Separable spaces of continuous functions as Calkin algebras

Παύλος Μοτάκης

York University

Functional Analysis and Operator Algebras in Athens 24 Μαρτίου 2023

Background

- Explicit Calkin algebras
- Quotients of *L*(*X*) and tight control of operators

Background

(4) (5) (4) (5)

Definition: a Banach algebra is a complex associative algebra \mathcal{B} with a complete norm $\|\cdot\|$ such that $\|ab\| \leq \|a\| \|b\|$, for all $a, b \in \mathcal{B}$.

.

Definition: a Banach algebra is a complex associative algebra \mathcal{B} with a complete norm $\|\cdot\|$ such that $\|ab\| \leq \|a\|\|b\|$, for all $a, b \in \mathcal{B}$.

A Banach algebra \mathcal{B} is unital if there exists $e \in \mathcal{B}$ such that

ea = ae = a for all $a \in \mathcal{B}$.

Definition: a Banach algebra is a complex associative algebra \mathcal{B} with a complete norm $\|\cdot\|$ such that $\|ab\| \leq \|a\| \|b\|$, for all $a, b \in \mathcal{B}$.

A Banach algebra \mathcal{B} is unital if there exists $e \in \mathcal{B}$ such that

ea = ae = a for all $a \in \mathcal{B}$.

Example: For a compact Hausdorff space *K*,

 $C(K) = \{f : K \to \mathbb{C} \text{ continuous}\}$

with $||f|| = \sup\{|f(k)| : k \in K\}$ and point-wise multiplication is a unital Banach algebra.

Example: the convolution algebra

$$\ell_1(\mathbb{N}_0) = \Big\{ a = (a(i))_{i=0}^\infty : \|a\| = \sum_{i=0}^\infty |a(i)| < \infty \Big\},$$

A = A = B
 A = B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example: the convolution algebra

$$\ell_1(\mathbb{N}_0) = \Big\{ a = (a(i))_{i=0}^\infty : \|a\| = \sum_{i=0}^\infty |a(i)| < \infty \Big\},$$

where for $a = (a(i))_{i=0}^{\infty}$ and $b = (b(i))_{i=0}^{\infty}$,

the convolution $a * b = ((a * b)(i))_{i=0}^{\infty}$ is

$$(a * b)(i) = \sum_{j=0}^{i} a_j b_{i-j}.$$

.

Example: the convolution algebra

$$\ell_1(\mathbb{N}_0) = \Big\{ a = (a(i))_{i=0}^\infty : \|a\| = \sum_{i=0}^\infty |a(i)| < \infty \Big\},$$

where for $a = (a(i))_{i=0}^{\infty}$ and $b = (b(i))_{i=0}^{\infty}$,

the convolution $\mathbf{a} * \mathbf{b} = \left((\mathbf{a} * \mathbf{b})(i) \right)_{i=0}^{\infty}$ is $(\mathbf{a} * \mathbf{b})(i) = \sum_{i=1}^{i} a_{i} b_{i-i}.$

Comment: This is related to Taylor series coefficients.

Example: the coordinte-wise multiplication algebra

$$\ell_{p}(\mathbb{N}) = \Big\{ a = (a(i))_{i=0}^{\infty} : \|a\| = \Big(\sum_{i=1}^{\infty} |a(i)|^{p}\Big)^{1/p} < \infty \Big\},\$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣

Example: the coordinte-wise multiplication algebra

$$\ell_p(\mathbb{N}) = \Big\{ a = (a(i))_{i=0}^{\infty} : \|a\| = \Big(\sum_{i=1}^{\infty} |a(i)|^p\Big)^{1/p} < \infty \Big\},$$

where for $a = (a(i))_{i=1}^{\infty}$ & $b = (b(i))_{i=1}^{\infty}$, the coordinate-wise product is

 $\mathbf{a} \cdot \mathbf{b} = \left(\mathbf{a}(i)\mathbf{b}(i)\right)_{i=1}^{\infty}$

< 回 > < 三 > < 三 >

Example: the coordinte-wise multiplication algebra

$$\ell_p(\mathbb{N}) = \Big\{ a = (a(i))_{i=0}^{\infty} : \|a\| = \Big(\sum_{i=1}^{\infty} |a(i)|^p\Big)^{1/p} < \infty \Big\},$$

where for $a = (a(i))_{i=1}^{\infty} \& b = (b(i))_{i=1}^{\infty}$, the coordinate-wise product is

 $\mathbf{a} \cdot \mathbf{b} = \left(\mathbf{a}(i)\mathbf{b}(i)\right)_{i=1}^{\infty}$

Comment: For 1 this is a reflexive Banach algebra, i.e.,

 $\ell_{\rho}(\mathbb{N}) \equiv \ell_{\rho}(\mathbb{N})^{**}.$

Example: Let *X* be a Banach space.

