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On Free Deformations of the Braid Arrangement†

CHRISTOS A. ATHANASIADIS

We classify the hyperplane arrangements between the cones of the braid arrangement and the Shi
arrangement of type An−1 which are free, in the sense of Terao. We also prove that the cones of
the extended Shi arrangements of type An−1 are free, verifying part of a conjecture of Edelman and
Reiner.

c© 1998 Academic Press Limited

1. INTRODUCTION

There has been considerable interest in the past in analyzing specific families of hyperplane
arrangements from the perspective of freeness. Examples of such families have primarily in-
cluded classes of subarrangements of Coxeter arrangements. The subarrangements of the braid
arrangement An, the Weyl arrangement of type An−1, are known as the graphical arrange-
ments. They correspond naturally to graphs on n vertices. It follows mainly from the work of
Stanley [14] and is recorded in [5, §3] that free graphical arrangements correspond to chordal
graphs. Certain classes of arrangements between the root systems An−1 and Bn were studied
by Józefiak and Sagan [9]. These arrangements can also be related to graphs. Edelman and
Reiner [5] gave a complete classification of the free arrangements in this case and showed that
they correspond to threshold graphs. In a more recent work [6] these authors classified free
arrangements which arise as discriminantal arrangements of two-dimensional zonotopes with
integer side lengths.

We will be concerned with deformations of An. The combinatorics of such arrangements
was first studied in a systematic way by Stanley and collaborators [15]. They are the affine
arrangements which have each of their hyperplanes parallel to one of the hyperplanes xi −xj =
0 of An. A central role in what follows will be played by the Shi arrangement of type An−1,
introduced by J.-Y. Shi in [13]. It is the arrangement of affine hyperplanes in Rn of the form

xi − xj = 0, 1 for 1 ≤ i < j ≤ n

and will be denoted by Ân. The characteristic polynomial of Ân was shown to factor completely
over the integers as q(q − n)n−1 by Headley [7, 8]. This agrees with Shi’s result [13] that it
divides Rn into (n + 1)n−1 regions. A simple counting proof of Headley’s result, based on
the ‘finite field method’, was given in [1, 2]. Freeness of the associated homogenized linear
arrangement, or cone, was conjectured in [6].

Our motivation comes primarily from [1, 2]. In this work the characteristic polynomials of
large classes of deformations of Coxeter arrangements were shown to factor completely over
the nonnegative integers and the question of freeness of their cones was naturally raised [1,
§7, 2, §8.4]. Our objective is to answer this question in some cases of interest and indicate the
importance of the finite field method as a technique to detect freeness.

Specifically, we will prove that the cone of Ân is inductively free. This gives another
explanation to the results of Shi and Headley from the point of view of freeness, as well as
simple inductive proofs. In fact we will classify all free hyperplane arrangements between
the cones of An and Ân. These arrangements again correspond naturally to graphs on n
vertices. We will show that the free ones correspond to a family of graphs which is quite
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simple to define and has already appeared in [1, 2]. These free arrangements are as good in
providing counterexamples to Orlik’s conjecture as the arrangements considered in [5]. We
include similar results for other deformations of An.

It follows, at least in the cases we can work out, that complete factorization of the charac-
teristic polynomial for deformations of An is a very strong indication of freeness. Also, in
these cases, all free arrangements turn out to be inductively free.

2. BACKGROUND AND MOTIVATION

We assume familiarity with basic material about hyperplane arrangements and their freeness.
Here we will only recall some crucial definitions, facts and conventions about arrangements.
We will also review some results from [1, 2] to motivate the rest. We refer the reader to the book
by Orlik and Terao [10] for an extensive treatment of the theory of hyperplane arrangements,
or to one of the papers [5, §2, 12, §3] for the highlights of the parts of the theory that we will
need.

