New tensor products of C*-algebras and characterization of type I C*-algebras as rigidly symmetric C^{*}-algebras

Ebrahim Samei

University of Saskatchewan, Canada
A joint work with Hun Hee Lee and Matthew Wiersma
May 5, 2023
$G:=$ discrete group (usually finitely generated),
$C_{r}^{*}(G)=$ The reduced C^{*}-alg of $G\left(\subseteq B\left(I^{2}(G)\right)\right)$,
$C^{*}(G)=$ The full group C^{*}-alg of G,
$\Lambda: \quad C^{*}(G) \rightarrow C_{r}^{*}(G)$ the canonical *-rep.

$$
\begin{aligned}
G: & =\text { discrete group (usually finitely generated) }, \\
C_{r}^{*}(G) & =\text { The reduced } C^{*} \text {-alg of } G\left(\subseteq B\left(I^{2}(G)\right)\right), \\
C^{*}(G) & =\text { The full group } C^{*} \text {-alg of } G, \\
\Lambda & : C^{*}(G) \rightarrow C_{r}^{*}(G) \text { the canonical } * \text {-rep. }
\end{aligned}
$$

Definition

G is amenable if it has a finitely additive translation-invariant probability measure.
$G: \quad=$ discrete group (usually finitely generated),
$C_{r}^{*}(G)=$ The reduced C^{*}-alg of $G\left(\subseteq B\left(I^{2}(G)\right)\right)$,
$C^{*}(G)=$ The full group C^{*}-alg of G,
$\Lambda: \quad C^{*}(G) \rightarrow C_{r}^{*}(G)$ the canonical *-rep.

Definition

G is amenable if it has a finitely additive translation-invariant probability measure.

Example

(i) Solvable groups and groups of subexponential growth are amenable.
(ii) groups containing F_{2}, the free group on two generators, are not amenable.
$G: \quad=$ discrete group (usually finitely generated),
$C_{r}^{*}(G)=$ The reduced C^{*}-alg of $G\left(\subseteq B\left(I^{2}(G)\right)\right)$,
$C^{*}(G)=$ The full group C^{*}-alg of G,
$\Lambda: \quad C^{*}(G) \rightarrow C_{r}^{*}(G)$ the canonical *-rep.

Definition

G is amenable if it has a finitely additive translation-invariant probability measure.

Example

(i) Solvable groups and groups of subexponential growth are amenable.
(ii) groups containing F_{2}, the free group on two generators, are not amenable.

Theorem (Hulanicki)

G is amenable iff $C_{r}^{*}(G)=C^{*}(G)$ iff $\Lambda: C^{*}(G) \rightarrow C_{r}^{*}(G)$ is injective.

Question

For G nonamenable, we know that

$$
C^{*}(G) \rightarrow C_{r}^{*}(G)
$$

is not injective. Is there an intermediate C^{*}-algebras between them?

Question

For G nonamenable, we know that

$$
C^{*}(G) \rightarrow C_{r}^{*}(G)
$$

is not injective. Is there an intermediate C^{*}-algebras between them? In other words, is there a C^{*}-algebra A such that

$$
C^{*}(G) \xrightarrow{\text { not } 1-1} A \xrightarrow{n o t} 1-1 C_{r}^{*}(G) \quad ?
$$

Question

For G nonamenable, we know that

$$
C^{*}(G) \rightarrow C_{r}^{*}(G)
$$

is not injective. Is there an intermediate C^{*}-algebras between them? In other words, is there a C^{*}-algebra A such that

$$
C^{*}(G) \xrightarrow{n o t} 1-1 \quad A \xrightarrow{n o t} C_{r}^{*}(G) ?
$$

These algebras, if they exist, are called exotic \mathbf{C}^{*}-algebra.

First Answer: Yes! for $G=F_{n}$ (Brown-Guentner). There is at least one!

First Answer: Yes! for $G=F_{n}$ (Brown-Guentner). There is at least one! Second Answer: There are infinitely many for $G=F_{n}$ (Okayasu).

First Answer: Yes! for $G=F_{n}$ (Brown-Guentner). There is at least one! Second Answer: There are infinitely many for $G=F_{n}$ (Okayasu). Their examples are in the from of $\ell_{p^{-}} C^{*}$-algebras, usually denoted by $C_{\ell_{p}}^{*}(G)$.

First Answer: Yes! for $G=F_{n}$ (Brown-Guentner). There is at least one! Second Answer: There are infinitely many for $G=F_{n}$ (Okayasu). Their examples are in the from of $\ell_{p}-C^{*}$-algebras, usually denoted by $C_{\ell_{p}}^{*}(G)$. These algebras are C^{*}-completion of $\ell^{1}(G)$ under the following C^{*}-norm: For every $f \in \ell^{1}(G)$, we define

$$
\begin{array}{r}
\|f\|_{C_{\ell_{p}}^{*}(G)}:=\sup \{\|\pi(f)\|: \pi \text { is a unitary rep. of } G \\
\text { with enough coefficients in } \left.\ell_{p}\right\} .
\end{array}
$$

First Answer: Yes! for $G=F_{n}$ (Brown-Guentner). There is at least one! Second Answer: There are infinitely many for $G=F_{n}$ (Okayasu). Their examples are in the from of $\ell_{p^{-}} C^{*}$-algebras, usually denoted by $C_{\ell_{p}}^{*}(G)$. These algebras are C^{*}-completion of $\ell^{1}(G)$ under the following C^{*}-norm: For every $f \in \ell^{1}(G)$, we define

$$
\begin{array}{r}
\|f\|_{C_{\ell_{p}}^{*}(G)}:=\sup \{\|\pi(f)\|: \pi \text { is a unitary rep. of } G \\
\text { with enough coefficients in } \left.\ell_{p}\right\} .
\end{array}
$$

Here, by "enough coefficients", we mean that there is a dense subset $\mathcal{K} \subseteq \mathcal{H}_{\pi}$ such that the coefficient functions

$$
s \mapsto\langle\pi(s) \xi \mid \xi\rangle, \xi \in \mathcal{K}
$$

belongs to $\ell_{p}(G)$.

