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Previously..

Let E ⊆ B(H) and F ⊆ B(K ) be two operator spaces. Recall that their
minimal tensor product, is the vector space E ⊗ F equipped with the
operator space structure, inherited by its inclusion

E ⊗ F ⊆ B(H⊗̂hsK )

and denoted by E ⊗min F .
However, as we will see shortly, the minimal tensor norm on E ⊗ F really
depends on the “abstract” operator space structure of E and F rather
than their particular embeddings.
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Consider a Hilbert space H and Hn ⊆ H, an n-dimensional subspace with
PHn : H → Hn being the orthogonal projection.

Using an orthonormal basis we can identify Hn with the n-dimensional
Hilbert space ℓ2([n]) and consequently B(Hn) = Mn and recall that
Mn ⊗min F = Mn(F ).

Let vn : B(H) → B(Hn) = Mn be the map a 7→ PHna|Hn and Cn the
collection of all such mappings with Hn arbitrary n-dimensional.

If E ⊆ B(H), F ⊆ B(K ) are operator spaces. Then, for any
x =

∑
i ai ⊗ bi ∈ E ⊗ F we have

∥x∥E⊗minF
= sup

n∈N,vn∈Cn

∥∥∥∑ vn(ai )⊗ bi

∥∥∥
Mn(F )

. (1)
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Indeed, we may write

∥x∥min = sup
{
|⟨xs, t⟩| : s, t ∈ Ball(H⊗2K)

}
.

For some finite dimensional subspace Hn ⊆ H, we have s, t ∈ Hn ⊗K.
Hence, if vn is the map defined above, we write

⟨xs, t⟩ = ⟨(
∑
i

ai ⊗ bi )s, t⟩ = ⟨(
∑
i

vn(ai )⊗ bi )s, t⟩

thus we have that

∥x∥E⊗minF
≤ sup

n∈N,vn∈Cn

∥∥∥∑ vn(ai )⊗ bi

∥∥∥
Mn(F )

.

The reverse inequality is obvious thus we obtain the relation (1).
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Proposition

Let Ei ,Fi , i = 1, 2 be operator spaces and ui : Ei → Fi be completely
bounded maps. Then u1 ⊗ u2 continuously extends by density to a
completely bounded map

u1 ⊗ u2 : E1 ⊗min E2 → F1 ⊗min F2.

Moreover, we have

∥u1 ⊗ u2∥cb = ∥u1∥cb ∥u2∥cb .
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One can actually show the more general form:

Proposition

For any x =
∑

ai ⊗ bi ∈ E ⊗ F we have

∥x∥min = sup

{∥∥∥∑ϕ(ai )⊗ ψ(bi )
∥∥∥
Mnm

}
(2)

where the supremum runs over n,m ≥ 1 and all pairs of ϕ : E → Mn and
ψ : F → Mm, with ∥ϕ∥cb ≤ 1 and ∥ψ∥cb ≤ 1.
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*-algebra tensor product

Let A and B be two unital C ∗-algebras. Recall that we can turn their
tensor product A⊗ B to a *-algebra by defining:

(a1 ⊗ b1) · (a2 ⊗ b2) = a1a2 ⊗ b1b2

(a⊗ b)∗ = a∗ ⊗ b∗

for all ai , a ∈ A and bi , b ∈ B, and extending linearly.

We can also define a unit in A⊗ B by 1A⊗B := 1A ⊗ 1B .

Hence, A⊗ B becomes a unital *-algebra.
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C*-norms

Let A and B be two unital C ∗-algebras. A norm ∥ · ∥γ on A⊗B is called a
C∗-norm if

∥xy∥γ ≤ ∥x∥γ ∥y∥γ
∥x∥γ = ∥x∗∥γ
∥x∗x∥γ = ∥x∥2γ

for all x , y ∈ A⊗ B, and a C∗-cross-norm if further

∥a⊗ b∥γ = ∥a∥ · ∥b∥

The completion of the *-algebra A⊗ B with respect to a C ∗-norm ∥ · ∥γ ,
becomes a C ∗-algebra which we denote by A⊗γ B.

In general, there may be many C ∗-norms on a tensor product.
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The spatial tensor product

If A ⊆ B(H) and B ⊆ B(K ) are two C ∗-algebras, then we can form their
spatial tensor product by the inclusion,

A⊗ B ⊆ B(H)⊗sp B(K ) ⊆ B(H⊗̂hsK )

Indeed, the closure of the *-algebra A⊗ B w.r.t the norm ∥ · ∥sp defines a
C ∗-algebra denoted by A⊗sp B.

