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Tensor products of vector spaces

Let E ,F be two C-vector spaces.

Definition (Tensor product)

A tensor product of E and F is a pair (M, ϕ), where M is a vector space
and ϕ : E × F → M is a bilinear map such that

1 The image of ϕ spans the whole space M.

2 Whenever {xi}ni=1 and {yj}mj=1 are linearly independent sets of E and
F respectively, {ϕ(xi , yj)}i ,j is a linearly independent set of M.

We will see that such an object exists and is in fact unique up to a linear
isomorphism.
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Remark

Let E and F be two C-vector spaces. Then, there exist sets I and K so
that

E ↪→ CI and F ↪→ CK

where CI and CK denote the spaces of functions from I and K resp.

Proof. Let u ∈ E and X = {xi : i ∈ I} be a Hamel basis for E . Then,
there exist a finite subset J ⊆ I , linearly independent vectors {xi}i∈J ⊆ X
and scalars u(i) ∈ C such that u is written uniquely as

u =
∑
i∈J

u(i)xi .

Now map u to the function fu : I → C such that fu(i) = u(i) if i ∈ J and
is supported in J. This correspondence is a linear isomorphism of E (resp.
F ) into a subspace of CI (resp. CK ).
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Existence of tensor products

Theorem (Existence)

Let E ,F be two vector spaces. There exists a tensor product of E and F .

Sketch. Embed E ↪→ CI and F ↪→ CK and define

M := span{f · g : f ∈ E , g ∈ F} ⊆ CI×K

where (f · g)(i , k) = f (i)g(k). Let also ϕ : E × F → M be the map

ϕ : (u, v) 7→ fu · gv .

Note that ϕ is bilinear and that conditions (1) and (2) of the definition of
tensor products are satisfied.
Hence, (M, ϕ) is a tensor product of E and F .
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Tensor products satisfy the following universal property.

Theorem (Universal property)

Let (M, ϕ) be a tensor product of the vector spaces E and F . For every
vector space G and bilinear map b : E × F → G , there exists a unique
linear map B : M → G such that B(ϕ(x , y)) = b(x , y) for every
(x , y) ∈ E × F .

It can be said that the tensor product “linearizes” bilinear maps.
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Universal property

Equivalently, the following diagramm is commutative.

The universal property of the tensor product makes it unique!

Theorem (Uniqueness)

Let (M1, ϕ) and (M2, ϕ2) be two tensor products of E and F . Then, there
exists a linear isomorphism π : M1 → M2 such that π ◦ ϕ1 = ϕ2.
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Notation

So, if E and F are two vector spaces, there is “only one” tensor product
between them. For this tensor product (M, ϕ), we denote

x ⊗ y := ϕ(x , y) for every x ∈ E , y ∈ F

and also
E ⊗ F := M

and since, M = span{ϕ(x , y) : x ∈ E , y ∈ F} we may write

E ⊗ F = span{x ⊗ y : x ∈ E , y ∈ F}.

So, every element u ∈ E ⊗ F has the (not unique) representation

u =
k∑

i=1

xi ⊗ yi

for k ∈ N, xi ∈ E and yi ∈ F . Elements of the form x ⊗ y are called
simple tensors.
Alexandros Chatzinikolaou (NKUA) Tensor Products November 25, 2022 8 / 44



Remark

Every element u ∈ E ⊗ F can be written as

u =
r∑

i=1

ei ⊗ fi

where {fi}ri=1 ⊆ F are linearly independent and the elements ei ∈ E are
uniquely determined by the fi .

Proposition

Let T1 : E1 → G1 and T2 : E2 → G2 be linear maps. There exists a unique
linear map

S :E1 ⊗ E2 → G1 ⊗ G2

x1 ⊗ x2 7→ T1(x1)⊗ T2(x2)

which we denote by S := T1 ⊗ T2.

Alexandros Chatzinikolaou (NKUA) Tensor Products November 25, 2022 9 / 44



Examples

Let E be a vector space.

Examples

1 E ⊗ C = E via the map x ⊗ λ 7→ λx , where x ∈ E and λ ∈ C,

2 E ⊗ Cn = En via the map x ⊗ ei 7→


0
...
x
...
0

, where {ei} is the canonical

basis in Cn

3 Cn⊗Cm = Cnm

4 Mn,m(C)⊗ E = Mn,m(E ) via the map [ai ,j ]⊗ x 7→ [ai ,jx ] for
[ai ,j ] ∈ Mn,m(C) and x ∈ E
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Canonical shuffle

Remark

If E ,F ,W are vector spaces,

E ⊗ F = F ⊗ E

E ⊗ (F ⊗W ) = (E ⊗ F )⊗W

So, if E is a vector space, we have that,

Mn(Mm(E )) = Mn ⊗Mm ⊗ E = Mm ⊗Mn ⊗ E = Mm(Mn(E )).