First Answer: Yes! for $G=F_{n}$ (Brown-Guentner). There is at least one! Second Answer: There are infinitely many for $G=F_{n}$ (Okayasu). Their examples are in the from of $\ell_{p^{-}} C^{*}$-algebras, usually denoted by $C_{\ell_{p}}^{*}(G)$. These algebras are C^{*}-completion of $\ell^{1}(G)$ under the following C^{*}-norm: For every $f \in \ell^{1}(G)$, we define

$$
\begin{array}{r}
\|f\|_{C_{\ell_{p}}^{*}(G)}:=\sup \{\|\pi(f)\|: \pi \text { is a unitary rep. of } G \\
\text { with enough coefficients in } \left.\ell_{p}\right\} .
\end{array}
$$

Here, by "enough coefficients", we mean that there is a dense subset $\mathcal{K} \subseteq \mathcal{H}_{\pi}$ such that the coefficient functions

$$
s \mapsto\langle\pi(s) \xi \mid \xi\rangle, \xi \in \mathcal{K}
$$

belongs to $\ell_{p}(G)$. For $2 \leq p \leq p^{\prime} \leq \infty$, we have

$$
C_{\ell_{\infty}}^{*}(G)=C^{*}(G) \rightarrow C_{\ell_{p^{\prime}}}^{*}(G) \rightarrow C_{\ell_{p}}^{*}(G) \rightarrow C_{r}^{*}(G)=C_{\ell_{2}}^{*}(G)
$$

Constructing exotic C^{*}-algebras (S-Wiersma)

One ways to construct a C^{*}-algebra is to use C^{*}-envelope:

Constructing exotic C^{*}-algebras (S-Wiersma)

Question
 Are there intermediate Banach *-algebras between $\ell^{1}(G)$ and $C_{r}^{*}(G)$?

Constructing exotic C^{*}-algebras (S-Wiersma)

Question
 Are there intermediate Banach *-algebras between $\ell^{1}(G)$ and $C_{r}^{*}(G)$?

Answer: Yes! And they can be "measured" quite naturally using the complex interpolation:

Constructing exotic C^{*}-algebras (S-Wiersma)

Question

Are there intermediate Banach *-algebras between $\ell^{1}(G)$ and $C_{r}^{*}(G)$?
Answer: Yes! And they can be "measured" quite naturally using the complex interpolation:

- For every $p \in[1, \infty], \ell^{1}(G)$ acts on $\ell^{p}(G)$ by convolution:

$$
\begin{aligned}
\ell^{1}(G) \ni f & \mapsto T_{f} \in B\left(\ell_{p}(G)\right) \\
f & \mapsto T_{f}(g)=f * g .
\end{aligned}
$$

Constructing exotic C^{*}-algebras (S-Wiersma)

Question

Are there intermediate Banach *-algebras between $\ell^{1}(G)$ and $C_{r}^{*}(G)$?
Answer: Yes! And they can be "measured" quite naturally using the complex interpolation:

- For every $p \in[1, \infty], \ell^{1}(G)$ acts on $\ell^{p}(G)$ by convolution:

$$
\begin{aligned}
\ell^{1}(G) \ni f & \mapsto T_{f} \in B\left(\ell_{p}(G)\right) \\
f & \mapsto T_{f}(g)=f * g .
\end{aligned}
$$

- For $1 \leq p_{1}<p_{2}<p_{3} \leq \infty$, there exists $\theta \in(0,1)$ such that

$$
\left\|T_{f}\right\|_{B\left(\ell_{p_{2}}(G)\right)} \leq\left\|T_{f}\right\|_{B\left(\ell_{p_{1}}(G)\right)}^{1-\theta}\left\|T_{f}\right\|_{B\left(\ell_{p_{3}}(G)\right)}^{\theta} .
$$

Constructing exotic C^{*}-algebras (S-Wiersma)

Definition

For any group G, we can define $(1 \leq p \leq \infty, 1 / p+1 / q=1)$

$$
F_{p}^{*}(G):=\text { The completion of } \ell^{1}(G) \text { in } B\left(\ell^{p}(G)\right) \cap B\left(\ell^{q}(G)\right)
$$

which has the norm

$$
\begin{aligned}
\|f\|_{F_{p}^{*}(G)} & =\max \left\{\left\|T_{f}\right\|_{B\left(\ell^{p}(G)\right)},\left\|T_{f}\right\|_{B\left(\ell^{q}(G)\right)}\right\} \\
& =\max \left\{\left\|T_{f}\right\|_{B\left(\ell^{p}(G)\right)},\left\|T_{f^{*}}\right\|_{B\left(\ell^{p}(G)\right)}\right\} .
\end{aligned}
$$

Constructing exotic C^{*}-algebras (S-Wiersma)

Proposition

Constructing exotic C^{*}-algebras (S-Wiersma)

Proposition

- For every $p \in[1, \infty], F_{p}^{*}(G)$ is a Banach $*$-algebra.

Constructing exotic C^{*}-algebras (S-Wiersma)

Proposition

- For every $p \in[1, \infty], F_{p}^{*}(G)$ is a Banach $*$-algebra.
- $F_{p}^{*}(G)=F_{q}^{*}(G)$ if $\frac{1}{p}+\frac{1}{q}=1$

Constructing exotic C^{*}-algebras (S-Wiersma)

Proposition

- For every $p \in[1, \infty], F_{p}^{*}(G)$ is a Banach $*$-algebra.
- $F_{p}^{*}(G)=F_{q}^{*}(G)$ if $\frac{1}{p}+\frac{1}{q}=1$
- We have injective $*$-inclusions

$$
\ell^{1}(G) \hookrightarrow F_{p^{\prime}}^{*}(G) \hookrightarrow F_{p}^{*}(G) \hookrightarrow C_{r}^{*}(G)
$$

for every $2 \leq p \leq p^{\prime} \leq \infty$.

