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o Background
o Explicit Calkin algebras

o Quotients of £(X) and tight control of
operators
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Background

Separable spaces of continuous functions as Calkin algebras



Banach algebras

Definition: a Banach algebra is a complex associative algebra B with
a complete norm || - || such that ||ab|| < ||al|||b]|, for all a, b € B.
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Banach algebras

Definition: a Banach algebra is a complex associative algebra B with
a complete norm || - || such that ||ab|| < ||al|||b]|, for all a, b € 5.

A Banach algebra B is unital if there exists e € B such that

ea=age=aforallacB.
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Banach algebras

Definition: a Banach algebra is a complex associative algebra B with
a complete norm || - || such that ||ab|| < ||al|||b]|, for all a, b € 5.

A Banach algebra B is unital if there exists e € B such that

ea=age=aforallacB.

Example: For a compact Hausdorff space K,
C(K) = {f: K — C continuous}

with ||f|| = sup{|f(k)| : kK € K} and point-wise multiplication is a unital
Banach algebra.
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Banach algebras

Example: the convolution algebra

f1(No) = {a= (a(i)Zo : llall = Y_lali)| < oo},
i=0
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Banach algebras

Example: the convolution algebra
(No) = {a = (ali)iZ : llall = Da )| < oo},
where for a = (a(/))°, and b = (b(i)),,

oo

the convolution ax b = ((a * b)(i))‘ . is
=

(a* b)( Za,b,,
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Banach algebras

Example: the convolution algebra
(No) = {a = (ali)iZ : llall = Da )| < oo},
where for a = (a(/))°, and b = (b(i)),,

oo

the convolution ax b = ((a * b)(i))‘ . is
=

(a* b)( Za,b,,

Comment: This is related to Taylor series coefficients.
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Banach algebras

Example: the coordinte-wise multiplication algebra

(o) = {2 = (2l - lal = (X lat)p) " < oo},
i=1
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Banach algebras

Example: the coordinte-wise multiplication algebra
oo — )P
6(N) = {a= (@i al = (Y lat)P) < oo},
i=1

where for a = (a(i))72, & b= (b(i)),, the coordinate-wise product is

oo

a-b= (a(i)b(i))

=1
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Banach algebras

Example: the coordinte-wise multiplication algebra
oo — )P
6(N) = {a= (@i al = (Y lat)P) < oo},
i=1

where for a = (a(i))72, & b= (b(i)),, the coordinate-wise product is

oo

a-b= (a(i)b(i))

=1

Comment: For 1 < p < oo this is a reflexive Banach algebra, i.e.,

0p(N) = £p(N)*.
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Banach algebras of operators

Example: Let X be a Banach space.

L(X)={T : X — Xlinear and bounded}.
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Banach algebras of operators

Example: Let X be a Banach space.

L(X)={T : X — Xlinear and bounded}.

With the operator norm
IT1l = sup{|[ Tx]| : lIx]| <1}

and composition TS, £(X) is a Banach algebra.
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Banach algebras of operators

Definition: A Banach algebra of operators is a closed subalgebra
of £(X), for some Banach space X.
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Banach algebras of operators

Definition: A Banach algebra of operators is a closed subalgebra
of £(X), for some Banach space X.

Remark: A Banach algebra B admits a representation as a Banach
subalgebra of £(B’), and thus as a Banach algebra of operators.
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Banach algebras of operators

Definition: A Banach algebra of operators is a closed subalgebra
of £(X), for some Banach space X.

Remark: A Banach algebra B admits a representation as a Banach
subalgebra of £(B’), and thus as a Banach algebra of operators.

Example: If X is a Banach space and S c £(X),

Bxs=({T T ..T& . Ty,... ., T,e Sand k..., ky € N}).

T oc Motdxne Separable spaces of continuous functions as Calkin algebras



Banach algebras of operators

Let X be a Banach space with a basis (&))icz (€.9., {2(Z) or ¢1(Z)).

The Right Shift operator R : X — X:

F"( Z aiei> = Z a;€; 1

i€z i€z
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Banach algebras of operators

Let X be a Banach space with a basis (&))icz (€.9., {2(Z) or ¢1(Z)).

The Right Shift operator R : X — X:

F"( Z aiei> = Z a;€; 1

i€z i€z

The Left Shift operator L : X — X:

L( > a,e;) => ae

i€Z i€Z

TITobhoc Motdxne Separable spaces of continuous functions as Calkin algebras



Banach algebras of operators

Let X be a Banach space with a basis (&))icz (€.9., {2(Z) or ¢1(Z)).

