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Why Morita equivalence?
Representations

- The main idea is to examine an object via its action(s) on its modules, rather than in itself:

Group G Homomorphisms G — GL(V), for V vector space.
Ring R Left modules g M.
Algebra A Homomorphisms A — End(V), for V vector space.

C*-algebra A | *-representations A — Z(H ), for H Hilbert space.

- In this sense “Morita equivalence” means equivalent representation theories.

- To compare objects up to matricial representations, i.e., for rings we have that R is Morita
equivalent to My, (R).

- To relate R and S via matricial approximate identities:

My (S) such that W, 0 ¢, — idg.
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Morita equivalence for rings

Equivalent views of Morita equivalence for associative rings R and S
- There are functors .% : R—Mod — S—Mod and ¢ : S—Mod — R—Mod such that
Fo¥ ~idand ¢ o ¥ ~id.
- There are kMg and gNg such that
R>M®gN and S~ N RrM,

as bimodules.

- There are gMg and gNg and balanced module maps
(h):MxN—Rand[-,]: NxM—S

that are compatible (wrt associativity).

-End(R™)) ~ End(SMN)) (stable isomorphism, Camillo 1984).

- Morita equivalent rings have isomorphic centers (and thus Morita equivalence for commutative
rings is isomorphism).
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Morita equivalence for C*-algebras
Equivalent views of Morita equivalence for C*-algebras A and B
- There is an impritivity bimodule 4 Mp.
- There is a C*-algebra C such that

A M
C'= [M* B] and A and B are full.

- The categories of left operator modules are equivalent.
- There are 4 Mp and pN4 C*-correspondences such that

A~M®gN and B~ N ®4 M, as bimodules (and we can choose N = M*).

- There are 4 Mp and pN4 C*-correspondences and balanced module maps
(n):MxN—Aand[-,"]: NxM — B

that are compatible (wrt associativity).
-A®RK ~B®IK, when A and B are ¢-unital.

- Morita equivalent C*-algebras have isomorphic centers.

Ternary rings of operators

- A ternary ring of operators (TRO) is a closed subspace M C Z(H,K) such that MM*M C M.

- TRO’s = imprimitivity bimodules (A = [MM*] and B = [M*M)).
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Operator spaces
Definition (Eleftherakis-K. 2016)

- Two operator spaces X C B(Hj,H,) and Y C Z(K;,K>) are called (strongly) TRO equivalent
if there are TRO’s M} C A(K,,H;) and M C ZA(K,,H,) such that

X = [MyYM] and ¥ = [M{XM,].
Note that X and Y are operator bimodules by [M,M;]-[M{ M| and [M;M,]-[M;M;].

- Two operator spaces X and Y are called (strongly) A-equivalent if they admit completely
isometric maps with TRO equivalent ranges.

Main tools

- Suppose that (7,¢,0) is a non-degenerate representation of the [M,M3]-[M;M;]-bimodule
X in #(H;,H>). Then by using the functors M} ®, — and M; ®, — we get a non-degenerate
representation (p, v, 7) of the [M;M,]-[M;M;]-bimodule Y in (K, K, ) for

K| = M{ ®c Hy and Ky = M} Q7 H,.

- Suppose that [MoM3] and [M;Mj] admit cai’s given by sequences (YX_,m;m}); and
(ZI;':1 njn’). Then we can define the maps

O X — My(Y);x = [mixn;] and yie: Mi(Y) — X; [yij] = X jmiyijn;

with yj o @y (x) = X; jmimixnin; — x in norm.
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Operator spaces

Main results for operator spaces (Eleftherakis-K. 2016)

1. TRO-equivalent spaces have equivalent bimodule representation theory.
2. TRO equivalence is an equivalence relation.

3. Strong A-equivalence is an equivalence relation.

4. Stable isomorphism (X ® .# ~Y ® %) implies strong A-equivalence.

5. Strong A-equivalence is stable isomorphism in the presence of separability conditions (o-
unitality, or if the spaces are separable, or if the spaces are unital).