 $\mathcal{L}(X) = \{T : X \to X \text{ linear and bounded}\}.$

🗇 🕨 🖌 🖻 🕨 🔺 🖻

Example: Let *X* be a Banach space.

 $\mathcal{L}(X) = \{T : X \to X \text{ linear and bounded}\}.$

With the operator norm

 $||T|| = \sup\{||Tx|| : ||x|| \le 1\}$

and composition *TS*, $\mathcal{L}(X)$ is a Banach algebra.

• • = • •

Definition: A **Banach algebra of operators** is a closed subalgebra of $\mathcal{L}(X)$, for some Banach space *X*.

Definition: A **Banach algebra of operators** is a closed subalgebra of $\mathcal{L}(X)$, for some Banach space *X*.

Remark: A Banach algebra \mathcal{B} admits a representation as a Banach subalgebra of $\mathcal{L}(\mathcal{B}')$, and thus as a Banach algebra of operators.

Definition: A **Banach algebra of operators** is a closed subalgebra of $\mathcal{L}(X)$, for some Banach space *X*.

Remark: A Banach algebra \mathcal{B} admits a representation as a Banach subalgebra of $\mathcal{L}(\mathcal{B}')$, and thus as a Banach algebra of operators.

Example: If *X* is a Banach space and $S \subset \mathcal{L}(X)$,

$$\mathcal{B}_{X,S} = \overline{\langle \{T_1^{k_1} T_2^{k_2} \cdots T_n^{k_n} : T_1, \dots, T_n \in S \text{ and } k_1, \dots, k_n \in \mathbb{N}\} \rangle}.$$

Let X be a Banach space with a basis $(e_i)_{i \in \mathbb{Z}}$ (e.g., $\ell_2(\mathbb{Z})$ or $\ell_1(\mathbb{Z})$).

The **Right Shift** operator $R: X \to X$:

$$R\Big(\sum_{i\in\mathbb{Z}}a_ie_i\Big)=\sum_{i\in\mathbb{Z}}a_ie_{i+1}$$

Let X be a Banach space with a basis $(e_i)_{i \in \mathbb{Z}}$ (e.g., $\ell_2(\mathbb{Z})$ or $\ell_1(\mathbb{Z})$).

The **Right Shift** operator $R: X \to X$:

$$m{R}\Big(\sum_{i\in\mathbb{Z}}a_im{e}_i\Big)=\sum_{i\in\mathbb{Z}}a_im{e}_{i+1}$$

The Left Shift operator $L: X \to X$:

$$L\Big(\sum_{i\in\mathbb{Z}}a_ie_i\Big)=\sum_{i\in\mathbb{Z}}a_ie_{i-1}$$

Let X be a Banach space with a basis $(e_i)_{i \in \mathbb{Z}}$ (e.g., $\ell_2(\mathbb{Z})$ or $\ell_1(\mathbb{Z})$).

The **Right Shift** operator $R: X \to X$:

$$m{R}\Big(\sum_{i\in\mathbb{Z}}a_im{e}_i\Big)=\sum_{i\in\mathbb{Z}}a_im{e}_{i+1}$$

The **Left Shift** operator $L: X \to X$:

$$L\Big(\sum_{i\in\mathbb{Z}}a_ie_i\Big)=\sum_{i\in\mathbb{Z}}a_ie_{i-1}$$

Remark: on $\ell_2(\mathbb{Z})$ and $\ell_1(\mathbb{Z})$ *L*, *R* are bounded.

Consider $\mathcal{B}_{X,L,R} = \overline{\langle \{I, \mathbb{R}^n, L^m : n, m \in \mathbb{N}\} \rangle} \subset \mathcal{L}(X).$

🗇 🕨 🖌 🖻 🕨 🔺 🖻

Consider $\mathcal{B}_{X,L,R} = \overline{\langle \{I, \mathbb{R}^n, L^m : n, m \in \mathbb{N}\} \rangle} \subset \mathcal{L}(X).$

For $X = \ell_2$, $\mathcal{B}_{X,L,R} \equiv \mathcal{C}(\mathbb{T})$.

く 同 と く ヨ と く ヨ と

3

Consider $\mathcal{B}_{X,L,R} = \overline{\langle \{I, \mathbb{R}^n, L^m : n, m \in \mathbb{N}\} \rangle} \subset \mathcal{L}(X).$

For $X = \ell_2$, $\mathcal{B}_{X,L,R} \equiv \mathcal{C}(\mathbb{T})$.

