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Why Morita equivalence?
Representations

- The main idea is to examine an object via its action(s) on its modules, rather than in itself:

Group G Homomorphisms G→ GL(V), for V vector space.

Ring R Left modules RM.

Algebra A Homomorphisms A→ End(V ), for V vector space.

C*-algebra A ∗-representations A→B(H), for H Hilbert space.

- In this sense “Morita equivalence” means equivalent representation theories.
- To compare objects up to matricial representations, i.e., for rings we have that R is Morita
equivalent to Mn(R).
- To relate R and S via matricial approximate identities:

R id //

φk,n ""

R

Mk,n(S)

ψk,n

<<

such that ψk,n ◦φk,n→ idR.
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Morita equivalence for rings

Equivalent views of Morita equivalence for associative rings R and S

- There are functors F : R−Mod→ S−Mod and G : S−Mod→ R−Mod such that

F ◦G ' id and G ◦F ' id.

- There are RMS and SNR such that

R'M⊗S N and S' N⊗R M,

as bimodules.
- There are RMS and SNR and balanced module maps

(·, ·) : M×N→ R and [·, ·] : N×M→ S

that are compatible (wrt associativity).
- End(R(N))' End(S(N)) (stable isomorphism, Camillo 1984).
- Morita equivalent rings have isomorphic centers (and thus Morita equivalence for commutative
rings is isomorphism).
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Morita equivalence for C*-algebras
Equivalent views of Morita equivalence for C*-algebras A and B

- There is an impritivity bimodule AMB.
- There is a C*-algebra C such that

C =

[
A M

M∗ B

]
and A and B are full.

- The categories of left operator modules are equivalent.
- There are AMB and BNA C*-correspondences such that

A'M⊗B N and B' N⊗A M, as bimodules (and we can choose N = M∗).

- There are AMB and BNA C*-correspondences and balanced module maps

(·, ·) : M×N→ A and [·, ·] : N×M→ B

that are compatible (wrt associativity).
- A⊗K' B⊗K, when A and B are σ -unital.
- Morita equivalent C*-algebras have isomorphic centers.

Ternary rings of operators

- A ternary ring of operators (TRO) is a closed subspace M ⊆B(H,K) such that MM∗M ⊆M.
- TRO’s = imprimitivity bimodules (A = [MM∗] and B = [M∗M]).
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Operator spaces
Definition (Eleftherakis-K. 2016)

- Two operator spaces X ⊆B(H1,H2) and Y ⊆B(K1,K2) are called (strongly) TRO equivalent
if there are TRO’s M1 ⊆B(K1,H1) and M2 ⊆B(K2,H2) such that

X = [M2Y M∗1 ] and Y = [M∗2 XM1].

Note that X and Y are operator bimodules by [M2M∗2 ]-[M1M∗1 ] and [M∗2 M2]-[M∗1 M1].
- Two operator spaces X and Y are called (strongly) ∆-equivalent if they admit completely
isometric maps with TRO equivalent ranges.

Main tools
- Suppose that (π,φ ,σ) is a non-degenerate representation of the [M2M∗2 ]-[M1M∗1 ]-bimodule
X in B(H1,H2). Then by using the functors M∗1 ⊗•− and M∗2 ⊗•− we get a non-degenerate
representation (ρ,ψ,τ) of the [M∗2 M2]-[M∗1 M1]-bimodule Y in B(K1,K2) for

K1 = M∗1 ⊗σ H1 and K2 = M∗2 ⊗π H2.

- Suppose that [M2M∗2 ] and [M1M∗1 ] admit cai’s given by sequences (∑k
i=1 mim∗i )k and

(∑k
j=1 n jn∗j)k. Then we can define the maps

φk : X →Mk(Y );x 7→ [m∗i xn j] and ψk : Mk(Y )→ X ; [yi j] 7→ ∑i, j miyi jn∗j

with ψk ◦φk(x) = ∑i, j mim∗i xn∗j n j→ x in norm.
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Operator spaces

Main results for operator spaces (Eleftherakis-K. 2016)

1. TRO-equivalent spaces have equivalent bimodule representation theory.

2. TRO equivalence is an equivalence relation.

3. Strong ∆-equivalence is an equivalence relation.

4. Stable isomorphism (X⊗K ' Y ⊗K ) implies strong ∆-equivalence.

5. Strong ∆-equivalence is stable isomorphism in the presence of separability conditions (σ -
unitality, or if the spaces are separable, or if the spaces are unital).

