An introduction to tensor products of operator algebras $${\rm Part}\ I$$

Alexandros Chatzinikolaou

Functional Analysis and Operator Algebras Seminar 2022-2023

Contents

1 Vector Spaces

- 2 Normed spaces
- 3 Hilbert spaces
- Operator spaces

5 References

Tensor products of vector spaces

Let E, F be two \mathbb{C} -vector spaces.

Definition (Tensor product)

A tensor product of *E* and *F* is a pair (M, ϕ) , where *M* is a vector space and $\phi : E \times F \to M$ is a bilinear map such that

- The image of ϕ spans the whole space M.
- **2** Whenever $\{x_i\}_{i=1}^n$ and $\{y_j\}_{j=1}^m$ are linearly independent sets of E and F respectively, $\{\phi(x_i, y_j)\}_{i,j}$ is a linearly independent set of M.

We will see that such an object exists and is in fact unique up to a linear isomorphism.

Remark

Let E and F be two $\mathbb{C}\text{-vector spaces.}$ Then, there exist sets I and K so that

$$\mathsf{E} \hookrightarrow \mathbb{C}^I$$
 and $\mathsf{F} \hookrightarrow \mathbb{C}^K$

where \mathbb{C}^{I} and \mathbb{C}^{K} denote the spaces of functions from I and K resp.

Proof. Let $u \in E$ and $X = \{x_i : i \in I\}$ be a Hamel basis for E. Then, there exist a finite subset $J \subseteq I$, linearly independent vectors $\{x_i\}_{i \in J} \subseteq X$ and scalars $u(i) \in \mathbb{C}$ such that u is written uniquely as

$$u=\sum_{i\in J}u(i)x_i.$$

Now map u to the function $f_u : I \to \mathbb{C}$ such that $f_u(i) = u(i)$ if $i \in J$ and is supported in J. This correspondence is a linear isomorphism of E (resp. F) into a subspace of \mathbb{C}^I (resp. \mathbb{C}^K).

Theorem (Existence)

Let E, F be two vector spaces. There exists a tensor product of E and F.

Sketch. Embed $E \hookrightarrow \mathbb{C}^I$ and $F \hookrightarrow \mathbb{C}^K$ and define

$$M := \operatorname{span} \{ f \cdot g : f \in E, g \in F \} \subseteq \mathbb{C}^{I \times K}$$

where $(f \cdot g)(i, k) = f(i)g(k)$. Let also $\phi : E \times F \to M$ be the map

$$\phi:(u,v)\mapsto f_u\cdot g_v.$$

Note that ϕ is bilinear and that conditions (1) and (2) of the definition of tensor products are satisfied.

Hence, (M, ϕ) is a tensor product of E and F.

Tensor products satisfy the following universal property.

Theorem (Universal property)

Let (M, ϕ) be a tensor product of the vector spaces E and F. For every vector space G and bilinear map $b : E \times F \to G$, there exists a unique linear map $B : M \to G$ such that $B(\phi(x, y)) = b(x, y)$ for every $(x, y) \in E \times F$.

It can be said that the tensor product "linearizes" bilinear maps.

Universal property

Equivalently, the following diagramm is commutative.

The universal property of the tensor product makes it unique!

Theorem (Uniqueness)

Let (M_1, ϕ) and (M_2, ϕ_2) be two tensor products of E and F. Then, there exists a linear isomorphism $\pi : M_1 \to M_2$ such that $\pi \circ \phi_1 = \phi_2$.

Notation

So, if *E* and *F* are two vector spaces, there is "only one" tensor product between them. For this tensor product (M, ϕ) , we denote

$$x \otimes y := \phi(x, y)$$
 for every $x \in E, y \in F$

and also

$$E \otimes F := M$$

and since, $M = \operatorname{span} \{ \phi(x,y) : x \in E, y \in F \}$ we may write

$$E\otimes F = \operatorname{span}\{x\otimes y: x\in E, y\in F\}.$$

So, every element $u \in E \otimes F$ has the (not unique) representation

$$u=\sum_{i=1}^k x_i\otimes y_i$$

for $k \in \mathbb{N}$, $x_i \in E$ and $y_i \in F$. Elements of the form $x \otimes y$ are called **simple tensors**.