6. Strong A-equivalent operator spaces have strong A-equivalent TRO-envelopes.
7. Strong A-equivalent unital operator spaces have stable isomorphic C*-envelopes.

8. If two operator algebras with c.a.i.’s are strong A-equivalent as operator spaces then they are
Morita equivalent in the sense of Blecher-Muhly-Paulsen, and thus A-equivalent in the sense of
Eleftherakis.

9. Strong A-equivalence is Morita equivalence for C*-algebras.

10. Strong A-equivalent operator spaces admit A-equivalent second duals in the sense of
Eleftherakis-Paulsen-Todorov.
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Operator systems
Definition
- A (concrete) operator system . is a (closed) selfadjoint subspace of some % (H) that contains
the unit 7y.

- The morphisms in this category are the unital completely positive maps (they are automat-
ically completely contractive). The isomorphisms are the complete order embeddings (unital
completely positive maps with an inverse that is unital completely positive).

Definition

- Two concrete operator systems . C A(H) and 7 C ZA(K) are called TRO-equivalent (de-
noted .7 ~tro 7), if there exists a non-degenerate TRO M C %(H,K) such that

S =[M*TM]and T = [MSM"].
- Two concrete operator systems . C Z(H) and .7 C AB(K) are called concretely bihomo-

morphically equivalent if there exists an operator space X C Z(H,K) such that X and X* are
non-degenerate (i.e. Iy € [X*X] and Ix € [XX*]), and

& =[X*JX]and T = [X.SX¥].

Proposition
If & and T are bihomomorphically equivalent by X, then they are TRO-equivalent by M :=
[XC*(X*X)].
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Morita equivalence for operator systems

Definition

- Two operator systems . and .7 are called A-equivalent (denoted .¥ ~, 7)) if there exist
Hilbert spaces H and K and unital complete order embeddings ¢: .¥¥ — Z(H) and y: T —
A(K) such that ¢ () ~tro Y(T).

- Two abstract operator systems . and 7 will be called bihomomorphically equivalent if
there exist Hilbert spaces H and K, and unital complete order embeddings ¢ : . — Z(H) and
v: T — PB(K) such that the concrete operator systems ¢ (%) and y(7) are concretely biho-
momorphically equivalent. We write . & .7 to denote that . and .7 are bihomomorphically
equivalent.

Theorem
Let . and T be operator systems. The following are equivalent:
T ~p S as operator systems;
T ~p S as operator spaces;
QK ~ 7 @K via a completely isometric isomorphism;
K ~ 7 @K via a completely positive completely isometric isomorphism;

< ®K ~ 7 ® K via a hermitian completely isometric isomorphism.
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Morita equivalence for operator systems

Definition
Let .# (%) be the injective envelope of . and write
Ay ={ac I ()| a? C.S anda* ¥ C S}

Letting tepy : - — Ci () C F (&) be the canonical embedding, we note that the unitality
condition yields that &7 C teny(-#); we can thus consider /¢ as being contained in ..

Proposition

Let & and 7 be operator systems. If . ~x T then there exist complete order embeddings
¢: S = BH) and v: T — B(K), and a non-degenerate TRO M C B(H,K), such that
0(F) ~1ro V(7)) via M, and in addition

9(dy) = [M"M] and y(d7)=[MM"].

Furthermore,

Con() =CH(9(F)) and  Cepy(T) = C (y(7)),

and consequently C% () ~a Cé (7).
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Morita contexts for operator systems
Definition
Let . and 7 be abstract operator systems and M be a TRO. We say that the quintuple
(&, T,M,[,-,-],(:,-,")) is a A-pre-context if:
the C*-algebras [M*M|] and [MM*] are unital;
. is a C*-bimodule over [M*M] and .7 is a C*-bimodule over [MM*];

[ ]: M*X T xM — & and (-,+,"): M x & X M* — T are completely bounded
completely positive maps, modular over [M*M] and [MM*] on the outer variables (with
unital module actions), and

the associativity relations
(my, [m,t,m3],my) = (mym3) -1 - (m3my)

and
my, (my,s,m3),mg| = (mimy)-s - (m3my

hold for all s € ., t € 7 and all m,my,m3,my € M.