The Right Shift operator R : X — X:

F"( Z aiei> = Z a;€; 1

i€z i€z

The Left Shift operator L : X — X:

L( > a,e;) => ae

i€Z i€Z

Remark: on ¢»(Z) and ¢1(Z) L, R are bounded.
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Banach algebras of operators

Consider Bx ;g = ({/,R",L™ : n,m € N}) C L(X).
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Banach algebras of operators

Consider Bx ;g = ({/,R",L™ : n,m € N}) C L(X).

For X = (2, Bx..r = C(T).
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Banach algebras of operators

Consider Bx ;g = ({/,R",L™ : n,m € N}) C L(X).

For X = (2, Bx..r = C(T).

For X = {1, Bx1.r = ¢1(Z) (Wiener algebra).
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Banach algebras of operators

Consider Bx ;g = ({/,R",L™ : n,m € N}) C L(X).

For X = (2, Bx..r = C(T).

For X = {1, Bx1.r = ¢1(Z) (Wiener algebra).

Comment: If S ¢ £(X) then

@ the algebraic structure of S and
@ the geometric structure of X
together determine By ; r = (1(Z).
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Quotient algebras of £(X)

An ideal of £(X) is a subspace A of L(X)

@ that is closed with respect to the operator norm topology,

evTeL(X)and Se A, TSand ST arein A.
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Quotient algebras of £(X)

An ideal of £(X) is a subspace A of L(X)

@ that is closed with respect to the operator norm topology,

evTeL(X)and Se A, TSand ST arein A.

Examples: {0} and L(X),
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Quotient algebras of £(X)

An ideal of £(X) is a subspace A of L(X)

@ that is closed with respect to the operator norm topology,

evTeL(X)and Se A, TSand ST arein A.

Examples: {0} and L(X),

K(X)={T € L(X) compact},
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Quotient algebras of £(X)

An ideal of £(X) is a subspace A of L(X)

@ that is closed with respect to the operator norm topology,

evTeL(X)and Se A, TSand ST arein A.

Examples: {0} and L(X),
K(X)={T € L(X) compact},

SS(X) ={T € L(X) strictly singular}.
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Quotient algebras of £(X)

Remark: If A is an ideal of £(X) then £(X)/A is a Banach algebra,
called a quotient algebra of £(X).
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Quotient algebras of £(X)

Remark: If A is an ideal of £(X) then £(X)/A is a Banach algebra,
called a quotient algebra of £(X).

Definition: The Calkin algebra of X is
Cal (X) = L(X)/K(X).
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Quotient algebras of £(X)

Remark: If A is an ideal of £(X) then £(X)/A is a Banach algebra,
called a quotient algebra of £(X).

Definition: The Calkin algebra of X is
Cal (X) = L(X)/K(X).

Remark: dim(X) = oo if and only if Caf(X) is a unital Banach
algebra.
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Origins of the Calkin algebra

Comment: Cal(X) is useful for:
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Origins of the Calkin algebra

Comment: Cal(X) is useful for:
e Classifying ideals of £(X).

Theorem: (Calkin 1941)
Cal (¢2) has no non-trivial ideals —
{0} € K(¢2) € L(¢2) are the only ideals in L(¢2).
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Origins of the Calkin algebra

Comment: Cal(X) is useful for:
e Classifying ideals of £(X).

Theorem: (Calkin 1941)
Cal (¢2) has no non-trivial ideals —
{0} € K(¢2) € L(¢2) are the only ideals in L(¢2).

e Characterizing Fredholm operators on X.

Theorem: (Atkinson, 1951)
T € L£(X) is Fredhold <= [T]in Caf(X) is invertible.
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Origins of the Calkin algebra

Comment: Cal(X) is useful for:
e Classifying ideals of £(X).

Theorem: (Calkin 1941)
Cal (¢2) has no non-trivial ideals —
{0} € K(¢2) € L(¢2) are the only ideals in L(¢2).

e Characterizing Fredholm operators on X.

Theorem: (Atkinson, 1951)
T € L£(X) is Fredhold <= [T]in Caf(X) is invertible.

More:
@ K-theory of C*-algebras (Brown - Douglas - Fillmore, 1977)
@ Set theory (Phillips, 2007 and Farah, 2011)
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Explicit Calkin algebras
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Explicit descriptions of Cal(X).