We will only be concerned with real hyperplane arrangements. Thus a hyperplane ar-
rangement A is a finite collection of affine subspaces of codimension one in some real finite
dimensional vector space, which is usually the euclidean space Rn. The arrangement A is
called central if all of its hyperplanes are linear subspaces, i.e. they pass through the origin.
Freeness was defined by Terao for central hyperplane arrangements [10, 17, Ch. 4]. The stan-
dard way to pass from any hyperplane arrangement A in Rn to a central one is to construct
the cone cA. This is the arrangement in Rn+1 obtained by homogenizing each hyperplane

a1x1 + a2x2 + · · · + anxn + d = 0

of A to

a1x1 + a2x2 + · · · + anxn + dx0 = 0

and adding the hyperplane x0 = 0. Here x0 is the new coordinate attached to Rn. The cone
cÂn of the Shi arrangement, for example, has hyperplanes

xi − xj = 0 for 1 ≤ i < j ≤ n,

xi − xj − x0 = 0 for 1 ≤ i < j ≤ n,

x0 = 0.

The Factorization Theorem of Terao [10, 18, Thm 4.137] states that the characteristic polyno-
mial χ(A,q) of A [10, §2.3] factors completely over the nonnegative integers for any free
arrangement A. Its roots are the exponents of A. The operation of taking the cone has a very
simple effect on the characteristic polynomial of A [10, Prop. 2.51], namely

χ(cA,q) = (q − 1)χ(A,q). (1)

In particular it preserves the property of complete factorization of the characteristic polynomial.
Hence the result of Headley about χ(Ân,q), mentioned in the introduction, naturally raises
the question of freeness for cÂn.

The inductively free arrangements are the free arrangements that usually come up in examples.
They form a subclass of the class of free arrangements by the Addition Theorem [10, Thm 4.50]
and provide a standard tool for proving freeness. For this reason we include a definition.
Let A be any hyperplane arrangement and let H ∈ A be a distinguished hyperplane. The
corresponding deleted arrangement is

A′ = A− {H}.



On free deformations of the braid arrangement 9

The restricted arrangement to H has H as its ambient space and is given by

A′′ = {H ′ ∩ H | H ′ ∈ A′}.
The triple (A,A′,A′′) is called a triple of arrangements. For the following definition and
lemma let expA be the multiset of roots of χ(A,q). When no assumption on A is made,
these roots are complex numbers which are not necessarily integers. The class of inductively
free arrangements IF is the smallest class of central hyperplane arrangements which satisfies
the following two conditions:

(1) The empty arrangement in Rn is in IF for all n ≥ 0.
(2) If (A,A′,A′′) is a triple of arrangements with A′,A′′ ∈ IF and expA′′ ⊆ expA′ then
A ∈ IF .

The Factorization Theorem follows easily for inductively free arrangements from the ele-
mentary Deletion-Restriction Theorem [10, Cor. 2.57], which states that χ(A,q) = χ(A′,q)−
χ(A′′,q). Specifically, we will need the following corollary of the Deletion-Restriction The-
orem, which we state as a lemma.

LEMMA 2.1. If (A,A′,A′′) is a triple of arrangements and expA′ = {e1,e2, . . . ,en},
expA′′ = {e1,e2, . . . ,en−1}, then

expA = {e1,e2, . . . ,en−1,en + 1}.
It follows that for an inductively free arrangement A, the elements of expA, that is the

roots of χ(A,q), are all nonnegative integers. Note that the Deletion-Restriction Theorem is
valid for general hyperplane arrangements, as opposed to central ones, and that the definition
of inductive freeness still makes sense if we remove the requirement that the arrangements are
central.

CONVENTION. From now on we will use this more general notion of inductive freeness.
Thus an inductively free arrangement A need not be central. We refer again to the roots of
χ(A,q), which are nonnegative integers, as the exponents of A. Note that if A is inductively
free then so is the central arrangement cA. In particular, by [10, Thm 4.50], cA is free with
an extra exponent equal to 1.

We say that two hyperplane arrangements in Rn are affinely equivalent if there is an invertible
affine endomorphism of Rn that maps the hyperplanes of one onto the hyperplanes of the
other. Inductive freeness is a combinatorial property and hence it is preserved under affine
equivalence.