A A-pre-context is called a A-context if the trilinear maps [-,-,-] and (-, -, -) are completely con-
tractive and the relations

(my,1,m3) = (mym3) -1 and [m},1o,my] = (mimy)-1» )

hold for all m,m, € M. 10/39



Morita contexts for operator systems
Definition
Let . and .7 be abstract operator systems and X be an abstract operator space. We say that
the quintuple (., 7, X, [-,-,-],(,-,")) is a bihomomorphism pre-context if:
X is non-degenerate;
[, ] X*x T xX — S and (-,-,"): X X & xX* — 7 are completely bounded
completely positive maps such that
[X*,ly,X]ng{y and (X71<5/’7X*)g%y’

the associativity relations

[x>]k: (XZ,S,)C;),)Q;] = [xTv 177)52} 8 [x§7 1?7)54}
and

(Xl, [x§7[7x3}7xz) = ()C], 1:77)(;) -1 ()C?,., ]V,xz)
hold for all s € ., € Z and all x1,x5,x3,x4 € X.

A bihomomorphism pre-context is called a bihomomorphism context if the trilinear maps [-,-, -]

1' )

and (-,,) are completely contractive and there exist semi-units ((x;);, (y,):) and ((z;)i, (w;)i
over X and X*, respectively, such that

limlxf,17®Ly]=1y and lim(z,ly@Iw;)=1g7. )
1 — 1
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Morita contexts for operator systems

Theorem

Let . and 7 be (abstract) operator systems. The following are equivalent:
S o T
IS T
there exists a A-context for & and T ;

there exists a bihomomorphism context for . and .

Proof

(2) implies (1) concretely. A realization is a context, and so (1) implies (3) and (2) implies
(4). A familiar “trick” by using M ® — gives that (3) implies (1). An extension of this trick is
required for showing that (4) implies (2):

- Suppose we have a bihomomorphism context and start with ¢ : . — () C B(H).

- Let K be the Hausdorff completion of X ® H wrt

(X1 ®h1,x@hy) == (9([x3,17,x1])h1,h2)E.

-Let 6: X — AB(H,K) be given by 6(x)h =xQh.
-Let y: 7 — %(K) such that (y/(2)(x] ®hy),x2 @ ho) g = (@ ([x3,¢,x1])h1, h2) m. Existence of
semi-units plus that ¢ is c.is. gives that y is completely isometric.

- Then it follows that ¢(.%) and y(.7) are bihomomorphically equivalent by 6(X), since
0 (x2)*y(1)0(x1) = ¢([x3,2,x1]). 12/39



Morita invariants and applications

Definition

- We write Repc.(-#) for the class of ucp maps of . that restrict to a *-homomorphism on
Ay

- We write Ker,, (.) for the set of all subspaces _# for which there exists an element (Hy, ¢)
of Repc+ (-#) such that _# = ker(¢).

Theorem
Let ., T be operator systems with . ~x 7. Then

G o F = IdReka () and F o4 = IdRepC*(y)

up to natural equivalence. In particular, the categories Repc- () and Repc- (7)) are equiva-
lent via completely contractive functors.

Moreover the lattices Ker oy, (/) and Ker o, () are isomorphic.

Theorem

Let .7 and T be operator systems with . ~x . The functors % and ¥ preserve the maximal
representations and the Choquet representations. In addition, . is hyperrigid if and only if T
is hyperrigid.
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Morita invariants and applications

Definition
Let Hmod(.#’) have the same objects as Repc: (), but given objects I'y = (Hj, ¢1) and I'; =
(H, @), the set Int »(I';, I’y ) of morphisms from I'; to I'; is defined by letting

Inty (T, T2) ={T € B(Hi,Hy) | T¢1(s) = ¢2(s5)T forall s € 7};
we call the elements 7' € Int o (I'y,I) intertwiners of the pair (I'y,I7).
Theorem
Let ./, be operator systems with . ~x . We have that

Yo F = Ideod(Y) and F oY = Ideod(?)v

up to natural equivalence. In particular, the categories Hmod(.”) and Hmod(.7") are equiva-
lent through completely contractive functors.
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Tensor products of operator systems
Remarks
- Introduced by Kavruk—Paulsen—Todorov—Tomforde (2010).