Question: for what unital Banach algebras B does there exist X with

B~ Cal(X)?
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Explicit descriptions of Cal(X).

Question: for what unital Banach algebras B does there exist X with

B~ Cal(X)?

@ B = C, Argyros-Haydon, 2011.
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Explicit descriptions of Cal(X).

Question: for what unital Banach algebras B does there exist X with

B~ Cal(X)?

@ B = C, Argyros-Haydon, 2011.

@ B =/1(Np), Tarbard, 2013.
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Explicit descriptions of Cal(X).

Question: for what unital Banach algebras B does there exist X with

B~ Cal(X)?

@ B = C, Argyros-Haydon, 2011.
@ B =/1(Np), Tarbard, 2013.

@ B = C(K), for K countable and compact,
M-Puglisi-Zisimopoulou, 2016.

and others.
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Explicit descriptions of Cal(X).

Theorem: (M - 2021) For every compact metric space K there exists
a Banach space X¢k) with Cal(X¢(ky) = C(K).
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Explicit descriptions of Cal(X).

Theorem: (M - 2021) For every compact metric space K there exists
a Banach space X¢k) with Cal(X¢(ky) = C(K).

E.g., C[0, 1], C(2V), and C(T) occur as Calkin algebras.
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Quotients of £(X) and tight control of
operators

{ s functions as Calkin algebras



Explicit descriptions of quotient algebras.

Theorem: (Gowers - Maurey, 1993) There exists Xy such that:

@ Every T € L(Xgwm) is of the form T = A/ + S,
with S € S5(Xgm)-
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Explicit descriptions of quotient algebras.

Theorem: (Gowers - Maurey, 1993) There exists Xy such that:

@ Every T € L(Xgwm) is of the form T = A/ + S,
with S € S5(Xgm)-

@ Equivalently, £(Xom)/SS(Xom) is one-dimensional.
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Explicit descriptions of quotient algebras.

Theorem: (Gowers - Maurey, 1993) There exists Xy such that:

@ Every T € L(Xgwm) is of the form T = A/ + S,
with S € S5(Xgm)-

@ Equivalently, £(Xom)/SS(Xom) is one-dimensional.

Theorem: (Argyros - Haydon, 2011) There exists Xy such that:

@ Every T € L(Xapn) is of the form T = A\ + K,
with K € K(Xan)-

@ Equivalently, Cal (¥Xan) is one-dimensional.
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Explicit descriptions of quotient algebras.

Theorem: (Gowers-Maurey, 1997)
There exists a Banach space X}, with a basis such that:
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Explicit descriptions of quotient algebras.

Theorem: (Gowers-Maurey, 1997)
There exists a Banach space X}, with a basis such that:

@ The left shift L and the right shift R on X3\, are bounded.
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Explicit descriptions of quotient algebras.

Theorem: (Gowers-Maurey, 1997)
There exists a Banach space X}, with a basis such that:

@ The left shift L and the right shift R on X3\, are bounded.

o VT e L(X5),
T=XM+Y> 2"+ > 7 unR"+ S

with S € SS(X&y) and X2, [An| + 32, [n| < 0.
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Explicit descriptions of quotient algebras.

Theorem: (Gowers-Maurey, 1997)
There exists a Banach space X}, with a basis such that:

@ The left shift L and the right shift R on X3\, are bounded.

o VT e L(X5),
T=XM+Y> 2"+ > 7 unR"+ S

with S € SS(X&y) and X2, [An| + 32, [n| < 0.

Therefore, £(X5y)/SS(X5y) = (1(Z) (Wiener algebra).
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Explicit descriptions of quotient algebras.

Theorem: (Tarbard, 2013)
There exists a Banach space Xt such that:

@ There exists a bounded ‘right shift” operator R on Xr.
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Explicit descriptions of quotient algebras.

Theorem: (Tarbard, 2013)
There exists a Banach space Xt such that:

@ There exists a bounded ‘right shift” operator R on Xr.

@ VT € L(Xr),
T=M+>2, MR"+K

with K € K(Xt) and >, |\s| < oc.
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Explicit descriptions of quotient algebras.

Theorem: (Tarbard, 2013)
There exists a Banach space Xt such that:

@ There exists a bounded ‘right shift” operator R on Xr.

@ VT € L(Xr),
T=M+>2 MR+ K

with K € K(Xt) and >, |\s| < oc.

Therefore, Cal(Xr1) = ¢1(Np).
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Explicit descriptions of quotient algebras.