Through this identification[
[ai ,j ,k,l ]

m
k,l=1

]n
i ,j=1

←→
[
[ai ,j ,k,l ]

n
i ,j=1

]m
k,l=1

which is, in fact, done via permutation matrices!
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Norms on tensor products

Let (X , ∥ · ∥X ) and (Y , ∥ · ∥Y ) be two normed spaces. We will say that a
norm on X ⊗ Y is a:

subcross-norm, if ∥x ⊗ y∥ ≤ ∥x∥X ∥y∥Y
cross-norm, if ∥x ⊗ y∥ = ∥x∥X ∥y∥Y

Definition (Projective tensor norm)

Let X ,Y be two normed spaces. The projective norm is defined by

∥u∥π = inf

{∑
i

∥xi∥X ∥yi∥Y : u =
∑
i

xi ⊗ yi

}
for all u ∈ X ⊗ Y .
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Projective tensor norm

Proposition

Let X ,Y be normed spaces. The projective norm ∥ · ∥π is a norm on
X ⊗ Y and it satisfies

∥x ⊗ y∥π = ∥x∥X ∥y∥Y

for any x ∈ X and y ∈ Y .

We denote by X ⊗π Y the tensor product of X and Y endowed with the
projective norm ∥ · ∥π. We denote the completion of (X ⊗ Y , ∥ · ∥π) by
X ⊗̂πY and call it the projective tensor product.
Note that, if X and Y are both infinite dimensional, X ⊗π Y is never
complete.
The projective norm is the largest sub-cross norm on X ⊗ Y !
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Properties of the Projective tensor product

Remark

Let X ,Y ,Z be vector spaces. Then, the projective tensor product is,

(symmetric): X ⊗̂πY = Y ⊗̂πX

(associative): (X ⊗̂πY )⊗̂πZ = X ⊗̂π(Y ⊗̂πZ )

However, it is not “injective”.

Remark

There exist normed spaces X ,Y and Z such that X ⊆ Y isometrically but
X ⊗̂πZ is not contained isometrically in Y ⊗̂πZ
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Examples

Let X be a Banach space.

1 ℓ1(N)⊗̂πX = ℓ1(X ), where ℓ1(X ) is the Banach space of all
sequences x = (xn)n, with ∥x∥1 =

∑
n ∥xn∥X <∞

2 ℓ1(I )⊗̂πX = ℓ1(I ;X ), for an arbitrary set I

3 L1(µ)⊗̂πL
1(ν) = L1(µ× ν), where µ× ν is the product measure.
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Injective tensor norm

Let (X , ∥ · ∥X ) and (Y , ∥ · ∥Y ) be two normed spaces. There is a well
defined linear injection

X ⊗ Y ↪→ B(X ∗ × Y ∗)

via
u =

∑
i

xi ⊗ yi 7→
(
Bu : (ϕ, ψ) 7→

∑
i

ϕ(xi )ψ(yi )
)

Through this (algebraic) embedding, the tensor product inherits the norm:

Definition

The injective norm ∥ · ∥ϵ on X ⊗ Y is defined by

∥u∥ϵ = sup

{∣∣∣∣∑
i

ϕ(xi )ψ(yi )

∣∣∣∣ : ϕ ∈ Ball(X ∗), ψ ∈ Ball(Y ∗)

}

where u =
∑

i xi ⊗ yi ∈ X ⊗ Y .
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Proposition

Let X ,Y be normed spaces, then the injective norm ∥ · ∥ε is indeed a
norm on X ⊗ Y and

1 ∥u∥ϵ ≤ ∥u∥π for every u ∈ X ⊗ Y .

2 ∥x ⊗ y∥ϵ = ∥x∥X ∥y∥Y for every x ∈ X , y ∈ Y .

Again we denote by X ⊗ϵ Y the tensor product with the injective norm,
and unless the spaces are finite dimensional we take the completion X ⊗̂ϵY
which will be called the injective tensor product.
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Properties of the Injective tensor product

Remark

Let X ,Y ,Z be normed spaces. Then, the injective tensor product is,

(symmetric): X ⊗̂εY = Y ⊗̂εX

(associative): (X ⊗̂εY )⊗̂εZ = X ⊗̂ε(Y ⊗̂εZ )

As one would expect, the injective tensor product is “injective”.

