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G : = discrete group (usually finitely generated),

C ∗
r (G ) = The reduced C ∗-alg of G (⊆ B(l2(G ))),

C ∗(G ) = The full group C ∗-alg of G ,

Λ : C ∗(G ) ↠ C ∗
r (G ) the canonical ∗ -rep.

Definition

G is amenable if it has a finitely additive translation-invariant probability
measure.

Example

(i) Solvable groups and groups of subexponential growth are amenable.

(ii) groups containing F2, the free group on two generators, are not
amenable.

Theorem (Hulanicki)

G is amenable iff C ∗
r (G ) = C ∗(G ) iff Λ : C ∗(G ) ↠ C ∗

r (G ) is injective.
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Question

For G nonamenable, we know that

C ∗(G ) ↠ C ∗
r (G )

is not injective. Is there an intermediate C ∗-algebras between them?

In
other words, is there a C∗-algebra A such that

C ∗(G )
not 1−1
↠ A

not 1−1
↠ C ∗

r (G ) ?

These algebras, if they exist, are called exotic C∗-algebra.
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First Answer: Yes! for G = Fn (Brown-Guentner). There is at least one!

Second Answer: There are infinitely many for G = Fn (Okayasu).
Their examples are in the from of ℓp-C

∗-algebras, usually denoted by
C ∗
ℓp
(G ). These algebras are C∗-completion of ℓ1(G ) under the following

C∗-norm: For every f ∈ ℓ1(G ), we define

∥f ∥C∗
ℓp
(G) := sup{∥π(f )∥ : π is a unitary rep. of G

with enough coefficients in ℓp}.

Here, by “enough coefficients”, we mean that there is a dense subset
K ⊆ Hπ such that the coefficient functions

s 7→ ⟨π(s)ξ|ξ⟩ , ξ ∈ K

belongs to ℓp(G ). For 2 ≤ p ≤ p′ ≤ ∞, we have

C ∗
ℓ∞(G ) = C ∗(G ) ↠ C ∗

ℓp′
(G ) ↠ C ∗

ℓp(G ) ↠ C ∗
r (G ) = C ∗

ℓ2(G ).
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Constructing exotic C ∗-algebras (S-Wiersma)

One ways to construct a C ∗-algebra is to use C ∗-envelope:

ℓ1(G ) C ∗
r (G )

C ∗(ℓ1(G )) = C ∗(G ) C ∗
r (G )
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Constructing exotic C ∗-algebras (S-Wiersma)

Question

Are there intermediate Banach ∗-algebras between ℓ1(G ) and C ∗
r (G )?

Answer: Yes! And they can be “measured” quite naturally using the
complex interpolation:

• For every p ∈ [1,∞], ℓ1(G ) acts on ℓp(G ) by convolution:

ℓ1(G ) ∋ f 7→ Tf ∈ B(ℓp(G ))

f 7→ Tf (g) = f ∗ g .

• For 1 ≤ p1 < p2 < p3 ≤ ∞, there exists θ ∈ (0, 1) such that

∥Tf ∥B(ℓp2 (G)) ≤ ∥Tf ∥1−θ
B(ℓp1 (G))∥Tf ∥θB(ℓp3 (G)).
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Constructing exotic C ∗-algebras (S-Wiersma)

Definition

For any group G , we can define (1 ≤ p ≤ ∞, 1/p + 1/q = 1)

F ∗
p (G ) := The completion of ℓ1(G ) in B(ℓp(G )) ∩ B(ℓq(G ))

which has the norm

∥f ∥F∗
p (G) = max{∥Tf ∥B(ℓp(G)), ∥Tf ∥B(ℓq(G))}

= max{∥Tf ∥B(ℓp(G)), ∥Tf ∗∥B(ℓp(G))}.
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Constructing exotic C ∗-algebras (S-Wiersma)

Proposition

• For every p ∈ [1,∞], F ∗
p (G ) is a Banach ∗-algebra.

• F ∗
p (G ) = F ∗

q (G ) if
1

p
+

1

q
= 1

• We have injective ∗-inclusions

ℓ1(G ) ↪→ F ∗
p′(G ) ↪→ F ∗

p (G ) ↪→ C ∗
r (G )

for every 2 ≤ p ≤ p′ ≤ ∞. Moreover, by taking the C∗-envelopes, we
get

C ∗(G ) ↠ C ∗(F ∗
p′(G )) ↠ C ∗(F ∗

p (G )) ↠ C ∗
r (G ).
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Constructing exotic C ∗-algebras (S-Wiersma)

Question

For G nonamenable, is there a p ∈ (2,∞) such that

C ∗(G )
not 1−1
↠ C ∗(F ∗

p (G ))
not 1−1
↠ C ∗

r (G ) ?