Comment: For given B, how to represent B ~ Cal(X).
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Explicit descriptions of quotient algebras.

Comment: For given B, how to represent B ~ Cal(X).

1. Identify a class of operators C on a classical Banach space Xj
that generates 5.

(e.g., Land Ron Xy = ¢1(Z) generate B = ¢1(Z))
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Explicit descriptions of quotient algebras.

Comment: For given B, how to represent B ~ Cal(X).

1. Identify a class of operators C on a classical Banach space Xj
that generates 5.

(e.g., Land Ron Xy = ¢1(Z) generate B = ¢1(Z))

2. Construct a Gowers-Maurey space X with £(X)/SS(X) ~ B.
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Explicit descriptions of quotient algebras.

Comment: For given B, how to represent B ~ Cal(X).

1. Identify a class of operators C on a classical Banach space Xj
that generates 5.
(e.g., Land Ron Xy = ¢1(Z) generate B = ¢1(Z))

2. Construct a Gowers-Maurey space X with £(X)/SS(X) ~ B.

3. Construct an Argyros-Haydon space X with Cal(X) ~ B.
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Noteworthy exceptions

e My, (C)® - ® M,,(C) (Laustsen - Kania, 2017),
by taking finite sums of Argyros-Haydon spaces.
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Noteworthy exceptions

e My, (C)® - ® M,,(C) (Laustsen - Kania, 2017),
by taking finite sums of Argyros-Haydon spaces.

@ C(K), for every countable compactum K
(M - Puglisi - Zisimopoulou, 2016),
by iterating Argyros-Haydon infinite sums of Argyros-Haydon spaces.
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Noteworthy exceptions

e My, (C)® - ® M,,(C) (Laustsen - Kania, 2017),
by taking finite sums of Argyros-Haydon spaces.

@ C(K), for every countable compactum K
(M - Puglisi - Zisimopoulou, 2016),
by iterating Argyros-Haydon infinite sums of Argyros-Haydon spaces.

@ James space,
a hereditarily indecomposable space,
all non-reflexive spaces with an unconditional basis, etc.
(M - Puglisi - Tolias, 2020).
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Noteworthy exceptions

e My, (C)® - ® M,,(C) (Laustsen - Kania, 2017),
by taking finite sums of Argyros-Haydon spaces.

@ C(K), for every countable compactum K
(M - Puglisi - Zisimopoulou, 2016),
by iterating Argyros-Haydon infinite sums of Argyros-Haydon spaces.

@ James space,
a hereditarily indecomposable space,
all non-reflexive spaces with an unconditional basis, etc.
(M - Puglisi - Tolias, 2020).

And others (e.g., Skillicorn, 2015).
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|dea of proof

Separable spaces of continuous functions as Calkin algebras



C(K) as a Calkin algebra: step 1.

For given B = C(K), how to represent C(K) ~ Cal(X).

1. ldentify a class of operators C on a classical Banach space Xj
that generates C(K).
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C(K) subalgebras of L(¢2).

Proposition: Let Ty € £(¢2) be normal. The unital C*-algebra

({1, TO(Tg)™: n,m e N})

generated by Ty is C(a(To)).
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C(K) subalgebras of L(¢2).

Proposition: Let Ty € £(¢2) be normal. The unital C*-algebra

({1, TO(Tg)™: n,m e N})

generated by Ty is C(a(To)).

In fact, any commutative *-subalgebra of £(¢>) is some C(K).
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C(T) subalgebras of L(¢2 ).

Example: Fix o € (0,1)\ Q and put zy = e*?™.

Then, {z§ : n < N} is dense in T.
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C(T) subalgebras of L(¢2 ).

Example: Fix o € (0,1)\ Q and put zy = e*?™.
Then, {z§ : n € N} is dense in T.

Notation: For every continuous ¢ : T — C define

b £a(N) — £o(N) with ¢(en) = o(28)en

ITobhoc Motdxne Separable spaces of continuous functions as Calkin algebras



C(T) subalgebras of L(¢2 ).

Example: Fix o € (0,1)\ Q and put zy = e*?™.
Then, {z§ : n € N} is dense in T.

Notation: For every continuous ¢ : T — C define

b £a(N) — £o(N) with ¢(en) = o(28)en

Proposition: ~ : C(T) — £(/2(N)) is a homomorphic isometry.

ITobhoc Motdxne Separable spaces of continuous functions as Calkin algebras



C(T) subalgebras of L£(Xp).