Alexandros Chatzinikolaou (NKUA)

Remark

Every element $u \in E \otimes F$ can be written as

$$u=\sum_{i=1}^r e_i\otimes f_i$$

where $\{f_i\}_{i=1}^r \subseteq F$ are linearly independent and the elements $e_i \in E$ are uniquely determined by the f_i .

Proposition

Let $T_1: E_1 \to G_1$ and $T_2: E_2 \to G_2$ be linear maps. There exists a unique linear map

$$S: E_1 \otimes E_2 \to G_1 \otimes G_2$$
$$x_1 \otimes x_2 \mapsto T_1(x_1) \otimes T_2(x_2)$$

which we denote by $S := T_1 \otimes T_2$.

Examples

Let E be a vector space.

Examples

• $E \otimes \mathbb{C} = E$ via the map $x \otimes \lambda \mapsto \lambda x$, where $x \in E$ and $\lambda \in \mathbb{C}$, • $E \otimes \mathbb{C}^n = E^n$ via the map $x \otimes e_i \mapsto \begin{vmatrix} \vdots \\ x \\ \vdots \end{vmatrix}$, where $\{e_i\}$ is the canonical basis in \mathbb{C}^n • $M_{n,m}(\mathbb{C}) \otimes E = M_{n,m}(E)$ via the map $[a_{i,j}] \otimes x \mapsto [a_{i,j}x]$ for $[a_{i,i}] \in M_{n,m}(\mathbb{C})$ and $x \in E$

Canonical shuffle

Remark

If E, F, W are vector spaces,

• $E \otimes F = F \otimes E$

•
$$E \otimes (F \otimes W) = (E \otimes F) \otimes W$$

So, if E is a vector space, we have that,

 $M_n(M_m(E)) = M_n \otimes M_m \otimes E = M_m \otimes M_n \otimes E = M_m(M_n(E)).$

Through this identification

$$\left[\left[a_{i,j,k,l}\right]_{k,l=1}^{m}\right]_{i,j=1}^{n}\longleftrightarrow\left[\left[a_{i,j,k,l}\right]_{i,j=1}^{n}\right]_{k,l=1}^{m}$$

which is, in fact, done via permutation matrices!

Alexandros Chatzinikolaou (NKUA)

Contents

1 Vector Spaces

2 Normed spaces

3 Hilbert spaces

Operator spaces

5 References

Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be two normed spaces. We will say that a norm on $X \otimes Y$ is a:

- subcross-norm, if $||x \otimes y|| \le ||x||_X ||y||_Y$
- cross-norm, if $||x \otimes y|| = ||x||_X ||y||_Y$

Definition (Projective tensor norm)

Let X, Y be two normed spaces. The projective norm is defined by

$$||u||_{\pi} = \inf \left\{ \sum_{i} ||x_{i}||_{X} ||y_{i}||_{Y} : u = \sum_{i} x_{i} \otimes y_{i} \right\}$$

for all $u \in X \otimes Y$.

Proposition

Let X, Y be normed spaces. The projective norm $\|\cdot\|_{\pi}$ is a norm on $X\otimes Y$ and it satisfies

$$\left\| x \otimes y \right\|_{\pi} = \left\| x \right\|_{X} \left\| y \right\|_{Y}$$

for any $x \in X$ and $y \in Y$.

We denote by $X \otimes_{\pi} Y$ the tensor product of X and Y endowed with the projective norm $\|\cdot\|_{\pi}$. We denote the completion of $(X \otimes Y, \|\cdot\|_{\pi})$ by $X \hat{\otimes}_{\pi} Y$ and call it the *projective tensor product*. Note that, if X and Y are both infinite dimensional, $X \otimes_{\pi} Y$ is never complete.