Headley’s result was generalized in several ways in [1, 2]. We recall one such generalization
next. For the purposes of some further generalizations, we find it convenient to think of a
simple graph S on the vertex set [n] = {1, 2, . . . ,n} as a directed graph. Each edge i j is
directed as ( j, i ), i.e. from j to i , if i < j . In other words, S is a subset of the set

En = {( j, i ) | 1 ≤ i < j ≤ n},
which is the edge set of the complete graph. Note that the arrangements between An and Ân

correspond to simple graphs on the vertex set [n]. More precisely, each such arrangement is
of the form

xi − xj = 0 for 1 ≤ i < j ≤ n,

xi − xj = 1 for ( j, i ) ∈ S

for some S⊆ En. We denote this arrangement by Ân,S. The Shi arrangment Ân corresponds
to the complete graph S = En and the braid arrangement An to the empty graph. The
following theorem produces a family of arrangements between An and Ân whose characteristic
polynomials have nonnegative integers as roots.
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FIGURE 1. An example with n = 5.

THEOREM 2.2 ([1, THM 3.4, 2, THM 6.2.2]). Suppose that the graph S⊆ En has the fol-
lowing property: if 1 ≤ i < j < k ≤ n and ( j, i ) ∈ S then (k, i ) ∈ S. Then

χ(Ân,S,q) = q
∏

1< j≤n

(q − cj ),

where cj = n + aj − j + 1 and aj = #{i < j | ( j, i ) ∈ S} is the outdegree of j in S, for
1 < j ≤ n.

Figure 1 shows a graph satisfying the condition in Theorem 2.2. For this graph we have
a2 = 0, a3 = a4 = 2, a5 = 3, so c2 = 4, c3 = 5, c4 = c5 = 4 and the corresponding
characteristic polynomial is q(q − 4)3(q − 5).

3. INDUCTIVE FREENESS

In this section we prove inductive freeness of the Shi arrangement, as well as the extended
Shi arrangements and the ones mentioned in Theorem 2.2. In particular, their cones are free.
We will see in the next section that, up to a suitable permutation of the coordinates, the
arrangements in Theorem 2.2 are all the arrangements between An and Ân with free cones.

We first give a detailed proof of inductive freeness of Ân as a prototype for the proofs in
the more general cases. We need to find a family of arrangements larger than the class of
Shi arrangements which will contain enough deletions and restrictions to guarantee inductive
freeness of all arrangements in the family. Our task becomes easier by the fact that such a
family is included in the family already produced by the finite field method in [2, Thm 6.2.10].

NOTATION. In what follows we write {am1
1 ,am2

2 , . . . ,amr
r } for a multiset, where m1,

m2, . . . ,mr denote multiplicities.

THEOREM 3.1. For any integers m≥ 0 and 2 ≤ k ≤ n+ 1, the arrangement

x1 − xj = 0, 1, . . . ,m for 2 ≤ j < k,

x1 − xj = 0, 1, . . . ,m+ 1 for k ≤ j ≤ n, (2)

xi − xj = 0, 1 for 2 ≤ i < j ≤ n

is inductively free with multiset of exponents {01, (n+m− a)k−2, (n+m)n−k+1}.

PROOF. Figure 2 illustrates (2) with a graph. The edges ( j, i ) of the graph are labeled with
sets of integers s such that the hyperplanes xi − xj = s are in (2). We proceed by double
induction on n and n − k. The result is clear for n = 2, so pick an n ≥ 3. The idea of the
proof is to remove the hyperplanes involving x1 one by one, until none remains, in such a
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FIGURE 2. An edge labeled graph.

way that the deletions and restrictions at each step are arrangements to which the induction
hypothesis applies.