Example: Fix o € (0,1)\ Q and put zy = e*?™.
Then, {zJ : n€ N} isdense in T.
Notation: For every continuous ¢ : T — C define

o Xo — Xo with ¢(en) = ¢(28)en

Proposition: = : C(T) — £( Xo ) is a homomorphic isometry,

for any X, with a 1-unconditional basis (ep).
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C(T) as a Calkin algebra: step 2.

For B = C(T), how to represent C(T) ~ Cal(X).

2. Construct a Gowers-Maurey space X with £(X)/SS(X) ~ C(T).
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C(T) as a Calkin algebra: step 3.

For B = C(T), how to represent C(T) ~ Cal(X).

3. Construct an Argyros-Haydon space X with Cal(X) ~ C(T).
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Calkin algebra C(T).

Theorem: There exists a Argyros-Haydon-type Bourgain-Delbaen
Z-space X¢(r) with a basis (d,),er such that:
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Calkin algebra C(T).

Theorem: There exists a Argyros-Haydon-type Bourgain-Delbaen
Z-space X¢(r) with a basis (d,),er such that:

e For every ¢ : T — C Lipschitz, ¢ : X¢(ry — X¢(r) is bounded.
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Calkin algebra C(T).

Theorem: There exists a Argyros-Haydon-type Bourgain-Delbaen
Z-space X¢(r) with a basis (d,),er such that:

e For every ¢ : T — C Lipschitz, ¢ : X¢(ry — X¢(r) is bounded.

@ Forevery ¢ : T — C Lipschitz,

inf b+ K| = .
e 16+ K1 = [6lloa
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Calkin algebra C(T).

Theorem: There exists a Argyros-Haydon-type Bourgain-Delbaen
Z-space X¢(r) with a basis (d,),er such that:

e For every ¢ : T — C Lipschitz, ¢ : X¢(ry — X¢(r) is bounded.

@ Forevery ¢ : T — C Lipschitz,

inf b+ K| = .
e 16+ K1 = [6lloa

@ Every T € L(X¢(r)) can be approximated by operators of the
form

¢+ K, with ¢ : T — C Lipschitz and K € K(X¢(r)).

TTobhoc Motdxne Separable spaces of continuous functions as Calkin algebras



Calkin algebra C(T).

Theorem: There exists a Argyros-Haydon-type Bourgain-Delbaen
Z-space X¢(r) with a basis (d,),er such that:

e For every ¢ : T — C Lipschitz, ¢ : X¢(ry — X¢(r) is bounded.

@ Forevery ¢ : T — C Lipschitz,

inf b+ K| = .
e 16+ K1 = [6lloa

@ Every T € L(X¢(r)) can be approximated by operators of the
form

¢+ K, with ¢ : T — C Lipschitz and K € K(X¢(r)).

In particular, Cal(X¢(r)) = C(T).
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Theorem: (J. M. Baker, 1982) If X is an infinite dimensional Banach
space, L(X) is not reflexive.
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Theorem: (J. M. Baker, 1982) If X is an infinite dimensional Banach
space, L(X) is not reflexive.

Problem: Can an infinite dimensional Calkin algebra be reflexive?
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Theorem: (J. M. Baker, 1982) If X is an infinite dimensional Banach
space, L(X) is not reflexive.

Problem: Can an infinite dimensional Calkin algebra be reflexive?

Theorem: (A. Pelczar-Barwacz, 2022) There exists a Banach space
X such that £(X)/SS(X) is reflexive.

In fact, £(X)/SS(X) ~ Ce & Xy
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Problem: Can a non-separable C(K) be a Calkin algebra?
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Problem: Can a non-separable C(K) be a Calkin algebra?

Theorem: (Horvath-Kania, 2021)

There exist C(K) spaces of density ¢ that cannot be the Calkin
algebra of a separable space.
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Problem: Can a non-separable C(K) be a Calkin algebra?

Theorem: (Horvath-Kania, 2021)

There exist C(K) spaces of density ¢ that cannot be the Calkin
algebra of a separable space.

Problem: Find unital Banach algebras that are not Calkin algebras.
Identify non-trivial properties of all Calking algebras.
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N. C. Phillips recommended the following.

Problem: Find representations of the following non-commutative
C*-algebras as Calkin algebras:

@ The UHF algebra of type 2.
@ The Cuntz algebra O,.

@ The reduced C*-algebra of the free group on two generators,
Cr (F2).
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BEuyaptoto!

Separable spaces of continuous functions as Calkin algebras