6. Strong ∆-equivalent operator spaces have strong ∆-equivalent TRO-envelopes.

7. Strong ∆-equivalent unital operator spaces have stable isomorphic C*-envelopes.

8. If two operator algebras with c.a.i.’s are strong ∆-equivalent as operator spaces then they are
Morita equivalent in the sense of Blecher-Muhly-Paulsen, and thus ∆-equivalent in the sense of
Eleftherakis.

9. Strong ∆-equivalence is Morita equivalence for C*-algebras.

10. Strong ∆-equivalent operator spaces admit ∆-equivalent second duals in the sense of
Eleftherakis-Paulsen-Todorov.
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Operator systems
Definition
- A (concrete) operator system S is a (closed) selfadjoint subspace of some B(H) that contains
the unit IH .
- The morphisms in this category are the unital completely positive maps (they are automat-
ically completely contractive). The isomorphisms are the complete order embeddings (unital
completely positive maps with an inverse that is unital completely positive).

Definition
- Two concrete operator systems S ⊆B(H) and T ⊆B(K) are called TRO-equivalent (de-
noted S ∼TRO T ), if there exists a non-degenerate TRO M ⊆B(H,K) such that

S = [M∗T M] and T = [MS M∗].

- Two concrete operator systems S ⊆B(H) and T ⊆B(K) are called concretely bihomo-
morphically equivalent if there exists an operator space X ⊆B(H,K) such that X and X∗ are
non-degenerate (i.e. IH ∈ [X∗X ] and IK ∈ [XX∗]), and

S = [X∗T X ] and T = [XS X∗].

Proposition

If S and T are bihomomorphically equivalent by X, then they are TRO-equivalent by M :=
[XC∗(X∗X)].
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Morita equivalence for operator systems

Definition
- Two operator systems S and T are called ∆-equivalent (denoted S ∼∆ T ) if there exist
Hilbert spaces H and K and unital complete order embeddings φ : S →B(H) and ψ : T →
B(K) such that φ(S )∼TRO ψ(T ).
- Two abstract operator systems S and T will be called bihomomorphically equivalent if
there exist Hilbert spaces H and K, and unital complete order embeddings φ : S →B(H) and
ψ : T →B(K) such that the concrete operator systems φ(S ) and ψ(T ) are concretely biho-
momorphically equivalent. We write S �T to denote that S and T are bihomomorphically
equivalent.

Theorem
Let S and T be operator systems. The following are equivalent:

1. T ∼∆ S as operator systems;

2. T ∼∆ S as operator spaces;

3. S ⊗K'T ⊗K via a completely isometric isomorphism;

4. S ⊗K'T ⊗K via a completely positive completely isometric isomorphism;

5. S ⊗K'T ⊗K via a hermitian completely isometric isomorphism.
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Morita equivalence for operator systems

Definition
Let I (S ) be the injective envelope of S and write

AS := {a ∈I (S ) | aS ⊆S and a∗S ⊆S }.

Letting ιenv : S → C∗env(S ) ⊆I (S ) be the canonical embedding, we note that the unitality
condition yields that AS ⊆ ιenv(S ); we can thus consider AS as being contained in S .

Proposition

Let S and T be operator systems. If S ∼∆ T then there exist complete order embeddings
φ : S → B(H) and ψ : T → B(K), and a non-degenerate TRO M ⊆ B(H,K), such that
φ(S )∼TRO ψ(T ) via M, and in addition

φ(AS ) = [M∗M] and ψ(AT ) = [MM∗].

Furthermore,
C∗env(S )' C∗(φ(S )) and C∗env(T )' C∗(ψ(T )),

and consequently C∗env(S )∼∆ C∗env(T ).
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Morita contexts for operator systems
Definition
Let S and T be abstract operator systems and M be a TRO. We say that the quintuple(
S ,T ,M, [·, ·, ·],(·, ·, ·)

)
is a ∆-pre-context if:

(i) the C*-algebras [M∗M] and [MM∗] are unital;

(ii) S is a C*-bimodule over [M∗M] and T is a C*-bimodule over [MM∗];

(iii) [·, ·, ·] : M∗×T ×M −→S and (·, ·, ·) : M×S ×M∗ −→T are completely bounded
completely positive maps, modular over [M∗M] and [MM∗] on the outer variables (with
unital module actions), and

(iv) the associativity relations

(m1, [m∗2, t,m3],m∗4) = (m1m∗2) · t · (m3m∗4)

and
[m∗1,(m2,s,m∗3),m4] = (m∗1m2) · s · (m∗3m4)

hold for all s ∈S , t ∈T and all m1,m2,m3,m4 ∈M.