The projective norm is the largest sub-cross norm on $X \otimes Y!$

Remark

Let X, Y, Z be vector spaces. Then, the projective tensor product is,

- (symmetric): $X \hat{\otimes}_{\pi} Y = Y \hat{\otimes}_{\pi} X$
- (associative): $(X \hat{\otimes}_{\pi} Y) \hat{\otimes}_{\pi} Z = X \hat{\otimes}_{\pi} (Y \hat{\otimes}_{\pi} Z)$

However, it is not "injective".

Remark

There exist normed spaces X, Y and Z such that $X \subseteq Y$ isometrically but $X \hat{\otimes}_{\pi} Z$ is not contained isometrically in $Y \hat{\otimes}_{\pi} Z$

Examples

Let X be a Banach space.

- $\ell^1(\mathbb{N})\hat{\otimes}_{\pi}X = \ell^1(X)$, where $\ell^1(X)$ is the Banach space of all sequences $x = (x_n)_n$, with $||x||_1 = \sum_n ||x_n||_X < \infty$
- 2 $\ell^1(I)\hat{\otimes}_{\pi}X = \ell^1(I;X)$, for an arbitrary set *I*
- $L^1(\mu)\hat{\otimes}_{\pi}L^1(\nu) = L^1(\mu \times \nu)$, where $\mu \times \nu$ is the product measure.

Injective tensor norm

Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be two normed spaces. There is a well defined linear injection

$$X\otimes Y\hookrightarrow \mathcal{B}(X^* imes Y^*)$$

via

$$u = \sum_{i} x_{i} \otimes y_{i} \mapsto \left(B_{u} : (\phi, \psi) \mapsto \sum_{i} \phi(x_{i})\psi(y_{i}) \right)$$

Through this (algebraic) embedding, the tensor product inherits the norm:

Definition

The *injective norm* $\|\cdot\|_{\epsilon}$ on $X \otimes Y$ is defined by

$$\|u\|_{\epsilon} = \sup\left\{\left|\sum_{i} \phi(x_{i})\psi(y_{i})\right| : \phi \in \operatorname{Ball}(X^{*}), \psi \in \operatorname{Ball}(Y^{*})\right\}$$

where $u = \sum_{i} x_i \otimes y_i \in X \otimes Y$.

Proposition

Let X, Y be normed spaces, then the injective norm $\|\cdot\|_{\varepsilon}$ is indeed a norm on $X\otimes Y$ and

Again we denote by $X \otimes_{\epsilon} Y$ the tensor product with the injective norm, and unless the spaces are finite dimensional we take the completion $X \otimes_{\epsilon} Y$ which will be called the *injective tensor product*.

Properties of the Injective tensor product

Remark

Let X, Y, Z be normed spaces. Then, the injective tensor product is,

- (symmetric): $X \hat{\otimes}_{\varepsilon} Y = Y \hat{\otimes}_{\varepsilon} X$
- (associative): $(X \hat{\otimes}_{\varepsilon} Y) \hat{\otimes}_{\varepsilon} Z = X \hat{\otimes}_{\varepsilon} (Y \hat{\otimes}_{\varepsilon} Z)$

As one would expect, the injective tensor product is "injective".

Remark

If $X_1 \subseteq X_2$ and $Y_1 \subseteq Y_2$ are normed spaces with isometric inclusions then,

$$X_1 \hat{\otimes}_{\varepsilon} Y_1 \subseteq X_2 \hat{\otimes}_{\varepsilon} Y_2$$

isometrically.

Examples

Let X be a Banach space and K, L be two compact Hausdorff spaces.