Remark

If X1 ⊆ X2 and Y1 ⊆ Y2 are normed spaces with isometric inclusions then,

X1⊗̂εY1 ⊆ X2⊗̂εY2

isometrically.
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Examples

Let X be a Banach space and K , L be two compact Hausdorff spaces.

1 c0⊗̂εX = c0(X ), where c0(X ) is the Banach space of sequences in X
that converge to zero with norm ∥(xn)∥ = supn ∥xn∥X .

2 C (K )⊗̂εC (L) = C (K × L)
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• Let’s briefly discuss the isomorphism C (K )⊗̂εC (L) = C (K × L).
Sketch. Note first that for an element u =

∑
i xi ⊗ yi ∈ X ⊗ Y , we may

write its injective norm equivalently as:

∥u∥ε = sup
{∣∣∑

i

ϕ(xi )ψ(yi )
∣∣ : ϕ ∈ A, ψ ∈ B

}
where A and B are norming sets. 1

The Dirac functionals {δt}t∈K form a norming set for C (K ), so if
u =

∑
i fi ⊗ gi ∈ C (K )⊗ C (L), then

∥u∥ε = sup
{∣∣∑

i

δt(fi )δs(gi )
∣∣ : t ∈ K , s ∈ L

}
equivalently,

∥u∥ε = sup
t∈K ,s∈L

∣∣∑
i

fi (t)gi (s)
∣∣. (1)

1Recall, that a subset A ⊆ Ball(X ∗) is called a norming set, if we have that
∥x∥ = sup{|ϕ(x)| : ϕ ∈ A} for all x ∈ X .
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Now, define

D := span{f · g : f ∈ C (K ), g ∈ C (L)} ⊆ C (K × L)

and note that by the Stone-Weierstrass theorem it is dense in C (K × L).
Finally, the map

J :C (K )⊗ C (L)→ C (K × L)∑
i

fi ⊗ gi 7→
∑
i

fi · gi

is a linear bijection onto D, and an isometry (by 1). Hence, J extends to
an isometric isomorphism from the completion C (K )⊗̂εC (L), onto the
closure of D, i.e. C (K × L).
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However

Example 1

ℓ∞(N)⊗̂εℓ
∞(N) ⊊ ℓ∞(N×N).

Consequently, using that ℓ∞(N) = C (β N), where β N is the Stone-Čech
compactification of the natural numbers, and the previous result:

Example 2

C (β N×β N) ⊊ C (β(N×N)), that is, β N×β N ̸= β(N×N).
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Until now, we were able to turn the tensor product of two Banach spaces
(resp. vector spaces) into a Banach space (resp. vector space) using the
projective and injective norms. One would hope that “tensoring” Hilbert
spaces w.r.t. these norms, would end up with a Hilbert space. However,

Examples

1 ℓ2(N)⊗̂εℓ
2(N) = K(ℓ2(N)), where K(ℓ2(N)) is the space of compact

operators on ℓ2(N).
2 ℓ2(N)⊗̂πℓ

2(N) = C1(ℓ2(N)), where C1(ℓ2(N)) is the space of
trace-class operators on ℓ2(N).

Which are not Hilbert spaces.

And in general,

Proposition

If H and K are two Hilbert spaces,

1 H⊗̂εK
∗ = K(K ,H)

2 H⊗̂πK
∗ = C1(K ,H)

Alexandros Chatzinikolaou (NKUA) Tensor Products November 25, 2022 25 / 44



Sketch.

1 The map

Φ :H ⊗ε K
∗ → (FB(K ,H), ∥ · ∥B(K ,H))

x ⊗ y∗ 7→ xy∗

is an algebraic isomorphism and an isometry. Thus, the completion
w.r.t. ∥ · ∥ε is isomorphic to the closure of (FB(K ,H), ∥ · ∥B(K ,H)),
that is, K(K ,H).

2 Similarly, the map

Φ :H ⊗π K ∗ → (FB(K ,H), ∥ · ∥tr )
x ⊗ y∗ 7→ xy∗

is an an algebraic isomorphism and an isometry. Thus, the completion
w.r.t. to the norm ∥ · ∥π is isomorphic to the closure of
(FB(K ,H), ∥ · ∥tr ) 2 that is, C1(K ,H).

2∥T∥tr = Tr |T |
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Hilbert space tensor product

Definition (Hilbert-Schmidt inner product)

Let H1,H2 be two Hilbert spaces. On the vector space H1 ⊗ H2, we define

⟨
∑
i

vi ⊗ wi ,
∑
j

v
′
j ⊗ w

′
j ⟩hs :=

∑
i ,j

⟨vi , v
′
j ⟩H1⟨wi ,w

′
j ⟩H2 .