For $X = \ell_1$, $\mathcal{B}_{X,L,R} \equiv \ell_1(\mathbb{Z})$ (Wiener algebra).

くぼう くほう くほう

3

Consider $\mathcal{B}_{X,L,R} = \overline{\langle \{I, \mathbb{R}^n, L^m : n, m \in \mathbb{N}\} \rangle} \subset \mathcal{L}(X).$

For $X = \ell_2$, $\mathcal{B}_{X,L,R} \equiv \mathcal{C}(\mathbb{T})$.

For $X = \ell_1$, $\mathcal{B}_{X,L,R} \equiv \ell_1(\mathbb{Z})$ (Wiener algebra).

Comment: If $S \subset \mathcal{L}(X)$ then

- the algebraic structure of S and
- the geometric structure of X

together determine $\mathcal{B}_{X,L,R} \equiv \ell_1(\mathbb{Z})$.

An **ideal** of $\mathcal{L}(X)$ is a subspace \mathcal{A} of $\mathcal{L}(X)$

- that is closed with respect to the operator norm topology,
- $\forall T \in \mathcal{L}(X)$ and $S \in \mathcal{A}$, **TS** and **ST** are in \mathcal{A} .

▲ □ ▶ ▲ □ ▶ ▲ □

An **ideal** of $\mathcal{L}(X)$ is a subspace \mathcal{A} of $\mathcal{L}(X)$

- that is closed with respect to the operator norm topology,
- $\forall T \in \mathcal{L}(X)$ and $S \in \mathcal{A}$, **TS** and **ST** are in \mathcal{A} .

Examples: $\{0\}$ and $\mathcal{L}(X)$,

A (10) > A (10) > A (10)

An **ideal** of $\mathcal{L}(X)$ is a subspace \mathcal{A} of $\mathcal{L}(X)$

- that is closed with respect to the operator norm topology,
- $\forall T \in \mathcal{L}(X)$ and $S \in \mathcal{A}$, *TS* and *ST* are in \mathcal{A} .

Examples: $\{0\}$ and $\mathcal{L}(X)$,

 $\mathcal{K}(X) = \{T \in \mathcal{L}(X) \text{ compact}\},\$

A (10) > A (10) > A (10)

An **ideal** of $\mathcal{L}(X)$ is a subspace \mathcal{A} of $\mathcal{L}(X)$

that is closed with respect to the operator norm topology,

• $\forall T \in \mathcal{L}(X)$ and $S \in \mathcal{A}$, **TS** and **ST** are in \mathcal{A} .

Examples: $\{0\}$ and $\mathcal{L}(X)$,

 $\mathcal{K}(X) = \{T \in \mathcal{L}(X) \text{ compact}\},\$

 $SS(X) = \{T \in \mathcal{L}(X) \text{ strictly singular}\}.$

Remark: If \mathcal{A} is an ideal of $\mathcal{L}(X)$ then $\mathcal{L}(X)/\mathcal{A}$ is a Banach algebra, called a quotient algebra of $\mathcal{L}(X)$.

🗇 🕨 🔺 🖻 🕨 🔺 🖻

Remark: If \mathcal{A} is an ideal of $\mathcal{L}(X)$ then $\mathcal{L}(X)/\mathcal{A}$ is a Banach algebra, called a quotient algebra of $\mathcal{L}(X)$.

Definition: The Calkin algebra of X is

 $Cal(X) = \mathcal{L}(X)/\mathcal{K}(X).$

/ᡎ ▶ ◀ ⋽ ▶ ◀ ⋽

Remark: If \mathcal{A} is an ideal of $\mathcal{L}(X)$ then $\mathcal{L}(X)/\mathcal{A}$ is a Banach algebra, called a quotient algebra of $\mathcal{L}(X)$.

Definition: The Calkin algebra of X is

 $Cal(X) = \mathcal{L}(X)/\mathcal{K}(X).$

Remark: dim $(X) = \infty$ if and only if Cal(X) is a *unital Banach* algebra.

(日) (日) (日)

Comment: Cal(X) is useful for:

A > + = + + =

Comment: Cal(X) is useful for:

• Classifying ideals of $\mathcal{L}(X)$.

Theorem: (Calkin 1941) $Cal(\ell_2)$ has no non-trivial ideals \implies $\{0\} \subsetneq \mathcal{K}(\ell_2) \subsetneq \mathcal{L}(\ell_2)$ are the only ideals in $\mathcal{L}(\ell_2)$.