A ∆-pre-context is called a ∆-context if the trilinear maps [·, ·, ·] and (·, ·, ·) are completely con-
tractive and the relations

(m1,1S ,m∗2) = (m1m∗2) ·1T and [m∗1,1S ,m2] = (m∗1m2) ·1S (1)

hold for all m1,m2 ∈M. 10 / 39



Morita contexts for operator systems
Definition
Let S and T be abstract operator systems and X be an abstract operator space. We say that
the quintuple

(
S ,T ,X , [·, ·, ·],(·, ·, ·)

)
is a bihomomorphism pre-context if:

(i) X is non-degenerate;

(ii) [·, ·, ·] : X∗×T ×X −→S and (·, ·, ·) : X×S ×X∗ −→T are completely bounded
completely positive maps such that

[X∗,1T ,X ]⊆AS and (X ,1S ,X∗)⊆AT ;

(iii) the associativity relations

[x∗1,(x2,s,x∗3),x4] = [x∗1,1T ,x2] · s · [x∗3,1T ,x4]

and
(x1, [x∗2, t,x3],x∗4) = (x1,1S ,x∗2) · t · (x3,1S ,x∗4)

hold for all s ∈S , t ∈T and all x1,x2,x3,x4 ∈ X .

A bihomomorphism pre-context is called a bihomomorphism context if the trilinear maps [·, ·, ·]
and (·, ·, ·) are completely contractive and there exist semi-units ((xi)i,(yi)i) and ((zi)i,(wi)i)
over X and X∗, respectively, such that

lim
i
[x∗i ,1T ⊗ I,yi] = 1S and lim

i
(zi,1S ⊗ I,w∗i ) = 1T . (2)
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Morita contexts for operator systems
Theorem
Let S and T be (abstract) operator systems. The following are equivalent:

1. S ∼∆ T ;

2. S �T ;

3. there exists a ∆-context for S and T ;

4. there exists a bihomomorphism context for S and T .

Proof
(2) implies (1) concretely. A realization is a context, and so (1) implies (3) and (2) implies
(4). A familiar “trick” by using M⊗− gives that (3) implies (1). An extension of this trick is
required for showing that (4) implies (2):
- Suppose we have a bihomomorphism context and start with φ : S →I (S )⊆B(H).
- Let K be the Hausdorff completion of X�H wrt

〈x1⊗h1,x2⊗h2〉 := 〈φ([x∗2,1T ,x1])h1,h2〉H .

- Let θ : X →B(H,K) be given by θ(x)h = x⊗h.
- Let ψ : T →B(K) such that 〈ψ(t)(x1⊗h1),x2⊗h2〉K = 〈φ([x∗2, t,x1])h1,h2〉H . Existence of
semi-units plus that φ is c.is. gives that ψ is completely isometric.
- Then it follows that φ(S ) and ψ(T ) are bihomomorphically equivalent by θ(X), since
θ(x2)

∗ψ(t)θ(x1) = φ([x∗2, t,x1]). 12 / 39



Morita invariants and applications

Definition
- We write RepC∗(S ) for the class of ucp maps of S that restrict to a ∗-homomorphism on
AS .
- We write KerAS

(S ) for the set of all subspaces J for which there exists an element (Hφ ,φ)
of RepC∗(S ) such that J = ker(φ).

Theorem
Let S ,T be operator systems with S ∼∆ T . Then

G ◦F � IdRepC∗ (S ) and F ◦G � IdRepC∗ (T ),

up to natural equivalence. In particular, the categories RepC∗(S ) and RepC∗(T ) are equiva-
lent via completely contractive functors.
Moreover the lattices KerAS

(S ) and KerAT
(T ) are isomorphic.

Theorem
Let S and T be operator systems with S ∼∆ T . The functors F and G preserve the maximal
representations and the Choquet representations. In addition, S is hyperrigid if and only if T
is hyperrigid.
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Morita invariants and applications

Definition
Let Hmod(S ) have the same objects as RepC∗(S ), but given objects Γ1 = (H1,φ1) and Γ2 =
(H2,φ2), the set IntS (Γ1,Γ2) of morphisms from Γ1 to Γ2 is defined by letting

IntS (Γ1,Γ2) = {T ∈B(H1,H2) | T φ1(s) = φ2(s)T for all s ∈S };

we call the elements T ∈ IntS (Γ1,Γ2) intertwiners of the pair (Γ1,Γ2).

