An introduction to tensor products of operator algebras $${\rm Part}\ II$$

Alexandros Chatzinikolaou

Functional Analysis and Operator Algebras Seminar, 2022-2023

Contents

Operator spaces

C*-algebras

- Minimal tensor product
- Maximal tensor product
- Nuclearity

Operator systems

- Minimal tensor product
- Maximal tensor product
- Commuting tensor product

References

Let $E \subseteq \mathcal{B}(H)$ and $F \subseteq \mathcal{B}(K)$ be two operator spaces. Recall that their minimal tensor product, is the vector space $E \otimes F$ equipped with the operator space structure, inherited by its inclusion

 $E \otimes F \subseteq \mathcal{B}(H \hat{\otimes}_{hs} K)$

and denoted by $E \otimes_{min} F$.

However, as we will see shortly, the minimal tensor norm on $E \otimes F$ really depends on the "abstract" operator space structure of E and F rather than their particular embeddings.

Consider a Hilbert space H and $H_n \subseteq H$, an *n*-dimensional subspace with $P_{H_n}: H \to H_n$ being the orthogonal projection.

Using an orthonormal basis we can identify H_n with the n-dimensional Hilbert space $\ell^2([n])$ and consequently $\mathcal{B}(H_n) = M_n$ and recall that $M_n \otimes_{min} F = M_n(F)$.

Let $v_n : \mathcal{B}(H) \to \mathcal{B}(H_n) = M_n$ be the map $a \mapsto P_{H_n}a|_{H_n}$ and \mathcal{C}_n the collection of all such mappings with H_n arbitrary n-dimensional.

If $E \subseteq \mathcal{B}(H)$, $F \subseteq \mathcal{B}(K)$ are operator spaces. Then, for any $x = \sum_{i} a_i \otimes b_i \in E \otimes F$ we have

$$\|x\|_{E\otimes_{\min}F} = \sup_{n\in\mathbb{N}, v_n\in\mathcal{C}_n} \left\|\sum v_n(a_i)\otimes b_i\right\|_{M_n(F)}.$$
 (1)

Indeed, we may write

$$\|x\|_{min} = \sup \Big\{ |\langle xs, t \rangle| : s, t \in \operatorname{Ball}(\mathcal{H} \otimes_2 \mathcal{K}) \Big\}.$$

For some finite dimensional subspace $\mathcal{H}_n \subseteq \mathcal{H}$, we have $s, t \in \mathcal{H}_n \otimes \mathcal{K}$. Hence, if v_n is the map defined above, we write

$$\langle xs,t\rangle = \langle (\sum_i a_i \otimes b_i)s,t\rangle = \langle (\sum_i v_n(a_i) \otimes b_i)s,t\rangle$$

thus we have that

$$\|x\|_{E\otimes_{\min}F} \leq \sup_{n\in\mathbb{N}, v_n\in\mathcal{C}_n} \left\|\sum v_n(a_i)\otimes b_i\right\|_{M_n(F)}$$

The reverse inequality is obvious thus we obtain the relation (1).

5 / 50

.

Proposition

Let E_i , F_i , i = 1, 2 be operator spaces and $u_i : E_i \rightarrow F_i$ be completely bounded maps. Then $u_1 \otimes u_2$ continuously extends by density to a completely bounded map

$$u_1 \otimes u_2 : E_1 \otimes_{min} E_2 \to F_1 \otimes_{min} F_2.$$

Moreover, we have

$$||u_1 \otimes u_2||_{cb} = ||u_1||_{cb} ||u_2||_{cb}.$$

One can actually show the more general form:

Proposition

For any $x = \sum a_i \otimes b_i \in E \otimes F$ we have

$$\|x\|_{min} = \sup\left\{\left\|\sum \phi(a_i) \otimes \psi(b_i)\right\|_{M_{nm}}\right\}$$
(2)

where the supremum runs over $n, m \ge 1$ and all pairs of $\phi : E \to M_n$ and $\psi : F \to M_m$, with $\|\phi\|_{cb} \le 1$ and $\|\psi\|_{cb} \le 1$.

Contents

Operator spaces

2 C*-algebras

- Minimal tensor product
- Maximal tensor product
- Nuclearity

Operator systems

- Minimal tensor product
- Maximal tensor product
- Commuting tensor product

References

Let A and B be two unital C^{*}-algebras. Recall that we can turn their tensor product $A \otimes B$ to a *-algebra by defining:

for all $a_i, a \in A$ and $b_i, b \in B$, and extending linearly.