First we treat the case m= 0 and k = n+ 1. The arrangement in question is

x1 − xj = 0 for 2 ≤ j ≤ n,

xi − xj = 0, 1 for 2 ≤ i < j ≤ n.
(3)

Note that the arrangement in Rn with hyperplanes

xi − xj = 0, 1 for 2 ≤ i < j ≤ n (4)

is inductively free with multiset of exponents {02, (n− 1)n−2}, since Ân−1 is inductively free
by induction with multiset of exponents {01, (n − 1)n−2}. By Lemma 2.1, adding r of the
hyperplanes x1−xj = 0 in any order produces an inductively free arrangement whose multiset
of exponents is {01, r 1, (n−1)n−2}. Indeed, the restriction to the last hyperplane added at each
step is affinely equivalent to (4). The case r = n− 1 gives the desired result for (3).

We can now assume 2 ≤ k ≤ n, since the arrangement (2) having parameters m ≥ 1 and
k = n+ 1 coincides with (2) having parameters m− 1 and k = 2. Consider the hyperplane H
of (2) with equation x1 − xk = m+ 1. Deletion of this hyperplane produces an arrangement
which is of the same form as (2), with k replaced by k+1. Hence, by induction, it is inductively
free with multiset of exponents {01, (n+m− 1)k−1, (n+m)n−k}. Restriction to H produces
again an arrangement of the same form, with n replaced by n− 1 and m replaced by m+ 1.
To see this just set xk = x1 −m− 1 in the equations involving xk. The equation xk − xn = 1,
for example, becomes x1 − xn = m+ 2. Again by induction, the restricted arrangement is
inductively free with multiset of exponents {01, (n+m−1)k−2, (n+m)n−k}. These exponents
are contained in the multiset of exponents of the deleted arrangement. It follows from the
definition of inductive freeness and Lemma 2.1 that (2) is inductively free as well, with the
claimed exponents. 2

For m= 0, k = 2 we get the following corollary.

COROLLARY 3.2. The Shi arrangement Ân is inductively free with multiset of exponents
{01,nn−1}. In particular, χ(Ân,q) = q(q − n)n−1.

Let a ≥ 1 be an integer. As in [2], we denote the extended Shi arrangement corresponding
to a by Â[−a+1,a]

n . It has hyperplanes

xi − xj = −a+ 1,−a+ 2, . . . ,a for 1 ≤ i < j ≤ n

and reduces to Ân for a = 1. It was conjectured by Edelman and Reiner that the cone
cÂ[−a+1,a]

n is free with multiset of exponents {01, 11, (an)n−1}. This is a special case for
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the irreducible crystallographic root system An−1 of one half of Conjecture 3.3 in [6]. The
weaker statement χ(Â[−a+1,a]

n ,q) = q(q − an)n−1 can easily be derived using the finite field
method [2, Cor. 7.1.2]. For additional work on these arrangements see [11, 16]. Theorem 3.1
can be extended to the following result.

THEOREM 3.3. Fix an integer a ≥ 1. For integers m, k as in Theorem 3.1, the arrangement

x1 − xj = −a+ 1, . . . ,m for 2 ≤ j < k,

x1 − xj = −a+ 1, . . . ,m+ 1 for k ≤ j ≤ n, (5)

xi − xj = −a+ 1, . . . ,a for 2 ≤ i < j ≤ n

is inductively free with multiset of exponents {01, (an+m− a)k−2, (an+m− a+ 1)n−k+1}.
PROOF. We use again double induction on n and n− k and distinguish two cases. Suppose

first that k = n+ 1 and m= 0. The arrangement in question is affinely equivalent to

x1 − xj = 0, . . . ,a− 1 for 2 ≤ j ≤ n,

xi − xj = −a+ 1, . . . ,a for 2 ≤ i < j ≤ n
(6)

by the transformation which sends x1 → x1 − a + 1 and fixes the other coordinates. The
inductive freeness of (6) follows, as in the proof of Theorem 3.1, by adding in any order the
first set of hyperplanes to

xi − xj = −a+ 1, . . . ,a for 2 ≤ i < j ≤ n.