Theorem
Let S ,T be operator systems with S ∼∆ T . We have that

G ◦F � IdHmod(S ) and F ◦G � IdHmod(T ),

up to natural equivalence. In particular, the categories Hmod(S ) and Hmod(T ) are equiva-
lent through completely contractive functors.
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Tensor products of operator systems
Remarks
- Introduced by Kavruk–Paulsen–Todorov–Tomforde (2010).
- Given two operator systems (S ,{Pn}n,eS ) and (T ,{Qn}n,eT ), by an operator system
structure on S �T we mean a family of cones τ := {Cn}n such that:

1. Cn ⊆Mn(S �T );

2. (S �T ,{Cn}n,eS ⊗ eT ) defines an operator system denoted by S ⊗τ T ;

3. Pn�Qm ⊆Cnm for all n,m ∈N;

4. if φ : S →Mn and ψ : T →Mm are unital completely positive maps, then
φ ⊗ψ : S ⊗τ T →Mnm is a unital completely positive map.

- Given two operator structures τ1 and τ2 on S �T , we say that τ2 ≤ τ1 if the identity map on
S �T extends to a unital completely positive map S ⊗τ1 T →S ⊗τ2 T ; equivalently that

Mn(S ⊗τ1 T )+ ⊆Mn(S ⊗τ2 T )+ for every n ∈N.

- We say that τ is functorial if for every unital completely positive maps φ : S1 → S2 and
ψ : T1→ T2 of operator systems we get that the linear map φ ⊗ψ defines a unital completely
positive map from S1⊗τ S2 to S2⊗τ T2.
- An operator system tensor product τ is associative if the natural isomorphism (R �S )�
T ' R � (S �T ) extends to a complete order isomorphism from (R ⊗τ S )⊗τ T onto
R⊗τ (S ⊗τ T ).
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Tensor products of operator systems

Tensor products on S �T

- The maximal tensor product S ⊗max R is characterised by the property that it linearises every
jointly completely positive bilinear map from S ×R into an operator system, to a completely
positive map.

- The minimal (or spatial) tensor product S ⊗R is given as the (concrete) closed operator
subsystem of B(H⊗K) arising from (any) unital complete order embeddings S ↪→B(H) and
R ↪→B(K).

- In the commuting tensor product S ⊗c R, an element u ∈ Mn(S �R) is positive if it has
positive images under the maps (φ ·ψ)(n) (where (φ ·ψ)(x⊗ y) = φ(x)ψ(y)), for all unital
completely positive maps φ and ψ with commuting ranges, defined on S and R, respectively.

- The essential left tensor product S ⊗el R is defined by the requirement that the inclusion map
S �R ⊆I (S )⊗max R lifts to a complete order embedding on S ⊗el R.

- The essential right tensor product S ⊗er R is defined by the requirement that the inclusion
map S �R ⊆S ⊗max I (R) lifts to a complete order embedding on S ⊗er R.
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Tensor products of operator systems

Properties

- For C*-algebras A and B the maximal operator system t.p. A ⊗max B coincides with the
operator system arising from the inclusion A �B ↪→A ⊗C∗-max B.
- S ⊗c A = S ⊗max A for every C*-algebra A .
- S ⊗c T coincides with the operator system arising from the inclusion S � T ↪→
C∗max(S )⊗max C∗max(T ).
- S ⊗c T coincides with the operator system arising from the inclusion S �T ↪→ S ⊗c
C∗max(T ).
- Those tensor product structures satisfy:

min ≤ er , el ≤ c ≤ max .

Definition
We say that S is (τ ′,τ)-nuclear if for every operator system R the identity map on S �R
lifts to a complete order isomorphism S ⊗τ R →S ⊗τ ′ R. We say that S is nuclear if it is
(min,max)-nuclear.
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Tensor products of operator systems

Nuclearity relations on S (KPTT 2010)

1. S is (min,el)-nuclear iff it is exact; i.e., if for every C*-algebra A with an ideal I we have
that the well-defined map

A ⊗S
/

I ⊗S → (A /I )⊗S

is a completely isometric isomorphism.

2. S is (min,er)-nuclear iff it has the operator system local lifting property (OSLLP); i.e.,
if whenever A is a unital C*-algebra with a closed ideal I CA and canonical quotient map
qI : A →A /I , and φ : S →A /I is a unital completely positive map, then for every finite-
dimensional operator system E ⊆S there is a unital completely positive map ψ : E →A such
that the diagram

A

qI

''
E

ψ

OO

φ |E
// A /I

is commutative.
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Tensor products of operator systems

Nuclearity relations on S (KPTT 2010)

3. S is (el,max)-nuclear iff it has the weak expectation property (WEP); i.e., if the canonical
inclusion ι : S →S dd extends to a unital completely positive map φ : I (S )→S dd . Here
S dd denotes the double dual operator system of S .