- $c_0 \hat{\otimes}_{\varepsilon} X = c_0(X)$, where $c_0(X)$ is the Banach space of sequences in X that converge to zero with norm $||(x_n)|| = \sup_n ||x_n||_X$.
- $C(K) \hat{\otimes}_{\varepsilon} C(L) = C(K \times L)$

• Let's briefly discuss the isomorphism $C(K)\hat{\otimes}_{\varepsilon}C(L) = C(K \times L)$. Sketch. Note first that for an element $u = \sum_{i} x_i \otimes y_i \in X \otimes Y$, we may write its injective norm equivalently as:

$$\|u\|_{\varepsilon} = \sup\left\{\left|\sum_{i} \phi(x_{i})\psi(y_{i})\right| : \phi \in A, \psi \in B\right\}$$

where A and B are norming sets. ¹

The Dirac functionals $\{\delta_t\}_{t \in K}$ form a norming set for C(K), so if $u = \sum_i f_i \otimes g_i \in C(K) \otimes C(L)$, then

$$\|u\|_{\varepsilon} = \sup\left\{\left|\sum_{i} \delta_t(f_i)\delta_s(g_i)\right| : t \in K, s \in L\right\}$$

equivalently,

$$\|u\|_{\varepsilon} = \sup_{t \in \mathcal{K}, s \in L} \left|\sum_{i} f_{i}(t)g_{i}(s)\right|.$$
(1)

¹Recall, that a subset $A \subseteq Ball(X^*)$ is called a *norming set*, if we have that $||x|| = \sup\{|\phi(x)| : \phi \in A\}$ for all $x \in X$.

Now, define

$$D := \operatorname{span} \{ f \cdot g : f \in C(K), g \in C(L) \} \subseteq C(K \times L)$$

and note that by the Stone-Weierstrass theorem it is dense in $C(K \times L)$. Finally, the map

$$J: C(K) \otimes C(L)
ightarrow C(K imes L)$$

 $\sum_i f_i \otimes g_i \mapsto \sum_i f_i \cdot g_i$

is a linear bijection onto D, and an isometry (by 1). Hence, J extends to an isometric isomorphism from the completion $C(K)\hat{\otimes}_{\varepsilon}C(L)$, onto the closure of D, i.e. $C(K \times L)$.

However

Example 1

 $\ell^{\infty}(\mathbb{N})\hat{\otimes}_{\varepsilon}\ell^{\infty}(\mathbb{N}) \subsetneq \ell^{\infty}(\mathbb{N} \times \mathbb{N}).$

Consequently, using that $\ell^{\infty}(\mathbb{N}) = C(\beta \mathbb{N})$, where $\beta \mathbb{N}$ is the Stone-Čech compactification of the natural numbers, and the previous result:

Example 2

 $\mathcal{C}(\beta \mathbb{N} \times \beta \mathbb{N}) \subsetneq \mathcal{C}(\beta(\mathbb{N} \times \mathbb{N})), \text{ that is, } \beta \mathbb{N} \times \beta \mathbb{N} \neq \beta(\mathbb{N} \times \mathbb{N}).$

Contents

Vector Spaces

2 Normed spaces

3 Hilbert spaces

Operator spaces

5 References

Until now, we were able to turn the tensor product of two Banach spaces (resp. vector spaces) into a Banach space (resp. vector space) using the projective and injective norms. One would hope that "tensoring" Hilbert spaces w.r.t. these norms, would end up with a Hilbert space. However,

Examples

- ℓ²(N) ŝ_εℓ²(N) = K(ℓ²(N)), where K(ℓ²(N)) is the space of compact operators on ℓ²(N).
- ² (ℕ) ⊗_πℓ²(ℕ) = C₁(ℓ²(ℕ)), where C₁(ℓ²(ℕ)) is the space of trace-class operators on ℓ²(ℕ).

Which are not Hilbert spaces.

And in general,

Proposition

If H and K are two Hilbert spaces,

$$I \hat{\otimes}_{\varepsilon} K^* = \mathcal{K}(K, H)$$

$$H \hat{\otimes}_{\pi} K^* = \mathcal{C}_1(K, H)$$

Sketch.