/ᡎ ▶ ◀ ⋽ ▶ ◀ ⋽

Comment: Cal(X) is useful for:

• Classifying ideals of $\mathcal{L}(X)$.

Theorem: (Calkin 1941) $Cal(\ell_2)$ has no non-trivial ideals \implies $\{0\} \subseteq \mathcal{K}(\ell_2) \subseteq \mathcal{L}(\ell_2)$ are the only ideals in $\mathcal{L}(\ell_2)$.

• Characterizing Fredholm operators on X.

Theorem: (Atkinson, 1951) $T \in \mathcal{L}(X)$ is Fredhold $\iff [T]$ in Cal(X) is invertible.

Comment: Cal(X) is useful for:

• Classifying ideals of $\mathcal{L}(X)$.

Theorem: (Calkin 1941) $Cal(\ell_2)$ has no non-trivial ideals \implies $\{0\} \subseteq \mathcal{K}(\ell_2) \subseteq \mathcal{L}(\ell_2)$ are the only ideals in $\mathcal{L}(\ell_2)$.

• Characterizing Fredholm operators on X.

Theorem: (Atkinson, 1951)

 $T \in \mathcal{L}(X)$ is Fredhold $\iff [T]$ in Cal(X) is invertible.

More:

- K-theory of C*-algebras (Brown Douglas Fillmore, 1977)
- Set theory (Phillips, 2007 and Farah, 2011)

< ロ > < 同 > < 三 > < 三 > < 三 > <

Explicit Calkin algebras

→ ∃ → < ∃</p>
Explicit descriptions of Cal(X).

Question: for what unital Banach algebras \mathcal{B} does there exist X with

 $\mathcal{B} \simeq Cal(X)?$

伺 ト イ ヨ ト イ ヨ

Explicit descriptions of Cal(X).

Question: for what unital Banach algebras \mathcal{B} does there exist X with

 $\mathcal{B} \simeq Cal(X)?$

• $\mathcal{B} = \mathbb{C}$, Argyros-Haydon, 2011.

🗇 🕨 🖌 🖻 🕨 🔺 🖻

Explicit descriptions of Cal(X).

Question: for what unital Banach algebras \mathcal{B} does there exist X with

 $\mathcal{B} \simeq Cal(X)?$

- $\mathcal{B} = \mathbb{C}$, Argyros-Haydon, 2011.
- $\mathcal{B} = \ell_1(\mathbb{N}_0)$, Tarbard, 2013.

🗇 🕨 🖌 🖻 🕨 🔺 🖻

Question: for what unital Banach algebras \mathcal{B} does there exist X with

 $\mathcal{B} \simeq Cal(X)?$

- $\mathcal{B} = \mathbb{C}$, Argyros-Haydon, 2011.
- $\mathcal{B} = \ell_1(\mathbb{N}_0)$, Tarbard, 2013.
- B = C(K), for K countable and compact, M-Puglisi-Zisimopoulou, 2016.

and others.

■ ▶ < ■ ▶ < ■</p>

Theorem: (M - 2021) For every *compact metric space* K there exists a Banach space $\mathfrak{X}_{C(K)}$ with $Cal(\mathfrak{X}_{C(K)}) \equiv C(K)$.

伺 ト イ ヨ ト イ ヨ

Theorem: (M - 2021) For every *compact metric space* K there exists a Banach space $\mathfrak{X}_{C(K)}$ with $Cal(\mathfrak{X}_{C(K)}) \equiv C(K)$.

E.g., C[0, 1], $C(2^{\mathbb{N}})$, and $C(\mathbb{T})$ occur as Calkin algebras.

Quotients of $\mathcal{L}(X)$ and tight control of operators

Theorem: (Gowers - Maurey, 1993) There exists X_{GM} such that:

• Every $T \in \mathcal{L}(X_{GM})$ is of the form $T = \lambda I + S$, with $S \in SS(X_{GM})$.

🗇 🕨 🔺 🖻 🕨 🔺 🖻

Theorem: (Gowers - Maurey, 1993) There exists X_{GM} such that:

- Every $T \in \mathcal{L}(X_{GM})$ is of the form $T = \lambda I + S$, with $S \in SS(X_{GM})$.
- Equivalently, $\mathcal{L}(X_{GM})/\mathcal{SS}(X_{GM})$ is one-dimensional.

Theorem: (Gowers - Maurey, 1993) There exists X_{GM} such that:

- Every $T \in \mathcal{L}(X_{GM})$ is of the form $T = \lambda I + S$, with $S \in SS(X_{GM})$.
- Equivalently, $\mathcal{L}(X_{GM})/\mathcal{SS}(X_{GM})$ is one-dimensional.