We can also define a unit in $A \otimes B$ by $1_{A \otimes B} := 1_A \otimes 1_B$.

Hence, $A \otimes B$ becomes a unital *-algebra.

C*-norms

Let A and B be two unital C*-algebras. A norm $\|\cdot\|_{\gamma}$ on $A\otimes B$ is called a C*-norm if

- $\|xy\|_{\gamma} \leq \|x\|_{\gamma} \|y\|_{\gamma}$
- $\|x\|_{\gamma} = \|x^*\|_{\gamma}$

•
$$||x^*x||_{\gamma} = ||x||_{\gamma}^2$$

for all $x, y \in A \otimes B$, and a **C***-**cross-norm** if further

•
$$\|a \otimes b\|_{\gamma} = \|a\| \cdot \|b\|$$

The completion of the *-algebra $A \otimes B$ with respect to a C^* -norm $\|\cdot\|_{\gamma}$, becomes a C^* -algebra which we denote by $A \otimes_{\gamma} B$.

In general, there may be many C^* -norms on a tensor product.

If $A \subseteq \mathcal{B}(H)$ and $B \subseteq \mathcal{B}(K)$ are two C^* -algebras, then we can form their spatial tensor product by the inclusion,

$$A \otimes B \subseteq \mathcal{B}(H) \otimes_{sp} \mathcal{B}(K) \subseteq \mathcal{B}(H \hat{\otimes}_{hs} K)$$

Indeed, the closure of the *-algebra $A \otimes B$ w.r.t the norm $\|\cdot\|_{sp}$ defines a C^* -algebra denoted by $A \otimes_{sp} B$.

The spatial tensor norm is a C^* -cross-norm!

Let A, B, C be *-algebras and $\pi_A : A \to C$, $\pi_B : B \to C$ are two *-homomorphisms such that

$$\pi_A(a)\pi_B(b)=\pi_B(b)\pi_A(a)$$

for all $a \in A$ and $b \in B$, i.e., with commuting ranges. Then, there exists a unique *-homomorphism $\pi : A \otimes B \to C$ with

$$\pi(a\otimes b)=\pi_A(a)\pi_B(b).$$

Proposition

Let $\pi_1 : A_1 \to \mathcal{B}(H_1)$ and $\pi_2 : A_2 \to \mathcal{B}(H_2)$ be unital *-homomorphisms of the C*-algebras A_1 and A_2 respectively. Then, there exists a unique unital *-homomorphism $\pi : A_1 \otimes A_2 \to \mathcal{B}(H_1 \hat{\otimes}_{hs} H_2)$ with

 $\pi(a\otimes b)=\pi_1(a)\otimes_{sp}\pi_2(b).$

Moreover, if π_i are injective, then so is π .

Proof. We define

$$egin{aligned} &
ho_1: \mathcal{A}_1 o \mathcal{B}(\mathcal{H}_1 \hat{\otimes}_{\mathit{hs}} \mathcal{H}_2) \ & \mathsf{a} \mapsto \pi_1(\mathsf{a}) \otimes_{\mathit{sp}} \operatorname{Id}_{\mathcal{H}_2} \end{aligned}$$

and

$$\rho_2 : A_2 \to \mathcal{B}(H_1 \hat{\otimes}_{hs} H_2)$$
$$b \mapsto \mathrm{Id}_{H_1} \otimes_{sp} \pi_2(b)$$

and note that they are unital *-homomorphisms with commuting ranges.

So, there exists a unique unital *-homomorphism $\pi: A \otimes B \to \mathcal{B}(H_1 \hat{\otimes}_{hs} H_2)$ with

$$\pi(a\otimes b)=
ho_1(a)
ho_2(b)=\pi_1(a)\otimes_{sp}\pi_2(b).$$

Injectivity is straightforward.

We denote the above *-homomorphism by $\pi := \pi_1 \otimes \pi_2$

Consider two C^* -algebras A_1 and A_2 . By the Gelfand-Naimark theorem, there exist injective representations $\pi_1 : A_1 \to \mathcal{B}(H_1)$ and $\pi_2 : A_2 \to \mathcal{B}(H_2)$. So, by the previous proposition there exists an injective *-homomorphism $\pi : A_1 \otimes A_2 \to \mathcal{B}(H_1 \hat{\otimes}_{hs} H_2)$. Hence, the tensor product inherits the spatial tensor norm by setting

$$\|a\otimes b\|_{sp}:=\|\pi(a\otimes b)\|_{sp}.$$

Again, we may take the completion with respect to this norm and end up with a C^* -algebra denoted by $A \otimes_{sp} B$.

