COMBINATORIAL THEORY

Fall Semester 2022 Problem Set #1

1. For which formal power series $G(x) \in \mathbb{C}[[x]]$ does there exist a formal power series $F(x) \in \mathbb{C}[[x]]$ such that $(F(x))^3 = G(x)$? You may use the fact that the equation $z^3 = a$ has a solution in \mathbb{C} for every $a \in \mathbb{C}$.

2. Consider the formal power series $F(x) = \sum_{k \ge 0} (x + x^2 - x^3)^k \in \mathbb{C}[[x]].$

- (a) Compute F(x) as a rational function of x.
- (b) Show that the coefficients of F(x) are positive integers.
- (c) Compute the coefficient of x^n in $(F(x))^2$ for every $n \in \mathbb{N}$.

3. Let *m* be a positive integer and let c(n, m) denote the number of compositions of *n* whose parts are odd integers $\leq 2m - 1$. Prove that

$$\sum_{n \ge 0} c(n,m) x^n = \frac{1-x^2}{1-x-x^2+x^{2m+1}},$$

where c(0, m) = 1 by convention.

4. Prove that for every positive integer n, the number of partitions λ of n no part of which appears with multiplicity one in λ is equal to the number of partitions of n with parts not congruent to $\pm 1 \pmod{6}$.

5. Consider the product

$$\mathcal{A}_n = \{1\} \times \{1,2\} \times \cdots \times \{1,2,\ldots,n\}$$

and for $\sigma = (a_1, a_2, \dots, a_n) \in \mathcal{A}_n$ define the set of descents $\text{Des}(\sigma) := \{i \in [n-1] : a_i \ge a_{i+1}\}$ of σ .

- (a) Prove that the number of sequences $\sigma \in \mathcal{A}_n$ having descent set $\text{Des}(\sigma) = S$ is equal to the number of permutations $w \in \mathfrak{S}_n$ having descent set Des(w) = S for every $S \subseteq [n-1]$.
- (b) Deduce that

$$A_n(x) = \sum_{\sigma \in \mathcal{A}_n} x^{\operatorname{des}(\sigma)}$$

for every $n \in \mathbb{Z}_{>0}$, where des (σ) stands for the number of descents of $\sigma \in \mathcal{A}_n$ and $A_n(x) = \sum_{w \in \mathfrak{S}_n} x^{\operatorname{des}(w)}$.

Deadline: Sunday 23 October