More generally, could C ∗(F ∗
p (G )) be distinct?

Answer: Yes! for nonamenable groups with both rapid decay and
integrable Haagroup property.
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Groups with rapid decay & Haagerup prop.

A length function is a function L : G → [0,∞) such that

(i) L(e) = 0;

(ii) L(g) = L(g−1), g ∈ G ;

(iii) L(st) ≤ L(s) + L(t), s, t ∈ G .

For any d > 0,
wd(s) = (1 + L(s))d

is a (submultiplicative) weight on G . We say that (G , L) has Rapid decay
(RD) if ∃ d > 0 such that.

ℓ2(G ,wd) ⊆ C ∗
r (G )

iff there is M > 0 such that

∥f ∥C∗
r (G) ≤ M∥f ∥ℓ2(G ,wd ) (f ∈ ℓ2(G ,wd)).
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Groups with rapid decay & Haagerup prop.

A length function L is a Haagerup length function (IH) if for every
t ≥ 0,

φt(s) = e−tL(s) (s ∈ G )

is a positive-definite function on G .

A group G has integrable Haagerup
(IH) property if it has a Haagerup length function L such that for every
t > 0

φt(·) = e−tL(·) ∈
⋃

1≤p<∞
ℓp(G ).
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Groups with rapid decay & Haagerup prop.

Example

Groups with RD+IH:

(i) Fn, nonabelian free groups on n-generators.

(ii) Finitely generated Coxeter groups.

(iii) “Some” groups acting properly and cocompactly by isometries on
“Some” CAT(0).

Theorem (S-Wiersma)

For G nonamenable with RD+IH,

C ∗
ℓp(G ) = C ∗(F ∗

p (G )) (p ∈ [2,∞]).

Moreover, they are all pairwise distinct.
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Groups with rapid decay & Haagerup prop.

Key ideals in the proof: We use complex interpolation to obtain the
following:

ℓ1(G ) → B(ℓ1(G ))
ℓ2w (G ) → B(ℓ2(G ))

}
⇒ ℓqwq

(G ) ⊆ B(ℓq(G )),

and
ℓ2w (G ) → B(ℓ2(G ))
ℓ1(G ) → B(ℓ∞(G ))

}
⇒ ℓqwq

(G ) ⊆ B(ℓp(G )),

where

1 ≤ q ≤ 2,
1

p
+

1

q
= 1, wq = w

2
p

d .
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Groups with rapid decay & Haagerup prop.

Hence we have that

ℓqwq
(G ) ⊆ F ∗

p (G ) := The completion of ℓ1(G ) in B(ℓp(G )) ∩ B(ℓq(G )).

We will then have that

ℓqwq F ∗
p (G )

C ∗(F ∗
p (G ))

⇒ C ∗(F ∗
p (G ))∗ ⊆ ℓp

w−1
q
(G ).
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Groups with rapid decay & Haagerup prop.

However we can check exactly which positive definite function of the form
φt = e−tL belongs to ℓp

w−1
q

and which does not.

Hence using this criterion,

we can show that
C ∗(F ∗

p (G )) = C ∗
ℓp((G )),

and
C ∗(F ∗

p (G )) ̸= C ∗(F ∗
p′(G ))

for all 2 ≤ p ̸= p′ ≤ ∞.
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Goal: Apply similar ideas to tensor category of C ∗-algebras

Let A ⊆ B(H) and B ⊆ B(K) be C ∗-algebras. Then

A⊗ B A⊗max B

A⊗min B ⊆ B(H⊗K)

We say that (A,B) is a nuclear pair if

A⊗min B = A⊗max B.

Question

Can we construct distinct C ∗-tensor norms on A⊗ B, when (A,B) is a not
a nuclear pair, strictly between A⊗min B and A⊗max B?
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Goal: Apply similar ideas to tensor category of C ∗-algebras

• H, a Hilbert space.

• HC := B(C,H) column Hilbert space.

• HR := B(H,C) row Hilbert space.