4. S is (el,c)-nuclear iff it has the double commutant expectation property (DCEP); i.e., if for
any unital complete order embedding ι : S →B(H) there exists a unital completely positive
extension φ : I (S )→ ι(S )′′ ⊆B(H).

Corollary (EKT 2021)

Nuclearity, exactness, the (OSLLP), the (WEP), and the (DCEP) are invariants of ∆-equivalence
of operator systems.
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Tensor products of operator systems

Theorem
Let S and T be operator systems such that S ∼∆ T . Let (τ ′,τ) be a pair of functorial tensor
products with τ ′ ≤ τ such that:

1. τ ′ and τ are associative tensor products; or

2. τ ′ is associative and τ = el; or

3. τ ′ is associative and τ = er; or

4. τ ′ = el and τ is associative; or

5. τ ′ = er and τ is associative; or

6. (τ ′,τ) = (el,c).

Then S is (τ ′,τ)-nuclear if and only if T is (τ ′,τ)-nuclear.
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Tensor products of operator systems

Proof.
Due to ∆-equivalence we have an approximately commutative diagram:

T

φn &&

idT // T

Mn(S )

ψn

88

of completely positive completely contractive maps.
Let R be an operator system. If the c.o.i. S ⊗τ R 'S ⊗τ ′ R gives a c.o.i.

Mn(S )⊗τ R 'Mn(S )⊗τ ′ R, for every n ∈N,

then we are done, as we obtain a sequence of ucp maps

T ⊗τ ′ R→Mn(S )⊗τ ′ R→Mn(S )⊗τ R→T ⊗τ R,

with limit the identity map T ⊗τ ′ R→T ⊗τ R. �

21 / 39



Tensor products of operator systems

Lemma
Let S be an operator system that is (τ ′,τ)-nuclear for τ ′ ≤ τ such that:

1. τ ′ and τ are associative tensor products; or

2. τ ′ is associative and τ = el; or

3. τ ′ is associative and τ = er; or

4. τ ′ = el and τ is associative; or

5. τ ′ = er and τ is associative; or

6. (τ ′,τ) = (el,c).

Then the operator system Mn(S ) is (τ ′,τ)-nuclear.

Proof
(i) Suppose that both τ and τ ′ are associative. Since Mn is nuclear, we have the complete order
isomorphisms

Mn(S )⊗τ R ' (Mn⊗S )⊗τ R 'Mn⊗τ S ⊗τ R 'Mn⊗ (S ⊗τ R)

'Mn⊗ (S ⊗τ ′ R)'Mn⊗τ ′ S ⊗τ ′ R ' (Mn⊗S )⊗τ ′ R 'Mn(S )⊗τ ′ R.
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Tensor products of operator systems

Proof
(ii) Suppose τ ′ is associative and τ = el. Using that I (Mn(S )) = Mn(I (S )), the nuclearity
of Mn (and thus also preservation of inclusions by Mn⊗max−), the associativity of τ ′ and the
(τ ′,el)-nuclearity of S , we have the complete order isomorphisms

Mn(S )⊗τ ′ R 'Mn⊗τ ′ (S ⊗τ ′ R)'Mn⊗max (S ⊗el R)

↪→Mn⊗max (I (S )⊗max R)'Mn(I (S))⊗max R 'I (Mn(S ))⊗max R.

Therefore we have the following diagram that fixes Mn(S )�R:

Mn(S )⊗el R //

**

Mn(S )⊗τ ′ R

��
I (Mn(S ))⊗max R,

where the horizontal arrow is given by τ ′ ≤ el, the diagonal arrow is a complete order em-
bedding by the definition of ⊗el, and the vertical arrow was shown to be a complete order
embedding. This shows that the horizontal map is a complete order isomorphism.
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Tensor products of operator systems

Proof
(iii) Suppose that τ ′ is associative and τ = er. Using the nuclearity of Mn (and thus also preser-
vation of inclusions by Mn⊗max−), the associativity of τ ′ and the (τ ′,er)-nuclearity of S , we
have the complete order isomorphisms

Mn(S )⊗τ ′ R 'Mn⊗τ ′ (S ⊗τ ′ R)'Mn⊗max (S ⊗er R)

↪→Mn⊗max (S ⊗max I (R))'Mn(S )⊗max I (R).

