
C∗-rigidity for certain exponential Lie groups

Ingrid Beltiµ 
Institute of Mathematics of the Romanian Academy (Bucharest)

Joint work with Daniel Beltiµ  (IMAR)

Functional Analysis and Operator Algebras in Athens
March 17, 2023



The problem (short version)

Exponential Lie groups

■ A Lie group G is exponential ⇐⇒ expG : g = Lie(G)→ G is a
di�eomorphism

• A connected and simply connected Lie group G is exponential ⇐⇒ for every X ∈ g

the eigenvalues of adX = [X, ·] : gC → gC are not of the form iα, α ∈ R \ {0}.

▲ G exponential ⇒

G is amenable

C∗(G) is type I

Ĝ ≃ g∗/G (Kirillov-Bernat-Leptin-Ludwig)

Problem

If G is an exponential Lie group, does C∗(G) uniquely determine G?

▲ Short answer

Not always.



Group C∗-algebras

■ A C∗-algebra

• Id(A) := {J closed linear subspace ⊆ A | AJ+ JA ⊆ A}

• Â : set of equiv. classes [π] of irreducible ∗-repres. π : A→ B(Hπ)

• Topology of Â: open sets are Ĵ := {[π] ∈ Â | π|J ̸≡ 0}
for J ∈ Id(A)

▲ Separable C∗-algebras A1, A2 are stably isomorphic
(or Morita equivalent ) if A1⊗̂K ≃ A2⊗̂K

• A1⊗̂K ≃ A2⊗̂K =⇒ Â1 ≃ Â2. (noncanonical homeom.)

G locally compact group

• π : G→ U(Hπ) unitary representation
⇝ π : L1(G)→ B(Hπ), π(f) =

∫
G

f(x)π(x)dx

⇝ π : C∗(G)→ B(Hπ)

■ Ĝ ≃ Ĉ∗(G)



First examples

• G locally compact abelian, the Fourier transform extends to an isom.
of C∗-algebras

C∗(G) ≃ C0(Ĝ).

⇝ C∗(G) is uniquely determined by the topological space Ĝ

• Tn := (Tn, ·) the n-dimensional torus

Then Zn ∼−→ T̂n, via α 7→ χα, χα(z) := zα.
⇝ Tn ̸≃ Tm as Lie groups if n ̸= m.

However, T̂n ≃ T̂m as topological spaces, hence C∗(Tn) ≃ C∗(Tm).

Conclusion: Stick to simply connected Lie groups.



Eigenspaces

• V real �nite-dimensional vector space of dim. n.
• D ∈ End(V).

D : VC → VC C-linear extension, σ(D) its spectrum.

µ ∈ σ(D) \ R, ED(µ) = {v1, v2 | v1 + iv2 ∈ Ker (D − µI)n}.
µ ∈ σ(D) ∩ R, ED(µ) = Ker (D − µI)n.
VD
± :=

∑
±Re ν>0E

D(ν), nD± = dimVD
±

VD
0 :=

∑
Re ν=0E

D(ν), nD0 = dimVD
0

Then V = VD
+ ⊕ VD

− ⊕ VD
0 .



Non-rigid exponential Lie groups

• V real �nite-dimensional vector space of dim. n.
• D ∈ End(V)
• nD± , nD0 as above
▲ GD := V⋊R with (b1, t1) · (b2, t2) = (b1 + et1Db2, t1 + t2).

Theorem

Let Dj ∈ End (V), j = 1, 2. Assume V
Dj

0 = KerDj for j = 1, 2. Then

GD1 ≃ GD2 as Lie groups i� σ(D1) = r · σ(D2) for some
r ∈ R \ {0}
C∗(GD1

) ≃ C∗(GD2
) i� {nD1

+ , nD1
− } = {n

D2
+ , nD2

− } and n
D1
0 = nD2

0 .

Y.-F. Lin, J. Ludwig (2013): special case for diagonalizable matrices Dj
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For the proof:
• C∗(GD) = C0(V

∗)⋊αD∗ R where
αD∗ : R× V∗ → V∗, αD∗(t, ξ) = etD

∗
ξ for ξ ∈ V∗

▲ D1, D2 ∈ End (V) as above, without necessarily V
Dj

0 = KerDj . The
following assert. are equiv.:

(i) There is a homeomorphism Φ: V→ V with Φ ◦ etD1 = etD2 ◦ Φ, for
all t ∈ R.

(ii) {nD1
+ , nD1

− } = {n
D2
+ , nD2

− }, and there is an isomorphism

T : VD1
0 → VD2

0 such that TD1|VD1
0

= D2T .

(Ladis (1973)).



Non-rigid exponential Lie groups-3
▲ D ∈ End (V) with VD

0 = KerD.