Proposition

The map ⟨·, ·⟩hs : (H1 ⊗ H2)× (H1 ⊗ H2)→ C is a well defined inner
product and

∥h1 ⊗ h2∥hs = ∥h1∥H1
∥h2∥H2

.

We denote by H1⊗̂hsH2 the completion of the space (H1 ⊗ H2, ∥ · ∥hs),
where ∥ · ∥hs :=

√
⟨·, ·⟩hs and call it the Hilbert space tensor product .

Alexandros Chatzinikolaou (NKUA) Tensor Products November 25, 2022 27 / 44



Remark

Let H and K be Hilbert spaces and {ei}i∈I ⊆ H and {fj}j∈J ⊆ K be
orthonormal bases. Then, {ei ⊗ fj}(i ,j)∈I×J is an orthonormal basis for the
Hilbert space H⊗̂hsK

Examples

1 H ⊗hs ℓ
2([n]) = Hn, where Hn is the direct sum of n-copies of H, that

turns into a Hilbert space w.r.t. the norm ∥(hi )ni=1∥
2
2 =

∑n
i=1 ∥hi∥

2
H .

2 ℓ2(I )⊗̂hsℓ
2(J) = ℓ2(I × J), where I , J are arbitrary sets.

3 L2(µ)⊗̂hsL
2(ν) = L2(µ× ν), where (X ,A, µ) and (Y ,B, ν) are

σ-finite measure spaces.
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Hilbert Schmidt operators

Now, the following proposition explains the name of this particular tensor
product. We denote by C2(K ,H), the space of Hilbert Schmidt operators,
that is, the closure of finite rank operators w.r.t. the norm

∥T∥HS := (TrT ∗T )
1
2 .

Proposition

If H and K are two Hilbert spaces, then

H⊗̂hsK
∗ = C2(K ,H)

Sketch. The map

Φ :H ⊗hs K
∗ → (FB(K ,H), ∥ · ∥HS)

x ⊗ y∗ 7→ xy∗

is an algebraic isomorphism and an isometry. Thus, the completion w.r.t.
∥ · ∥hs is isomorphic to the closure of (FB(K ,H), ∥ · ∥HS), that is, to
C2(K ,H).
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Tensor products of operators

Let H,K be two Hilbert spaces and recall that

B(H)⊗ B(K ) = span{T ⊗ S : T ∈ B(H),S ∈ B(K )}.

Note now that we can turn B(H)⊗ B(K ) into a *-algebra by defining
multiplication and involution by

(T1 ⊗ T2) · (S1 ⊗ S2) = T1S1 ⊗ T2S2

(T ⊗ S)∗ = T ∗ ⊗ S∗

and extending linearly to the whole space.
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Also, recall that the Hilbert space tensor product H⊗̂hsK is the
completion of the tensor product H ⊗ K with respect to the norm induced
by the inner product

⟨h1 ⊗ k1, h2 ⊗ k2⟩hs = ⟨h1, h2⟩H⟨k1, k2⟩K , hi ∈ H, ki ∈ K .

How is the *-algebra B(H)⊗ B(K ) related to B(H⊗̂hsK )?
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If T1 : H1 → K1 and T2 : H2 → K2 are linear maps between Hilbert spaces
then we saw that there exists a unique linear map

J :H1 ⊗ H2 → K1 ⊗ K2

h1 ⊗ h2 7→ T1(h1)⊗ T2(h2)

which we denote by J := T1 ⊗ T2.

So the question reformulates as: Can this map be extended to a bounded
linear map on B(H1⊗̂hsH2,K1⊗̂hsK2)?
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Operators on Hilbert space tensor products

Proposition

Let T : H → H and S : K → K be bounded, linear operators between
Hilbert spaces. Then there is a unique bounded linear operator
T ⊗sp S : H⊗̂hsK → H⊗̂hsK such that (T ⊗sp S)(h ⊗ k) = T (h)⊗ S(k)
for every h ∈ H, k ∈ K . Furthermore,

1 ∥T ⊗sp S∥ = ∥T∥ ∥S∥
2 (T1 + λT2)⊗sp S = T1 ⊗sp S + λ(T2 ⊗sp S)

3 T ⊗sp (S1 + λS2) = T ⊗sp S1 + λ(T ⊗sp S2)

4 (T1 ⊗sp S1)(T2 ⊗sp S2) = (T1T2)⊗sp (S1S2)

5 (T ⊗sp S)
∗ = T ∗ ⊗sp S

∗

where λ ∈ C, Ti ∈ B(Hi ) and Si ∈ B(Ki ) for Hilbert spaces Hi ,Ki ,
i = 1, 2.
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Spatial tensor product

Proposition

Let H,K be two Hilbert spaces. The map

B(H)⊗ B(K )→ B(H⊗̂hsK )∑
i

Ti ⊗ Si 7→
∑
i

Ti ⊗sp Si

is an injective *-homomorphism between *-algebras.