Conversely,

Proposition

Let A_1 and A_2 be two unital C^* -algebras and let $\|\cdot\|_{\gamma}$ denote a C^* -norm on $A_1 \otimes A_2$. Then, for every unital *-homomorphism $\pi : A_1 \otimes_{\gamma} A_2 \to \mathcal{B}(H)$ there exist two unital *-homomorphisms $\pi_i : A_i \to \mathcal{B}(H)$ with commuting ranges, such that

$$\pi(a\otimes b)=\pi_1(a)\pi_2(b).$$

Proof. Simply define

$$egin{array}{lll} \pi_1: \mathcal{A}_1
ightarrow \mathcal{B}(\mathcal{H}) \ a\mapsto \pi(a\otimes 1_{\mathcal{A}_2}) \end{array}$$

and similarly for π_2 .

We may now define,

Definition

Let A_1 and A_2 be two unital C^* -algebras. We define the **minimal** C^* -norm on $A_1 \otimes A_2$ to be

 $\|x\|_{min} := \sup\{\|\pi_1 \otimes \pi_2(x)\| : \pi_i : A_i \to \mathcal{B}(H_i) \text{ unital } *-\text{homomorphism}\}$

This is indeed a C^* -cross-norm on $A_1 \otimes A_2$. The completion with respect to this norm is a C^* -algebra denoted by $A_1 \otimes_{min} A_2$.

The following deep result explains the name of this particular C^* -norm:

Theorem (Takesaki)

Let A_1 and A_2 be two unital C^{*}-algebras. Then, the minimal C^{*}-norm is the smallest of all possible C^{*}-norms on $A_1 \otimes A_2$, i.e., if $\|\cdot\|_{\gamma}$ is another C^{*}-norm, then

$$\|x\|_{min} \le \|x\|_{\gamma}$$

for all $x \in A_1 \otimes A_2$.

Corollary

Let A_1 and A_2 be two unital C^{*}-algebras. If $\pi_i : A_i \to \mathcal{B}(H_i)$ injective, unital *-homomorphisms, then

$$\|x\|_{min} = \|\pi_1 \otimes \pi_2(x)\|$$

for all $x \in A_1 \otimes A_2$.

Proof.

Indeed, just note that $||x||_{\gamma} := ||\pi_1 \otimes \pi_2(x)||$ defines a C^* -norm less that the minimal one.

Hence, when $A_i \subseteq \mathcal{B}(H_i)$ are concrete C^* -algebras, the minimal and spatial C^* -norms coincide!

Corollary

Let A_1, A_2 be two unital C^{*}-algebras. Then, every C^{*}-norm on $A_1 \otimes A_2$ is a cross-norm.

Proof. Let $\|\cdot\|_{\gamma}$ be a C^* -norm on $A_1 \otimes A_2$. Consider the universal representation of $A_1 \otimes_{\gamma} A_2$, $\pi : A_1 \otimes_{\gamma} A_2 \to \mathcal{B}(H)$. By a previous proposition, there exist unital *-homomorphisms $\pi_i : A_i \to \mathcal{B}(H)$ with commuting ranges s.t. $\pi(a \otimes b) = \pi_1(a)\pi_2(b)$. Hence.

$$\left\Vert a
ight\Vert \left\Vert b
ight\Vert =\left\Vert a\otimes b
ight\Vert _{min}\leq\left\Vert a\otimes b
ight\Vert _{\gamma}=\left\Vert \pi(a\otimes b)
ight\Vert =\left\Vert \pi_{1}(a)\pi_{2}(b)
ight\Vert \leq\left\Vert a
ight\Vert \left\Vert b
ight\Vert$$

Injectivity

Suppose that B_i are unital C^* -algebras and $A_i \subseteq B_i$ are unital C^* -subalgebras for i = 1, 2. We have two ways of forming the minimal C^* -norm $A_1 \otimes_{min} A_2$:

() The completion of $A_1 \otimes A_2$ w.r.t. the norm

 $\|x\|_{min} := \sup\{\|\pi_1 \otimes \pi_2(x)\| : \pi_i : A_i \to \mathcal{B}(H_i) \text{ unital } *\text{-hom}\}$

$$\ 2 \ \overline{A_1 \otimes A_2}^{\|\cdot\|_{min}} \subseteq B_1 \otimes_{min} B_2$$

However, Takesaki's theorem asserts that they coincide. Indeed, consider

$$j: A_1 \otimes A_2 \rightarrow B_1 \otimes B_2$$

to be the inclusion map.