The spatial tensor norm is a C ∗-cross-norm!
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Representations

Let A,B,C be ∗-algebras and πA : A → C , πB : B → C are two
*-homomorphisms such that

πA(a)πB(b) = πB(b)πA(a)

for all a ∈ A and b ∈ B, i.e., with commuting ranges. Then, there exists a
unique *-homomorphism π : A⊗ B → C with

π(a⊗ b) = πA(a)πB(b).
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Proposition

Let π1 : A1 → B(H1) and π2 : A2 → B(H2) be unital *-homomorphisms of
the C ∗-algebras A1 and A2 respectively. Then, there exists a unique unital
*-homomorphism π : A1 ⊗ A2 → B(H1⊗̂hsH2) with

π(a⊗ b) = π1(a)⊗sp π2(b).

Moreover, if πi are injective, then so is π.

Proof. We define

ρ1 :A1 → B(H1⊗̂hsH2)

a 7→ π1(a)⊗sp IdH2

and

ρ2 :A2 → B(H1⊗̂hsH2)

b 7→ IdH1 ⊗spπ2(b)

and note that they are unital *-homomorphisms with commuting ranges.
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So, there exists a unique unital *-homomorphism
π : A⊗ B → B(H1⊗̂hsH2) with

π(a⊗ b) = ρ1(a)ρ2(b) = π1(a)⊗sp π2(b).

Injectivity is straightforward.

We denote the above *-homomorphism by π := π1 ⊗ π2
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Consider two C ∗-algebras A1 and A2. By the Gelfand-Naimark theorem,
there exist injective representations π1 : A1 → B(H1) and
π2 : A2 → B(H2). So, by the previous proposition there exists an injective
*-homomorphism π : A1 ⊗ A2 → B(H1⊗̂hsH2). Hence, the tensor product
inherits the spatial tensor norm by setting

∥a⊗ b∥sp := ∥π(a⊗ b)∥sp .

Again, we may take the completion with respect to this norm and end up
with a C ∗-algebra denoted by A⊗sp B.
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Conversely,

Proposition

Let A1 and A2 be two unital C ∗-algebras and let ∥ · ∥γ denote a C ∗-norm
on A1 ⊗ A2. Then, for every unital *-homomorphism
π : A1 ⊗γ A2 → B(H) there exist two unital *-homomorphisms
πi : Ai → B(H) with commuting ranges, such that

π(a⊗ b) = π1(a)π2(b).

Proof. Simply define

π1 :A1 → B(H)

a 7→ π(a⊗ 1A2)

and similarly for π2.
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Minimal C*-norm

We may now define,

Definition

Let A1 and A2 be two unital C ∗-algebras. We define the minimal
C∗-norm on A1 ⊗ A2 to be

∥x∥min := sup{∥π1 ⊗ π2(x)∥ : πi : Ai → B(Hi ) unital *-homomorphism}

This is indeed a C ∗-cross-norm on A1 ⊗ A2. The completion with respect
to this norm is a C ∗-algebra denoted by A1 ⊗min A2.
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Minimality of the minimal C*-norm

The following deep result explains the name of this particular C ∗-norm:

Theorem (Takesaki)

Let A1 and A2 be two unital C ∗-algebras. Then, the minimal C ∗-norm is
the smallest of all possible C ∗-norms on A1 ⊗ A2, i.e., if ∥ · ∥γ is another
C ∗-norm, then

∥x∥min ≤ ∥x∥γ
for all x ∈ A1 ⊗ A2.
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Minimal=spatial

Corollary

Let A1 and A2 be two unital C ∗-algebras. If πi : Ai → B(Hi ) injective,
unital *-homomorphisms, then

∥x∥min = ∥π1 ⊗ π2(x)∥

for all x ∈ A1 ⊗ A2.

Proof.

Indeed, just note that ∥x∥γ := ∥π1 ⊗ π2(x)∥ defines a C ∗-norm less that
the minimal one.

Hence, when Ai ⊆ B(Hi ) are concrete C ∗-algebras, the minimal and
spatial C ∗-norms coincide!
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All C*-norms are cross-norms

Corollary

Let A1,A2 be two unital C ∗-algebras. Then, every C ∗-norm on A1 ⊗ A2 is
a cross-norm.