Now we may define a norm on B(H)⊗ B(K ) by∥∥∥∥∥∑
i

Ti ⊗ Si

∥∥∥∥∥
sp

:=

∥∥∥∥∥∑
i

Ti ⊗sp Si

∥∥∥∥∥
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Spatial tensor product

Define
B(H)⊗sp B(K ) := B(H)⊗ B(K )

∥·∥sp ⊆ B(H⊗̂hsK )

and call it the spatial tensor product.

Note that B(H)⊗sp B(K ) is in fact a C ∗-algebra as it is a closed
*-subalgebra of B(H⊗̂hsK ).

Also, the norm ∥ · ∥sp is a cross-norm.
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Operator spaces

• Recall that an operator space is a subspace E ⊆ B(H), where H is a
Hilbert space.
If E ⊆ B(H) and G ⊆ B(K ) are two operator spaces then we have that

E ⊗ G ⊆ B(H)⊗sp B(K ) ⊆ B(H⊗̂hsK ).

So the vector space E ⊗ G becomes an operator space with the operator
space structure induced by its inclusion in B(H⊗̂hsK )! That is,

∥[ui ,j ]∥Mn(E⊗G) := ∥[ui ,j ]∥B((H⊗̂hsK)n) , ui ,j ∈ E ⊗ G .

We denote this operator space by E ⊗min G and call it the minimal tensor
product of the operator spaces E and G .
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Properties of the minimal tensor product

Remark

Let H,K be two Hilbert spaces. If V : H → K is an isometry, then the
linear map uV : B(H)→ B(K ) defined by uV (x) = VxV ∗ is completely
isometric. Moreover, if V : H → K is a unitary, then uV : B(H)→ B(K )
is a *-isomorphism between C ∗-algebras, hence a completely isometric
isomorphism.

Now recall that if H is a Hilbert space, ℓ2([n])⊗hs H = Hn isometrically.
By the above remark, we have that

B(ℓ2([n])⊗hs H) = B(Hn) (2)

as C ∗-algebras.
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Now, let E ⊆ B(H) be an operator space and recall that
Mn(B(H)) = B(Hn) via a *-isomorphism.
Of course

Mn(E ) ⊆ Mn(B(H)).

Also by definition

Mn ⊗min E ⊆ B(ℓ2([n])⊗hs H).

Remark

The restriction of the isomorphism (2), gives the following completely
isometric isomorphism

Mn ⊗min E = Mn(E )
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Example

Now let H,K be two Hilbert spaces with K being finite dimensional. That
is, K = ℓ2([n]) for some n ∈ N and B(K ) = B(ℓ2([n])) = Mn. Consider
the minimal tensor product Mn ⊗min B(H). By the above remark,

Mn ⊗min B(H) = Mn(B(H))

completely isometrically. But, Mn(B(H)) = B(Hn) = B(ℓ2([n])⊗hs H)
also completely isometrically. Hence,

B(ℓ2([n]))⊗min B(H) = B(ℓ2([n])⊗hs H).

So, if H,K are Hilbert spaces, with one of them being finite dimensional,
then

B(K )⊗ B(H) = B(K ⊗hs H)

as C ∗-algebras, when we endow the left hand side with the operator norm
induced by the right hand side.
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More properties

Remark (Associativity of the minimal tensor product)

Let X ⊆ B(H), Y ⊆ B(K ) and Z ⊆ B(L) be operator spaces. Clearly

(H⊗̂hsK )⊗̂hsL = H⊗̂hs(K ⊗̂hsL).

Hence by the aforementioned remark we have completely isometrically

(X ⊗min Y )⊗min Z = X ⊗min (Y ⊗min Z ).
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Remark (Symmetricity of the minimal tensor space)

Let X ⊆ B, Y ⊆ B(K ) be operator spaces. Since we have
H⊗̂hsK = K ⊗̂hsH, again by the same remark we have completely
isometrically

X ⊗min Y = Y ⊗min X

via x ⊗ y 7→ y ⊗ x .
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Remark (Injectivity of the minimal tensor norm)

Let E1 ⊆ E2 ⊆ B(H) and G1 ⊆ G2 ⊆ B(K ) be operator spaces (with
isometric inclusions) so that E1 ⊗ G1 ⊆ E2 ⊗ G2. Then for any
x ∈ E1 ⊗ G1 we have

∥x∥E1⊗minG1
= ∥x∥E2⊗minG2

.
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