) is pure of

dimension n − 1 and shellable by induction. Moreover, by Proposition 2.2 (ii)

we have lk∆(α) = ∆m
B (Φα), where B = (Φα)≥−1 ∩ A, so that lk∆(α) is pure

of dimension n − 2 and shellable, again by induction. Part (i) of Lemma 2.1

implies that ∆ is pure of dimension n − 1 and shellable.

Proof of Theorem 1.1. (i) In view of Proposition 2.2 (i) and Lemma 2.1 (ii) we

may assume, once again, that Φ is irreducible. Suppose that B ⊆ Φm
≥−1 has at

most m elements and let ∆A denote the induced subcomplex of ∆m(Φ) on the

vertex set A = Φm
≥−1\B. If for some 1 ≤ i ≤ m the set B does not contain any

positive root of color i, then ∆A is pure (n − 1)-dimensional and shellable by

Proposition 3.1 (ii). Otherwise let β ∈ B and, by part (b) of Proposition 2.2

(iii), choose j so that Rj
m(β) ∈ (−Π). Let B′ = Rj

m(B) and A′ = Φm
≥−1\B′.
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Part (a) of Proposition 2.2 (iii) implies that ∆A is combinatorially isomorphic

to the induced subcomplex ∆A′ of ∆m(Φ) on the vertex set A′. Since A′ must

contain all positive roots of color i for some 1 ≤ i ≤ m, the result follows as in

the first part of the argument.

(ii) Removing at most m− 1 vertices from ∆m
+ (Φ) leaves all positive roots of

color i in place for at least one index 1 ≤ i ≤ m. Hence the result follows from

the special case w = γ of Proposition 3.1 (i).

Remark 3.2: It is known [7, Theorem 2.1 (a)] that if a simplicial complex ∆ is

k-Cohen–Macaulay then for any non-maximal face σ ∈ ∆ the complex lk∆(σ)

has at least k vertices. On the other hand, any codimension one face of ∆m(Φ)

is contained in exactly m + 1 facets [11, Proposition 3.10]. It follows that

m+1 is the largest integer k for which ∆m(Φ) is k-Cohen–Macaulay. A similar

statement follows for ∆m
+ (Φ) since there exist codimension one faces of ∆m

+ (Φ)

which are contained in exactly m facets of ∆m
+ (Φ) (any positive facet of ∆m(Φα),

with α ∈ Π, will be such a codimension one face of ∆m
+ (Φ)).

The following corollary completes a proof of [6, Conjecture 4.6].

Corollary 3.3: The complex ∆m
+ (Φ) has the homotopy type of a wedge of

spheres of dimension n− 1. If Φ is irreducible then the number of these spheres

is equal to

N+(Φ, m − 1) =

n
∏

i=1

ei + (m − 1)h − 1

ei + 1
,

where h is the Coxeter number and e1, e2, . . . , en are the exponents of Φ.

Proof. The first statement is part of Theorem 1.1 (ii). For the second statement

it suffices to show that ∆m
+ (Φ) has reduced Euler characteristic χ̃(∆m

+ (Φ)) =

(−1)n−1N+(Φ, m − 1). This was shown in [6] for irreducible root systems Φ

of classical type with a proof that can be extended to any type. We give

the details here for the record. To match the notation of [6] we write Φ = ΦI ,

where I is an index set in bijection with Π, and denote by ΦJ the parabolic root

subsystem corresponding to J ⊆ I. We also define N+(ΦI , m) multiplicatively

on the irrecucible components of ΦI , if ΦI is reducible. As was mentioned in

Remark 3 of [6, Section 7], Theorem 3.7 in [11] implies that equation (6) in [6]

holds without any restriction on Φ. Multiplying both sides with (−1)k−1 and
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summing over k we get

(−1)|I|−1 χ̃(∆m(ΦI)) =
∑

J⊆I

(−1)|J|−1 χ̃(∆m
+ (ΦJ )).

On the other hand

(−1)|I|−1 χ̃(∆m(ΦI)) =
∑

J⊆I

N+(ΦJ , m − 1)

by Propositions 11.1 and 12.3 in [11]. Inclusion-exclusion implies the desired

formula for χ̃(∆m
+ (Φ)).

Remark 3.4: Using results of [5, Section 4] (in particular [5, Corollary 4.6]) it is

possible to show that removing the vertices of ∆+(w) in the order prescribed by

(1) gives a vertex decomposition of ∆+(w), in the sense of [15], for any w � γ.