• Complex interpolation space (1 ≤ p ≤ ∞)

HCp := [HC ,HR ] 1
p
, HRp := [HR ,HC ] 1

p
.

• HC2 = HR2(= Hoh) operator Hilbert space uniquely determined by

H∗
oh

∼= Hoh.
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Goal: Apply similar ideas to tensor category of C ∗-algebras

• HC∞ = HC ,HR∞ = HR .

• HCp = HRq , if
1

p
+

1

q
= 1.

• ⊗h is the Haagerup tensor product.

• Compatibility with the complex interpolation:

[X0,X1]θ ⊗h [Y0,Y1]θ ∼= [X0 ⊗h Y0,X1 ⊗h Y1]θ,

where (X0,X1) & (Y0,Y1) are compatible operator spaces &
0 ≤ θ ≤ 1.
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Goal: Apply similar ideas to tensor category of C ∗-algebras

Definition

Let 1 ≤ p ≤ ∞. For A ⊆ B(H), B ⊆ B(K), C ∗-algebras. We consider the
following mapping:

πp : A⊗ B → CB(HCp ⊗h KRp)

πp(a⊗ b)(ξ ⊗ η) = aξ ⊗ bη.

We can use it to define a tensor product norm on A⊗ B:

A⊗p B := The completion of πp(A⊗ B)

inside CB(HCp ⊗KRp).
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Another reformulation

HC1 ⊗h KR1 = HR ⊗h KC
∼= T (K,H)

HC∞ ⊗h KR∞ = HC ⊗h KR
∼= K (K,H)

 complex
=======⇒
interpolation

HCp ⊗h KRp
∼= Sp(K,H),

where Sp(K,H) is the space of p-Schatten class operators. In this case,
we can write

πp : A⊗ B → CB(Sp(K,H))

πp(a⊗ b)T = aT b̃

[b ∈ B(H) → b̃ ∈ B(H)].
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Another reformulation

Remark

Fp(G ) ⊆ B(ℓp(G )) (ℓp(G ) is a commutative Lp-space).

A⊗p B ⊆ CB(Sp(K̄,H)) (Sp(K̄,H) is a noncommutative Lp-space).

Facts:

• A⊗2 B ∼= A⊗min B ∗-isomorphism.

• A⊗∞ B ∼= A⊗h B
op, a⊗ b 7→ a⊗ bop, complete isometry.

• A⊗1 B ∼= Bop ⊗h A, a⊗ b 7→ bop ⊗ a, complete isometry.

• ⊗1, ⊗2, ⊗∞ does not depend on the representations of C ∗-algebras.
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Another reformulation

Definition

Let A ⊆ B(H), B ⊆ B(K) be C ∗-algebras, and let
1

p
+

1

q
= 1. We let

A⊗p,q B := The completion of (A⊗c
p B) ∩ (A⊗c

q B)

A⊗C∗
p,q

B := C ∗(A⊗p,q B), the C*-envelope of A⊗c
p,q B
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Theorem (Lee-S-Wiersma 2023)

Let A ⊆ B(H), B ⊆ B(K) C ∗-alg, 1 ≤ p < p′ < q′ ≤ q ≤ ∞,
1

p
+

1

q
= 1,

1

p′
+

1

q′
= 1.

Then

• A⊗C∗
2,2

B = A⊗min B;

• A⊗C∗
1,∞

B = A⊗max B;

•
A⊗1,∞ B A⊗p,q B A⊗p′,q′ B A⊗min B

A⊗max B A⊗C∗
p,q

B A⊗C∗
p′,q′

B A⊗min B

1−1 1−1 1−1

onto onto onto

• There is θ ∈ [0, 1] such that

∥ · ∥A⊗C∗
p,q

B ≤ ∥ · ∥A⊗p,qB ≤ ∥ · ∥θA⊗1,∞B ∥ · ∥1−θ
A⊗minB

,
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Theorem (Lee-S-Wiersma 2023)

For discrete groups G1 & G2, we define

Sp(G1 × G2) := {f : G1 × G2 → C : [f (s, t)] ∈ Sp(ℓ2(G2), ℓ
2(G1))}.

Then

• The space

Bp(G1 × G2) := B(G1 × G2) ∩ Sp(G1 × G2)

is a translation invariant ideal of B(G1 × G2).