The restricted arrangement at each step is affinely equivalent to Â[−a+1,a]
n−1 , for which induction

applies. After adding r hyperplanes of the form x1 − xj = s, the multiset of exponents of the
intermediate arrangement is {01, r 1, (an− a)n−2}. The case r = an− a gives the exponents
of (6).

As in the proof of Theorem 3.1 we can now assume that 2 ≤ k ≤ n. We delete and restrict
to the hyperplane x1− xk = m+ 1. The deleted arrangement has the form (5) with k replaced
by k+ 1 and so does the restricted arrangement, with n replaced by n− 1 and m replaced by
m+ a, once we substitute xk = x1 − m− 1. Induction and Lemma 2.1 apply and give the
result for (5). 2

The extended Shi arrangements correspond to the case m= a− 1, k = 2.

COROLLARY 3.4. The extended Shi arrangement Â[−a+1,a]
n is inductively free with multiset

of exponents {01, (an)n−1}. 2

We now come back to the arrangements Ân,S of Theorem 2.2. We need to extend the
notation used there for more general deformations of An. Suppose that A contains An and
that it has hyperplanes of the form xi − xj = s, where s ∈ Z and 1 ≤ i < j ≤ n. For
1 < j ≤ n let aj be the number of hyperplanes xi − xj = s of A with i < j and s 6= 0. Also
let

cj = n+ aj − j + 1.

We call these numbers the a and c parameters of A respectively. Note that this notation agrees
with the one in Theorem 2.2. A generalization of Theorem 2.2 [2, Thm 6.2.10] produced a large
class of deformations of An, in the form described above, whose characteristic polynomials
factor completely over the nonnegative integers. Thus, under assumptions, the characteristic
polynomial of A equals q(q − c2) · · · (q − cn). Note that the exponents proposed for the
arrangements in Theorem 3.1 are exactly the corresponding c parameters.
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THEOREM 3.5. Let T be a graph on the vertex set [2,n], i.e. ( j, i ) ∈ T implies 2 ≤ i < j ≤
n. Suppose that T satisfies the condition in Theorem 2.2: if 2 ≤ i < j < k ≤ n and ( j, i ) ∈ T
then (k, i ) ∈ T. Let m, k be integers as in Theorem 3.1. The arrangement

x1 − xj = 0, 1, . . . ,m for 2 ≤ j < k,

x1 − xj = 0, 1, . . . ,m+ 1 for k ≤ j ≤ n,

xi − xj = 0 for 2 ≤ i < j ≤ n,

xi − xj = 1 for ( j, i ) ∈ T

(7)

is inductively free with exponents 0, c2, . . . , cn, where cj , 2 ≤ j ≤ n are its c parameters.

PROOF. We use the same induction argument. The result follows easily in the case k = n+1,
m= 0 by adding the hyperplanes x1 − xj = 0 in any order to

xi − xj = 0 for 2 ≤ i < j ≤ n,

xi − xj = 1 for ( j, i ) ∈ T,

to which induction applies. Otherwise we delete and restrict to the hyperplane x1 − xk =
m+ 1. Let {aj } and {cj } be the a and c parameters of (7). Deletion simply reduces ak, and
hence ck, by one. The restricted arrangement is affinely equivalent to an arrangement of the
form (7), obtained by substituting xk = x1 −m− 1 in the equations involving xk. Induction
and Lemma 2.1 complete the proof, once we check that the c parameters of the restricted
arrangement are c2, . . . , ck−1, ck+1, . . . , cn. We omit the details which are straightforward.2

The case m= 0 gives the result promised at the end of Section 2.

COROLLARY 3.6. Under the assumptions and notation of Theorem 2.2, the arrangement
Ân,S is inductively free with exponents 0, c2, . . . , cn.

4. FREE ARRANGEMENTS BETWEEN cAn AND cÂn

In this section we show that the cones of the arrangements of Theorem 2.2 are essentially
the only free arrangements between cAn and cÂn.