Therefore we have the following diagram that fixes Mn(S )�R:

Mn(S )⊗er R //

**

Mn(S )⊗τ ′ R

��
Mn(S )⊗max I (R),

where the horizontal arrow is given by τ ′ ≤ er, the diagonal arrow is a complete order em-
bedding by the definition of ⊗er, and the vertical arrow was shown to be a complete order
embedding. This shows that the horizontal map is a complete order isomorphism.
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Tensor products of operator systems

Proof
(iv) Suppose that τ ′ = el and τ is associative. Using that I (Mn(S )) = Mn(I (S )), the nucle-
arity of Mn (and thus also preservation of inclusions by Mn⊗max−), the associativity of τ and
the (el,τ)-nuclearity of S , we have the complete order isomorphisms

Mn(S )⊗τ R 'Mn⊗τ (S ⊗τ R)'Mn⊗max (S ⊗el R)

↪→Mn⊗max (I (S )⊗max R)'Mn(I (S))⊗max R 'I (Mn(S ))⊗max R.

Therefore we have the following diagram that fixes Mn(S )�R:

Mn(S )⊗τ R //

**

Mn(S )⊗el R

��
I (Mn(S ))⊗max R,

where the horizontal arrow is given by el≤ τ , the vertical arrow is a complete order embedding
by the definition of ⊗el, and the diagonal arrow was shown to be a complete order embedding.
This shows that the horizontal map is a complete order isomorphism.
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Tensor products of operator systems

Proof
(v) Suppose that τ ′ = er and τ is associative. Using the nuclearity of Mn (and thus also preser-
vation of inclusions by Mn⊗max−), the associativity of τ and the (er,τ)-nuclearity of S , we
have the complete order isomorphisms

Mn(S )⊗τ R 'Mn⊗τ (S ⊗τ R)'Mn⊗max (S ⊗er R)

↪→Mn⊗max (S ⊗max I (R))'Mn(S )⊗max I (R).

Therefore we have the following diagram that fixes Mn(S )�R:

Mn(S )⊗τ R //

**

Mn(S )⊗er R

��
Mn(S )⊗max I (R),

where the horizontal arrow is given by er≤ τ , the vertical arrow is a complete order embedding
by the definition of ⊗er, and the diagonal arrow was shown to be a complete order embedding.
This shows that the horizontal map is a complete order isomorphism.
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Tensor products of operator systems
Proof
(vi) Suppose that (τ ′,τ) = (el,c). First we show we show that there is a complete order isomor-
phism

Mn(S )⊗c R ' (Mn⊗S )⊗c R 'Mn⊗ (S ⊗c R) (3)

that extends the canonical inclusions of the algebraic tensor product. Recall that

S ⊗c R ↪→ C∗max(S )⊗max C∗max(R).

Using the nuclearity of Mn and the preservation of inclusions by Mn⊗−, we have that

Mn⊗ (S ⊗c R) ↪→Mn⊗ (C∗max(S )⊗max C∗max(R))

'Mn⊗max (C∗max(S )⊗max C∗max(R))' (Mn⊗max C∗max(S ))⊗max C∗max(R),

where we used the associativity of ⊗max. This map takes values in

[(Mn⊗max C∗max(S ))� ιmax(R)]−(Mn⊗maxC∗max(S ))⊗maxC∗max(R) ' (Mn⊗max C∗max(S ))⊗c R,

as Mn⊗max C∗max(S ) is a C*-algebra (see equation (??)). In particular, we get a complete order
embedding that takes values in

[Mn� ιmax(S )]−Mn⊗maxC∗max(S )⊗c R ' (Mn⊗S )⊗c R,

where we used the nuclearity of Mn.
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Tensor products of operator systems

Proof
We thus obtain a complete order embedding that preserves the copies of Mn � (S �R) =
(Mn�S )�R, and thus it is surjective. The required identification (3) now follows.
Now the proof follows as in item (iv). That is, use that I (Mn(S )) = Mn(I (S )), the nuclear-
ity of Mn (and thus also preservation of inclusions by Mn⊗max−), the associativity result, and
the (el,τ)-nuclearity of S , to get

Mn(S )⊗c R 'Mn⊗ (S ⊗c R)'Mn⊗max (S ⊗el R)

↪→Mn⊗max (I (S )⊗max R)'Mn(I (S))⊗max R 'I (Mn(S ))⊗max R.