Then, if $\pi_i : B_i \to \mathcal{B}(H_i)$ are unital, injective *-homomorphisms, then so are their restrictions on A_i . So, by Takesaki's theorem,

$$\|j(x)\|_{B_1 \otimes_{\min} B_2} = \|x\|_{B_1 \otimes_{\min} B_2} = \|\pi_1 \otimes \pi_2(x)\| = \|x\|_{A_1 \otimes_{\min} A_2}$$

Thus, the inclusion map extends to a *-isomorphism between $A_1 \otimes_{min} A_2$ and the closure of $A_1 \otimes A_2$ in $B_1 \otimes_{min} B_2$, i.e.,

$$A_1 \otimes_{min} A_2 \subseteq B_1 \otimes_{min} B_2.$$

Hence, the minimal C^* -norm on two C^* -algebras A_1, A_2 coincides with the spatial tensor norm and the minimal operator space norm when viewed as operator spaces.

Examples

Let X be a compact Hausdorff space and A be a unital C*-algebra. Let also C(X; A) denote the C*-algebra of continuous functions from X into A with the norm $||F|| = \sup\{||F(x)|| : x \in X\}$. Then,

Example

$$C(X; A) = C(X) \otimes_{min} A$$
, *-isomorphically.

Proof.

• The subspace $D := \operatorname{span} \{ f \cdot a : f \in C(X), a \in A \}$, where

 $f \cdot a : x \mapsto f(x)a \in A$ is dense in C(X; A). This is done by a partition of unity argument.

• Thus, the map Φ is an injective *-homomorphism

$$\Phi: C(X)\otimes A \to C(X; A)$$

$$\sum_{i=1}^n f_i\otimes a_i\mapsto \sum_{i=1}^n f_i\cdot a_i$$

So, we may define a norm on $C(X) \otimes A$ by

$$\left\|\sum_{i=1}^n f_i \otimes a_i\right\|_{\gamma} := \left\|\sum_{i=1}^n f_i \cdot a_i\right\|$$

Note that this is a C^* -norm, hence the map Φ , extends to a *-isomorphism

$$C(X) \otimes_{\gamma} A = C(X; A).$$

By Takesaki's theorem,

$$\left\|\sum_{i=1}^{n} f_{i} \otimes a_{i}\right\|_{min} \leq \left\|\sum_{i=1}^{n} f_{i} \otimes a_{i}\right\|_{\gamma} = \sup_{x} \left\|\sum_{i=1}^{n} f_{i}(x)a_{i}\right\|$$
(3)

• Then, fix an $x \in X$, and define the map

$$\phi_x: \mathcal{C}(X) o \mathbb{C}$$

 $f \mapsto f(x)$

which is a linear contraction. Hence, there is a bounded map

$$\phi_{\mathsf{x}} \otimes_{min} \operatorname{Id} : \mathcal{C}(\mathsf{X}) \otimes_{min} \mathsf{A} \to \mathsf{A}$$

$$\sum_{i=1}^{n} f_{i} \otimes \mathsf{a}_{i} \mapsto \sum_{i=1}^{n} f_{i}(\mathsf{x})\mathsf{a}_{i}$$

with $\|\phi_x \otimes_{\textit{min}} \operatorname{Id}\| = \|\phi_x\| \leq 1$. That is,

$$\left\|\sum_{i=1}^n f_i(x)a_i\right\| \le \left\|\sum_{i=1}^n f_i \otimes a_i\right\|_{min}$$

• Finally, since $x \in X$ was arbitrary,

$$\sup_{x} \left\| \sum_{i=1}^{n} f_{i}(x) a_{i} \right\| \leq \left\| \sum_{i=1}^{n} f_{i} \otimes a_{i} \right\|_{min}$$

and hence, by the converse inequality (3)

$$C(X) \otimes_{min} A = C(X; A).$$

As a corollary,

Example

For compact Hausdorff spaces X and Y, $C(X) \otimes_{min} C(Y) = C(X \times Y)$.

(4)

If we recall the exact same fact about the injective norm, i.e., $C(X)\hat{\otimes}_{\varepsilon}C(Y) = C(X \times Y)$, we conclude that

Remark Let A, B be two unital C*-algebras with one of them being abelian. Then,

$$A \otimes_{min} B = A \hat{\otimes}_{\varepsilon} B$$

*-isomorphically.