Proof. Let ∥ · ∥γ be a C ∗-norm on A1 ⊗ A2. Consider the universal
representation of A1 ⊗γ A2, π : A1 ⊗γ A2 → B(H). By a previous
proposition, there exist unital *-homomorphisms πi : Ai → B(H) with
commuting ranges s.t. π(a⊗ b) = π1(a)π2(b). Hence.

∥a∥ ∥b∥ = ∥a⊗ b∥min ≤ ∥a⊗ b∥γ = ∥π(a⊗ b)∥ = ∥π1(a)π2(b)∥ ≤ ∥a∥ ∥b∥
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Injectivity

Suppose that Bi are unital C ∗-algebras and Ai ⊆ Bi are unital
C ∗-subalgebras for i = 1, 2. We have two ways of forming the minimal
C ∗-norm A1 ⊗min A2:

1 The completion of A1 ⊗ A2 w.r.t. the norm

∥x∥min := sup{∥π1 ⊗ π2(x)∥ : πi : Ai → B(Hi ) unital *-hom}

2 A1 ⊗ A2
∥·∥min ⊆ B1 ⊗min B2

However, Takesaki’s theorem asserts that they coincide. Indeed, consider

j : A1 ⊗ A2 → B1 ⊗ B2

to be the inclusion map.
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Then, if πi : Bi → B(Hi ) are unital, injective *-homomorphisms, then so
are their restrictions on Ai . So, by Takesaki’s theorem,

∥j(x)∥B1⊗minB2
= ∥x∥B1⊗minB2

= ∥π1 ⊗ π2(x)∥ = ∥x∥A1⊗minA2

Thus, the inclusion map extends to a *-isomorphism between A1 ⊗min A2

and the closure of A1 ⊗ A2 in B1 ⊗min B2, i.e.,

A1 ⊗min A2 ⊆ B1 ⊗min B2.

Hence, the minimal C ∗-norm on two C ∗-algebras A1,A2 coincides with the
spatial tensor norm and the minimal operator space norm when viewed as
operator spaces.
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Examples

Let X be a compact Hausdorff space and A be a unital C ∗-algebra. Let
also C (X ;A) denote the C ∗-algebra of continuous functions from X into A
with the norm ∥F∥ = sup{∥F (x)∥ : x ∈ X}. Then,

Example

C (X ;A) = C (X )⊗min A, *-isomorphically.

Proof.
• The subspace D := span{f · a : f ∈ C (X ), a ∈ A}, where
f · a : x 7→ f (x)a ∈ A is dense in C (X ;A). This is done by a partition of
unity argument.
• Thus, the map Φ is an injective *-homomorphism

Φ :C (X )⊗ A → C (X ;A)
n∑

i=1

fi ⊗ ai 7→
n∑

i=1

fi · ai
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So, we may define a norm on C (X )⊗ A by∥∥∥∥∥
n∑

i=1

fi ⊗ ai

∥∥∥∥∥
γ

:=

∥∥∥∥∥
n∑

i=1

fi · ai

∥∥∥∥∥
Note that this is a C ∗-norm, hence the map Φ, extends to a *-isomorphism

C (X )⊗γ A = C (X ;A).

By Takesaki’s theorem,∥∥∥∥∥
n∑

i=1

fi ⊗ ai

∥∥∥∥∥
min

≤

∥∥∥∥∥
n∑

i=1

fi ⊗ ai

∥∥∥∥∥
γ

= sup
x

∥∥∥∥∥
n∑

i=1

fi (x)ai

∥∥∥∥∥ (3)
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• Then, fix an x ∈ X , and define the map

ϕx :C (X ) → C
f 7→ f (x)

which is a linear contraction. Hence, there is a bounded map

ϕx ⊗min Id :C (X )⊗min A → A
n∑

i=1

fi ⊗ ai 7→
n∑

i=1

fi (x)ai

with ∥ϕx ⊗min Id∥ = ∥ϕx∥ ≤ 1. That is,∥∥∥∥∥
n∑

i=1

fi (x)ai

∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

i=1

fi ⊗ ai

∥∥∥∥∥
min
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• Finally, since x ∈ X was arbitrary,

sup
x

∥∥∥∥∥
n∑

i=1

fi (x)ai

∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

i=1

fi ⊗ ai

∥∥∥∥∥
min

(4)

and hence, by the converse inequality (3)

C (X )⊗min A = C (X ;A).

As a corollary,

Example

For compact Hausdorff spaces X and Y , C (X )⊗min C (Y ) = C (X × Y ).