Therefore we have the following diagram that fixes Mn(S )�R:

Mn(S )⊗c R //

**

Mn(S )⊗el R

��
I (Mn(S ))⊗max R,

where the horizontal arrow is given by el≤ c, the vertical arrow is a complete order embedding
by the definition of ⊗el, and the diagonal arrow was shown to be a complete order embedding.
This shows that the horizontal map is a complete order isomorphism.
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Function systems

Definition
A function system is an operator subsystem of the (commutative) C*-algebra C(X).
(Prototype: the space A(K) of continuous affine functions on a compact convex subset K of a
locally convex space.)

Definition
The centre of S is defined by

Z (S ) := Z (C∗env(S ))∩S = {x ∈S | ιenv(x)y = yιenv(x) for all y ∈ C∗env(S )}.

Theorem
Let S and T be operator systems. If S ∼∆ T then Z (S ) 'c.o.i. Z (T ). Consequently an
operator system S is ∆-equivalent to a function system if and only if S ∼∆ Z (S ).
Hence ∆-equivalence coincides with c.o.i. for function systems.
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Rigid systems
Definition
An operator system S is called rigid if AS = C.

Example

The operator system C(S1)(n) ⊆Mn of Toeplitz matrices, i.e.,

T :=



t0 t−1 · · · t−n+2 t−n+1
t1 t0 t−1 t−n+2
... t1 t0

. . .
...

tn−2
. . .

. . . t−1
tn−1 tn−2 · · · t1 t0

 .

Corollary

Let S and T be operator systems. If S is rigid, then S ∼∆ T if and only if there exists k ∈N
such that T 'c.o.i. Mk(S ). Moreover, if S ∼∆ T then AT 'Mk.

Proof.
Choose a TRO M such that [M∗M] 'AS = C and [MM∗] 'AT (which is unital). Hence M
is a finite dimensional Hilbert space (and set k = dimM). �
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Non-commutative graphs

Definition (Duan–Severini–Winter 2013)

A non-commutative (NC) graph is an operator subsystem of Md , for some d ∈N.

Example

Let G be an undirected graph on a vertex set [d] := {1, . . . ,d}. We write i∼ j if {i, j} is an
edge of G, and i' j if i∼ j or i = j. Following Duan–Severini–Winter, let

SG = span{Ei j | i' j} ⊆Md ,

for the canonical matrix unit system (Ei j)
d
i, j=1 of Md . As G is undirected, SG is an operator

system; operator systems of this form are called graph operator systems. We can see that
C∗(SG) =⊕n

j=1Md j .
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Non-commutative graphs

Definition
We say that S ⊆Md acts reducibly if there exists a non-trivial subspace L⊆ Cd such that

1. L is reducing for S ;

2. the restriction map of S to L is completely isometric.

We say that S ⊆Md acts irreducibly if there exists no such non-trivial subspace L⊆ Cd .

Proposition (Arveson 2011)

Let S ⊆Md be an non-commutative graph. If S acts irreducibly then

C∗env(S ) =⊕n
j=1Md j , d j,n ∈N,d1 + · · ·+dn = d.

for some d j,n ∈N. Consequently,

AS =⊕k
j=1Mr j , r j,k ∈N,n≤ k,r1 + · · ·+ rk = d.
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Non-commutative graphs
Definition (equivalent to Stahlke 2016)

Let H and K be finite dimensional Hilbert spaces and S ⊆ B(H) and T ⊆ B(K) be non-
commutative graphs. A cohomomorphism from T to S is a unital completely positive map
Φ : B(K)→B(H), which admits a Kraus representation

Φ(T ) = ∑
r
i=1 A∗i TAi such that A∗i T A j ⊆S for all i, j ∈ [r];

if such a map exists, we write T →S .

Proposition

Let S and T be non-commutative graphs. There is a cohomomorphism from T to S if and
only if there exists an operator space X such that I ∈ [X∗X ] and X∗T X ⊆ S , if and only if
there exists a TRO M such that M∗T M ⊆S .

Remark
Hence two non-commutative graphs are TRO-equivalent if and only if there are finitely many
Ai,B j in a non-generate operator space X such that

span{Ai | i ∈ [r]}= X = span{B j | j ∈ [r′]},

with

A∗i1T Ai2 ⊆S , for i1, i2 ∈ [r] and B j1S B∗j2 ⊆T for j1, j2 ∈ [r′].
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Non-commutative graphs

Theorem
Let S ⊆Md and T ⊆Md′ be irreducibly acting non-commutative graphs. Then S ∼∆ T if
and only if S ∼TRO T .