Constructing exotic C^{*}-algebras (S-Wiersma)

Proposition

- For every $p \in[1, \infty], F_{p}^{*}(G)$ is a Banach $*$-algebra.
- $F_{p}^{*}(G)=F_{q}^{*}(G)$ if $\frac{1}{p}+\frac{1}{q}=1$
- We have injective $*$-inclusions

$$
\ell^{1}(G) \hookrightarrow F_{p^{\prime}}^{*}(G) \hookrightarrow F_{p}^{*}(G) \hookrightarrow C_{r}^{*}(G)
$$

for every $2 \leq p \leq p^{\prime} \leq \infty$. Moreover, by taking the C^{*}-envelopes, we get

$$
C^{*}(G) \rightarrow C^{*}\left(F_{p^{\prime}}^{*}(G)\right) \rightarrow C^{*}\left(F_{p}^{*}(G)\right) \rightarrow C_{r}^{*}(G)
$$

Constructing exotic C^{*}-algebras (S-Wiersma)

Proposition

Constructing exotic C^{*}-algebras (S-Wiersma)

Proposition

- For every $f \in \ell^{1}(G)$,

$$
\|f\|_{F_{p}^{*}(G)} \leq\|f\|_{1}^{1-\theta}\|f\|_{C_{r}^{*}(G)}^{\theta}
$$

Constructing exotic C^{*}-algebras (S-Wiersma)

Proposition

- For every $f \in \ell^{1}(G)$,

$$
\|f\|_{F_{p}^{*}(G)} \leq\|f\|_{1}^{1-\theta}\|f\|_{C_{r}^{*}(G)}^{\theta}
$$

$$
\begin{aligned}
& \ell^{1}(G) \longrightarrow F_{p}^{*}(G) \longrightarrow C_{r}^{*}(G) \\
& \stackrel{\downarrow}{\downarrow} \underset{C^{*}(G)}{\downarrow} \longrightarrow C^{*}\left(F_{p}^{*}(G)\right) \longrightarrow C_{r}^{*}(G)
\end{aligned}
$$

Constructing exotic C^{*}-algebras (S-Wiersma)

Question

For G nonamenable, is there a $p \in(2, \infty)$ such that

$$
C^{*}(G) \xrightarrow{\text { not } 1-1} C^{*}\left(F_{p}^{*}(G)\right) \xrightarrow{\text { not } 1-1} C_{r}^{*}(G) \quad ?
$$

More generally, could $C^{*}\left(F_{p}^{*}(G)\right)$ be distinct?

Constructing exotic C^{*}-algebras (S-Wiersma)

Question

For G nonamenable, is there a $p \in(2, \infty)$ such that

$$
C^{*}(G) \xrightarrow{\text { not } 1-1} C^{*}\left(F_{p}^{*}(G)\right) \xrightarrow{\text { not } 1-1} C_{r}^{*}(G) \quad ?
$$

More generally, could $C^{*}\left(F_{p}^{*}(G)\right)$ be distinct?
Answer: Yes! for nonamenable groups with both rapid decay and integrable Haagroup property.

Groups with rapid decay \& Haagerup prop.

A length function is a function $L: G \rightarrow[0, \infty)$ such that
(i) $L(e)=0$;
(ii) $L(g)=L\left(g^{-1}\right), \quad g \in G$;
(iii) $L(s t) \leq L(s)+L(t), \quad s, t \in G$.

Groups with rapid decay \& Haagerup prop.

A length function is a function $L: G \rightarrow[0, \infty)$ such that
(i) $L(e)=0$;
(ii) $L(g)=L\left(g^{-1}\right), \quad g \in G$;
(iii) $L(s t) \leq L(s)+L(t), \quad s, t \in G$.

For any $d>0$,

$$
w_{d}(s)=(1+L(s))^{d}
$$

is a (submultiplicative) weight on G.

Groups with rapid decay \& Haagerup prop.

A length function is a function $L: G \rightarrow[0, \infty)$ such that
(i) $L(e)=0$;
(ii) $L(g)=L\left(g^{-1}\right), \quad g \in G$;
(iii) $L(s t) \leq L(s)+L(t), \quad s, t \in G$.

For any $d>0$,

$$
w_{d}(s)=(1+L(s))^{d}
$$

is a (submultiplicative) weight on G. We say that (G, L) has Rapid decay (RD) if $\exists d>0$ such that.

$$
\ell^{2}\left(G, w_{d}\right) \subseteq C_{r}^{*}(G)
$$

iff there is $M>0$ such that

$$
\|f\|_{C_{r}^{*}(G)} \leq M\|f\|_{\ell^{2}\left(G, w_{d}\right)}\left(f \in \ell^{2}\left(G, w_{d}\right)\right)
$$

Groups with rapid decay \& Haagerup prop.

A length function L is a Haagerup length function (IH) if for every $t \geq 0$,

$$
\varphi_{t}(s)=e^{-t L(s)} \quad(s \in G)
$$

is a positive-definite function on G.

Groups with rapid decay \& Haagerup prop.

A length function L is a Haagerup length function (IH) if for every $t \geq 0$,

$$
\varphi_{t}(s)=e^{-t L(s)} \quad(s \in G)
$$

is a positive-definite function on G. A group G has integrable Haagerup (IH) property if it has a Haagerup length function L such that for every $t>0$

$$
\varphi_{t}(\cdot)=e^{-t L(\cdot)} \in \bigcup_{1 \leq p<\infty} \ell_{p}(G)
$$

Groups with rapid decay \& Haagerup prop.

Example

Groups with RD+IH:
(i) F_{n}, nonabelian free groups on n-generators.
(ii) Finitely generated Coxeter groups.
(iii) "Some" groups acting properly and cocompactly by isometries on "Some" CAT(0).

Groups with rapid decay \& Haagerup prop.

Example

Groups with RD+IH:
(i) F_{n}, nonabelian free groups on n-generators.
(ii) Finitely generated Coxeter groups.
(iii) "Some" groups acting properly and cocompactly by isometries on "Some" CAT(0).

Theorem (S-Wiersma)

For G nonamenable with $R D+I H$,

$$
C_{\ell_{p}}^{*}(G)=C^{*}\left(F_{p}^{*}(G)\right) \quad(p \in[2, \infty])
$$

Moreover, they are all pairwise distinct.

Groups with rapid decay \& Haagerup prop.

Key ideals in the proof: We use complex interpolation to obtain the following:

$$
\left.\begin{array}{l}
\ell^{1}(G) \rightarrow B\left(\ell^{1}(G)\right) \\
\ell_{w}^{2}(G) \rightarrow B\left(\ell^{2}(G)\right)
\end{array}\right\} \Rightarrow \ell_{w_{q}}^{q}(G) \subseteq B\left(\ell^{q}(G)\right)
$$

Groups with rapid decay \& Haagerup prop.