Maximal C*-norm

Let A and B be two unital C*-algebras. Recall that whenever we have two unital *-homomorphisms $\pi_1 : A \to \mathcal{B}(H)$ and $\pi_2 : B \to \mathcal{B}(H)$ with commuting ranges, there exists a unital *-homomorphism $\pi : A \otimes B \to \mathcal{B}(H)$ with $\pi(a \otimes b) = \pi_1(a)\pi_2(b)$. And conversely, whenever $\pi : A \otimes B \to \mathcal{B}(H)$ is a unital *-homomorphism, there exists such a pair (π_1, π_2) with commuting ranges s.t. $\pi(a \otimes b) = \pi_1(a)\pi_2(b)$. So, it makes sense to define

Definition

Let A, B be unital C^* -algebras. We define the maximal C*-norm as

 $||x||_{max} := \sup\{||\pi(x)|| : \pi : A \otimes B \to \mathcal{B}(H) \text{ unital *-hom.}\}$

This is indeed a C^* -norm, the completion of $A \otimes B$ with respect to which we denote by $A \otimes_{max} B$ and call it the *maximal tensor product*.

Proposition

Let A, B be unital C*-algebras. The maximal C*-norm on $A \otimes B$ is the greatest among all C*-norms.

Proof. Indeed, let $\|\cdot\|_{\gamma}$ be another C^* -norm on $A \otimes B$. By the Gelfand-Naimark theorem, the exists a unital injective *-homomorphism $\pi: A \otimes_{\gamma} B \to \mathcal{B}(H)$ such that $\|x\|_{\gamma} = \|\pi(x)\|$. Hence, by definition,

$$||x||_{\gamma} = ||\pi(x)|| \le ||x||_{max}$$
.

Now let C^{*}-algebras $A_i \subseteq B_i$, i = 1, 2. The natural inclusion

$$A_1 \otimes A_2 \subseteq B_1 \otimes B_2 \subseteq B_1 \otimes_{max} B_2$$

induces a C*-norm on $A_1 \otimes A_2$. Let's call it $\|\cdot\|_{\gamma}$. So, $A_1 \otimes_{\gamma} A_2 = \overline{A_1 \otimes A_2}^{\|\cdot\|_{max}} \subseteq B_1 \otimes_{max} B_2$. Now, the inclusion map $j : A_1 \otimes A_2 \to B_1 \otimes B_2$, induces a *-homomorphism

$$j: \mathcal{A}_1 \otimes_{\mathit{max}} \mathcal{A}_2
ightarrow \mathcal{A}_1 \otimes_{\gamma} \mathcal{A}_2 \subseteq \mathcal{B}_1 \otimes_{\mathit{max}} \mathcal{B}_2$$

since

$$||j(x)||_{\gamma} = ||x||_{\gamma} \le ||x||_{max}$$

But this may be norm decreasing!

Moreover, the maximal C*-norm does not respect completely bounded maps!

Example (Huruya)

There exists a completely bounded map $L : A_1 \to A_2$ and a C*-algebra B such that the map $L \otimes \text{Id} : A_1 \otimes B \to A_2 \otimes B$, does not even extend to a bounded map on from $A_1 \otimes_{max} B$ to $A_2 \otimes_{max} B$.

Now let A be a C*-algebra. Recall that $M_n(A)$ is a C*-algebra and,

$$M_n \otimes A = M_n(A)$$

isomorphically as *-algebras. Hence, via the norm $\|\cdot\|$, induced by $M_n(A)$ (which is in fact the minimal one) $M_n \otimes A$ is a C*-algebra. Thus, there is only one C*-norm on $M_n \otimes A$, for if $\|\cdot\|_{\gamma}$ is another one and $M_n \otimes_{\gamma} A$ denotes the completion, then the inclusion

$$j: (M_n \otimes A, \|\cdot\|) \to M_n \otimes_{\gamma} A$$

is an injective *-homomorphism between C*-algebras, thus it is isometric.

Thus, for any C*-algebra A, there is only one C*-norm on $M_n \otimes A$. In particular, $M_n \otimes_{min} A = M_n \otimes_{max} A$ for every C*-algebra A.

Definition

A C*-algebra A with the property that, $A \otimes_{min} B = A \otimes_{max} B$ for every C*-algebra B, is called **nuclear**.