The map

$$\Phi: H \otimes_{\varepsilon} K^* \to (\mathcal{FB}(K, H), \|\cdot\|_{\mathcal{B}(K, H)})$$
$$x \otimes y^* \mapsto xy^*$$

is an algebraic isomorphism and an isometry. Thus, the completion w.r.t. $\|\cdot\|_{\varepsilon}$ is isomorphic to the closure of $(\mathcal{FB}(\mathcal{K}, \mathcal{H}), \|\cdot\|_{\mathcal{B}(\mathcal{K}, \mathcal{H})})$, that is, $\mathcal{K}(\mathcal{K}, \mathcal{H})$.

Similarly, the map

$$\Phi: H \otimes_{\pi} K^* \to (\mathcal{FB}(K, H), \|\cdot\|_{tr})$$
$$x \otimes y^* \mapsto xy^*$$

is an an algebraic isomorphism and an isometry. Thus, the completion w.r.t. to the norm $\|\cdot\|_{\pi}$ is isomorphic to the closure of $(\mathcal{FB}(K, H), \|\cdot\|_{tr})^2$ that is, $\mathcal{C}_1(K, H)$.

 $^{2}\left\| T\right\| _{tr}=\mathrm{Tr}\left| T\right|$

Alexandros Chatzinikolaou (NKUA)

Definition (Hilbert-Schmidt inner product)

Let H_1, H_2 be two Hilbert spaces. On the vector space $H_1 \otimes H_2$, we define

$$\langle \sum_{i} \mathsf{v}_i \otimes \mathsf{w}_i, \sum_{j} \mathsf{v}_j^{'} \otimes \mathsf{w}_j^{'}
angle_{hs} := \sum_{i,j} \langle \mathsf{v}_i, \mathsf{v}_j^{'}
angle_{H_1} \langle \mathsf{w}_i, \mathsf{w}_j^{'}
angle_{H_2}.$$

Proposition

The map $\langle\cdot,\cdot\rangle_{hs}:(H_1\otimes H_2)\times (H_1\otimes H_2)\to \mathbb{C}$ is a well defined inner product and

$$\|h_1 \otimes h_2\|_{hs} = \|h_1\|_{H_1} \|h_2\|_{H_2}.$$

We denote by $H_1 \hat{\otimes}_{hs} H_2$ the completion of the space $(H_1 \otimes H_2, \|\cdot\|_{hs})$, where $\|\cdot\|_{hs} := \sqrt{\langle \cdot, \cdot \rangle_{hs}}$ and call it the *Hilbert space tensor product*.

Remark

Let H and K be Hilbert spaces and $\{e_i\}_{i \in I} \subseteq H$ and $\{f_j\}_{j \in J} \subseteq K$ be orthonormal bases. Then, $\{e_i \otimes f_j\}_{(i,j) \in I \times J}$ is an orthonormal basis for the Hilbert space $H \hat{\otimes}_{hs} K$

Examples

• $H \otimes_{hs} \ell^2([n]) = H^n$, where H^n is the direct sum of *n*-copies of *H*, that turns into a Hilbert space w.r.t. the norm $||(h_i)_{i=1}^n||_2^2 = \sum_{i=1}^n ||h_i||_H^2$.

2
$$\ell^2(I) \hat{\otimes}_{hs} \ell^2(J) = \ell^2(I \times J)$$
, where I, J are arbitrary sets.

• $L^2(\mu) \hat{\otimes}_{hs} L^2(\nu) = L^2(\mu \times \nu)$, where (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are σ -finite measure spaces.