Key ideals in the proof: We use complex interpolation to obtain the following:

$$
\left.\begin{array}{l}
\ell^{1}(G) \rightarrow B\left(\ell^{1}(G)\right) \\
\ell_{w}^{2}(G) \rightarrow B\left(\ell^{2}(G)\right)
\end{array}\right\} \Rightarrow \ell_{w_{q}}^{q}(G) \subseteq B\left(\ell^{q}(G)\right)
$$

and

$$
\left.\begin{array}{l}
\ell_{w}^{2}(G) \rightarrow B\left(\ell^{2}(G)\right) \\
\ell^{1}(G) \rightarrow B\left(\ell^{\infty}(G)\right)
\end{array}\right\} \Rightarrow \ell_{w_{q}}^{q}(G) \subseteq B\left(\ell^{p}(G)\right)
$$

Groups with rapid decay \& Haagerup prop.

Key ideals in the proof: We use complex interpolation to obtain the following:

$$
\left.\begin{array}{l}
\ell^{1}(G) \rightarrow B\left(\ell^{1}(G)\right) \\
\ell_{w}^{2}(G) \rightarrow B\left(\ell^{2}(G)\right)
\end{array}\right\} \Rightarrow \ell_{w_{q}}^{q}(G) \subseteq B\left(\ell^{q}(G)\right)
$$

and

$$
\left.\begin{array}{l}
\ell_{w}^{2}(G) \rightarrow B\left(\ell^{2}(G)\right) \\
\ell^{1}(G) \rightarrow B\left(\ell^{\infty}(G)\right)
\end{array}\right\} \Rightarrow \ell_{w_{q}}^{q}(G) \subseteq B\left(\ell^{p}(G)\right)
$$

where

$$
1 \leq q \leq 2, \frac{1}{p}+\frac{1}{q}=1, w_{q}=w_{d}^{\frac{2}{p}}
$$

Groups with rapid decay \& Haagerup prop.

Hence we have that

$$
\ell_{w_{q}}^{q}(G) \subseteq F_{p}^{*}(G):=\text { The completion of } \ell^{1}(G) \text { in } B\left(\ell^{p}(G)\right) \cap B\left(\ell^{q}(G)\right)
$$

Groups with rapid decay \& Haagerup prop.

Hence we have that

$$
\ell_{w_{q}}^{q}(G) \subseteq F_{p}^{*}(G):=\text { The completion of } \ell^{1}(G) \text { in } B\left(\ell^{p}(G)\right) \cap B\left(\ell^{q}(G)\right)
$$

We will then have that

$$
\begin{gathered}
\ell_{w_{q}}^{q} \longrightarrow F_{p}^{*}(G) \\
\Rightarrow C^{*}\left(F_{p}^{*}(G)\right)^{*} \subseteq \ell_{w_{q}^{-1}}^{p}(G) .
\end{gathered}
$$

Groups with rapid decay \& Haagerup prop.

However we can check exactly which positive definite function of the form $\varphi_{t}=e^{-t L}$ belongs to $\ell_{w_{q}^{-1}}^{p}$ and which does not.

Groups with rapid decay \& Haagerup prop.

However we can check exactly which positive definite function of the form $\varphi_{t}=e^{-t L}$ belongs to $\ell_{w_{q}^{-1}}^{p}$ and which does not. Hence using this criterion, we can show that

$$
C^{*}\left(F_{p}^{*}(G)\right)=C_{\ell_{p}}^{*}((G))
$$

and

$$
C^{*}\left(F_{p}^{*}(G)\right) \neq C^{*}\left(F_{p^{\prime}}^{*}(G)\right)
$$

for all $2 \leq p \neq p^{\prime} \leq \infty$.

Goal: Apply similar ideas to tensor category of C^{*}-algebras

Let $A \subseteq B(\mathcal{H})$ and $B \subseteq B(\mathcal{K})$ be C^{*}-algebras. Then

Goal: Apply similar ideas to tensor category of C^{*}-algebras

Let $A \subseteq B(\mathcal{H})$ and $B \subseteq B(\mathcal{K})$ be C^{*}-algebras. Then

We say that (A, B) is a nuclear pair if

$$
A \otimes_{\min } B=A \otimes_{\max } B .
$$

Goal: Apply similar ideas to tensor category of C^{*}-algebras

Let $A \subseteq B(\mathcal{H})$ and $B \subseteq B(\mathcal{K})$ be C^{*}-algebras. Then

We say that (A, B) is a nuclear pair if

$$
A \otimes_{\min } B=A \otimes_{\max } B .
$$

Question

Can we construct distinct C^{*}-tensor norms on $A \otimes B$, when (A, B) is a not a nuclear pair, strictly between $A \otimes_{\min } B$ and $A \otimes_{\max } B$?

Goal: Apply similar ideas to tensor category of C^{*}-algebras

- \mathcal{H}, a Hilbert space.
- $\mathcal{H}_{C}:=B(\mathbb{C}, \mathcal{H})$ column Hilbert space.
- $\mathcal{H}_{R}:=B(\overline{\mathcal{H}}, \mathbb{C})$ row Hilbert space.

Goal: Apply similar ideas to tensor category of C^{*}-algebras

- \mathcal{H}, a Hilbert space.
- $\mathcal{H}_{C}:=B(\mathbb{C}, \mathcal{H})$ column Hilbert space.
- $\mathcal{H}_{R}:=B(\overline{\mathcal{H}}, \mathbb{C})$ row Hilbert space.
- Complex interpolation space $(1 \leq p \leq \infty)$

$$
\mathcal{H}_{C_{p}}:=\left[\mathcal{H}_{C}, \mathcal{H}_{R}\right]_{\frac{1}{p}}, \mathcal{H}_{R_{p}}:=\left[\mathcal{H}_{R}, \mathcal{H}_{C}\right]_{\frac{1}{p}} .
$$

Goal: Apply similar ideas to tensor category of C^{*}-algebras

- \mathcal{H}, a Hilbert space.
- $\mathcal{H}_{C}:=B(\mathbb{C}, \mathcal{H})$ column Hilbert space.
- $\mathcal{H}_{R}:=B(\overline{\mathcal{H}}, \mathbb{C})$ row Hilbert space.
- Complex interpolation space $(1 \leq p \leq \infty)$

$$
\mathcal{H}_{C_{p}}:=\left[\mathcal{H}_{C}, \mathcal{H}_{R}\right]_{\frac{1}{p}}, \mathcal{H}_{R_{p}}:=\left[\mathcal{H}_{R}, \mathcal{H}_{C}\right]_{\frac{1}{p}} .
$$

- $\mathcal{H}_{C_{2}}=\mathcal{H}_{R_{2}}\left(=\mathcal{H}_{o h}\right)$ operator Hilbert space uniquely determined by

$$
\mathcal{H}_{o h}^{*} \cong \overline{\mathcal{H}}_{o h} .
$$

Goal: Apply similar ideas to tensor category of C^{*}-algebras

- $\mathcal{H}_{C_{\infty}}=\mathcal{H}_{C}, \mathcal{H}_{R_{\infty}}=\mathcal{H}_{R}$.