It follows from the proofs of our results in this section that ∆m(Φ) and ∆m
+ (Φ)

are vertex decomposable as well.

4. Generalized noncrossing partitions

In this section we discuss some connections with the posets of generalized non-

crossing partitions, defined and studied by D. Armstrong [2]. Let γ ∈ W be

any Coxeter element and L
(m)
W denote the set of m-tuples (w1, w2, . . . , wm) of

elements of W satisfying w1w2 · · ·wm � γ and

`T (w1w2 · · ·wm) = `T (w1) + `T (w2) + · · · + `T (wm).

We partially order this set by letting

(u1, u2, . . . , um) � (w1, w2, . . . , wm) if ui � wi for 1 ≤ i ≤ m

(this is the dual to the partial order defined in [2]). The isomorphism type of

L
(m)
W does not depend on the choice of γ.

Remark 4.1: We have (u1, u2, . . . , um) ∈ L
(m)
W whenever (w1, w2, . . . , wm) ∈

L
(m)
W and ui � wi for all 1 ≤ i ≤ m.

The poset L
(m)
W has a unique minimal element 0̂ and is graded with rank

function `T (w1, w2, . . . , wm) := `T (w1w2 · · ·wm). Now let γ be as in Section

2.4. By Theorem 2.3 we have

f(σ) = (wσ(m) , wσ(m−1) , . . . , wσ(1)) ∈ L
(m)
W
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for any face σ of ∆m
+ (Φ). Recall that the upper truncation P≤k of a graded

poset P is the induced subposet on the set of elements of rank at most k (see [18,

Chapter 3] for basic background on partially ordered sets). If ∆ is a simplicial

complex then a map g : ∆−{∅} → P is order preserving if g(τ) ≤ g(σ) holds

in P whenever τ ⊆ σ are nonempty faces of ∆. In what follows, we say that

a poset P has a certain topological property if the geometric realization of the

simplicial complex of chains in P [8, Section 9] has the same property.

Theorem 4.2: The map

f : ∆m
+ (Φ) − {∅} → L

(m)
W − 0̂

is well-defined and order preserving and induces a homotopy equivalence be-

tween the skeleton (∆m
+ (Φ))≤k−1 and (L

(m)
W )≤k − 0̂ for all 1 ≤ k ≤ n.

In particular, L
(m)
W − 0̂ is homotopy equivalent to ∆m

+ (Φ).

Proof. Let us write ∆ = ∆m
+ (Φ) and L = L

(m)
W , to simplify notation. That the

map f is well-defined and order preserving follows from Theorem 2.3. Moreover

we have `T (f(σ)) = |σ| for all σ ∈ ∆ and hence f induces a well-defined order

preserving map from ∆≤k−1 to L≤k − 0̂ for all 1 ≤ k ≤ n. To complete the

proof, by Quillen’s Fiber Theorem [8, Theorem 10.5 (i)] it suffices to show that

f−1(L≤x) is contractible for all x ∈ L − 0̂. Indeed, it follows directly from

the definitions and Remark 4.1 that if x = (w1, w2, . . . , wm), then f−1(L≤x) is

combinatorially isomorphic to the simplicial join of the complexes ∆m
+ (wi) for

1 ≤ i ≤ m, which is contractible by Theorem 2.5.

Remark 4.3: (i) It follows from Corollary 3.3 and Theorem 4.2 that L
(m)
W − 0̂ is

homotopy equivalent to a wedge of (n−1)-dimensional spheres. With some more

work, and using the previous statement as well as the main result of [4], one

can show that the poset L
(m)
W ∪ 1̂, obtained from L

(m)
W by adjoining a maximum

element 1̂, is homotopy Cohen–Macaulay (hence Cohen–Macaulay). We omit

the details since a stronger statement, namely that L
(m)
W ∪ 1̂ is shellable, has

been proved by D. Armstrong and H. Thomas [2, Theorem 3.7.2].

(ii) The proof of Theorem 4.2 shows that any order ideal I in L
(m)
W − 0̂ is

homotopy equivalent to the subcomplex f−1(I) of ∆m
+ (Φ).

(iii) In the case m = 1 and k = n − 1, Theorem 4.2 gives a new proof of the

fact [4, Corollary 4.4] that the Möbius number µ(0̂, γ) of L
(1)
W is equal, up to
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the sign (−1)n, to the number of facets of ∆+(Φ) (positive clusters associated

to Φ).
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