Hilbert Schmidt operators

Now, the following proposition explains the name of this particular tensor product. We denote by $C_2(K, H)$, the space of Hilbert Schmidt operators, that is, the closure of finite rank operators w.r.t. the norm $\|T\|_{HS} := (\operatorname{Tr} T^*T)^{\frac{1}{2}}.$

Proposition

If H and K are two Hilbert spaces, then

$$H\hat{\otimes}_{hs}K^*=\mathcal{C}_2(K,H)$$

Sketch. The map

$$\Phi: H \otimes_{hs} K^* \to (\mathcal{FB}(K, H), \|\cdot\|_{HS})$$
$$x \otimes y^* \mapsto xy^*$$

is an algebraic isomorphism and an isometry. Thus, the completion w.r.t. $\|\cdot\|_{hs}$ is isomorphic to the closure of $(\mathcal{FB}(K, H), \|\cdot\|_{HS})$, that is, to $\mathcal{C}_2(K, H)$.

Contents

Vector Spaces

2 Normed spaces

3 Hilbert spaces

Operator spaces

5 References

Let H, K be two Hilbert spaces and recall that

$$\mathcal{B}(\mathcal{H})\otimes\mathcal{B}(\mathcal{K})=\mathrm{span}\{T\otimes S:T\in\mathcal{B}(\mathcal{H}),S\in\mathcal{B}(\mathcal{K})\}.$$

Note now that we can turn $\mathcal{B}(H) \otimes \mathcal{B}(K)$ into a *-algebra by defining multiplication and involution by

•
$$(T_1 \otimes T_2) \cdot (S_1 \otimes S_2) = T_1 S_1 \otimes T_2 S_2$$

•
$$(T \otimes S)^* = T^* \otimes S^*$$

and extending linearly to the whole space.

Also, recall that the Hilbert space tensor product $H \hat{\otimes}_{hs} K$ is the completion of the tensor product $H \otimes K$ with respect to the norm induced by the inner product

$$\langle h_1 \otimes k_1, h_2 \otimes k_2 \rangle_{hs} = \langle h_1, h_2 \rangle_H \langle k_1, k_2 \rangle_K, \quad h_i \in H, k_i \in K.$$

How is the *-algebra $\mathcal{B}(H) \otimes \mathcal{B}(K)$ related to $\mathcal{B}(H \hat{\otimes}_{hs} K)$?

If $T_1: H_1 \rightarrow K_1$ and $T_2: H_2 \rightarrow K_2$ are linear maps between Hilbert spaces then we saw that there exists a unique linear map

$$J: H_1 \otimes H_2 o K_1 \otimes K_2$$

 $h_1 \otimes h_2 \mapsto T_1(h_1) \otimes T_2(h_2)$

which we denote by $J := T_1 \otimes T_2$.

So the question reformulates as: Can this map be extended to a **bounded** linear map on $\mathcal{B}(H_1 \hat{\otimes}_{hs} H_2, K_1 \hat{\otimes}_{hs} K_2)$?

Proposition

Let $T : H \to H$ and $S : K \to K$ be bounded, linear operators between Hilbert spaces. Then there is a unique bounded linear operator $T \otimes_{sp} S : H \hat{\otimes}_{hs} K \to H \hat{\otimes}_{hs} K$ such that $(T \otimes_{sp} S)(h \otimes k) = T(h) \otimes S(k)$ for every $h \in H$, $k \in K$. Furthermore,

•
$$||T \otimes_{sp} S|| = ||T|| ||S||$$

• $(T_1 + \lambda T_2) \otimes_{sp} S = T_1 \otimes_{sp} S + \lambda(T_2 \otimes_{sp} S)$
• $T \otimes_{sp} (S_1 + \lambda S_2) = T \otimes_{sp} S_1 + \lambda(T \otimes_{sp} S_2)$
• $(T_1 \otimes_{sp} S_1)(T_2 \otimes_{sp} S_2) = (T_1 T_2) \otimes_{sp} (S_1 S_2)$
• $(T \otimes_{sp} S)^* = T^* \otimes_{sp} S^*$
where $\lambda \in \mathbb{C}, T_i \in \mathcal{B}(H_i)$ and $S_i \in \mathcal{B}(K_i)$ for Hilbert spaces $H_i, K_i, T = 1, 2$.