Alexandros Chatzinikolaou (NKUA) Tensor Products December 2, 2022 26 / 50



Minimal - Injective norm

If we recall the exact same fact about the injective norm, i.e.,
C (X )⊗̂εC (Y ) = C (X × Y ), we conclude that

Remark

Let A,B be two unital C ∗-algebras with one of them being abelian. Then,

A⊗min B = A⊗̂εB

*-isomorphically.
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Maximal C*-norm

Let A and B be two unital C ∗-algebras. Recall that whenever we have two
unital *-homomorphisms π1 : A → B(H) and π2 : B → B(H) with
commuting ranges, there exists a unital *-homomorphism
π : A⊗ B → B(H) with π(a⊗ b) = π1(a)π2(b). And conversely, whenever
π : A⊗ B → B(H) is a unital *-homomorphism, there exists such a pair
(π1, π2) with commuting ranges s.t. π(a⊗ b) = π1(a)π2(b). So, it makes
sense to define

Definition

Let A,B be unital C ∗-algebras. We define the maximal C*-norm as

∥x∥max := sup{∥π(x)∥ : π : A⊗ B → B(H) unital *-hom.}

This is indeed a C ∗-norm, the completion of A⊗ B with respect to which
we denote by A⊗max B and call it the maximal tensor product.
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Maximality

Proposition

Let A,B be unital C ∗-algebras. The maximal C ∗-norm on A⊗ B is the
greatest among all C ∗-norms.

Proof. Indeed, let ∥ · ∥γ be another C ∗-norm on A⊗ B. By the
Gelfand-Naimark theorem, the exists a unital injective *-homomorphism
π : A⊗γ B → B(H) such that ∥x∥γ = ∥π(x)∥. Hence, by definition,

∥x∥γ = ∥π(x)∥ ≤ ∥x∥max .
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Now let C ∗-algebras Ai ⊆ Bi , i = 1, 2. The natural inclusion

A1 ⊗ A2 ⊆ B1 ⊗ B2 ⊆ B1 ⊗max B2

induces a C*-norm on A1 ⊗ A2. Let’s call it ∥ · ∥γ . So,
A1 ⊗γ A2 = A1 ⊗ A2

∥·∥max ⊆ B1 ⊗max B2.
Now, the inclusion map j : A1⊗A2 → B1⊗B2, induces a *-homomorphism

j : A1 ⊗max A2 → A1 ⊗γ A2 ⊆ B1 ⊗max B2

since
∥j(x)∥γ = ∥x∥γ ≤ ∥x∥max

But this may be norm decreasing!

Alexandros Chatzinikolaou (NKUA) Tensor Products December 2, 2022 30 / 50



Moreover, the maximal C*-norm does not respect completely bounded
maps!

Example (Huruya)

There exists a completely bounded map L : A1 → A2 and a C*-algebra B
such that the map L⊗ Id : A1 ⊗ B → A2 ⊗ B, does not even extend to a
bounded map on from A1 ⊗max B to A2 ⊗max B.

Alexandros Chatzinikolaou (NKUA) Tensor Products December 2, 2022 31 / 50



Now let A be a C*-algebra. Recall that Mn(A) is a C*-algebra and,

Mn ⊗ A = Mn(A)

isomorphically as *-algebras. Hence, via the norm ∥ · ∥, induced by Mn(A)
(which is in fact the minimal one) Mn ⊗ A is a C*-algebra. Thus, there is
only one C*-norm on Mn ⊗ A, for if ∥ · ∥γ is another one and Mn ⊗γ A
denotes the completion, then the inclusion

j : (Mn ⊗ A, ∥ · ∥) → Mn ⊗γ A

is an injective *-homomorphism between C*-algebras, thus it is isometric.
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Nuclearity

Thus, for any C*-algebra A, there is only one C*-norm on Mn ⊗ A. In
particular, Mn ⊗min A = Mn ⊗max A for every C*-algebra A.

Definition

A C*-algebra A with the property that, A⊗min B = A⊗max B for every
C*-algebra B, is called nuclear.

And since, for every C*-norm ∥ · ∥γ on A⊗ B

∥x∥min ≤ ∥x∥γ ≤ ∥x∥max

this means that there would be a unique C*-norm on A⊗ B for every B.
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Examples

Examples

1 Mn, n ∈ N is nuclear.

2 Every finite dimensional C*-algebra A, is nuclear.

3 C (X ), where X is compact Hausdorff space, is nuclear.

4 K(H), the space of compact operators on H, is nuclear.

5 C ∗(G ), where G is a discrete group, is nuclear if and only if G is
amenable.

So, for instance C ∗(F2), the full group C*-algebra of the free group on two
generators, is not nuclear.