- Given two operator systems (-7,{P,}n,e.») and (7 ,{On}n,e7), by an operator system
structure on . © J we mean a family of cones 7 := {C, }, such that:

CCM(FOT);

(L © T, {Cy}n,ev ® ez ) defines an operator system denoted by .%¥ ®1 7;
P, ® O C Gy, for all n,m € IN;

if¢g: S — M, and y: I — M, are unital completely positive maps, then
dRVY: S QT — My, is a unital completely positive map.

- Given two operator structures 7; and 7, on .¥ ® .7, we say that 7, < 7; if the identity map on
7 ® J extends to a unital completely positive map .7 ®, 7 — . ®¢, 7 ; equivalently that

My(S @1, T)T CMy(F @1, T)T forevery n € IN.

- We say that 7 is functorial if for every unital completely positive maps ¢: . — .%5 and
v: 91 — J of operator systems we get that the linear map ¢ ® y defines a unital completely
positive map from .7} ®7 .7 to . Q¢ J.

- An operator system tensor product 7 is associative if the natural isomorphism (Z ©®.%) ®
T ~Z06 (S 6 T) extends to a complete order isomorphism from (Z ®: .¥) ®; 7 onto
AR (S Q¢ T).
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Tensor products of operator systems

Tensor products on . © 7

- The maximal tensor product . @max % is characterised by the property that it linearises every

jointly completely positive bilinear map from . x % into an operator system, to a completely
positive map.

- The minimal (or spatial) tensor product .¥ ® % is given as the (concrete) closed operator
subsystem of Z(H ® K) arising from (any) unital complete order embeddings . — Z(H) and
X — B(K).

- In the commuting tensor product . ®. %, an element u € M, (. © %) is positive if it has
positive images under the maps (¢ - w) (where (¢ - ¥)(x®y) = ¢(x)y(y)), for all unital
completely positive maps ¢ and y with commuting ranges, defined on . and %, respectively.

- The essential left tensor product . ®¢ Z is defined by the requirement that the inclusion map
S OR C I () Qmax Z lifts to a complete order embedding on . Qe Z.

- The essential right tensor product . Q¢ Z is defined by the requirement that the inclusion
map . ©Z C .7 Q@max -7 () lifts to a complete order embedding on . Qer Z.
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Tensor products of operator systems

Properties

- For C*-algebras &7 and 2 the maximal operator system t.p. &/ ®max & coincides with the
operator system arising from the inclusion &7 ©® Z — &7 @c+_max B-

- QA =. Qmax A for every C*-algebra o7 .

- ¥ ®. J coincides with the operator system arising from the inclusion . ©® J <
C;knax(‘y) ®max C:(nax(‘y)'

- .Y ®¢ 7 coincides with the operator system arising from the inclusion .¥ ©® 7 — . ®,
Chax ()

- Those tensor product structures satisfy:

mn < er , el < ¢ < max.

Definition

We say that . is (7, 7)-nuclear if for every operator system % the identity map on . © %
lifts to a complete order isomorphism . @ Z — . Q¢ %. We say that .7 is nuclear if it is
(min, max)-nuclear.
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Tensor products of operator systems

Nuclearity relations on . (KPTT 2010)
1. .7 is (min, el)-nuclear iff it is exact; i.e., if for every C*-algebra <7 with an ideal .# we have
that the well-defined map

AL | 70F = (HIF)®S

is a completely isometric isomorphism.