We first recall another fundamental result in the theory of free arrangements, the Localization
Theorem [10, Thm 4.37]. Let X be an element of the intersection lattice LA of A [10, §2.1].
The localization AX is the subarrangement of A:

AX = {H ∈ A | X ⊆ H}.

The Localization Theorem asserts that any localization of a free arrangement is free. It can
easily provide obstructions to freeness [19] and is therefore quite useful in classifying free
arrangements [5, 6]. Our main result can be stated as follows.

THEOREM 4.1. Let S⊆ En. The following are equivalent:

(i) Ân,S is inductively free.
(ii) cÂn,S is free.

(iii) S does not contain any of the two directed graphs in Figure 3 as induced subgraphs.
(iv) There is a permutation w = w1w2 . . . wn of [n] such that

w−1 · S= {( j, i ) | (w j , wi ) ∈ S}

is contained in En and satisfies the condition in Theorem 2.2.
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FIGURE 3. Obstructions to freeness.

PROOF. The implication (i)⇒ (ii) is clear and (iv)⇒ (i) follows immediately from Corol-
lary 3.6. We show the implications (ii)⇒ (iii) and (iii)⇒ (iv).

Suppose that (ii) holds. For U ⊆ [n] let SU be the induced subgraph of S on U . Note that
the subspace XU defined by the equations x0 = 0, xi = xj for i, j ∈ U is in the intersection
lattice LcÂn,S

and that the localization of cÂn,S on XU is affinely equivalent to cÂk,T , where
k = #U and T is isomorphic to SU . By the Localization Theorem [10, 4.37] these localizations
are free. Hence to prove (iii) it suffices to check that the arrangements cÂ3,S1 and cÂ4,S2 are
not free, where S1 is the path {(3, 2), (2, 1)} and S4 = {(2, 1), (4, 3)}. It follows from [2,
Thm 7.1.5] (see also [1, Thm 5.6]) and can easily be checked otherwise that

χ(Â3,S1 ,q) = q(q2 − 5q + 7)

and

χ(Â4,S2 ,q) = q(q − 3)(q2 − 5q + 7).

The Factorization Theorem [10, Thm 4.137] and (1) imply that cÂ3,S1 and cÂ4,S2 are not free.
Finally suppose that (iii) holds. Equivalently, we require the following two conditions:

(I) For distinct indices i, j, k with 1 ≤ i < j < k ≤ n, (k, j ) ∈ S and ( j, i ) ∈ S imply
(k, i ) ∈ S.

(II) For 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n and i, j, k, l distinct, ( j, i ) ∈ S and (l , k) ∈ S imply
(l , i ) ∈ S or ( j, k) ∈ S or both.

We denote by out(w) the outdegree of a vertex w of S and let w1, w2, . . . , wn be any linear
ordering of the vertices 1, 2, . . . ,n of S which satisfies out(wi ) ≤ out(w j ) for i < j . First
note that, by (I), (w j , wi ) ∈ S implies out(wi ) < out(w j ) and hence i < j . This means that
w−1 · S ⊆ En, as claimed. To prove (iv) it remains to check the condition in Theorem 2.2.
Let 1 ≤ i < j < l ≤ n with (w j , wi ) ∈ S. We want to show that (wl , wi ) ∈ S, so suppose
the contrary. By (II), whenever (wl , wk) ∈ S we have (w j , wk) ∈ S. Note also that, by (I),
(wl , w j ) is not in S. It follows that out(w j ) > out(wl ), contradicting the fact that j < l . 2

In contrast to the situation in [5], very few of the arrangements cÂ3,S of Theorem 4.1 are
supersolvable. For the sake of completeness we give next a precise result. We recall that the
Localization Theorem remains true if freeness is replaced by supersolvability [14, Prop. 3.2]
and refer the reader to [14] and [10, §2.1] for the relevant background.

THEOREM 4.2. Let S⊆ En. The arrangement cÂn,S is supersolvable if and only if all the
edges in S have the same terminal vertex or they all have the same initial vertex.