Goal: Apply similar ideas to tensor category of C^{*}-algebras

- $\mathcal{H}_{C_{\infty}}=\mathcal{H}_{C}, \mathcal{H}_{R_{\infty}}=\mathcal{H}_{R}$.
- $\mathcal{H}_{C_{p}}=\mathcal{H}_{R_{q}}, \quad$ if $\frac{1}{p}+\frac{1}{q}=1$.

Goal: Apply similar ideas to tensor category of C^{*}-algebras

- $\mathcal{H}_{C_{\infty}}=\mathcal{H}_{C}, \mathcal{H}_{R_{\infty}}=\mathcal{H}_{R}$.
- $\mathcal{H}_{C_{p}}=\mathcal{H}_{R_{q}}, \quad$ if $\frac{1}{p}+\frac{1}{q}=1$.
- \otimes_{h} is the Haagerup tensor product.

Goal: Apply similar ideas to tensor category of C^{*}-algebras

- $\mathcal{H}_{C_{\infty}}=\mathcal{H}_{C}, \mathcal{H}_{R_{\infty}}=\mathcal{H}_{R}$.
- $\mathcal{H}_{C_{p}}=\mathcal{H}_{R_{q}}, \quad$ if $\frac{1}{p}+\frac{1}{q}=1$.
- \otimes_{h} is the Haagerup tensor product.
- Compatibility with the complex interpolation:

$$
\left[X_{0}, X_{1}\right]_{\theta} \otimes_{h}\left[Y_{0}, Y_{1}\right]_{\theta} \cong\left[X_{0} \otimes_{h} Y_{0}, X_{1} \otimes_{h} Y_{1}\right]_{\theta}
$$

where $\left(X_{0}, X_{1}\right) \&\left(Y_{0}, Y_{1}\right)$ are compatible operator spaces \& $0 \leq \theta \leq 1$.

Goal: Apply similar ideas to tensor category of C^{*}-algebras

Definition

Let $1 \leq p \leq \infty$. For $A \subseteq B(\mathcal{H}), B \subseteq B(\mathcal{K}), C^{*}$-algebras. We consider the following mapping:

$$
\begin{aligned}
& \pi_{p}: A \otimes B \rightarrow C B\left(\mathcal{H}_{C_{p}} \otimes_{h} \mathcal{K}_{R_{p}}\right) \\
& \pi_{p}(a \otimes b)(\xi \otimes \eta)=a \xi \otimes b \eta
\end{aligned}
$$

Goal: Apply similar ideas to tensor category of C^{*}-algebras

Definition

Let $1 \leq p \leq \infty$. For $A \subseteq B(\mathcal{H}), B \subseteq B(\mathcal{K}), C^{*}$-algebras. We consider the following mapping:

$$
\begin{aligned}
& \pi_{p}: A \otimes B \rightarrow C B\left(\mathcal{H}_{C_{p}} \otimes_{h} \mathcal{K}_{R_{p}}\right) \\
& \pi_{p}(a \otimes b)(\xi \otimes \eta)=a \xi \otimes b \eta
\end{aligned}
$$

We can use it to define a tensor product norm on $A \otimes B$:

$$
\begin{aligned}
A \otimes_{p} B:= & \text { The completion of } \pi_{p}(A \otimes B) \\
& \text { inside } C B\left(\mathcal{H}_{C_{p}} \otimes \mathcal{K}_{R_{p}}\right) .
\end{aligned}
$$

Another reformulation

$$
\mathcal{H}_{C_{1}} \otimes_{h} \mathcal{K}_{R_{1}}=\mathcal{H}_{R} \otimes_{h} \mathcal{K}_{C} \cong T(\overline{\mathcal{K}}, \mathcal{H})
$$

Another reformulation

$$
\begin{aligned}
& \mathcal{H}_{C_{1}} \otimes_{h} \mathcal{K}_{R_{1}}=\mathcal{H}_{R} \otimes_{h} \mathcal{K}_{C} \cong T(\overline{\mathcal{K}}, \mathcal{H}) \\
& \mathcal{H}_{C_{\infty}} \otimes_{h} \mathcal{K}_{R_{\infty}}=\mathcal{H}_{C} \otimes_{h} \mathcal{K}_{R} \cong K(\overline{\mathcal{K}}, \mathcal{H})
\end{aligned}
$$

Another reformulation

$$
\begin{gathered}
\left.\begin{array}{l}
\mathcal{H}_{c_{1}} \otimes_{n} \mathcal{K}_{R_{1}}=\mathcal{H}_{R} \otimes_{h} \mathcal{K}_{C} \cong T(\overline{\mathcal{K}}, \mathcal{H}) \\
\mathcal{H}_{c_{\infty}} \otimes_{h} \mathcal{K}_{R_{\infty}}=\mathcal{H}{ }_{C} \otimes_{h} \mathcal{K}_{R} \cong K(\overline{\mathcal{K}}, \mathcal{H})
\end{array}\right\} \xlongequal[\text { interpolation }]{\text { complex }} \\
\mathcal{H}_{C_{p}} \otimes_{h} \mathcal{K}_{R_{p}} \cong S_{p}(\overline{\mathcal{K}}, \mathcal{H}),
\end{gathered}
$$

where $S_{p}(\overline{\mathcal{K}}, \mathcal{H})$ is the space of p-Schatten class operators.