And since, for every C*-norm $\|\cdot\|_{\gamma}$ on $A\otimes B$

$$\|x\|_{\min} \le \|x\|_{\gamma} \le \|x\|_{\max}$$

this means that there would be a unique C*-norm on $A \otimes B$ for every B.

Examples

- M_n , $n \in \mathbb{N}$ is nuclear.
- 2 Every finite dimensional C*-algebra A, is nuclear.
- C(X), where X is compact Hausdorff space, is nuclear.
- $\mathcal{K}(H)$, the space of compact operators on H, is nuclear.
- $C^*(G)$, where G is a discrete group, is nuclear if and only if G is amenable.

So, for instance $C^*(\mathbb{F}_2)$, the full group C*-algebra of the free group on two generators, is not nuclear.

Let also G_1, G_2 be two discrete groups.

Example

•
$$C^*(G_1) \otimes_{max} C^*(G_2) = C^*(G_1 \times G_2)$$

•
$$C^*_{\lambda}(G_1) \otimes_{min} C^*_{\lambda}(G_2) = C^*_{\lambda}(G_1 \times G_2)$$

Now as we will see, the *min* and *max* both get along well with completely positive maps.

Proposition

Let A_i, B_i , i = 1, 2 be unital C*-algebras and let also $\phi_i : A_i \rightarrow B_i$, i = 1, 2 be completely positive maps. Then, there exists a completely positive map

$$\begin{aligned} \phi_1 \otimes_{\min} \phi_2 : & A_1 \otimes_{\min} A_2 \to B_1 \otimes_{\min} B_2 \\ & a_1 \otimes a_2 \mapsto \phi_1(a_1) \otimes \phi_2(a_2) \end{aligned}$$

such that $\|\phi_1 \otimes_{\min} \phi_2\|_{cb} = \|\phi_1\|_{cb} \|\phi_2\|_{cb}$

Proposition

Let A_1, A_2 and B be unital C*-algebras, and let $\theta_i : A_i \to B$, i = 1, 2 be completely positive maps with commuting ranges. Then, there exists a completely positive map

Contents

Operator spaces

C*-algebras

- Minimal tensor product
- Maximal tensor product
- Nuclearity

Operator systems

- Minimal tensor product
- Maximal tensor product
- Commuting tensor product

References

Recall that an operator system is a unital selfadjoint subspace $S \subseteq \mathcal{B}(H)$ on some Hilbert space H. Abstractly, an operator system is a triple $(S, \{C_n\}_{n \in \mathbb{N}}, e)$, where S is a *-vector space, $\{C_n\}_{n \in \mathbb{N}}$ is a matrix ordering and e is a Archimedean matrix-order unit. So, if $S_i \subseteq A_i$, i = 1, 2 are operator systems in the unital C*-algebras A_i ,

then $S_1 \otimes S_2$ inherits a natural operator systems in the unital C range N_1 , then $S_1 \otimes S_2$ inherits a natural operator system structure by its inclusion

$$S_1 \otimes S_2 \subseteq A_1 \otimes_{min} A_2.$$

We denote this operator system by $S_1 \otimes_{min} S_2$.

However, the situation with the C*-algebra $A_1 \otimes_{max} A_2$ is different, because of the non-injectivity of the max C*-norm.

Abstractly

Given an pair of operator systems $(S, \{P_n\}_{n \in \mathbb{N}}, e_1)$ and $(T, \{Q_n\}_{n \in \mathbb{N}}, e_2)$, an **operator system structure on** $S \otimes T$ is defined as a family of cones $\tau = \{C_n\}_{n \in \mathbb{N}}$, with $C_n \subseteq M_n(S \otimes T)$ such that

• $(S \otimes T, \{C_n\}_{n \in \mathbb{N}}, e_1 \otimes e_2)$ is an operator system denoted by $S \otimes_{\tau} T$

● If $\phi : S \to M_n$ and $\psi : T \to M_m$ are unital completely positive maps, then $\phi \otimes \psi : S \otimes_{\tau} T \to M_{nm}$ is unital completely positive.

We shall denote the cones $C_n := M_n(S \otimes_{\tau} T)^+$. Given two operator system structures τ_1 and τ_2 on $S \otimes T$, we will say that τ_1 is greater than τ_2 , provided that

$$M_n(S\otimes_{\tau_1}T)^+\subseteq M_n(S\otimes_{\tau_2}T)^+.$$

Equivalently, the $\mathrm{Id}: S \otimes_{\tau_1} T \to S \otimes_{\tau_2} T$ is completely positive.