2. % is (min,er)-nuclear iff it has the operator system local lifting property (OSLLP); i.e.,
if whenever < is a unital C*-algebra with a closed ideal .# <./ and canonical quotient map
qy: A — A )F,and §: ¥ — of /.7 is a unital completely positive map, then for every finite-
dimensional operator system & C .# there is a unital completely positive map y: & — <7 such

that the diagram
A \
97
L4

P

is commutative.
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Tensor products of operator systems

Nuclearity relations on . (KPTT 2010)

3. .7 is (el,max)-nuclear iff it has the weak expectation property (WEP); i.e., if the canonical
inclusion 1: . — 744 extends to a unital completely positive map ¢ : .7 (.%) — .74, Here
744 denotes the double dual operator system of ..

4. 7 is (el,c)-nuclear iff it has the double commutant expectation property (DCEP); i.e., if for
any unital complete order embedding 1: . — Z(H) there exists a unital completely positive
extension ¢: S (&) — 1(#)" C B(H).

Corollary (EKT 2021)

Nuclearity, exactness, the (OSLLP), the (WEP), and the (DCEP) are invariants of A-equivalence
of operator systems.
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Tensor products of operator systems

Theorem

Let .7 and 7 be operator systems such that . ~x 7. Let (t',T) be a pair of functorial tensor
products with ©' < T such that:

©' and T are associative tensor products; or
t' is associative and T = el; or
t' is associative and T = er; or
t’ = el and 7 is associative; or
1! = er and 7 is associative; or
(t',7) = (el,c).
Then & is (t',T)-nuclear if and only if 7 is (v, T)-nuclear.
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Tensor products of operator systems

Proof.

Due to A-equivalence we have an approximately commutative diagram:

My ()
of completely positive completely contractive maps.
Let Z be an operator system. If the c.0.i. ¥ ®; Z ~ . Qp Z gives a c.o0.i.
My (L) @R: B ~My(S) Ry X, for every n € N,
then we are done, as we obtain a sequence of ucp maps
T QR — My(L) R0 B — My(S) 01 % — T Q. X,
with limit the identity map .7 @y Z — T @ %.
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Tensor products of operator systems

Lemma
Let . be an operator system that is (t',T)-nuclear for t' < T such that:
t' and 7T are associative tensor products; or
1’ is associative and T = el; or
7' is associative and T = er; or
1 = el and 7 is associative; or
1/ = er and 7 is associative; or
(7',7) = (el,c).
Then the operator system My () is (7', T)-nuclear.

Proof

(i) Suppose that both 7 and 7’ are associative. Since M, is nuclear, we have the complete order
isomorphisms

My(S): B~ (MRS )R B =My Q1S Rt B =My R (S Q¢ R)
MMy R(SL Ry B) =My Qp S R B~ (M R.S) Qp Z =My () Qp Z.
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Tensor products of operator systems

Proof

(i) Suppose 7’ is associative and T = el. Using that .% (M,,(.”)) = M,,(-#(”)), the nuclearity
of M, (and thus also preservation of inclusions by M, ®max —), the associativity of 7’ and the
(7', el)-nuclearity of ., we have the complete order isomorphisms

My (L) @y B~ My Ry (F Rp R) = My, Qmax (L Re) X)
— My, @max (I (L) @max Z) =~ Mp(F(S)) Qmax Z =~ I (My (L)) @max Z.-

Therefore we have the following diagram that fixes M, () © Z:
My(S )R B —————> My (L) Qv X
I (Mn()) Omax %,
where the horizontal arrow is given by 7’ < el, the diagonal arrow is a complete order em-

bedding by the definition of ®.|, and the vertical arrow was shown to be a complete order
embedding. This shows that the horizontal map is a complete order isomorphism.

PRYR



Tensor products of operator systems

Proof

(iii) Suppose that 7’ is associative and 7 = er. Using the nuclearity of M,, (and thus also preser-
vation of inclusions by M,, ®max —), the associativity of 7’ and the (7', er)-nuclearity of .7, we
have the complete order isomorphisms

Mn(y) Q& ~M, (<7/®1:’ %) =~ My @max («5//®er%)
— My, @max (7 @max I (£)) ~ My () @max I (Z).