Theorem: (Argyros - Haydon, 2011) There exists \mathfrak{X}_{AH} such that:

- Every $T \in \mathcal{L}(\mathfrak{X}_{AH})$ is of the form $T = \lambda I + K$, with $K \in \mathcal{K}(\mathfrak{X}_{AH})$.
- Equivalently, $Cal(\mathfrak{X}_{AH})$ is one-dimensional.

Theorem: (Gowers-Maurey, 1997) There exists a Banach space $X_{GM}^{\ell_1}$ with a basis such that:

Theorem: (Gowers-Maurey, 1997) There exists a Banach space $X_{\text{GM}}^{\ell_1}$ with a basis such that:

• The left shift *L* and the right shift *R* on $X_{GM}^{\ell_1}$ are bounded.

Theorem: (Gowers-Maurey, 1997) There exists a Banach space $X_{GM}^{\ell_1}$ with a basis such that:

• The left shift *L* and the right shift *R* on $X_{GM}^{\ell_1}$ are bounded.

• $\forall T \in \mathcal{L}(X_{\text{GM}}^{\ell_1}),$ $T = \lambda I + \sum_{n=1}^{\infty} \lambda_n L^n + \sum_{n=1}^{\infty} \mu_n R^n + S$ with $S \in SS(X_{\text{GM}}^{\ell_1})$ and $\sum_n |\lambda_n| + \sum_n |\mu_n| < \infty.$

Theorem: (Gowers-Maurey, 1997) There exists a Banach space $X_{\text{GM}}^{\ell_1}$ with a basis such that:

• The left shift *L* and the right shift *R* on $X_{GM}^{\ell_1}$ are bounded.

• $\forall T \in \mathcal{L}(X_{\text{GM}}^{\ell_1}),$ $T = \lambda I + \sum_{n=1}^{\infty} \lambda_n L^n + \sum_{n=1}^{\infty} \mu_n R^n + S$ with $S \in SS(X_{\text{GM}}^{\ell_1})$ and $\sum_n |\lambda_n| + \sum_n |\mu_n| < \infty.$

Therefore, $\mathcal{L}(X_{GM}^{\ell_1})/\mathcal{SS}(X_{GM}^{\ell_1}) \equiv \ell_1(\mathbb{Z})$ (Wiener algebra).

Theorem: (Tarbard, 2013) There exists a Banach space \mathfrak{X}_T such that:

• There exists a bounded "right shift" operator R on \mathfrak{X}_{T} .

Theorem: (Tarbard, 2013) There exists a Banach space \mathfrak{X}_T such that:

• There exists a bounded *"right shift"* operator *R* on \mathfrak{X}_{T} .

• $\forall T \in \mathcal{L}(\mathfrak{X}_{\mathrm{T}}),$ $T = \lambda I + \sum_{n=1}^{\infty} \lambda_n R^n + K$

with $K \in \mathcal{K}(\mathfrak{X}_{\mathrm{T}})$ and $\sum_{n} |\lambda_{n}| < \infty$.

Theorem: (Tarbard, 2013) There exists a Banach space \mathfrak{X}_T such that:

- There exists a bounded *"right shift"* operator *R* on \mathfrak{X}_{T} .
- $\forall T \in \mathcal{L}(\mathfrak{X}_{T}),$ $T = \lambda I + \sum_{n=1}^{\infty} \lambda_{n} R^{n} + K$ with $K \in \mathcal{K}(\mathfrak{X}_{T})$ and $\sum_{n} |\lambda_{n}| < \infty.$

Therefore, $Cal(\mathfrak{X}_T) \equiv \ell_1(\mathbb{N}_0)$.

Comment: For given \mathcal{B} , how to represent $\mathcal{B} \simeq Cal(X)$.

Comment: For given \mathcal{B} , how to represent $\mathcal{B} \simeq Cal(X)$.

1. Identify a class of operators C on a classical Banach space X_0 that generates B.

(e.g., *L* and *R* on $X_0 = \ell_1(\mathbb{Z})$ generate $\mathcal{B} = \ell_1(\mathbb{Z})$)

周レイモレイモ

Comment: For given \mathcal{B} , how to represent $\mathcal{B} \simeq Cal(X)$.

1. Identify a class of operators C on a classical Banach space X_0 that generates \mathcal{B} .

(e.g., *L* and *R* on $X_0 = \ell_1(\mathbb{Z})$ generate $\mathcal{B} = \ell_1(\mathbb{Z})$)

2. Construct a Gowers-Maurey space X with $\mathcal{L}(X)/\mathcal{SS}(X) \simeq \mathcal{B}$.

Comment: For given \mathcal{B} , how to represent $\mathcal{B} \simeq Cal(X)$.