V∗ ≃ RnD
+ × RnD

1 × RnD
0

▲ ĜD = QD
1 ∪ QD

2 ∪ QD
3 , where

QD
1 ≃ {(0, ξ+, ξ−, 0) ∈ RnD

+ × RnD
− × RnD

0 × R | |ξ+| = |ξ−| ≠ 0},

QD
2 ≃ ({0} × SnD

+

1 × {0} × {0}) ∪ ({0} × {0} × SnD
−

1 × {0}),
QD
3 ≃ {0} × RnD

0 × R.

Moreover,

QD
1 is open, dense and Hausdor�, the corresponding repres. are CCR

(= ∅ if nD+ = 0 or n− = 0.)

QD
3 are the characters of GD.

↓
C∗(GD1) ≃ C∗(GD2)⇒ QD1

j ≃ QD2
j , j = 1, 2, 3,

⇒ {nD1
+ , nD1

− } = {n
D2
+ , nD2

− } and n
D1
0 = nD2

0 .
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Corollary

Dj ∈ End (V) with V
Dj

0 = KerDj , j = 1, 2. Then
C∗(GD1

) ≃ C∗(GD2
)

⇐⇒ {nD1
+ , nD1

− } = {n
D2
+ , nD2

− } and nD1
= = nD2

0

⇐⇒ there is an equivariant ∗-isomorphisms between
(C0(V

∗),R, αD∗
1
) and (C0(V

∗),R, αD∗
2
).



Nilpotent Lie groups

• G = (Rn, ·) with

{
· : Rn × Rn → Rn polynomial mapping

(∀t, s ∈ R)(∀x ∈ Rn) (tx) · (sx) = (t+ s)x

• Lie algebra g = (Rn, [·, ·]), [x, y] := ∂2

∂t∂s

∣∣∣
t=s=0

(tx) · (sy) · (−tx)

■ G and g are called nilpotent since [x, . . . , [x, y]] = 0 for all x, y ∈ g.

■ G ≃ (g, ·) with x · y = x+ y + 1
2
[x, y] + 1

6
[x, [x, y]] + · · ·

• Adjoint action of G on g: AdG : G× g→ g

(∀x ∈ G, y ∈ g) (AdGx)y := ∂
∂s

∣∣∣
s=0

x · (sy) · (−x)

• Coadjoint action of G on g∗: Ad∗G : G× g∗ → g∗

(∀x ∈ G, ξ ∈ g∗) (AdGx)ξ := ξ ◦ (AdGx)
−1



Representations of nilpotent Lie groups

▲ G = (g, ·) nilpotent Lie group with Lie algebra g

Kirillov correspondence:
Ĝ←→ g∗/G, [π] 7→ Oπ

• continuous bijection (A. Kirillov)
• homeomorphism (I. Brown)

A sketch:

π : G → U(Hπ) irreducible representation

⇝ π(f) :=
∫
g
f(x)π(x)dx ∈ B(Hπ) trace-class operator for all f ∈ C∞

c (g)

⇝ the character χπ := Tr ◦ π : C∞
c (g) → C is a tempered distribution

⇝ the Fourier transform χ̂π : C∞
c (g∗) → C is a positive measure

⇝ Oπ := supp χ̂π ⊆ g∗ is an orbit of the coadjoint action of G in g∗

• C∗(G) is CCR (liminary).



C∗-rigidity of nilpotent Lie groups

■ G is C∗-rigid if

G1 exponential Lie group, C∗(G1) ≃ C∗(G) =⇒ G1 ≃ G

■ G is stably C∗-rigid if:

G1 exponential Lie group, C∗(G1)⊗̂K ≃ C∗(G)⊗̂K =⇒ G1 ≃ G

• If G is an exponential Lie group such that C∗(G) is CCR ⇒ G is
nilpotent (Auslander-Moore)

Hence it is enough to compare nilpotent Lie groups.



Special R-spaces

• Special R-space is a top. space X with a cont. map R×X → X,
(t, x) 7→ t · x and a distinguished point x0 ∈ X such that

x ∈ X, t ∈ R ⇒ 0 · x = t · x0 = x0 and 1 · x = x.

t, s ∈ R and x ∈ X ⇒ t · (s · x) = ts · x.
For x ∈ X \ {x0} the map ψx : R→ X, t 7→ t · x is a
homeomorphism onto its image.



R spaces of finite length

• X R-space of �nite length if it is 2nd count., loc. quasi-compact, has
the property T1, and there is �nite family of open subsets,

∅ = V0 ⊆ V1 ⊆ · · · ⊆ Vn = X,
such that Vj \ Vj−1 is Hausdor� in its relative topology and dense in
X \ Vj−1, for j = 1, . . . , n, and

X special R-space, Γj := Vj \ Vj−1 ⊆ X is an R-subspace for
j = 1, . . . , n.