Therefore we have the following diagram that fixes M, () © Z:
My(S)R@ex # ———————> My () Qv Z
My () ®@max I (%#),
where the horizontal arrow is given by 7’ < er, the diagonal arrow is a complete order em-

bedding by the definition of ®er, and the vertical arrow was shown to be a complete order
embedding. This shows that the horizontal map is a complete order isomorphism.
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Tensor products of operator systems

Proof

(iv) Suppose that 7’ = el and 7 is associative. Using that . (M, (%)) = M, (.9 ()), the nucle-
arity of M,, (and thus also preservation of inclusions by M, ®max —), the associativity of 7 and
the (el, 7)-nuclearity of ., we have the complete order isomorphisms

My () @1 B =My Q¢ (L Q¢ R) >~ My @max (- @l Z)
— My Qmax (ﬂ(y) ®max<%) ZMn(,ﬂ(S)) ®max%2j(Mn(y))®max%~

Therefore we have the following diagram that fixes M,, () © Z:
My(S) @ B ———————> My(S) @ %
I (M () Omax Z,

where the horizontal arrow is given by el < 7, the vertical arrow is a complete order embedding
by the definition of ®g, and the diagonal arrow was shown to be a complete order embedding.
This shows that the horizontal map is a complete order isomorphism.
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Tensor products of operator systems

Proof

(v) Suppose that T’ = er and 7 is associative. Using the nuclearity of M,, (and thus also preser-
vation of inclusions by M, ®max —), the associativity of 7 and the (er, 7)-nuclearity of ., we
have the complete order isomorphisms

My () @c R = My @1 (S @1 R) ~ My @max (S @er X)
— My ®max (y®maxf(%)) g1‘411(¢5ﬂ) ®max ](ﬁ)

Therefore we have the following diagram that fixes M, () © Z:
My(S) @B ——————————> My () @ #
My (L) @max I (%),

where the horizontal arrow is given by er < 7, the vertical arrow is a complete order embedding
by the definition of ®er, and the diagonal arrow was shown to be a complete order embedding.
This shows that the horizontal map is a complete order isomorphism.
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Tensor products of operator systems
Proof

(vi) Suppose that (7/, T) = (el, c). First we show we show that there is a complete order isomor-
phism
Mp(F) @ B = (My @S ) @c B = My ® (S ®c %) 3)

that extends the canonical inclusions of the algebraic tensor product. Recall that
S ®c R — Cfnax (y) Gmax Cfnax (‘%)
Using the nuclearity of M, and the preservation of inclusions by M, ® —, we have that

M’l ® (y ®C ‘%) — M’l ® (Cfnax(y) ®max C:*lax (%))
= M,, ®max (C:nax (‘5/) ®max C:nax (%)) = (Mn ®max C:nax(y)) ®max C:fnax (%)7

where we used the associativity of ®max. This map takes values in
[(Mp, ®max Chiax (7)) © tmax (%)]7(Mn®maxC:mx(y))®mi\xC;1|x (%) ~ (My, ®max Choax (7)) ®c 2,

as My, @max Cihax () is a C*-algebra (see equation (??)). In particular, we get a complete order
embedding that takes values in

M, ® lmax(y)]memaxC.ﬁmx(-V) R R~ (My®F) R R,

where we used the nuclearity of M,.
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Tensor products of operator systems

Proof

We thus obtain a complete order embedding that preserves the copies of M, ® (¥ © Z) =
(M, ®.%) ®Z, and thus it is surjective. The required identification (3) now follows.