To explain this rather confusing definition, note that *"larger norms imply smaller cones"* in the following sense.

Consider a *-vector space S and C*-algebras A, B, so that S is equipped with two operator system structures via its embeddings $S \subseteq (A, \|\cdot\|_t)$ and $S \subseteq (B, \|\cdot\|_l)$ with induced cones denoted by $\{C_n^t\}_{n=1}^{\infty}$ and $\{C_n^l\}_{n=1}^{\infty}$ resp. Then,

$$\|\cdot\|_t^{(n)} \leq \|\cdot\|_l^{(n)}, \forall n \in \mathbb{N} \iff C_n^t \supseteq C_n^l, \forall n \in \mathbb{N}.$$

Indeed, consider the identity map

$$\mathrm{Id}:(S,\|\cdot\|_{I})\to(S,\|\cdot\|_{t})$$

and recall that for any map ϕ between operator systems

 ϕ is unital complete contraction $\iff \phi$ is unital completely positive.

The minimal operator system structure

Let S be an operator system. We define

$$\mathcal{S}_k(S) := \{ \phi : S \to M_k : \phi \text{ is ucp } \}.$$

Let S, T be operator systems, and

$$C_n^{min} := \{ [p_{i,j}] \in M_n(S \otimes T) : [(\phi \otimes \psi)(p_{i,j})]_{i,j} \in M_{nkm}^+, \\ \forall \phi \in S_k(S), \forall \psi \in S_m(T) \}$$

Theorem

Let S, T be operator systems and $i_S : S \to \mathcal{B}(H)$ and $i_T : T \to \mathcal{B}(K)$ be unital complete order embeddings. The family $\{C_n^{min}\}_{n=1}^{\infty}$ is the operator system structure on $S \otimes T$ arising from the embedding $i_S \otimes i_T : S \otimes T \to \mathcal{B}(H \hat{\otimes}_{hs} K)$. Let's denote both the units of S and T by 1.

Definition

Let S, T be two operator systems. We call the operator system $(S \otimes T, \{C_n^{min}\}_{n=1}^{\infty}, 1 \otimes 1)$, the **minimal tensor product** of S and T and denote it by $S \otimes_{min} T$.

Hence, for $S \subseteq \mathcal{B}(H)$, $T \subseteq B(K)$ concrete operator systems, the "abstract" minimal tensor product $S \otimes_{min} T$, coincides with the "concrete" one, i.e., the one $S \otimes T$ inherits from its inclusion into $\mathcal{B}(H) \otimes_{min} \mathcal{B}(K) = \mathcal{B}(H) \otimes_{sp} \mathcal{B}(K)$.

Remark

Let τ be an operator system structure on $S \otimes T$. Then, τ is larger than min.

This follows by the 3rd property of an operator system structure on $S \otimes T$.

Maximal operator system structure

Let S, T be two operator systems. Define

 $D_n^{max} := \{a(P \otimes Q)a^* : P \in M_k(S)^+, Q \in M_m(T)^+, a \in M_{n,km}, k, m \in \mathbb{N}\}$

Proposition

The family $\{D_n^{max}\}_{n=1}^{\infty}$, is a matrix ordering on $S \otimes T$, with matrix order unit $1 \otimes 1$.

However, $1 \otimes 1$, may fail to be Archimedean for $\{D_n^{max}\}_{n=1}^{\infty}$!

*Recall that an order unit $1 \in S$ is called Archimedean if $\varepsilon 1 + s \ge 0$ for every $\varepsilon > 0$ implies $s \ge 0$.

Archimedeanization

Definition

Let $\{C_n^{max}\}_{n=1}^\infty$ be the Archimedeanization of the matrix ordering $\{D_n^{max}\}_{n=1}^\infty,$ that is,

$$[R_{i,j}] \in C_n^{max} \Longleftrightarrow [R_{i,j}] + \varepsilon (I_n \otimes 1 \otimes 1) \in D_n^{max}, \forall \varepsilon > 0.$$

We call the operator system

$$(S \otimes T, \{C_n^{max}\}_{n=1}^{\infty}, 1 \otimes 1)$$

the maximal tensor product of S and T and denote is by $S \otimes_{max} T$.

We used the symbol, $I_n \otimes e = \begin{vmatrix} e & \dots & 0 \\ & \ddots & \\ 0 & e \end{vmatrix}$.