Another reformulation

$$
\begin{gathered}
\mathcal{H}_{\mathcal{C}_{1}} \otimes_{h} \mathcal{K}_{R_{1}}=\mathcal{H}_{R} \otimes_{h} \mathcal{K}_{C} \cong T(\overline{\mathcal{K}}, \mathcal{H}) \\
\mathcal{H}_{C_{\infty}} \otimes_{h} \mathcal{K}_{R_{\infty}}=\mathcal{H}_{C} \otimes_{h} \mathcal{K}_{R} \cong K(\overline{\mathcal{K}}, \mathcal{H}) \\
\mathcal{H}_{C_{p}} \otimes_{h} \mathcal{K}_{R_{p}} \cong S_{p}(\overline{\mathcal{K}}, \mathcal{H}),
\end{gathered} \underset{\text { interpolation }}{\text { complex }}
$$

where $S_{p}(\overline{\mathcal{K}}, \mathcal{H})$ is the space of p-Schatten class operators. In this case, we can write

$$
\begin{aligned}
& \pi_{p}: A \otimes B \rightarrow C B\left(S_{p}(\overline{\mathcal{K}}, \mathcal{H})\right) \\
& \pi_{p}(a \otimes b) T=a T \tilde{b} \\
& {[b \in B(\mathcal{H}) \rightarrow \tilde{b} \in B(\overline{\mathcal{H}})] .}
\end{aligned}
$$

Another reformulation

Remark

$$
\begin{aligned}
& F_{p}(G) \subseteq B\left(\ell^{p}(G)\right) \quad\left(\ell^{p}(G) \text { is a commutative } L_{p} \text {-space }\right) \\
& A \otimes_{p} B \subseteq C B\left(S_{p}(\overline{\mathcal{K}}, \mathcal{H})\right) \quad\left(S_{p}(\overline{\mathcal{K}}, \mathcal{H}) \text { is a noncommutative } L_{p} \text {-space }\right) .
\end{aligned}
$$

Another reformulation

Remark

$$
\begin{aligned}
& F_{p}(G) \subseteq B\left(\ell^{p}(G)\right) \quad\left(\ell^{p}(G) \text { is a commutative } L_{p} \text {-space }\right) \\
& A \otimes_{p} B \subseteq C B\left(S_{p}(\overline{\mathcal{K}}, \mathcal{H})\right) \quad\left(S_{p}(\overline{\mathcal{K}}, \mathcal{H}) \text { is a noncommutative } L_{p} \text {-space }\right) .
\end{aligned}
$$

Facts:

- $A \otimes_{2} B \cong A \otimes_{\min } B *$-isomorphism.

Another reformulation

Remark

$$
\begin{aligned}
& F_{p}(G) \subseteq B\left(\ell^{p}(G)\right) \quad\left(\ell^{p}(G) \text { is a commutative } L_{p} \text {-space }\right) \\
& A \otimes_{p} B \subseteq C B\left(S_{p}(\overline{\mathcal{K}}, \mathcal{H})\right) \quad\left(S_{p}(\overline{\mathcal{K}}, \mathcal{H}) \text { is a noncommutative } L_{p} \text {-space }\right) .
\end{aligned}
$$

Facts:

- $A \otimes_{2} B \cong A \otimes_{\min } B *$-isomorphism.
- $A \otimes_{\infty} B \cong A \otimes_{h} B^{o p}, a \otimes b \mapsto a \otimes b^{o p}$, complete isometry.

Another reformulation

Remark

$$
\begin{aligned}
& F_{p}(G) \subseteq B\left(\ell^{p}(G)\right) \quad\left(\ell^{p}(G) \text { is a commutative } L_{p} \text {-space }\right) \\
& A \otimes_{p} B \subseteq C B\left(S_{p}(\overline{\mathcal{K}}, \mathcal{H})\right) \quad\left(S_{p}(\overline{\mathcal{K}}, \mathcal{H}) \text { is a noncommutative } L_{p} \text {-space }\right) .
\end{aligned}
$$

Facts:

- $A \otimes_{2} B \cong A \otimes_{\min } B *$-isomorphism.
- $A \otimes_{\infty} B \cong A \otimes_{h} B^{o p}, a \otimes b \mapsto a \otimes b^{o p}$, complete isometry.
- $A \otimes_{1} B \cong B^{\circ p} \otimes_{h} A, a \otimes b \mapsto b^{\circ p} \otimes a$, complete isometry.

Another reformulation

Remark

$$
\begin{aligned}
& F_{p}(G) \subseteq B\left(\ell^{p}(G)\right) \quad\left(\ell^{p}(G) \text { is a commutative } L_{p} \text {-space }\right) \\
& A \otimes_{p} B \subseteq C B\left(S_{p}(\overline{\mathcal{K}}, \mathcal{H})\right) \quad\left(S_{p}(\overline{\mathcal{K}}, \mathcal{H}) \text { is a noncommutative } L_{p} \text {-space }\right) .
\end{aligned}
$$

Facts:

- $A \otimes_{2} B \cong A \otimes_{\min } B *$-isomorphism.
- $A \otimes_{\infty} B \cong A \otimes_{h} B^{o p}, a \otimes b \mapsto a \otimes b^{o p}$, complete isometry.
- $A \otimes_{1} B \cong B^{o p} \otimes_{h} A, a \otimes b \mapsto b^{o p} \otimes a$, complete isometry.
- $\otimes_{1}, \otimes_{2}, \otimes_{\infty}$ does not depend on the representations of C^{*}-algebras.

Another reformulation

Definition

Let $A \subseteq B(\mathcal{H}), B \subseteq B(\mathcal{K})$ be C^{*}-algebras, and let $\frac{1}{p}+\frac{1}{q}=1$. We let

$$
A \otimes_{p, q} B:=\text { The completion of }\left(A \otimes_{p}^{c} B\right) \cap\left(A \otimes_{q}^{c} B\right)
$$

Another reformulation

Definition

Let $A \subseteq B(\mathcal{H}), B \subseteq B(\mathcal{K})$ be C^{*}-algebras, and let $\frac{1}{p}+\frac{1}{q}=1$. We let
$A \otimes_{p, q} B:=$ The completion of $\left(A \otimes_{p}^{c} B\right) \cap\left(A \otimes_{q}^{c} B\right)$
$A \otimes_{C_{p, q}^{*}} B:=C^{*}\left(A \otimes_{p, q} B\right)$, the C^{*}-envelope of $A \otimes_{p, q}^{c} B$

Theorem (Lee-S-Wiersma 2023)

Let $A \subseteq B(\mathcal{H}), B \subseteq B(\mathcal{K}) C^{*}-a l g, 1 \leq p<p^{\prime}<q^{\prime} \leq q \leq \infty, \frac{1}{p}+\frac{1}{q}=1$, $\frac{1}{p^{\prime}}+\frac{1}{q^{\prime}}=1$.