Spatial tensor product

Proposition

Let H, K be two Hilbert spaces. The map

$$\mathcal{B}(H)\otimes \mathcal{B}(K) o \mathcal{B}(H \hat{\otimes}_{hs} K) \ \sum_i T_i \otimes S_i \mapsto \sum_i T_i \otimes_{sp} S_i$$

is an injective *-homomorphism between *-algebras.

Now we may define a norm on $\mathcal{B}(H) \otimes \mathcal{B}(K)$ by

$$\left\|\sum_{i} T_{i} \otimes S_{i}\right\|_{sp} := \left\|\sum_{i} T_{i} \otimes_{sp} S_{i}\right\|$$

Spatial tensor product

Define

$$\mathcal{B}(H) \otimes_{sp} \mathcal{B}(K) := \overline{\mathcal{B}(H) \otimes \mathcal{B}(K)}^{\|\cdot\|_{sp}} \subseteq \mathcal{B}(H \hat{\otimes}_{hs} K)$$

and call it the spatial tensor product.

Note that $\mathcal{B}(H) \otimes_{sp} \mathcal{B}(K)$ is in fact a C^* -algebra as it is a closed *-subalgebra of $\mathcal{B}(H \hat{\otimes}_{hs} K)$.

Also, the norm $\|\cdot\|_{sp}$ is a cross-norm.

• Recall that an *operator space* is a subspace $E \subseteq \mathcal{B}(H)$, where H is a Hilbert space.

If $E \subseteq \mathcal{B}(H)$ and $G \subseteq \mathcal{B}(K)$ are two operator spaces then we have that

$$E \otimes G \subseteq \mathcal{B}(H) \otimes_{sp} \mathcal{B}(K) \subseteq \mathcal{B}(H \hat{\otimes}_{hs} K).$$

So the vector space $E \otimes G$ becomes an operator space with the operator space structure induced by its inclusion in $\mathcal{B}(H \hat{\otimes}_{hs} K)$! That is,

$$\|[u_{i,j}]\|_{M_n(E\otimes G)} := \|[u_{i,j}]\|_{\mathcal{B}((H\hat{\otimes}_{hs}K)^n)}, \quad u_{i,j} \in E \otimes G.$$

We denote this operator space by $E \otimes_{min} G$ and call it the *minimal tensor* product of the operator spaces E and G.

Remark

Let H, K be two Hilbert spaces. If $V : H \to K$ is an isometry, then the linear map $u_V : \mathcal{B}(H) \to \mathcal{B}(K)$ defined by $u_V(x) = VxV^*$ is completely isometric. Moreover, if $V : H \to K$ is a unitary, then $u_V : \mathcal{B}(H) \to \mathcal{B}(K)$ is a *-isomorphism between C*-algebras, hence a completely isometric isomorphism.

Now recall that if H is a Hilbert space, $\ell^2([n]) \otimes_{hs} H = H^n$ isometrically. By the above remark, we have that

$$\mathcal{B}(\ell^2([n]) \otimes_{hs} H) = \mathcal{B}(H^n)$$
(2)

as C^* -algebras.

Now, let $E \subseteq \mathcal{B}(H)$ be an operator space and recall that $M_n(\mathcal{B}(H)) = \mathcal{B}(H^n)$ via a *-isomorphism. Of course