PROOF. Suppose that all the edges in S have the same terminal vertex, say

S= {(2, 1), (3, 1), . . . , (k, 1)}
for some k ≤ n. It is easy to check that the subspace defined by the equations x0 = 0,
x1 = x2 = · · · = xn−1 is a modular coatom of the intersection lattice LcÂn,S

. The arrangement
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FIGURE 4. Obstructions to supersolvability.

cÂn−1,S[n−1] , defined by the induced subgraph S[n−1], has the form assumed for cÂn,S, so
induction produces the desired maximal chain of modular elements. The second case can
be reduced to the first one by applying the linear transformation which sends xi → −xi for
1 ≤ i ≤ n and fixes x0.

Now suppose that cÂn,S is supersolvable. Since supersolvable arrangements are inductively
free [10, Thm 4.58] S satisfies the equivalent conditions of Theorem 4.1, in particular condi-
tion (iii). To show that S has the form proposed in the theorem it suffices to show that none
of the two directed graphs in Figure 3 can occur as a subgraph of S. Equivalently, it suffices
to show that none of the three directed graphs in Figure 4 can occur as an induced subgraph
of S. By the Localization Theorem for supersolvability [14, Prop. 3.2] it suffices to check that
the arrangements cÂn,S, defined by these three directed graphs, are not supersolvable. The
argument given in [5, Lemma 4.5(c)] applies here as well. If A is supersolvable with largest
exponent b, then it contains a modular coatom having at least #A− b hyperplanes. However,
one can easily check that in all three cases, any subarrangement with #A− b hyperplanes has
full rank. 2

REMARK. Curiously, the same directed graphs as in the previous two theorems have ap-
peared in recent work by G. D. Bailey [3] and were shown to correspond to the free and
supersolvable arrangements, respectively, in a different class. This class consists of certain
discriminantal arrangements of zonotopes. There seems to be no obvious connection between
the two types of result.

We now note that the family of free arrangements in Theorem 4.1 contains simple coun-
terexamples to Orlik’s conjecture [10, p. 10, 155], which stated that the restriction of a free
arrangement to any of its hyperplanes is free. This was first disproved by Edelman and
Reiner [4]. The same authors provided infinitely many counterexamples in [5], including one
of dimension 4 with 10 hyperplanes. A counterexample contained in the family of Theo-
rem 4.1 is provided by cÂ4,S3 , where S3 is shown in Figure 5 and corresponds to the middle
graph in Figure 4. This arrangement is free by Corollary 3.6 and has rank 4 and 10 hyper-
planes. The restriction of cÂ4,S3 to the hyperplane x2 = x4 is affinely equivalent to cÂ3,S1 ,
corresponding to the first forbidden graph of Figure 3, and hence is not free. As Reiner has
pointed out, cÂ4,S3 is projectively equivalent to the minimum-dimensional counterexample
given in [5].

Clearly, any arrangement cÂn,S such that S contains an isomorphic copy of S3 as an induced
subgraph is a counterexample to Orlik’s conjecture.

A result similar to Theorem 4.1 can be obtained in the same way for the arrangements
between Ân and Â[−1,1]

n , i.e. the one with hyperplanes

xi − xj = −1, 0, 1 for 1 ≤ i < j ≤ n.

Such an arrangement is of the form

xi − xj = 0 for 1 ≤ i < j ≤ n,

xi − xj = 1 for ( j, i ) ∈ G,
(8)
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FIGURE 6. A directed graph satisfying (∗).

where En ⊆ G ⊆ En and

En = {(i, j ) | i 6= j, 1 ≤ i, j ≤ n}

is the edge set of the complete directed graph on the vertex set [n]. We denote this arrangement
by Â[−1,1]

n,G . The role of the arrangements of Theorem 2.2 will be played by the ones for which
G satisfies the following condition:

If 1 ≤ i < j < k ≤ n and (i, k) ∈ G then (i, j ) ∈ G. (∗)