 Identify a class of operators C on a classical Banach space X₀ that generates B.

(e.g., *L* and *R* on $X_0 = \ell_1(\mathbb{Z})$ generate $\mathcal{B} = \ell_1(\mathbb{Z})$)

- 2. Construct a Gowers-Maurey space X with $\mathcal{L}(X)/\mathcal{SS}(X) \simeq \mathcal{B}$.
- 3. Construct an Argyros-Haydon space X with $Cal(X) \simeq B$.

Noteworthy exceptions

• $M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_k}(\mathbb{C})$ (Laustsen - Kania, 2017),

by taking finite sums of Argyros-Haydon spaces.

.

Noteworthy exceptions

- *M*_{n₁}(ℂ) ⊕ · · · ⊕ *M*_{n_k}(ℂ) (Laustsen Kania, 2017), by taking finite sums of Argyros-Haydon spaces.
- *C(K), for every countable compactum K* (M Puglisi Zisimopoulou, 2016),

by iterating Argyros-Haydon infinite sums of Argyros-Haydon spaces.

Noteworthy exceptions

- *M*_{n1}(ℂ) ⊕ · · · ⊕ *M*_{nk}(ℂ) (Laustsen Kania, 2017), by taking finite sums of Argyros-Haydon spaces.
- *C(K), for every countable compactum K* (M Puglisi Zisimopoulou, 2016),

by iterating Argyros-Haydon infinite sums of Argyros-Haydon spaces.

James space,

a hereditarily indecomposable space, all non-reflexive spaces with an unconditional basis, etc. (M - Puglisi - Tolias, 2020).

- *M*_{n1}(ℂ) ⊕ · · · ⊕ *M*_{nk}(ℂ) (Laustsen Kania, 2017), by taking finite sums of Argyros-Haydon spaces.
- *C(K), for every countable compactum K* (M Puglisi Zisimopoulou, 2016),

by iterating Argyros-Haydon infinite sums of Argyros-Haydon spaces.

James space,

a hereditarily indecomposable space, all non-reflexive spaces with an unconditional basis, etc. (M - Puglisi - Tolias, 2020).

And others (e.g., Skillicorn, 2015).

Idea of proof

∃ → < ∃</p>

For given $\mathcal{B} = \mathcal{C}(K)$, how to represent $\mathcal{C}(K) \simeq Cal(X)$.

- Identify a class of operators C on a classical Banach space X₀ that generates C(K).
- 2. Construct a Gowers-Maurey space X with $\mathcal{L}(X)/\mathcal{SS}(X) \simeq C(K)$.
- 3. Construct an Argyros-Haydon space X with $Cal(X) \simeq C(K)$.

A (10) F (10)

Proposition: Let $T_0 \in \mathcal{L}(\ell_2)$ be *normal*. The unital C^* -algebra

 $\overline{\langle \{I, T_0^n(T_0^*)^m : n, m \in \mathbb{N}\} \rangle}$

generated by T_0 is $C(\sigma(T_0))$.

A > + = + + =

Proposition: Let $T_0 \in \mathcal{L}(\ell_2)$ be *normal*. The unital *C*^{*}-algebra

 $\overline{\langle \{I, T_0^n(T_0^*)^m : n, m \in \mathbb{N}\} \rangle}$

generated by T_0 is $C(\sigma(T_0))$.

In fact, any commutative *-subalgebra of $\mathcal{L}(\ell_2)$ is some C(K).

伺 ト イ ヨ ト イ ヨ

$C(\mathbb{T})$ subalgebras of $\mathcal{L}(\ell_2)$.

Example: Fix $\alpha \in (0, 1) \setminus \mathbb{Q}$ and put $z_0 = e^{\alpha 2\pi i}$.

Then, $\{z_0^n : n \in \mathbb{N}\}$ is dense in \mathbb{T} .

A (10) A (10)

Example: Fix $\alpha \in (0, 1) \setminus \mathbb{Q}$ and put $z_0 = e^{\alpha 2\pi i}$.

Then, $\{z_0^n : n \in \mathbb{N}\}$ is dense in \mathbb{T} .

Notation: For every continuous $\phi : \mathbb{T} \to \mathbb{C}$ define

 $\hat{\phi}: \ell_2(\mathbb{N}) \to \ell_2(\mathbb{N})$ with $\hat{\phi}(\boldsymbol{e}_n) = \phi(\boldsymbol{z}_0^n)\boldsymbol{e}_n$

伺下 イヨト イヨ

Example: Fix $\alpha \in (0, 1) \setminus \mathbb{Q}$ and put $z_0 = e^{\alpha 2\pi i}$.