Now the proof follows as in item (iv). That is, use that .% (M, (")) = M,(.# ()), the nuclear-
ity of M), (and thus also preservation of inclusions by M, ®max —), the associativity result, and
the (el, 7)-nuclearity of .7, to get

My (L)@ K =M, (L Q¢ R) =My, Qmax (L Rel X)
— My, @max (I (L) @max Z) =~ Mp(F(S)) Omax Z =~ I (My (L)) @max Z.-

Therefore we have the following diagram that fixes M, () ® Z:
My(S) @ B ————> My(S) @1 Z
I (Mn(S)) Omax Z,

where the horizontal arrow is given by el < c, the vertical arrow is a complete order embedding
by the definition of ®¢), and the diagonal arrow was shown to be a complete order embedding.
This shows that the horizontal map is a complete order isomorphism.
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Function systems

Definition
A function system is an operator subsystem of the (commutative) C*-algebra C(X).

(Prototype: the space A(K) of continuous affine functions on a compact convex subset K of a
locally convex space.)

Definition
The centre of . is defined by

F(F) 1= Z(Cong(FNNS = {5 € 7 | temy (1)) = Yiens(¥) for all y € Clny (£)}.

Theorem

Let % and T be operator systems. If . ~p T then Z () ~coi. Z(T). Consequently an
operator system ./ is A-equivalent to a function system if and only if & ~p Z (7).
Hence A-equivalence coincides with c.o.i. for function systems.
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Rigid systems
Definition
An operator system . is called rigid if @/ = C.

The operator system C(S!)(") C M, of Toeplitz matrices, i.e.,

fo i1 o L L
5] | I_pt2
T := 51 1o
In—2 I_]
In—1 In—2 n Ty

Corollary

Let ¥ and 7 be operator systems. If .7 is rigid, then . ~x 7 if and only if there exists k € IN
such that T ~ o i My(L). Moreover, if ¥ ~a T then &g ~ M.

Proof.

Choose a TRO M such that [M*M] ~ o/ = C and [MM*] ~ </ (which is unital). Hence M

is a finite dimensional Hilbert space (and set k = dimM).
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Non-commutative graphs

Definition (Duan-Severini—-Winter 2013)

A non-commutative (NC) graph is an operator subsystem of M, for some d € IN.

Let G be an undirected graph on a vertex set [d] := {1,...,d}. We write i ~ j if {i, j} is an
edge of G, and i ~ j if i ~ j or i = j. Following Duan—Severini—Winter, let

S =span{E;; | i~ j} C My,

for the canonical matrix unit system (E; j);l =il of M. As G is undirected, .7 is an operator
system; operator systems of this form are called graph operator systems. We can see that

C*"(S) = @?led/.
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Non-commutative graphs

Definition

We say that . C My acts reducibly if there exists a non-trivial subspace L C € such that
L is reducing for .7
the restriction map of . to L is completely isometric.

We say that . C My acts irreducibly if there exists no such non-trivial subspace L C .

Proposition (Arveson 2011)

Let ¥ C My be an non-commutative graph. If .7 acts irreducibly then
Cin() = @?ledj, di,n c N,d1 +---+d, =d.

for some dj,n € N. Consequently,

Ay = My, rj ke Nn<kri+-+r =d.
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Non-commutative graphs
Definition (equivalent to Stahlke 2016)

Let H and K be finite dimensional Hilbert spaces and . C Z(H) and 7 C %(K) be non-
commutative graphs. A cohomomorphism from 7 to . is a unital completely positive map
D: B(K) — PB(H), which admits a Kraus representation

O(T)=Y/_|AiTA; suchthat A;TA; C . foralli,j€ [r];

if such a map exists, we write .7 — ..

Proposition

Let % and T be non-commutative graphs. There is a cohomomorphism from 7 to . if and
only if there exists an operator space X such that I € [X*X]| and X*TX C ., if and only if
there exists a TRO M such that M* T M C .&.

Remark

Hence two non-commutative graphs are TRO-equivalent if and only if there are finitely many
A;,Bj in a non-generate operator space X such that

span{A; | i € [r]} =X =span{B; | j € [']},
with

A} TA;, €, foriy,ip €r] and Bj]ﬂszgﬂforjl,jge[r’].
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Non-commutative graphs

Theorem
Let ¥ C My and T C My be irreducibly acting non-commutative graphs. Then . ~p T if

and only if & ~1ro 7.