$$
\begin{aligned}
& \text { Theorem (Lee-S-Wiersma 2023) } \\
& \text { Let } A \subseteq B(\mathcal{H}), B \subseteq B(\mathcal{K}) C^{*} \text {-alg, } 1 \leq p<p^{\prime}<q^{\prime} \leq q \leq \infty, \frac{1}{p}+\frac{1}{q}=1 \text {, } \\
& \frac{1}{p^{\prime}}+\frac{1}{q^{\prime}}=1 \text {. Then } \\
& \text { - } A \otimes_{C_{2,2}^{*}} B=A \otimes_{\min } B ;
\end{aligned}
$$

Theorem (Lee-S-Wiersma 2023)

Let $A \subseteq B(\mathcal{H}), B \subseteq B(\mathcal{K}) C^{*}$-alg, $1 \leq p<p^{\prime}<q^{\prime} \leq q \leq \infty, \frac{1}{p}+\frac{1}{q}=1$, $\frac{1}{p^{\prime}}+\frac{1}{q^{\prime}}=1$. Then

- $A \otimes C_{2,2}^{*} B=A \otimes_{\min } B ;$
- $A \otimes_{C_{1, \infty}^{*}} B=A \otimes_{\max } B$;

Theorem (Lee-S-Wiersma 2023)

Let $A \subseteq B(\mathcal{H}), B \subseteq B(\mathcal{K}) C^{*}$-alg, $1 \leq p<p^{\prime}<q^{\prime} \leq q \leq \infty, \frac{1}{p}+\frac{1}{q}=1$, $\frac{1}{p^{\prime}}+\frac{1}{q^{\prime}}=1$. Then

- $A \otimes C_{2,2}^{*} B=A \otimes_{\min } B ;$
- $A \otimes_{C_{1, \infty}^{*}} B=A \otimes_{\max } B$;
$A \otimes_{1, \infty} B \xrightarrow{1-1} A \otimes_{p, q} B \xrightarrow{1-1} A \otimes_{p^{\prime}, q^{\prime}} B \xrightarrow{1-1} A \otimes_{\min } B$

$A \otimes_{\text {max }} B \xrightarrow{\text { onto }} A \otimes{C_{p, q}^{*}} B \xrightarrow{\text { onto }} A \otimes{C_{p^{\prime}, q^{\prime}}^{*}} B \xrightarrow{\text { onto }} A \otimes_{\text {min }} B$

Theorem (Lee-S-Wiersma 2023)

Let $A \subseteq B(\mathcal{H}), B \subseteq B(\mathcal{K}) C^{*}$-alg, $1 \leq p<p^{\prime}<q^{\prime} \leq q \leq \infty, \frac{1}{p}+\frac{1}{q}=1$, $\frac{1}{p^{\prime}}+\frac{1}{q^{\prime}}=1$. Then

- $A \otimes C_{2,2}^{*} B=A \otimes_{\min } B ;$
- $A \otimes_{C_{1, \infty}^{*}} B=A \otimes_{\max } B$;

$$
A \otimes_{1, \infty} B \xrightarrow{1-1} A \otimes_{p, q} B \xrightarrow{\downarrow-1} A \otimes_{p^{\prime}, q^{\prime}} B \xrightarrow{\downarrow} A \otimes_{\text {min }} B
$$

- There is $\theta \in[0,1]$ such that

$$
\|\cdot\|_{A \otimes_{C_{p, q}^{*}} B} \leq\|\cdot\|_{A \otimes_{p, q} B} \leq\|\cdot\|_{A \otimes_{1, \infty} B}^{\theta}\|\cdot\|_{A \otimes_{\min } B}^{1-\theta},
$$

Theorem (Lee-S-Wiersma 2023)

For discrete groups $G_{1} \& G_{2}$, we define

$$
S_{p}\left(G_{1} \times G_{2}\right):=\left\{f: G_{1} \times G_{2} \rightarrow \mathbb{C}:[f(s, t)] \in S_{p}\left(\overline{\ell^{2}\left(G_{2}\right)}, \ell^{2}\left(G_{1}\right)\right)\right\} .
$$

Theorem (Lee-S-Wiersma 2023)

For discrete groups $G_{1} \& G_{2}$, we define

$$
S_{p}\left(G_{1} \times G_{2}\right):=\left\{f: G_{1} \times G_{2} \rightarrow \mathbb{C}:[f(s, t)] \in S_{p}\left(\overline{\ell^{2}\left(G_{2}\right)}, \ell^{2}\left(G_{1}\right)\right)\right\}
$$

Then

- The space

$$
B_{p}\left(G_{1} \times G_{2}\right):=B\left(G_{1} \times G_{2}\right) \cap S_{p}\left(G_{1} \times G_{2}\right)
$$

is a translation invariant ideal of $B\left(G_{1} \times G_{2}\right)$.

Theorem (Lee-S-Wiersma 2023)

For discrete groups $G_{1} \& G_{2}$, we define

$$
S_{p}\left(G_{1} \times G_{2}\right):=\left\{f: G_{1} \times G_{2} \rightarrow \mathbb{C}:[f(s, t)] \in S_{p}\left(\overline{\ell^{2}\left(G_{2}\right)}, \ell^{2}\left(G_{1}\right)\right)\right\}
$$

Then

- The space

$$
B_{p}\left(G_{1} \times G_{2}\right):=B\left(G_{1} \times G_{2}\right) \cap S_{p}\left(G_{1} \times G_{2}\right)
$$

is a translation invariant ideal of $B\left(G_{1} \times G_{2}\right)$.

- The identity map on $\ell^{1}\left(G_{1} \times G_{2}\right)$ extends to a surjective *-homomorphism

$$
C_{r}^{*}\left(G_{1}\right) \otimes_{p, q} C_{r}^{*}\left(G_{2}\right) \rightarrow C_{B_{p}}^{*}\left(G_{1} \times G_{2}\right)
$$

Theorem

- If $G_{1} \& G_{2}$ have RD+IH, then

$$
C_{r}^{*}\left(G_{1}\right) \otimes C_{p, q}^{*} C_{r}^{*}\left(G_{2}\right)=C_{B_{p}}^{*}\left(G_{1} \times G_{2}\right) .
$$

Theorem

- If $G_{1} \& G_{2}$ have RD+IH, then

$$
C_{r}^{*}\left(G_{1}\right) \otimes C_{p, q}^{*} C_{r}^{*}\left(G_{2}\right)=C_{B_{p}}^{*}\left(G_{1} \times G_{2}\right) .
$$

In particular, they are all distinct for $1 \leq p \neq p^{\prime} \leq 2$ if $G_{1}=G_{2}$ is a nonamenable group having RD+IH.