Then, $\{z_0^n : n \in \mathbb{N}\}$ is dense in \mathbb{T} .

Notation: For every continuous $\phi : \mathbb{T} \to \mathbb{C}$ define

$$\hat{\phi}: \ell_2(\mathbb{N}) \to \ell_2(\mathbb{N})$$
 with $\hat{\phi}(\boldsymbol{e}_n) = \phi(z_0^n) \boldsymbol{e}_n$

Proposition: $\widehat{\cdot}$: $C(\mathbb{T}) \to \mathcal{L}(\ell_2(\mathbb{N}))$ is a homomorphic isometry.

< 回 > < 三 > < 三

Example: Fix $\alpha \in (0, 1) \setminus \mathbb{Q}$ and put $z_0 = e^{\alpha 2\pi i}$.

Then, $\{z_0^n : n \in \mathbb{N}\}$ is dense in \mathbb{T} .

Notation: For every continuous $\phi : \mathbb{T} \to \mathbb{C}$ define

$$\hat{\phi}: X_0 \rightarrow X_0 \text{ with } \hat{\phi}(e_n) = \phi(z_0^n)e_n$$

Proposition: $\widehat{\cdot} : C(\mathbb{T}) \to \mathcal{L}(X_0)$ is a homomorphic isometry, for any X_0 with a 1-unconditional basis $(e_n)_n$.

A > + = + + =

For $\mathcal{B} = C(\mathbb{T})$, how to represent $C(\mathbb{T}) \simeq Cal(X)$.

- Identify a class of operators C on a classical Banach space X₀ that generates C(T).
- 2. Construct a Gowers-Maurey space X with $\mathcal{L}(X)/\mathcal{SS}(X) \simeq C(\mathbb{T})$.
- 3. Construct an Argyros-Haydon space X with $Cal(X) \simeq C(\mathbb{T})$.

- 同 ト - 三 ト - 三

For $\mathcal{B} = \mathcal{C}(\mathbb{T})$, how to represent $\mathcal{C}(\mathbb{T}) \simeq \mathcal{Cal}(X)$.

- Identify a class of operators C on a classical Banach space X₀ that generates C(T).
- 2. Construct a Gowers-Maurey space *X* with $\mathcal{L}(X)/\mathcal{SS}(X) \simeq C(\mathbb{T})$.
- 3. Construct an Argyros-Haydon space X with $Cal(X) \simeq C(\mathbb{T})$.

A (10) F (10)

Calkin algebra $C(\mathbb{T})$.

Theorem: There exists a *Argyros-Haydon-type Bourgain-Delbaen* \mathscr{L}_{∞} -space $\mathfrak{X}_{C(\mathbb{T})}$ with a basis $(d_{\gamma})_{\gamma \in \Gamma}$ such that:

/ᡎ ▶ ◀ ⋽ ▶ ◀ ⋽
Theorem: There exists a *Argyros-Haydon-type Bourgain-Delbaen* \mathscr{L}_{∞} -space $\mathfrak{X}_{C(\mathbb{T})}$ with a basis $(d_{\gamma})_{\gamma \in \Gamma}$ such that:

• For every $\phi : \mathbb{T} \to \mathbb{C}$ Lipschitz, $\hat{\phi} : \mathfrak{X}_{\mathcal{C}(\mathbb{T})} \to \mathfrak{X}_{\mathcal{C}(\mathbb{T})}$ is bounded.

/ᡎ ▶ ◀ ⋽ ▶ ◀ ⋽

Theorem: There exists a *Argyros-Haydon-type Bourgain-Delbaen* \mathscr{L}_{∞} -space $\mathfrak{X}_{C(\mathbb{T})}$ with a basis $(d_{\gamma})_{\gamma \in \Gamma}$ such that:

• For every $\phi : \mathbb{T} \to \mathbb{C}$ Lipschitz, $\hat{\phi} : \mathfrak{X}_{\mathcal{C}(\mathbb{T})} \to \mathfrak{X}_{\mathcal{C}(\mathbb{T})}$ is bounded.