• The identity map on ℓ1(G1 × G2) extends to a surjective
∗-homomorphism

C ∗
r (G1)⊗p,q C

∗
r (G2) → C ∗

Bp
(G1 × G2).
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is a translation invariant ideal of B(G1 × G2).

• The identity map on ℓ1(G1 × G2) extends to a surjective
∗-homomorphism

C ∗
r (G1)⊗p,q C

∗
r (G2) → C ∗

Bp
(G1 × G2).
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Theorem

• If G1 & G2 have RD+IH, then

C ∗
r (G1)⊗C∗

p,q
C ∗
r (G2) = C ∗

Bp
(G1 × G2).

In particular, they are all distinct for 1 ≤ p ̸= p′ ≤ 2 if G1 = G2 is a
nonamenable group having RD+IH.
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Hermition/symmetric algebras/groups

Definition

A Banach ∗-algebra A is Hermitian or symmetric if for every a = a∗ ∈ A,
we have

SpA(a) ⊂ R.

A group G is Hermitian if ℓ1(G ) is Hermitian.

Theorem

(i) (Ludwig-1979) Finite extensions of nilpotent groups (e.g. finitely
generated groups with polynomial growth) are Hermitian.
(ii) (Jenkins 1970) Any group containing free subsemigroup on two
generators is not Hermitian.
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Hermitian groups are amenable

Theorem (Hulanicki-Leinert)

Let A be ∗-semisimple Banach ∗-algebra. Then TFAE:
(i) A is Hermitian;
(ii) For every a∗ = a ∈ A,

rA(a) = rC∗(A)(a).

Theorem (S-Wiersma 2020)

A Hermitian group is amenable.

The proof heavily uses the intermediate Banach ∗-algebras F ∗
p (G )

(between ℓ1(G ) and C ∗
r (G )) and the complex interpolation relation

∥f ∥F∗
p (G) ≤ ∥f ∥1−θ

1 ∥f ∥θC∗
r (G) (f ∈ ℓ1(G )).

Ebrahim Samei (University of Saskatchewan) Talk May 5, 2023 28 / 29



Hermitian groups are amenable

Theorem (Hulanicki-Leinert)

Let A be ∗-semisimple Banach ∗-algebra. Then TFAE:
(i) A is Hermitian;
(ii) For every a∗ = a ∈ A,

rA(a) = rC∗(A)(a).

Theorem (S-Wiersma 2020)

A Hermitian group is amenable.

The proof heavily uses the intermediate Banach ∗-algebras F ∗
p (G )

(between ℓ1(G ) and C ∗
r (G )) and the complex interpolation relation

∥f ∥F∗
p (G) ≤ ∥f ∥1−θ

1 ∥f ∥θC∗
r (G) (f ∈ ℓ1(G )).

Ebrahim Samei (University of Saskatchewan) Talk May 5, 2023 28 / 29



Hermitian groups are amenable

Theorem (Hulanicki-Leinert)

Let A be ∗-semisimple Banach ∗-algebra. Then TFAE:
(i) A is Hermitian;
(ii) For every a∗ = a ∈ A,

rA(a) = rC∗(A)(a).

Theorem (S-Wiersma 2020)

A Hermitian group is amenable.

The proof heavily uses the intermediate Banach ∗-algebras F ∗
p (G )

(between ℓ1(G ) and C ∗
r (G )) and the complex interpolation relation

∥f ∥F∗
p (G) ≤ ∥f ∥1−θ

1 ∥f ∥θC∗
r (G) (f ∈ ℓ1(G )).

Ebrahim Samei (University of Saskatchewan) Talk May 5, 2023 28 / 29



Rigidly symmetric C∗-algebras are Type I

Definition

Let A be a C∗-algebra.
(i) A is type I if every C∗-subalgebra of A is nuclear.

(ii) A is rigidly symmetric if A⊗̂B is symmetric for every C∗-algebra B.

Theorem (Kugler 1979, Lee-S-Wiersma 2023)

A C∗-algebra is rigidly symmetric if and only if it is type I.

The proof heavily uses the intermediate Banach ∗-algebras A⊗p,q B
between A⊗1,∞ B and A⊗min B, the complex interpolation relation

∥ · ∥A⊗p,qB ≤ ∥ · ∥θA⊗1,∞B ∥ · ∥1−θ
A⊗minB

.

and the fact that
C ∗(A⊗1,∞ B) = A⊗max B.
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