Lemma (Katavolos, Paulsen, Todorov)

Suppose that M is a TRO such that

[M∗M] =⊕k
j=1Mr j and [MM∗] =⊕m

i=1M`i ,

and set r := ∑
k
j=1 r j and ` := ∑

m
i=1 `i. Then there exist N ∈N and surjective maps g : [r]→ [N]

and f : [`]→ [N] such that

M = {(ai, j) | ai, j = 0 if f (i) , g( j)} ⊆M`,r.
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Non-commutative graphs

Theorem
Let S ⊆Md and T ⊆Md′ be irreducibly acting non-commutative graphs. Then S ∼∆ T if
and only if S ∼TRO T .

Proof
Assume S ⊆Md and take ψ : T →B(M⊗[M∗M]C

d). Then ψ is irreducible and remains to
show that it is unitarily equivalent to the identity representation.
- M attains a specific form due to the Lemma, inducing a unitary map U : M⊗[M∗M] C

d →
Cd′ ;x⊗ξ 7→ xξ . Hence we can assume that ψ : T →B(Cd′).
- Now ψ exends to a ∗-automorphism of the C*-envelope, which is finite dimensional, and so
ψ is unitarily equivalent to the identity representation by some V .
- The TRO equivalence is given by VUM. �
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Non-commutative graphs

Definition
Let G and H be graphs with finite vertex sets [k] and [m], respectively. We say that G is a
pullback of H, if there exists a map f : [k]→ [m] such that

x' x′ in G if and only if f (x)' f (x′) in H.

Example

The pullback of a single vertex is a complete graph.

Corollary

Let G and H be graphs. The following are equivalent:

1. SG ∼TRO SH ;

2. SG ∼∆ SH ;

3. G and H are pullbacks of isomorphic graphs.

Proof
The Lemma gives the connection between TRO’s and pullbacks.
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∆-embeddings

Definition
Let S and T be operator systems.

1. We say that S ∆-embeds in T (denoted S ⊂∆ T ) if S ∼∆ p[ψ(T )] for a complete
order embedding ψ of T and a projection p ∈ ψ(T )′.

2. We say that S ∆env-embeds in T (denoted S ⊂∆env T ) if S ∼∆ p[ι∗∗env(T )] for the
complete order embedding ι∗∗env : T → C∗env(T )∗∗ and a projection p ∈ ι∗∗env(T )′.

Proposition

Let S and T be operator systems. Then

(i) S ⊂∆ T if and only if there is a ∗-epimorphism C∗max(T )⊗K→ C∗env(S )⊗K that
maps ιmax(T )⊗K onto ιenv(S )⊗K;

(ii) S ⊂∆env T if and only if there is a ∗-epimorphism C∗env(T )⊗K→ C∗env(S )⊗K that
maps ιenv(T )⊗K onto ιenv(S )⊗K.

Corollary

∆env-embedding of operator systems is a transitive relation.
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∆-embeddings

Remark
In the case of commutative C*-algebras we have that the relations ∆-embeding and ∆env-
embedding both coincide with the existence of surjective ∗-homomorphisms. We also note
that ∆env-embedding is not anti-symmetric modulo ∆-equivalence.

Remark
In contrast with the case of commutative C*-algebras, ∆env-embedding is rigid for operator sys-
tems of graphs. Indeed, the C*-envelope of an operator system of a graph is a finite-dimensional
C*-algebra, with the summands corresponding to the disjoint components of the graph. There-
fore SG ⊂∆env SH if and only if SG ∼∆ SH ′ for H ′ a disjoint union of connected components
of H; equivalently, if and only if G and H ′ have isomorphic pullbacks for H ′ a disjoint union of
connected components of H.
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∆-embeddings

Theorem
Let S and T be operator systems. If S ⊂∆env T and T ⊂∆env S then there exist projections
p in the commutant of C∗env(T )∗∗ and q in the commutant of C∗env(S )∗∗ such that

p[ι∗∗env(T )]∼∆ q[ι∗∗env(S )] and (1− p)[ι∗∗env(T )]∼∆ (1−q)[ι∗∗env(S )].

Example

The converse of the Theorem does not hold. For a counterexample let

A := {(xn) | lim
n→∞

xn exists}

as a C*-subalgebra of `∞. By setting p = 1⊕0 we see that

p(A ⊕A )'A2N and (1− p)(A ⊕A )'A2N+1.

However, although we have a ∗-epimorphism A ⊕A →A , we cannot have a ∗-epimorphism
A →A ⊕A .

Thank you for your attention!

Stay safe, and physically and mentally healthy.
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