Hermition/symmetric algebras/groups

Definition

A Banach $*$-algebra A is Hermitian or symmetric if for every $a=a^{*} \in A$, we have

$$
\mathrm{Sp}_{A}(a) \subset \mathbb{R}
$$

Hermition/symmetric algebras/groups

Definition

A Banach $*$-algebra A is Hermitian or symmetric if for every $a=a^{*} \in A$, we have

$$
\mathrm{Sp}_{A}(a) \subset \mathbb{R}
$$

A group G is Hermitian if $\ell^{1}(G)$ is Hermitian.

Hermition/symmetric algebras/groups

Definition

A Banach $*$-algebra A is Hermitian or symmetric if for every $a=a^{*} \in A$, we have

$$
\mathrm{Sp}_{A}(a) \subset \mathbb{R}
$$

A group G is Hermitian if $\ell^{1}(G)$ is Hermitian.

Theorem

(i) (Ludwig-1979) Finite extensions of nilpotent groups (e.g. finitely generated groups with polynomial growth) are Hermitian. (ii) (Jenkins 1970) Any group containing free subsemigroup on two generators is not Hermitian.

Hermitian groups are amenable

Theorem (Hulanicki-Leinert)

Let A be *-semisimple Banach *-algebra. Then TFAE:
(i) A is Hermitian;
(ii) For every $a^{*}=a \in A$,

$$
r_{A}(a)=r_{C^{*}(A)}(a) .
$$

Hermitian groups are amenable

Theorem (Hulanicki-Leinert)

Let A be *-semisimple Banach *-algebra. Then TFAE:
(i) A is Hermitian;
(ii) For every $a^{*}=a \in A$,

$$
r_{A}(a)=r_{C^{*}(A)}(a) .
$$

Theorem (S-Wiersma 2020)

A Hermitian group is amenable.

Hermitian groups are amenable

Theorem (Hulanicki-Leinert)

Let A be *-semisimple Banach *-algebra. Then TFAE:
(i) A is Hermitian;
(ii) For every $a^{*}=a \in A$,

$$
r_{A}(a)=r_{C^{*}(A)}(a)
$$

Theorem (S-Wiersma 2020)

A Hermitian group is amenable.
The proof heavily uses the intermediate Banach *-algebras $F_{p}^{*}(G)$ (between $\ell^{1}(G)$ and $C_{r}^{*}(G)$) and the complex interpolation relation

$$
\|f\|_{F_{p}^{*}(G)} \leq\|f\|_{1}^{1-\theta}\|f\|_{C_{r}^{*}(G)}^{\theta} \quad\left(f \in \ell^{1}(G)\right) .
$$

Rigidly symmetric C*-algebras are Type I

Definition

Let A be a C^{*}-algebra.
(i) A is type \mathbf{I} if every C^{*}-subalgebra of A is nuclear.

Rigidly symmetric C*-algebras are Type I

Definition

Let A be a C*-algebra.
(i) A is type \mathbf{I} if every C^{*}-subalgebra of A is nuclear.
(ii) A is rigidly symmetric if $A \widehat{\otimes} B$ is symmetric for every C^{*}-algebra B.

Rigidly symmetric C*-algebras are Type I

Definition

Let A be a C^{*}-algebra.
(i) A is type I if every C^{*}-subalgebra of A is nuclear.
(ii) A is rigidly symmetric if $A \widehat{\otimes} B$ is symmetric for every C^{*}-algebra B.

Theorem (Kugler 1979, Lee-S-Wiersma 2023)
A C^{*}-algebra is rigidly symmetric if and only if it is type l.

Rigidly symmetric C*-algebras are Type I

Definition

Let A be a C*-algebra.
(i) A is type I if every C^{*}-subalgebra of A is nuclear.
(ii) A is rigidly symmetric if $A \widehat{\otimes} B$ is symmetric for every C^{*}-algebra B.

Theorem (Kugler 1979, Lee-S-Wiersma 2023)

A C^{*}-algebra is rigidly symmetric if and only if it is type I.
The proof heavily uses the intermediate Banach $*$-algebras $A \otimes_{p, q} B$ between $A \otimes_{1, \infty} B$ and $A \otimes_{\min } B$,

Rigidly symmetric C*-algebras are Type I

Definition

Let A be a C*-algebra.
(i) A is type I if every C^{*}-subalgebra of A is nuclear.
(ii) A is rigidly symmetric if $A \widehat{\otimes} B$ is symmetric for every C^{*}-algebra B.

Theorem (Kugler 1979, Lee-S-Wiersma 2023)

A C^{*}-algebra is rigidly symmetric if and only if it is type I.
The proof heavily uses the intermediate Banach $*$-algebras $A \otimes_{p, q} B$ between $A \otimes_{1, \infty} B$ and $A \otimes_{\min } B$, the complex interpolation relation

$$
\|\cdot\|_{A \otimes_{p, q} B} \leq\|\cdot\|_{A \otimes_{1, \infty} B}^{\theta}\|\cdot\|_{A \otimes_{\min } B}^{1-\theta} .
$$

Rigidly symmetric C*-algebras are Type I

Definition

Let A be a C*-algebra.
(i) A is type I if every C^{*}-subalgebra of A is nuclear.
(ii) A is rigidly symmetric if $A \widehat{\otimes} B$ is symmetric for every C^{*}-algebra B.

Theorem (Kugler 1979, Lee-S-Wiersma 2023)

A C^{*}-algebra is rigidly symmetric if and only if it is type I.
The proof heavily uses the intermediate Banach $*$-algebras $A \otimes_{p, q} B$ between $A \otimes_{1, \infty} B$ and $A \otimes_{\min } B$, the complex interpolation relation

$$
\|\cdot\|_{A \otimes_{p, q} B} \leq\|\cdot\|_{A \otimes_{1, \infty} B}^{\theta}\|\cdot\|_{A \otimes_{\min } B}^{1-\theta} .
$$

and the fact that

$$
C^{*}\left(A \otimes_{1, \infty} B\right)=A \otimes_{\max } B
$$