Lemma (Katavolos, Paulsen, Todorov)

Suppose that M is a TRO such that
M*M] = &_ M, and [MM*] =& My,
and set r := le‘:l rjand (=Y {;. Then there exist N € IN and surjective maps g: [r] — [N]
and f: [€] — [N] such that
M= {(ai;) | aij=01if f(i) # g())} < My,
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Non-commutative graphs

Theorem
Let ¥ C My and  C My be irreducibly acting non-commutative graphs. Then . ~x T if
and only if & ~1ro 7.

Proof

Assume . C My and take y: T — B(M @)y C?). Then y is irreducible and remains to
show that it is unitarily equivalent to the identity representation.

- M attains a specific form due to the Lemma, inducing a unitary map U: M @z cd —
C?;x® & — x&. Hence we can assume that y: .7 — 2(C4).

- Now v exends to a s-automorphism of the C*-envelope, which is finite dimensional, and so
y is unitarily equivalent to the identity representation by some V.

- The TRO equivalence is given by VUM.
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Non-commutative graphs

Definition

Let G and H be graphs with finite vertex sets [k] and [m], respectively. We say that G is a

pullback of H, if there exists a map f: [k] — [m] such that

x~x'inG ifandonlyif f(x)=~f(x')inH.

The pullback of a single vertex is a complete graph.

Corollary

Let G and H be graphs. The following are equivalent:
G ~TRO TH;
FG ~a TS
G and H are pullbacks of isomorphic graphs.

Proof

The Lemma gives the connection between TRO’s and pullbacks.

36/39



A-embeddings

Definition

Let . and .7 be operator systems.
We say that . A-embeds in .7 (denoted . Cp ) if .7 ~p p[y(7)] for a complete
order embedding W of .7 and a projection p € y(7)'.
We say that . Aepy-embeds in 7 (denoted . Cp,,, 7)) if & ~p plig, ()] for the

E *%

complete order embedding 1%, : 7 — C&,,(7)** and a projection p € (%, (7)'.

Proposition

Let . and F be operator systems. Then
S Ca T if and only if there is a *-epimorphism Ch, (7 ) @ K — C¥,, () @ K that
maps tmax (7)) @ K onto teny () 9 K;

' Cpy, 7 if and only if there is a x-epimorphism C4,, (7 ) @ K — C&, () ® K that
maps leny () @ K onto ey () @ K.

Corollary

Aenyv-embedding of operator systems is a transitive relation.

37/39



A-embeddings

Remark

In the case of commutative C*-algebras we have that the relations A-embeding and Aepy-
embedding both coincide with the existence of surjective *x-homomorphisms. We also note
that A¢py-embedding is not anti-symmetric modulo A-equivalence.

Remark

In contrast with the case of commutative C*-algebras, Acpy-embedding is rigid for operator sys-
tems of graphs. Indeed, the C*-envelope of an operator system of a graph is a finite-dimensional
C*-algebra, with the summands corresponding to the disjoint components of the graph. There-
fore /G Ca,,, -7 if and only if .7 ~a . for H' a disjoint union of connected components
of H; equivalently, if and only if G and H’ have isomorphic pullbacks for H a disjoint union of
connected components of H.
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A-embeddings

Theorem

Let .# and T be operator systems. If ¥ Cp,,, 7 and T Cp,,, -7 then there exist projections
p in the commutant of C%,(7)** and q in the commutant of C%,, (7 )** such that

Plieay(Z)] ~a qlteny (2] and (1= p)lteny(F)] ~a (1 =) teny (7).

The converse of the Theorem does not hold. For a counterexample let
o = {(xn) | ,}E}}ox” exists }

as a C*-subalgebra of ¢*°. By setting p = 1 &0 we see that

P ©d) =y and (1-p)(od &) = .
However, although we have a x-epimorphism .« @ .«f — 7, we cannot have a x-epimorphism
A = A DA
Thank you for your attention!
Stay safe, and physically and mentally healthy.
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