Remark

Let S, T be two operator systems, then max is the larger operator system structure on $S \otimes T$.

Now let A, B be unital C*-algebras. The tensor product $A \otimes B$ obtains a natural operator system structure by its inclusion in the C*-algebraic maximal tensor product $A \otimes_{C^*max} B$. In fact,

Theorem

Let A and B be unital C*-algebras. Then, the operator system $A \otimes_{max} B$ is completely order isomorphic to the image of $A \otimes B$ inside the maximal C*-algebraic tensor product of A and B.

Let S, T be two operator systems and let $CP(S, \mathcal{B}(H))$ denote the collection of all completely positive maps from S into $\mathcal{B}(H)$. We define

$$cp(S,T) := \{(\phi,\psi) : \phi \in CP(S,\mathcal{B}(H)), \psi \in CP(T,\mathcal{B}(H)),$$

with commuting ranges}.

And for each a pair $(\phi, \psi) \in cp(S, T)$, we define a map $\phi \cdot \psi : S \otimes T \to \mathcal{B}(H)$, with $(\phi \cdot \psi)(x \otimes y) = \phi(x)\psi(y)$ Now, for each $n \in \mathbb{N}$, we define a cone $P_n \subseteq M_n(S \otimes T)$, by

$$\mathsf{P}_{\mathsf{n}} := \{ u \in \mathsf{M}_{\mathsf{n}}(S \otimes \mathsf{T}) : (\phi \cdot \psi)^{(\mathsf{n})}(u) \ge 0, \text{ for all } (\phi, \psi) \in \mathsf{cp}(S, \mathsf{T}) \}$$

Proposition

The family $\{P_n\}_{n=1}^{\infty}$ is a matrix ordering on $S \otimes T$ with Archimedean matrix order unit $1 \otimes 1$.

Definition

We denote by $S \otimes_c T$ the operator system $(S \otimes T, \{P_n\}_{n=1}^{\infty}, 1 \otimes 1)$ and call it the **commuting tensor product**.

This tensor product bears similarities to the maximal C*-algebra tensor product because of the commutativity. Actually,

Theorem

Let A and B be unital C*-algebras. Then $A \otimes_c B = A \otimes_{max} B$.

Final remarks

Finally, one can also talk define nuclearity in the operator system category which we will not be discussing here. However,

Proposition

Let A be a unital C*-algebra. Then, A is nuclear if and only if $A \otimes_{min} S = A \otimes_{max} S$ for every operator system S.

In fact, Kavruk proved the following

Theorem

There exists a finite dimensional operator system W such that for every unital C*-algebra, the following are equivalent,

• A is a nuclear C*-algebra

•
$$A \otimes_{min} \mathcal{W} = A \otimes_{max} \mathcal{W}$$

Such an operator system is called "nuclearity detector".

Contents

Operator spaces

C*-algebras

- Minimal tensor product
- Maximal tensor product
- Nuclearity

Operator systems

- Minimal tensor product
- Maximal tensor product
- Commuting tensor product

References

- G. Pisier, *Tensor Products of C*-Algebras and Operator Spaces: The Connes-Kirchberg Problem*, ser. London Mathematical Society Student Texts. Cambridge University Press, 2020.
- Introduction to Operator Space Theory, ser. London Mathematical Society Lecture Note Series. Cambridge University Press, 2003.
- G. J. Murphy, *C*-algebras and operator theory*. Academic Press, 1990.
- V. Paulsen, Completely Bounded Maps and Operator Algebras, ser. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2003.
 - Αριστείδης Κατάβολος, 'Σημειώσεις Θεωρίας Τελεστών,' eclass, 2019-2022. [Online]. Available: https://eclass.uoa.gr/modules/ document/index.php?course=MATH175&openDir=/6152ff68IbUK
- M. Takesaki, *Theory of Operator Algebras I.* Springer New York, NY, 1979.

- A. Kavruk, V. I. Paulsen, I. G. Todorov, and M. Tomforde, "Tensor products of operator systems," *Journal of Functional Analysis*, vol. 261, no. 2, pp. 267–299, 2011. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022123611001315
- A. S. Kavruk, "On a non-commutative analogue of a classical result of namioka and phelps," *Journal of Functional Analysis*, vol. 269, no. 10, pp. 3282–3303, 2015. [Online]. Available: https://www.available.com/available/avail

//www.sciencedirect.com/science/article/pii/S0022123615003614