Figure 6 shows the edges not in En of such a G, for n = 5. The arrangement Â[−1,1]
n,G is also

determined by En−G. We denote by S this set with the orientation of each edge reversed, so
that S⊆ En. Clearly, G satisfies (∗) if and only if S satisfies the condition in Theorem 2.2. In
the case of Figure 6, for example, we have S= {(5, 1), (3, 2), (4, 2), (5, 2), (5, 4)}. We state
the analogue of Theorem 4.1 and give an outline of the proof. The arrangements Â[−1,1]

n were
shown to be inductively free by Edelman and Reiner (see the proof of Theorem 3.2 in [6]).

THEOREM 4.3. Let En ⊆ G ⊆ En. With the notation above, the following are equivalent:

(i) Â[−1,1]
n,G is inductively free.

(ii) cÂ[−1,1]
n,G is free.

(iii) S does not contain any of the two directed graphs in Figure 3 as induced subgraphs.
(iv) There is a permutation w = w1w2 . . . wn of [n] such that

w−1 · S= {( j, i ) | (w j , wi ) ∈ S}

is contained in En and satisfies the condition in Theorem 2.2.

PROOF. The implication (i)⇒ (ii) is again clear. The implication (iv)⇒ (i) follows from
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the inductive freeness of the class of arrangements

x1 − xj = 0, 1, . . . ,m+ 1 for 2 ≤ j ≤ k,

x1 − xj = 0, 1, . . . ,m for k < j ≤ n,

xi − xj = 0, 1 for 2 ≤ i < j ≤ n,

xj − xi = 1 for (i, j ) ∈ T, 2 ≤ i < j ≤ n,

where T satisfies (∗). The exponents are the c parameters, together with 0. The proof is
as in Theorem 3.5, except that now we remove the hyperplanes x1 − xj = s in the order
that decreases j (and s). The implication (ii) ⇒ (iii) follows again from the Localization
Theorem [10, 4.37] by computing explicitly the characteristic polynomial of Â[−1,1]

n,G when S
is one of the two directed graphs of Figure 3 as q(q2− 7q+ 13) and q(q− 5)(q2− 11q+ 31)
respectively. The implication (iii) ⇒ (iv) coincides with the corresponding implication in
Theorem 4.1. 2

5. OTHER CLASSES OF DEFORMATIONS

Classes of arrangements that correspond to pairs of graphs seem to be more complicated to
analyze from the point of view of freeness. This is the case, for example, with the class of
all subarrangements of the Coxeter arrangement of type Bn, as remarked in [5]. We have no
obvious suggestion for what all subarrangements of Ân with free cones should look like.

The case of the arrangements between An and Â[−1,1]
n seems to deserve special mention.

Such an arrangement can be modeled by a directed graph G ⊆ En and has the form (8), so
we can still denote it by Â[−1,1]

n,G . The following result, which extends Theorem 2.2 and is a
special case of the more general [2, Thm 6.2.10], suggests an explicit answer for this case.

THEOREM 5.1 ([1, THM 3.9, 2, THM 6.2.7]). Suppose that the set G ⊆ En has the follow-
ing properties:

(i) If i, j < k, i 6= j and (i, j ) ∈ G, then (i, k) ∈ G or (k, j ) ∈ G or both.
(ii) If i, j < k, i 6= j and (i, k) ∈ G, (k, j ) ∈ G, then (i, j ) ∈ G.

Then the characteristic polynomial of Â[−1,1]
n,G factors as in Theorem 2.2, where cj are the

corresponding c parameters.

Note that if G ⊆ En, the conditions in the previous theorem reduce to the one in Theorem 2.2,
while if En ⊆ G they reduce to (∗). The arguments of Section 3 do not trivially extend to
show inductive freeness of the arrangements in Theorem 5.1.

The fact that all deformations of An with free cones that we have encountered in the previous
sections turned out to be inductively free suggests that this might be a property of general
deformations of An, or of deformations of any Weyl arrangement.
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