Alexandros Chatzinikolaou (NKUA) Tensor Products December 2, 2022 34 / 50



Let also G1,G2 be two discrete groups.

Example

C ∗(G1)⊗max C
∗(G2) = C ∗(G1 × G2)

C ∗
λ(G1)⊗min C

∗
λ(G2) = C ∗

λ(G1 × G2)
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Complete positivity

Now as we will see, the min and max both get along well with completely
positive maps.

Proposition

Let Ai ,Bi , i = 1, 2 be unital C*-algebras and let also ϕi : Ai → Bi , i = 1, 2
be completely positive maps. Then, there exists a completely positive map

ϕ1 ⊗min ϕ2 :A1 ⊗min A2 → B1 ⊗min B2

a1 ⊗ a2 7→ ϕ1(a1)⊗ ϕ2(a2)

such that ∥ϕ1 ⊗min ϕ2∥cb = ∥ϕ1∥cb ∥ϕ2∥cb
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Proposition

Let A1,A2 and B be unital C*-algebras, and let θi : Ai → B, i = 1, 2 be
completely positive maps with commuting ranges. Then, there exists a
completely positive map

θ1 ⊗max θ2 :A1 ⊗max A2 → B

a1 ⊗ a2 7→ θ1(a1)θ2(a2)
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Tensor products of operator systems

Recall that an operator system is a unital selfadjoint subspace S ⊆ B(H)
on some Hilbert space H. Abstractly, an operator system is a triple
(S , {Cn}n∈N, e), where S is a *-vector space, {Cn}n∈N is a matrix ordering
and e is a Archimedean matrix-order unit.
So, if Si ⊆ Ai , i = 1, 2 are operator systems in the unital C*-algebras Ai ,
then S1 ⊗ S2 inherits a natural operator system structure by its inclusion

S1 ⊗ S2 ⊆ A1 ⊗min A2.

We denote this operator system by S1 ⊗min S2.

However, the situation with the C*-algebra A1 ⊗max A2 is different,
because of the non-injectivity of the max C*-norm.
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Abstractly

Given an pair of operator systems (S , {Pn}n∈N, e1) and (T , {Qn}n∈N, e2),
an operator system structure on S ⊗ T is defined as a family of cones
τ = {Cn}n∈N, with Cn ⊆ Mn(S ⊗ T ) such that

1 (S ⊗ T , {Cn}n∈N, e1 ⊗ e2) is an operator system denoted by S ⊗τ T

2 Pn ⊗ Qm ⊆ Cnm, for all n,m ∈ N
3 If ϕ : S → Mn and ψ : T → Mm are unital completely positive maps,

then ϕ⊗ ψ : S ⊗τ T → Mnm is unital completely positive.

We shall denote the cones Cn := Mn(S ⊗τ T )+. Given two operator
system structures τ1 and τ2 on S ⊗ T , we will say that τ1 is greater than
τ2, provided that

Mn(S ⊗τ1 T )+ ⊆ Mn(S ⊗τ2 T )+.

Equivalently, the Id : S ⊗τ1 T → S ⊗τ2 T is completely positive.
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To explain this rather confusing definition, note that “larger norms imply
smaller cones” in the following sense.
Consider a *-vector space S and C*-algebras A,B, so that S is equipped
with two operator system structures via its embeddings S ⊆ (A, ∥ · ∥t) and
S ⊆ (B, ∥ · ∥l) with induced cones denoted by {C t

n}∞n=1 and {C l
n}∞n=1 resp.

Then,
∥ · ∥(n)t ≤ ∥ · ∥(n)l ,∀n ∈ N ⇐⇒ C t

n ⊇ C l
n, ∀n ∈ N .

Indeed, consider the identity map

Id : (S , ∥ · ∥l) → (S , ∥ · ∥t)

and recall that for any map ϕ between operator systems

ϕ is unital complete contraction ⇐⇒ ϕ is unital completely positive.
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The minimal operator system structure

Let S be an operator system. We define

Sk(S) := {ϕ : S → Mk : ϕ is ucp }.

Let S ,T be operator systems, and

Cmin
n := {[pi ,j ] ∈ Mn(S ⊗ T ) : [(ϕ⊗ ψ)(pi ,j)]i ,j ∈ M+

nkm,

∀ϕ ∈ Sk(S),∀ψ ∈ Sm(T )}

Theorem

Let S ,T be operator systems and iS : S → B(H) and iT : T → B(K ) be
unital complete order embeddings. The family {Cmin

n }∞n=1 is the operator
system structure on S ⊗ T arising from the embedding
iS ⊗ iT : S ⊗ T → B(H⊗̂hsK ).
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Let’s denote both the units of S and T by 1.