• For every $\phi : \mathbb{T} \to \mathbb{C}$ Lipschitz,

 $\inf_{K \in \mathcal{K}(\mathfrak{X}_{C(\mathbb{T})})} \|\hat{\phi} + K\| = \|\phi\|_{\mathcal{C}(\mathbb{T})}.$

伺下 イヨト イヨ

Theorem: There exists a *Argyros-Haydon-type Bourgain-Delbaen* \mathscr{L}_{∞} -space $\mathfrak{X}_{C(\mathbb{T})}$ with a basis $(d_{\gamma})_{\gamma \in \Gamma}$ such that:

- For every $\phi : \mathbb{T} \to \mathbb{C}$ Lipschitz, $\hat{\phi} : \mathfrak{X}_{\mathcal{C}(\mathbb{T})} \to \mathfrak{X}_{\mathcal{C}(\mathbb{T})}$ is bounded.
- For every $\phi : \mathbb{T} \to \mathbb{C}$ Lipschitz,

$$\inf_{K \in \mathcal{K}(\mathfrak{X}_{C(\mathbb{T})})} \|\hat{\phi} + K\| = \|\phi\|_{\mathcal{C}(\mathbb{T})}.$$

• Every $\mathcal{T} \in \mathcal{L}(\mathfrak{X}_{\mathcal{C}(\mathbb{T})})$ can be approximated by operators of the form

 $\hat{\phi} + K$, with $\phi : \mathbb{T} \to \mathbb{C}$ Lipschitz and $K \in \mathcal{K}(\mathfrak{X}_{C(\mathbb{T})})$.

Theorem: There exists a *Argyros-Haydon-type Bourgain-Delbaen* \mathscr{L}_{∞} -space $\mathfrak{X}_{C(\mathbb{T})}$ with a basis $(d_{\gamma})_{\gamma \in \Gamma}$ such that:

- For every $\phi : \mathbb{T} \to \mathbb{C}$ Lipschitz, $\hat{\phi} : \mathfrak{X}_{\mathcal{C}(\mathbb{T})} \to \mathfrak{X}_{\mathcal{C}(\mathbb{T})}$ is bounded.
- For every $\phi : \mathbb{T} \to \mathbb{C}$ Lipschitz,

$$\inf_{K \in \mathcal{K}(\mathfrak{X}_{C(\mathbb{T})})} \|\hat{\phi} + K\| = \|\phi\|_{\mathcal{C}(\mathbb{T})}.$$

• Every $\mathcal{T} \in \mathcal{L}(\mathfrak{X}_{\mathcal{C}(\mathbb{T})})$ can be approximated by operators of the form

 $\hat{\phi} + K$, with $\phi : \mathbb{T} \to \mathbb{C}$ Lipschitz and $K \in \mathcal{K}(\mathfrak{X}_{C(\mathbb{T})})$.

In particular, $Cal(\mathfrak{X}_{C(\mathbb{T})}) \equiv C(\mathbb{T})$.

Theorem: (J. M. Baker, 1982) If X is an infinite dimensional Banach space, $\mathcal{L}(X)$ is not reflexive.

A > + = + + =

Theorem: (J. M. Baker, 1982) If X is an infinite dimensional Banach space, $\mathcal{L}(X)$ is not reflexive.

Problem: Can an infinite dimensional Calkin algebra be reflexive?

🗇 🕨 🖌 🖻 🕨 🔺 🖻

Theorem: (J. M. Baker, 1982) If X is an infinite dimensional Banach space, $\mathcal{L}(X)$ is not reflexive.

Problem: Can an infinite dimensional Calkin algebra be reflexive?

Theorem: (A. Pelczar-Barwacz, 2022) There exists a Banach space *X* such that $\mathcal{L}(X)/\mathcal{SS}(X)$ is reflexive.

In fact, $\mathcal{L}(X)/\mathcal{SS}(X) \simeq \mathbb{C} e \oplus X_{\mathrm{mT}}^*$.

■ ▶ < ■ ▶ < ■</p>

Problem: Can a non-separable C(K) be a Calkin algebra?

A (10) > A (10) > A (10)

Problem: Can a non-separable C(K) be a Calkin algebra?

Theorem: (Horvath-Kania, 2021)

There exist C(K) spaces of density c that cannot be the Calkin algebra of a separable space.

• • • • • • •

Problem: Can a non-separable C(K) be a Calkin algebra?

Theorem: (Horvath-Kania, 2021)

There exist C(K) spaces of density c that cannot be the Calkin algebra of a separable space.

Problem: Find unital Banach algebras that are **not** Calkin algebras. Identify non-trivial properties of all Calking algebras. N. C. Phillips recommended the following.

Problem: Find representations of the following non-commutative C^* -algebras as Calkin algebras:

- The UHF algebra of type 2^{∞} .
- The Cuntz algebra \mathcal{O}_n .
- The reduced C^* -algebra of the free group on two generators, $C^*_r(\mathbb{F}_2)$.

Ευχαριστώ!

イロト イヨト イヨト イヨト

2