 $M_n(E) \subseteq M_n(\mathcal{B}(H)).$

Also by definition

$$M_n \otimes_{min} E \subseteq \mathcal{B}(\ell^2([n]) \otimes_{hs} H).$$

Remark

The restriction of the isomorphism (2), gives the following completely isometric isomorphism

$$M_n \otimes_{min} E = M_n(E)$$

Example

Now let H, K be two Hilbert spaces with K being finite dimensional. That is, $K = \ell^2([n])$ for some $n \in \mathbb{N}$ and $\mathcal{B}(K) = \mathcal{B}(\ell^2([n])) = M_n$. Consider the minimal tensor product $M_n \otimes_{min} \mathcal{B}(H)$. By the above remark,

$$M_n \otimes_{min} \mathcal{B}(H) = M_n(\mathcal{B}(H))$$

completely isometrically. But, $M_n(\mathcal{B}(H)) = \mathcal{B}(H^n) = \mathcal{B}(\ell^2([n]) \otimes_{hs} H)$ also completely isometrically. Hence,

$$\mathcal{B}(\ell^2([n])) \otimes_{min} \mathcal{B}(H) = \mathcal{B}(\ell^2([n]) \otimes_{hs} H).$$

So, if H, K are Hilbert spaces, with one of them being finite dimensional, then

$$\mathcal{B}(K)\otimes\mathcal{B}(H)=\mathcal{B}(K\otimes_{hs}H)$$

as C^* -algebras, when we endow the left hand side with the operator norm induced by the right hand side.

Remark (Associativity of the minimal tensor product)

Let $X \subseteq \mathcal{B}(H)$, $Y \subseteq \mathcal{B}(K)$ and $Z \subseteq \mathcal{B}(L)$ be operator spaces. Clearly

$$(H\hat{\otimes}_{hs}K)\hat{\otimes}_{hs}L = H\hat{\otimes}_{hs}(K\hat{\otimes}_{hs}L).$$

Hence by the aforementioned remark we have completely isometrically

$$(X \otimes_{min} Y) \otimes_{min} Z = X \otimes_{min} (Y \otimes_{min} Z).$$

Remark (Symmetricity of the minimal tensor space) Let $X \subseteq B$, $Y \subseteq \mathcal{B}(K)$ be operator spaces. Since we have $H \hat{\otimes}_{hs} K = K \hat{\otimes}_{hs} H$, again by the same remark we have completely isometrically

$$X \otimes_{min} Y = Y \otimes_{min} X$$

via $x \otimes y \mapsto y \otimes x$.

Remark (Injectivity of the minimal tensor norm)

Let $E_1 \subseteq E_2 \subseteq \mathcal{B}(H)$ and $G_1 \subseteq G_2 \subseteq \mathcal{B}(K)$ be operator spaces (with isometric inclusions) so that $E_1 \otimes G_1 \subseteq E_2 \otimes G_2$. Then for any $x \in E_1 \otimes G_1$ we have

$$||x||_{E_1 \otimes_{\min} G_1} = ||x||_{E_2 \otimes_{\min} G_2}.$$

Contents

1 Vector Spaces

- 2 Normed spaces
- 3 Hilbert spaces
- Operator spaces

- R. Ryan, Introduction to Tensor Products of Banach Spaces. Springer-Verlag London, Jan 2002.
- F. Trèves, *Topological vector spaces, distributions and kernels.* Academic Press, 1967.
- Αριστείδης Κατάβολος, 'Σημειώσεις Θεωρίας Τελεστών,' eclass, 2019-2022. [Online]. Available: https://eclass.uoa.gr/modules/ document/index.php?course=MATH175&openDir=/6152ff68IbUK
- A. Defant and K. Floret, *Tensor Norms and Operator Ideals*. North Holland, Nov 1992.
- J. Ringrose and R. Kadison, *Fundamentals of the Theory of Operator Algebras. Volume I: Elementary Theory*, ser. Graduate Studies in Mathematics. American Mathematical Society, July 1997.
- G. Pisier, *Tensor Products of C*-Algebras and Operator Spaces: The Connes-Kirchberg Problem*, ser. London Mathematical Society Student Texts. Cambridge University Press, 2020.

Introduction to Operator Space Theory, ser. London Mathematical Society Lecture Note Series. Cambridge University Press, 2003.