Definition

Let S ,T be two operator systems. We call the operator system
(S ⊗ T , {Cmin

n }∞n=1, 1⊗ 1), the minimal tensor product of S and T and
denote it by S ⊗min T .

Hence, for S ⊆ B(H), T ⊆ B(K ) concrete operator systems, the
“abstract” minimal tensor product S ⊗min T , coincides with the
“concrete” one, i.e., the one S ⊗ T inherits from its inclusion into
B(H)⊗min B(K ) = B(H)⊗sp B(K ).

Remark

Let τ be an operator system structure on S ⊗ T. Then, τ is larger than
min.

This follows by the 3rd property of an operator system structure on S ⊗T .
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Maximal operator system structure

Let S ,T be two operator systems. Define

Dmax
n := {a(P ⊗ Q)a∗ : P ∈ Mk(S)

+,Q ∈ Mm(T )+, a ∈ Mn,km, k ,m ∈ N}

Proposition

The family {Dmax
n }∞n=1, is a matrix ordering on S ⊗ T, with matrix order

unit 1⊗ 1.

However, 1⊗ 1, may fail to be Archimedean for {Dmax
n }∞n=1!

*Recall that an order unit 1 ∈ S is called Archimedean if ε1 + s ≥ 0 for
every ε > 0 implies s ≥ 0.
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Archimedeanization

Definition

Let {Cmax
n }∞n=1 be the Archimedeanization of the matrix ordering

{Dmax
n }∞n=1, that is,

[Ri ,j ] ∈ Cmax
n ⇐⇒ [Ri ,j ] + ε(In ⊗ 1⊗ 1) ∈ Dmax

n ,∀ε > 0.

We call the operator system

(S ⊗ T , {Cmax
n }∞n=1, 1⊗ 1)

the maximal tensor product of S and T and denote is by S ⊗max T .

We used the symbol, In ⊗ e =

e . . . 0
. . .

0 . . . e

.
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Remark

Let S, T be two operator systems, then max is the larger operator system
structure on S ⊗ T.

Now let A,B be unital C*-algebras. The tensor product A⊗ B obtains a
natural operator system structure by its inclusion in the C*-algebraic
maximal tensor product A⊗C∗max B. In fact,

Theorem

Let A and B be unital C*-algebras. Then, the operator system A⊗max B
is completely order isomorphic to the image of A⊗ B inside the maximal
C*-algebraic tensor product of A and B.
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Commuting tensor product

Let S , T be two operator systems and let CP(S ,B(H)) denote the
collection of all completely positive maps from S into B(H). We define

cp(S ,T ) := {(ϕ, ψ) : ϕ ∈ CP(S ,B(H)), ψ ∈ CP(T ,B(H)),

with commuting ranges}.

And for each a pair (ϕ, ψ) ∈ cp(S ,T ), we define a map
ϕ · ψ : S ⊗ T → B(H), with (ϕ · ψ)(x ⊗ y) = ϕ(x)ψ(y)
Now, for each n ∈ N, we define a cone Pn ⊆ Mn(S ⊗ T ), by

Pn := {u ∈ Mn(S ⊗ T ) : (ϕ · ψ)(n)(u) ≥ 0, for all (ϕ, ψ) ∈ cp(S ,T )}
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Proposition

The family {Pn}∞n=1 is a matrix ordering on S ⊗ T with Archimedean
matrix order unit 1⊗ 1.

Definition

We denote by S ⊗c T the operator system (S ⊗ T , {Pn}∞n=1, 1⊗ 1) and
call it the commuting tensor product.

This tensor product bears similarities to the maximal C*-algebra tensor
product because of the commutativity. Actually,

Theorem

Let A and B be unital C*-algebras. Then A⊗c B = A⊗max B.
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Final remarks

Finally, one can also talk define nuclearity in the operator system category
which we will not be discussing here. However,

Proposition

Let A be a unital C*-algebra. Then, A is nuclear if and only if
A⊗min S = A⊗max S for every operator system S.

In fact, Kavruk proved the following

Theorem

There exists a finite dimensional operator system W such that for every
unital C*-algebra, the following are equivalent,

A is a nuclear C*-algebra

A⊗min W = A⊗max W

Such an operator system is called “nuclearity detector”.
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