Γn := X \ Vn−1 is isom. (as a special R-space) to some Rm with
whose origin corresp. to dist. point x0 of X.

For j = 1, . . . , n− 1 the points of Γj+1 are closed and separated in
X \ Vj .
For j = 1, . . . , n, Γj is isom. (as a special R-space) to a cone Cj in
a �nite-dim. vector space. In addition, C1 is an semi-algebraic
Zariski open set, and the dimension of the correp. ambient vector
space is called the index of X (:= indX.)



Useful properties of C∗(G)

Theorem (D. Beltita, I.B, J. Ludwig)

G is a nilpotent Lie group ⇒ Ĝ is a R-space of �nite length.

⇝ ind Ĝ is an invariant of C∗(G).

Proposition

• [g, g]⊥ ≃ Hom(G,T) ⊆ Ĝ is a maximal element of the set

Q(Ĝ) := {S ⊆ Ĝ | S is closed, connected, its relative topology is Hausdor�}.

• RR(C∗(G)) = dim[g, g]⊥ (but this is not always preserved under
Morita equivalence).



The Heisenberg group

▲ Heisenberg algebra/group:
h2n+1 = Rn × Rn × R, [(q, p, t), (q′, p′, t′)] = [(0, 0, ⟨p, q′⟩ − ⟨p′, q⟩)]
H2n+1 = (h2n+1, ·), x · y := x+ y + 1

2 [x, y]

• Schrödinger representation πλ : H2n+1 → B(L2(Rn)),

πλ(q, p, t)f(x) = eiλ(⟨p,x⟩+
1
2 ⟨p,q⟩+t)f(q + x)

for λ ∈ R∗ ↪→ Ĥ2n+1

• Generic coadjoint orbits in h∗2n+1 = Rn × Rn × R, for λ ∈ R∗:
Oλ = Rn × Rn × {λ} .

• 0→ C0(R∗,K)→ C∗(H2n+1)→ C0(R2n)→ 0.

Picture of Ĥ2n+1:

• Ĥ2n+1 = (R \ {0}) ⊔ R2n

• If lim
n→∞

tn = 0 in R \ {0}, then Limn→∞ tn = R2n in Ĥ2n+1

• ind Ĥ2n+1 = 1



Rigidity of Heisenberg groups
Theorem

Let H2n+1 be the Heisenberg group and G another nilpotent Lie group.
Then

H2n+1 ≃ G ⇐⇒ Ĝ ≃ Ĥ2n+1

Corollary

Heisenberg groups are stably C∗-rigid.

A direct proof of the corollary:

Lemma

G1 nilpotent Lie groups with centre Z1 and indG1 = 1. Then

dimZ1 = 1.

Let G2 another nilpotent Lie group, with centre Z2 and assume that
C∗(G1) is Morita equivalent to C∗(G2), Then

indG2 = dimZ2 = dimZ1 = 1

C∗(G1/Z1) is Morita equivalent to C∗(G2/Z2).



Filiform groups
▲ Filiform (threadlike) Lie algebra: fn = span{X1, . . . , Xn}

[Xn, Xj ] = Xj−1, j = 2, . . . , n− 1.

Fn = (fn, ·).

Theorem

Filiform groups are stably C∗-rigid.

• Fn = Rn−1 ⋊R, where the action (t, x) 7→ etDx is given by the
nilpotent matrix

D =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0


Remark: The topology of unitary duals of �liform groups was studied by

R.J. Archbold, E. Kaniuth, J. Ludwig, G. Schlichting, D. W. B. Somerset (1990-2007)



Low dimensional groups

Theorem

All nilpotent Lie groups with dim ≤ 5 are stably C∗-rigid.

X1, . . . , Xn be a basis of a Lie algebra g with dim g = n ≤ 5.

Case n = 3:

g3: [X3, X2] = X1

Case n = 4:

g4: [X4, X3] = X2, [X4, X2] = X1

Case n = 5:

g5,1: [X5, X4] = X1, [X3, X2] = X1

g5,2: [X5, X4] = X2, [X5, X3] = X1

g5,3: [X5, X4] = X2, [X5, X2] = X1, [X4, X3] = X1

g5,4: [X5, X4] = X3, [X5, X3] = X2, [X4, X3] = X1

g5,5: [X5, X4] = X3, [X5, X3] = X2, [X5, X2] = X1

g5,6: [X5, X4] = X3, [X5, X3] = X2, [X5, X2] = X1, [X4, X3] = X1



A 6-dimensional group

Theorem

The free 6-dimensional nilpotent Lie group
▲ G6,15 = (g6,15, ·) for g6,15 = span{X1, X2, X3, X4, X5, X6} with

[X6, X5] = X3, [X6, X4] = X1, [X5, X4] = X2

is stably C∗-rigid.
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